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The arithmetic of number rings
PETER STEVENHAGEN

ABSTRACT. We describe the main structural results on number rings, that is,
integral domains for which the field of fractions is a number field. Whenever
possible, we avoid the algorithmically undesirable hypothesis that the number
ring in question is integrally closed.
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1. Introduction

The ring Z of ‘ordinary’ integers lies at the very root of number theory, and
when studying its properties, the concept of divisibility of integers naturally
leads to basic notions as primality and congruences. By the ‘fundamental the-
orem of arithmetic’, Z admits unique prime factor decomposition of nonzero
integers. Though one may be inclined to take this theorem for granted, its proof
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is not completely trivial: it usually employs the Euclidean algorithm to show
that the prime numbers, which are defined as irreducible elements having only
‘trivial’ divisors, are prime elements that only divide a product of integers if they
divide one of the factors.

In the time of Euler, it gradually became clear that in solving problems con-
cerning integers, it can be effective to pass from Z to larger rings that are not
contained in the field Q of rational numbers but in number fields, that is, in
finite field extensions of Q. Such number rings, which occur everywhere in
this volume, will be our objects of study. In [Lenstra 2008], we encounter the
classical example of the Pell equation x2 �dy2 D 1, which can be viewed as the
equation .x C y

p
d/.x � y

p
d/ D 1 in the quadratic ring ZŒ

p
d �. In a similar

way, writing an integer n as a sum n D x2 C y2 of two squares amounts to
decomposing n as a product n D .x Cyi/.x �yi/ of two conjugate elements in
the ring ZŒi � of Gaussian integers. The cyclotomic number ring ZŒ�p � obtained
by adjoining a primitive p-th root of unity �p has been fundamental in studying
the Fermat equation xp Cyp D zp since the first half of the nineteenth century,
and it occurs center stage in Mihăilescu’s recent treatment [2006] of the Catalan
equation xp � 1 D yq . See also [Schoof 2008a].

Whereas the ring ZŒi � is in many respects similar to Z, an interesting property
of the rings ZŒ

p
d � arising in the study of the Pell equation is that, unlike Z, they

have an infinite unit group. Kummer discovered around 1850 that the Fermat
equation for prime exponent p � 3 has no solutions in nonzero integers if ZŒ�p �

admits factorization into prime elements. As we now know [Washington 1997,
Chapter 11], only the rings ZŒ�p � with p � 19 have this property. All other rings
ZŒ�p �, and in fact all number rings, admit factorization into irreducible elements,
but this is not very useful as it is often not in any way unique. Kummer and
others invented a theory of prime ideal factorization to salvage this situation. It
lies at the heart of the algebraic number theory developed during the nineteenth
century.

In the early twentieth century, Hensel showed how to complete the ring Z and
other number rings at their prime ideals. This gives rise to rings in p-adic or
local fields, which are algebraically simpler than number fields and in certain
ways similar to the archimedean complete fields R and C of real and complex
numbers. It led to the introduction of various ‘analytic’ techniques and gave rise
to the insight that many questions in number rings can be studied locally, much
like geometers study curves by focusing on neighborhoods of points. Precise
formulations require the description of number theoretic objects in the language
of ‘abstract algebra’, the language of groups, rings and fields that has become
fundamental in many parts of mathematics.
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Contrary to what is sometimes thought, the use of more abstract theory and
language is not at all incompatible with algorithmic approaches to algebraic
number theory. The recent advances with respect to ‘down to earth’ problems as
integer factoring [Stevenhagen 2008] and primality testing [Schoof 2008c] rely
on ‘large’ number rings and on Galois extensions of finite rings to achieve their
goal. In the first case, the number rings ZŒ˛� one encounters are not necessarily
the ‘textbook rings’ for which the nineteenth century theory was developed,
whereas in the second case, Galois theory for rings rather than for fields is
exploited. These examples show that number rings have ‘concrete’ algorithmic
applications to problems not traditionally inside the domain of algebraic number
theory, and that such applications require a slightly more general theory than is
found in the classical textbooks. Fortunately, commutative algebra and, more
in particular, ring theory provide us with the tools that are needed for this. In
the case of number rings, the number field sieve alluded to above shows that
it is undesirable to have a theory that only works for rings of integers in num-
ber fields, which may be computationally inaccessible, and that one needs to
consider ‘singular’ number rings as well. In this paper, we impose no a priori
restrictions on our number rings and define them as arbitrary subrings of number
fields. As a consequence, the various localizations of number rings we encounter
are in this same category. Special attention will be devoted to orders in number
fields as defined in the next section, which play an important role in algorithmic
practice. The analogy between number rings and algebraic curves explains the
geometric flavor of much of our terminology, but we do not formally treat the
case of subrings of function fields [Rosen 2002].

Number rings are the central objects in computational algebraic number the-
ory, and algorithms in more specific areas as class field theory [Cohen and
Stevenhagen 2008] assume that one can efficