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ABSTRACT. We describe the main ideas underlying integer factorization using
the number field sieve.
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1. Introduction

The number field sieve is a factoring algorithm that tries to factor a hard
composite number by exploiting factorizations of smooth numbers in a well-
chosen algebraic number field. It is similar in nature to the quadratic sieve
algorithm, but the underlying number theory is less elementary, and the actual
implementation involves a fair amount of optimization of the various parameters.

The key idea of the algorithm, the use of smooth numbers in number rings dif-
ferent from Z, was proposed in 1988 by Pollard. Many people have contributed
theoretical and practical improvements since then. An excellent reference for
many of the details left out in this paper is [Lenstra and Lenstra 1993]. It contains
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a complete bibliography of the early years of the number field sieve, as well as
original contributions by most of the main developers of the algorithm.

Among the successes of the algorithm are the 2005 factorization of the 663-
bit RSA challenge number

RSA-200 D p100 � q100

into a product of two primes of 100 decimal digits each, and the factorization in
2006 of the 275-digit Cunningham number

6353
� 1 D 5 � p120 � p155

into a product of 5 and two primes of 120 and 155 digits, respectively. Unlike
RSA-200, the second number has a special form that can be exploited by the
number field sieve. No other algorithm is currently capable of factoring integers
of this size.

For the quadratic sieve algorithm and the elliptic curve method, the conjec-
tural asymptotic expected running time for factoring a large number n is

exp
p

log n log log n;

which is on a log-log scale halfway between exponential and polynomial. The
number field sieve conjecturally improves this bound to

.1:1/ exp
�
c.log n/1=3.log log n/2=3

�
;

where the constant c D .64=9/1=3 � 1:93 can be lowered to .32=9/1=3 � 1:53

if we are dealing with numbers n of the special form explained in section 3.

2. Factoring by congruent squares

The number field sieve is one of the algorithms that tries to factor n by pro-
ducing congruent squares modulo n, as explained in [Pomerance 2008]. For
this we will assume from now on that n is odd, composite and not a power of
a prime number. Note that each of these conditions can easily be checked for
large n. One tries to find integers x and y satisfying x 6� ˙y mod n and

.2:1/ x2
� y2 mod n:

In this case, gcd.x � y; n/ is a non-trivial factor of n. As at least half of all
pairs .x; y/ of invertible residue classes modulo n satisfying .2:1/ satisfy x 6�

˙y mod n, we may expect to find a non-trivial factor of n within a few tries if
we can produce solutions .x; y/ to .2:1/ in a pseudo-random way.

An old factoring algorithm based on this idea is the continued fraction method.
It uses the convergents xi=yi 2 Q (i D 1; 2; : : :) occurring in the continued
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fraction expansion of
p

n as defined in [Buhler and Wagon 2008]. These frac-
tions, which can be computed from simple two-term recursive relations for the
integers xi and yi , provide rational approximations to the real number

p
n. The

associated integers
Qi D x2

i � ny2
i

are of absolute value at most 2
p

n, and we may hope to be able to find a fair
number of these Qi which are smooth. As we saw in [Pomerance 2008], it is
a matter of linear algebra over the field of two elements to construct a square
from a sufficiently large set of integers that factor over a given factor base. From
every square y2 D

Q
i2I Qi , we find a solution� Y

i2I

xi

�2

� y2 mod n

to the congruence .2:1/.
The quadratic sieve replaces the integers Qi in the continued fraction algo-

rithm by the values of the polynomial

Q.X / D X 2
� n:

For integers x satisfying jx �
p

nj < M for some small bound M , the absolute
value of Q.x/ is not much larger than 2M

p
n. As M has to be large enough

to allow for a reasonable supply of x-values, the numbers Q.x/ we encounter
here are somewhat larger than the Qi above. However, the advantage of using
values of the polynomial Q is that the values of x for which Q.x/ is smooth
may be detected by sieving.

From the smooth values of Q, we construct a square y2 D
Q

x2S Q.x/ and
a solution � Y

s2S

x

�2

� y2 mod n

to the basic congruence .2:1/ exactly as for the continued fraction algorithm.
The algebraic description one may give of both methods is as follows. We

have constructed squares .x2; y2/ 2 Z � Z whose images under the reduction
map

Z � Z
�

� Z=nZ � Z=nZ

.x2
i ; x2

i � ny2
i / ’ .x2

i ; x2
i /

.x2; x2
� n/ ’ .x2; x2/

lie in the diagonal. If we are lucky, �.x; y/ does not land in

D D f.x; ˙x/ W x 2 Z=nZg
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and we find a non-trivial factor of n. As .x2; y2/ is constructed in such a way
that �.x; y/ has no obvious reason to always end up in D, we expect to be lucky
in at least half of all cases.

The construction of squares in the continued fraction and quadratic sieve
methods requires many auxiliary numbers Qi or Q.x/ of size O.

p
n/ to be

smooth. Asymptotically, the superior performance of the number field sieve
stems from the fact that it is a sieving method that requires smaller auxiliary
numbers to be smooth: they are of size

exp
�
c0.log n/2=3.log log n/1=3

�
with c0 D .64=3/1=3 � 2:77. Informally phrased, the length of these numbers
is not half of the length of n, but only the 2=3-rd power of the length of n.
This improvement is obtained by replacing Z � Z by Z � ZŒ˛� for a suitable
number ring ZŒ˛� and producing squares .x2; 
 2/ with diagonal image under
the reduction map

Z � ZŒ˛�
�

� Z=nZ � Z=nZ:

Exactly as before, this yields a solution

.2:2/ x2
� �.
 /2 mod n

to our basic congruence .2:1/.

3. Number rings

A number field is a finite field extension of the field Q of rational numbers,
and a number ring [Stevenhagen 2008] is by definition a subring of a number
field. The basic type of number ring used in the number field sieve is the ring

ZŒ˛� D ZŒX �=f ZŒX �

generated by a formal zero ˛ D .X mod f ZŒX �/ of some irreducible polynomial
f 2 ZŒX � of degree d � 1. The elements of this ring are finite expressionsP

i�0 ai˛
i with ai 2 Z. One may obtain an embedding ZŒ˛� � C by taking ˛ to

be a complex zero of f . Note that even though the field of fractions of a number
ring is always of the form Q.˛/ for some root ˛ of an irreducible polynomial
in ZŒX �, there are many number rings that are of finite rank over Z but not of
the form ZŒ˛�.

We will take f to be a monic irreducible polynomial in ZŒX �, such that

ZŒ˛� D Z � 1 ˚ Z � ˛ ˚ Z � ˛2
˚ : : : ˚ Z � ˛d�1

is integral over Z. It is an order in the field of fractions Q.˛/ of ZŒ˛�.
The norm

N W Q.˛/ ! Q
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takes x 2 Q.˛/ to the determinant of the multiplication-by-x map on the Q-
vector space Q.˛/. It is multiplicative, and for non-zero x 2 ZŒ˛�, the absolute
value

jN.x/j D #.ZŒ˛�=xZŒ˛�/ 2 Z

of the norm of x measures the “size” of x.

(3.1) Example. The best known example of a number ring with d D deg.f / > 1

is probably the ring ZŒi � of Gaussian integers obtained by putting f D X 2 C 1

and ˛ D i D
p

�1. For this ring, the norm function is given by the simple
formula

N.a C bi/ D a2
C b2: //

More generally, one can find the norm of an element x D a � b˛ 2 Q.˛/ from
the irreducible polynomial f D

Pd
iD0 ciX

i of ˛ as

.3:2/ N.a � b˛/ D bdf .a=b/ D
Pd

iD0 cia
ibd�i :

For polynomial expressions g.˛/ in ˛ of higher degree the norm can efficiently
be computed from the resultant of f and g, but we won’t need this.

For a number ring ZŒ˛� to be useful in factoring n, it needs to come with a
reduction homomorphism

� W ZŒ˛� ! Z=nZ:

Giving such a homomorphism amounts to giving a zero mD�.˛/ off modulo n.
In order to have a small number ring ZŒ˛�, one tries to choose a polynomial f of
moderate degree — in practice d is usually between 3 and 10, although its op-
timal value does slowly tend to infinity with n — and having small coefficients.
This is not an easy problem, but for certain special n one can find very small f .

(3.3) Example. For the Fermat number

n D F9 D 229

C 1 D 2512
C 1

the polynomial f D X 5 C 8 is irreducible in ZŒX � and satisfies

f .2103/ D 2515
C 8 D 8n � 0 mod n:

Similarly, for the record factorization of the Cunningham number n D 6353 � 1

mentioned in the introduction, the polynomial f D X 6�6 is irreducible in ZŒX �

and satisfies

f .659/ D 6354
� 6 D 6n � 0 mod n: //
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For numbers n of the special form n D re � s, with r , s and e small, one can
find a small polynomial f as in the example. For general n we cannot hope
to be so lucky in finding f , and one has to deal with large number rings. The
special and the general number field sieve stand for the versions of the algorithm
corresponding to these two cases. As is to be expected, the special number field
sieve has a somewhat better conjectural running time, and this is reflected by
the size of the record factorizations for each of these versions.

We will mainly be concerned with the case of general integers n to be factored.
For such n, the base m method yields a polynomial f of any desired degree d >1

such that m D m.d/ is a zero of f modulo n. One simply puts

m D integer part of n1=d

and writes n in base m as

n D
Pd

iD0 cim
i :

Then f D
Pd

iD0 ciX
i is a polynomial in ZŒX � satisfying f .m/ D n. In realistic

situations n is much larger than d , which ensures that f will be monic; one may
further assume that f is irreducible, as non-trivial factors of f yield non-trivial
factors of n.

From jci j < m < n1=d we deduce that the discriminant �.f / of f satisfies

.3:4/ j�.f /j < d2dn2�3=d :

As j�.f /j often exceeds n, we cannot hope to be able to factor �.f /.

4. Sieving for smooth elements

Having chosen d , f and m as above, we can combine the ordinary reduction
map on Z with our reduction map on ZŒ˛� to obtain a ring homomorphism

Z � ZŒ˛�
�

� Z=nZ � Z=nZ�
x;

Pd�1
iD0 ai˛

i
�

’
�
x mod n;

Pd�1
iD0 aim

i mod n
�
:

By construction, the elements .a�bm; a�b˛/ have �-image in the diagonal. In
order to combine them into squares, we need to find sets S of coprime integer
pairs .a; b/ for which we haveY

.a;b/2S

.a � bm/ is a square in Z;(4.1)

Y
.a;b/2S

.a � b˛/ is a square in ZŒ˛�.(4.2)
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As in the case of the quadratic sieve, this is in principle done by sieving for
smooth elements .a � bm; a � b˛/ and combining them into a square via linear
algebra methods over F2. The details are however more involved.

Let us define an element .a�bm; a�b˛/ 2 Z�ZŒ˛� to be y-smooth if a�bm

is a y-smooth rational integer and a�b˛ is a y-smooth algebraic integer in ZŒ˛�.
The latter condition simply means that the norm N.a � b˛/ 2 Z is a y-smooth
integer. On the rational side, the procedure to find a set S for which (4.1) holds
is more or less standard. We pick a universe

U D f.a; b/ W jaj � u; 0 < b � u and gcd.a; b/ D 1g

of coprime integer pairs .a; b/ depending on a parameter u.
Using the factor base B1 consisting of primes p � y and a sign-bit, we can

determine the subset of pairs .a; b/2U for which a�bm is y-smooth by sieving.
here we have a 2-dimensional array of pairs .a; b/ over which the sieving with
the primes in B1 needs to be done. One may simply choose to sieve over a for
each value of b, but there exist other methods than this straightforward line-by-
line sieving. Recent record factorizations have used a combination of different
sieving methods.

On the algebraic side, the pairs .a; b/ 2 U for which N.a � b˛/ is y-smooth
can also be found by sieving with the primes in B1, since we see from (3.2) that
the norms

.4:3/ N.a � b˛/ D bdf .a=b/ D

dX
iD0

cia
ibd�i

are the .a; b/-values of the homogeneous polynomial f .X; Y /. But it is not suf-
ficient to find elements a�b˛ whose norm factors over our factor base B1. This
information will only enable us to construct a product

Q
.a;b/2S .a � b˛/ with

square norm, which is far too weak to imply (4.2). A square in ZŒ˛� certainly
has square norm, but the converse only holds in the trivial case ZŒ˛� D Z, where
the norm of an element is the element itself.

(4.4) Example. In the ring of Gaussian integers ZŒi � we have

N.3 C 4i/ D 32
C 42

D 52
D N.5/:

Now 3 C 4i D .2 C i/2 is indeed a square, but 5 D .2 C i/.2 � i/ is not. //

The problem we encounter is that different prime divisors of an element x 2 ZŒ˛�

can give rise to the same prime factor p in its norm N.x/. This forces us to
keep track of “prime factors” of x in the ring ZŒ˛�.
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5. Primes dividing a � b˛

The theory of prime divisors in number rings lies at the very heart of algebraic
number theory, and understanding the workings of the number field sieve is not
possible without entering this area. Rather than assuming the more extensive
exposition on the arithmetic of number rings in [Stevenhagen 2008], we use the
concrete example of our number ring ZŒ˛� to illustrate and motivate the more
general statements of algebraic number theory in that paper.

Let R be any number ring. A prime in R is a non-zero prime ideal p � R.
The residue class ring F D R=p of a prime is a finite field. We say that p divides
an element x 2 R if x is contained in p. For the number ring Z the primes pZ

correspond to the prime numbers p 2 Z. A prime p� R lies over a unique prime
pZ D p \ Z of Z. The corresponding prime number p is the characteristic of
the field F . It is the unique prime number contained in p. The degree of p is the
degree of F over its prime field Fp.

A prime of degree 1 in ZŒ˛� is just the kernel p of a ring homomorphism

� W ZŒ˛� � Fp

for some prime number p. As � may be specified by giving the rational prime p

together with the zero rp D �.˛/ 2 Fp of .f mod p/ to which ˛ is mapped, we
use the ad hoc notation .pI rp/ to denote p D ker � .

Primes of degree 1 are the only primes we need for the number field sieve.
Indeed, suppose that we have .a; b/ 2 U as in the previous section, and that p

is a prime over p dividing a � b˛. Then we have p - b, since pjb would imply
a 2 p\ Z D pZ, contradicting the coprimality of a and b. From a D b˛ 2 F D

ZŒ˛�=p we find that rp D ˛ D ab�1 mod p is a zero of .f mod p/, and that

p D pZŒ˛� C .a � b˛/ZŒ˛�

is the kernel of the map

ZŒ˛�
�

� Fp

˛ ’ .ab�1 mod p/:

Thus p is the prime .pI rp/ of degree 1 that is generated by p and rp � ˛, with
rp D ab�1 mod p a zero of .f mod p/. Conversely, a prime .pI rp/ of degree 1
divides a � b˛ if we have rp D ab�1 mod p.

From our norm formula .3:2/, we see that ab�1 mod p is a zero of .f mod p/

if and only if N.a�b˛/ is divisible by p. We conclude that for a rational prime
number p, there is a prime divisor p of a�b˛ in ZŒ˛� that lies over p if and only
if p divides the norm N.a�b˛/. If p divides N.a�b˛/, the prime p D .pI rp/



THE NUMBER FIELD SIEVE 91

with rp D .ab�1 mod p/ is the unique such prime, and we call

ep.a � b˛/ D ordp.N.a � b˛//

the exponent to which p occurs in a � b˛. For the primes p of ZŒ˛� that do not
divide a�b˛, we put ep.a�b˛/ D 0. We then have the following fundamental
fact.

(5.1) Lemma. For each prime p of degree 1, the exponent ep extends to a homo-
morphism

ep W Q.˛/�
! Z:

This Lemma is slightly less innocent than it may appear at first sight, and we
will define ep.x/ for arbitrary x 2 Q.˛/� in (7.4). There is actually no need to
restrict to primes of degree 1, but we do so as we have not defined the exponent
at other primes. For our purposes, it suffices to know that we have ep.x/ D 0

whenever x is a product of elements a � b˛ with .a; b/ 2 U and p is a prime of
degree at least 2.

6. Sieving and linear algebra

On the rational side, we already chose a factor base B1 consisting of the
primes p � y and a sign bit. For the factorization of our numbers a � b˛ in
ZŒ˛�, we choose a factor base B2 consisting of all primes .pI rp/ with p �

y prime and rp 2 Fp a root of .f mod p/. There may be several primes in
B2 lying over a given rational prime p, and the notation .pI rp/ enables us to
distinguish between such primes, and to identify the prime that accounts for the
p-contribution (if any) to N.a � b˛/.

For each rational p, there are at most d D deg.f / values rp. On average,
there is 1 root of .f mod p/ in Fp if we let y tend to infinity. This elegant result
of Kronecker, which was generalized by Frobenius, is now often proved as a
corollary of the Chebotarev density theorem [Stevenhagen and Lenstra 1996].
We deduce that both B1 and B2 are of size y1Co.1/.

The combination of rational and algebraic sieving yields a subset U 0 � U of
pairs .a; b/ 2 U that give rise to a y-smooth factorization of a � bm in Z and a
y-smooth factorization of a�b˛ in ZŒ˛�. Such a pair .a; b/ 2 U 0, together with
the exponents of the rational primes p 2 B1 in a�bm and the exponents of the
algebraic primes p in a � b˛, is usually referred to as a relation. All exponents
are taken modulo 2, so they can be stored in a single bit.

In order to obtain dependencies between the exponent vectors of elements in
U 0, the number #U 0 of relations should exceed #B1 C#B2. For large factoriza-
tions, collecting sufficiently many relations may take several years of computer
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time. As different computers can independently test elements .a; b/ 2 U for
smoothness, distribution of the computation over a large number of computers
is usually necessary to perform this step of the algorithm in practice.

The set U 0, which may consist of millions of relations, is often so large
that the linear algebra step over F2 needs to be performed on a computer that
is equipped to handle huge amounts of data. It is important that the matrix
of exponents is a very sparse matrix, which can be transformed into a much
smaller dense matrix before it is given to the reduction algorithm that yields
the desired dependencies. A practical reduction algorithm, such as the so-called
block Lanczos method, may run for several days on a single large computer. In
this case, distribution of the problem over more computers is not an easy matter.

Every dependency in the matrix of exponent vectors coming from the pairs
.a; b/2U 0 corresponds to a subset S �U 0 such that the following two conditions
are satisfied:Y

.a;b/2S

.a � bm/ is positive with even exponents at all primes p 2 Z;(6.1)

Y
.a;b/2S

.a � b˛/ has even exponents at all primes p � ZŒ˛�.(6.2)

What we need is the validity of (4.1) and (4.2) in order to obtain the required
square in Z � ZŒ˛�. It is a simple and well known fact that .6:1/ implies .4:1/:
requiring positivity is enough to produce true squares from integers having even
exponents at all prime numbers. The situation is not so simple in ZŒ˛�: several
obstructions may prevent the validity of the implication .6:2/ ) .4:2/. Writing
ˇ D

Q
.a;b/2S .a � b˛/ for the element in (6.2), they are the following.

(6.3) The ring ZŒ˛� is possibly not the ring of integers O of Q.˛/. The ring of
integers, which is the maximal order in Q.˛/, is the “textbook ring” for which
the theorem of unique prime ideal factorization holds. If we have ZŒ˛� ¤ O, then
(6.2) need not imply that ˇO is the square of an ideal.

(6.4) If ˇO is the square of some ideal c, then c does not have to be a principal
O-ideal. This is exactly the reason why unique prime element factorization has
to be replaced by unique prime ideal factorization in general number fields.

(6.5) If ˇO is the square of some principal ideal 
 O, we only have ˇ D 
 2 up
to multiplication by units in O. This obstruction already occurs in the case for
O D Z. Unlike Z, the ring O usually has infinitely many units.

(6.6) If we do obtain an equality ˇ D 
 2 in O, we may have 
 … ZŒ˛�. If this
happens, the reduction map � is not defined on 
 and we do not obtain our final
congruence (2.2).
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Algebraic number theory provides the tools for dealing with all of these obstruc-
tions. In the next section, we will deal with the obstructions (6.3) and (6.6),
which arise from the fact that ZŒ˛� may be strictly smaller than O. Section 8
is devoted to the obstructions (6.4) and (6.5), which are classical and lie at
the roots of algebraic number theory. It will be our aim to bound the index
ŒV W .V \Q.˛/�2

/� of the subgroup of true squares inside the group V � Q.˛/�

generated by the elements that meet condition (6.2).

7. Nonmaximality of ZŒ˛�

The ring of integers O � Q.˛/, which consists by definition of all elements of
Q.˛/ that occur as the zero of some monic polynomial in ZŒX �, is the maximal
order contained in Q.˛/. It is free of rank d D deg.f / over Z, and contains
ZŒ˛� as a subring of finite index. There is the classical identity

.7:1/ �.f / D ŒO W ZŒ˛��2 � �

relating the index ŒO W ZŒ˛�� to the discriminant �.f / of the polynomial f from
(3.4) and the discriminant � of the number field Q.˛/. As � is known to be a
non-zero integer, we find that ŒO W ZŒ˛�� is bounded by j�.f /j1=2. As we do not
want to factor the possibly huge number �.f /, we may not be able to determine
ŒO W ZŒ˛�� or O. However, it is a standard fact that for any x 2 O, we have

f 0.˛/ � x 2 ZŒ˛�:

This is enough to deal with obstruction (6.6): we simply multiply our purported
square in Z � ZŒ˛� by

.f 0.m/2; f 0.˛/2/:

Then its square root gets multiplied by .f 0.m/; f 0.˛//, so it will lie in Z �ZŒ˛�.
In order to keep an element that is invertible modulo n, we need to assume that
f 0.m/ is coprime to n. This is not a serious restriction as this condition is always
satisfied in practice; if it isn’t, we have found a factor of n without applying the
number field sieve!

(7.2) Example. Take f D X 2 C16. Then the order ZŒ˛� D ZŒ4i � has index 4 in
the maximal order O D ZŒi � in Q.i/. Example (4.4) shows that 3 C ˛ D 3 C 4i

is a square in O, but its square root 
 D 2 C
1
4
˛ is not in ZŒ˛�. However, the

element f 0.˛/ � 
 D 2˛ � 
 D 4˛ � 8 does lie in ZŒ˛�. //

In order for an ideal c � O to be a square of some other ideal, it is necessary and
sufficient that the exponents ordq.b/ are even at all primes q of O. This is an
immediate corollary of the classical theorem of unique prime ideal factorization
in O. Now the primes q of O coprime to the index ŒO W ZŒ˛�� are “the same” as
the ideals p of ZŒ˛� coprime to the index. By this we mean that there is a natural
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bijection between the sets of such primes given by q ‘ p D q\ZŒ˛�. Moreover,
if p and q are corresponding prime ideals, the inclusion map ZŒ˛� � O induces
an isomorphism of the local rings

.7:3/ ZŒ˛�p
�

� Oq:

Both rings are discrete valuation rings, and the exponent ep W Q.˛/� ! Z is in
this case equal to the familiar prime ideal exponent eq for the ring of integers O,
which is multiplicative on the set of all non-zero O-ideals, not just the principal
ones.

For primes q of O dividing the index ŒO W ZŒ˛��, the situation is more compli-
cated. There may be more primes q lying above the same prime p D q \ ZŒ˛�,
and even if p has a single extension q in O, the natural map (7.3) need not be
an isomorphism. If either of these happens, p is said to be a singular prime of
ZŒ˛�. The other primes are the regular primes of ZŒ˛�.

For a prime p of ZŒ˛�, we define the exponent at p as the homomorphism
ep W Q.˛/� ! Z by

.7:4/ ep.x/ D

X
q�p

f .q=p/ eq.x/;

where the sum ranges over the primes q � O lying over p, and f .q=p/ is the
degree of the residue field extension ZŒ˛�=p � O=q. This definition provides
the extension of the homomorphism ep occurring in Lemma 5.1. For regular
primes p, formula (7.4) reduces to ep D eq.

We now consider, inside the subgroup of Q.˛/� that is generated by the
elements a � b˛ 2 ZŒ˛� having gcd.a; b/ D 1, the group V of those elements
that have even exponents at the primes p of ZŒ˛�. We let V1 � V be the sub-
group of elements x 2 V that have even exponents at all primes q of O, i.e., the
elements x 2 V for which xO is the square of a O-ideal. We have an injective
homomorphism

V =V1 �

M
qjŒOWZŒ˛��

Z=2Z

x ’ .eq.x/ mod 2/q;

so V =V1 is an F2-vector space of dimension bounded by the number of primes q

of O dividing the index ŒO W ZŒ˛��. In view of (7.1), the number of rational primes
dividing the index is no more than 1

2
log j�.f /j. For each of these primes there

are at most d D deg.f / primes q in O that divide it, so we find

.7:5/ dimF2
.V =V1/ �

1
2
d � log �.f /:

This is a quantitative version of obstruction (6.3). Note that we have completely
disregarded the fact that the elements of V have even exponents at the singular
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primes of ZŒ˛�. It is possible to obtain a slightly better upper bound for the index
ŒV W .V \ Q.˛/�2

/� than that in 8.4 by taking this into account.

8. Finiteness results from algebraic number theory

Inequality (7.5) is the first step in bounding the successive F2-dimensions of
the quotient spaces in the filtration

V � V1 � V2 � V3 D V \ Q.˛/�2
:

Here V1 is the subgroup from the previous section consisting of those x 2 V

for which xO is an ideal square, and V2 is the subgroup of those x 2 V for
which xO is the square of a principal O-ideal. Thus, the F2-spaces V1=V2 and
V2=V3 measure the obstructions (6.4) and (6.5), respectively. We can bound
their dimensions using two fundamental finiteness results from algebraic number
theory.

The first result says that the class group of Q.˛/, which is the group of all
fractional O-ideals modulo the subgroup of principal O-ideals, is a finite abelian
group. One can derive from [Lenstra 1992, Theorem 6.5] that its order h can be
bounded in terms of the degree d and the discriminant �.f / of f by

.8:1/ h < j�.f /j1=2
�
d � 1 C log j�.f /jd�1

.d � 1/!
:

We can map V1 to the class group by sending x 2 V1 to the ideal class of the
ideal a satisfying a2 D xO. This map has kernel V2, so we find the dimension
of the F2-vector space V1=V2 to be bounded by log h, yielding

.8:2/ dimF2
.V1=V2/ �

log h

log 2
:

As the elements in V2 are squares in Q.˛/� up to multiplication by elements of
the unit group O�, the order of V2=V3 does not exceed the order of O�=O�2. By
the Dirichlet unit theorem [Stevenhagen 2008], the group O� is the product of
a finite cyclic group of roots of unity in Q.˛/ with a free abelian group of rank
at most d � 1. It follows that O�=O�2 is finite of order at most 2d , and we find

.8:3/ dimF2
.V2=V3/ � d:

Putting the estimates (3.4), (7.5), (8.1), (8.2) and (8.3) together, we arrive after
a short computation at the following theorem for the values of n and d that we
need.
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(8.4) Theorem. Let V be as above, and suppose we have n > d2d2

> 1. Then
the subgroup V3 D V \ Q.˛/�2 of squares in V satisfies

dimF2
.V =V3/ � .log n/3=2:

A more careful analysis using the information at the singular primes of ZŒ˛� as
in [Lenstra and Lenstra 1993, Theorem 6.7, p. 61] shows that the exponent 3=2

can be replaced by 1.

9. Quadratic character columns

The algorithm described so far is only able to produce elements in Z�ZŒ˛� for
which the second component is in V , but not necessarily in the subgroup V3 D

V \ Q.˛/�2 of squares. In order for an element x 2 V to be V3, it is necessary
and sufficient that all characters � W V =V3 ! F2 vanish on x. At most k D

dim.V =V3/ characters are needed to span the dual space W D Hom.V =V3; F2/,
and an element x 2 V is a square if and only if all these spanning characters
assume the value 1 on x. As there is no easy way to produce a spanning set
of characters, we will use random quadratic characters instead. An elementary
calculation shows that if W is any k-dimensional F2-vector space, a randomly
chosen set of k C e elements has probability at least 1 � 2�e of generating W .
As this probability converges exponentially to 1 in the number e of extra random
elements, we can be practically sure to generate W for moderate values of e.

We are now faced with the problem of exhibiting suffciently many “quadratic
characters” on ZŒ˛�. On Z, quadratic characters can be obtained from Legendre
symbols x ‘

�
x
p

�
, which are easily evaluated. If x 2 Z is not a square, we have,

in a sense that is easily made precise,�
x
p

�
D �1

for about half of the primes p. More precisely, they are the odd primes p that
remain prime in the number ring ZŒ

p
x�.

(9.1) Example. We have
�
�16

p

�
D �1 for all primes p � 3 mod 4. //

Loosely speaking, we can say that an integer x ¤ 0 that satisfies
�

x
p

�
D 1 for t

randomly chosen primes p is a square with probability 1 � 2�t . We can use an
analogue of this idea over ZŒ˛�.

Every prime q D ker � � .q; rq/ of degree 1 of ZŒ˛� gives rise to a Legendre
symbol �

�
q

�
W ZŒ˛�

�
� Fq

. �
q/

� f˙1g [ f0g

such that for non-square x 2 ZŒ˛�, we have
�
x
q

�
D �1 about half the time. For

y-smooth elements x 2 ZŒ˛�, we can avoid the character value 0 by restricting
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to Legendre symbols coming from primes q � .q; rq/ of degree 1 with q > y. It
is a consequence of the Chebotarev density theorem that the Legendre symbols
coming from such q are equidistributed over Hom.V =V3; f˙1g/.

In the rational factor base B1 consisting of primes p � y, we incorporated
a sign bit to ensure that the integers with even prime exponents at all primes p

are actually squares. This sign bit for Z is nothing but the non-trivial chracter
on the 1-dimensional F2-vector space that becomes V =V3 if we replace Z by
ZŒ˛�.

In a similar way, we incorporate in our algebraic factor base B2, which so
far consisted of the primes .pI rp/ with p � y, a sufficiently large number of
F2-valued characters �q W V ! F2 coming from the Legendre symbols of primes
q � .q; rq/ of degree 1 with q > y. The character �q is simply the Legendre
symbol in additive notation, and the values �q.a�b˛/ for .a; b/ 2 U are treated
exactly like the exponent values ep.a�b˛/. In this way, we obtain a probabilistic
algorithm for producing y-smooth elements x 2 V that do not only satisfy (6.2)
but that are true squares. In this set-up the outcome of the linear algebra step,
which reduces a matrix of approximate size y � y, consists of subsets S � U

such that not only we have (6.1) and (6.2), but in addition�
f 0.m/2

Y
.a;b/2S

.a � bm/; f 0.˛/2
Y

.a;b/2S

.a � b˛/

�
is with very high probability a square .x2; 
 2/ 2 Z � ZŒ˛�.

10. Square root extraction

The element .x2; 
 2/ just found yields a solution to our basic congruence
(2.1). In order to obtain a factorization of n, we now need the values .x mod n/

and �.
 / in Z=nZ. The gcd of n with their difference is hopefully a non-
trivial factor of n. Thus, we need to compute a square root .x; 
 / of our square
.x2; 
 2/ 2 Z � ZŒ˛�. On the rational side, this is immediate since we know how
to extract squares in Z. It is even possible to avoid computing the large number

x2
D f 0.m/2

Y
.a;b/2S

.a � bm/

as we have a complete prime factorization of each of the elements a � bm oc-
curring in the product, and therefore a prime factorization of the product itself.

On the number field side, the situation is more complicated. The prime ideal
factorization of Y

.a;b/2S

.a � b˛/
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is easily determined, but this is not immediately useful as prime ideals may not
have generators at all and, moreover, we most likely will be unable to compute
generators for the unit group O� in the large number field Q.˛/. Only for the
special number field sieve [Lenstra and Lenstra 1993, p. 21 ff.], which often
yields rings of integers O with small units and trivial class group, one may be
able to compute a square root of the element 
 2 2 ZŒ˛� using explicit generators
of the primes in ZŒ˛�.

For the general number field sieve, one can compute a root of the polynomial
X 2 � 
 2 in Q.˛/ by standard methods, such as successive approximation using
Hensel’s lemma [Buhler and Wagon 2008] at an appropriate prime. Theoreti-
cally, this can be done without affecting the expected asymptotic running time of
the algorithm. In practice, it is feasible as well but rather cumbersome because of
the size of the number 
 2, which necessitates the handling of very large numbers
in the final iterations. Montgomery’s method [1994] (see also [Nguyen 1998]),
which uses complex approximations, has a better practical performance but has
not yet been carefully analyzed.

11. Running time

From the analysis given in [Pomerance 2008], it follows that the conjectural
asymptotic expected running time the quadratic sieve takes to factor n is

exp..1 C o.1//
p

log n log log n/

for n tending to infinity. The elliptic curve method has the same running time,
which is halfway between exponential and polynomial.

For the number field sieve, we can do better if we carefully choose d and f ,
and optimize the smoothness bound y and the parameter u for the size of the
universe U of pairs .a; b/ accordingly. We briefly sketch how to find heuris-
tically the asymptotic optimal values, disregarding all lower order terms that
occur along the way.

The basic cost of the algorithm, which is computed as in [Pomerance 2008],
is u2Co.1/ C y2Co.1/ as n tends to infinity. The first term represents the sieving
part of the algorithm, and equals the length of the sieve times a lower order
factor. The second term is the matrix reduction part, which assumes that fast
asymptotic methods are applied to a matrix of size at most y � y. In order to
balance these contributions, we will take log u � log y.

The numbers a�b˛ we consider are y-smooth if the integer .a�bm/ �N.a�

b˛/ is, and using (4.3) and the size n1=d of m and of the coefficients of f , we
may bound this integer by

.11:1/ un1=d
� .d C 1/udn1=d

� n2=dudC1;
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Here we already take into account that d will be chosen in (11.3) to be of much
smaller order than the other factors. The “uu-philosophy” in [Pomerance 2008]
shows that a number x � n2=dudC1 is y-smooth with probability r�r , where
r D log x= log y. In order to maximize this probability, we minimize the quantity

.11:2/ r D
log x

log y
�

log x

log u
�

�
2 log n

log u

�
1

d
C d C 1

by taking the degree of f to be d D .
2 log n
log u

/1=2.
In order to obtain sufficiently many relations from our pairs .a; b/ 2 U to

create a dependent matrix, we need u2�r�r �y. Taking logarithms and replacing
log y by log u, we find log u � r log r or, equivalently, r � log u= log log u.
Comparison with (11.2) for d as above now leads to�

2 log n

log u

�1=2

�
log u

log log u
;

and we take 2=3-rd powers to obtain log u.log log u/�2=3 � 2.log n/1=3. In
order to rewrite this, we observe that if we have real quantities s; t satisfying
s D t.log t/a for some a 2 R, then, as t tends to infinity, we have t D .1 C

o.1//s.log s/�a. Applying this for t D log u and s D 2.log n/1=3 with a D �2=3

we arrive at

log y � log u � 2.log n/1=3.1
3

log log n/2=3 D .8=9/1=3.log n/1=3.log log n/2=3:

With this choice of the basic parameters u and y, the asymptotic running time
u2Co.1/ C y2Co.1/ becomes

exp
��

.64=9/1=3
C o.1/

��
log n

�1=3�
log log n

�2=3
�

;

as claimed in (1.1). The optimal asymptotic value of the degree d of f comes
out as

.11:3/ d �

�
2 log n

log u

�1=2

�

�
3 log n

log log n

�1=3

;

and we find that the size in (11.1) of the integers we require to be smooth is

exp
��

.64=3/1=3
C o.1/

��
log n

�2=3�
log log n

�1=3
�

:

This bound, which we mentioned already in section 2, makes the number field
sieve the fastest general purpose factoring algorithm that is currently known.

As with the quadratic sieve, there are various practical improvements to the
basic number field sieve as we have described it here. The most important bells
and whistles are mentioned in [Crandall and Pomerance 2001, Section 6.2.7].
Although they do not significantly change the asymptotic running time of the
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algorithm, they greatly enhance its practical performance, and they are instru-
mental in completing the record factorizations that mark the borderlines of what
is currently feasible in factoring.
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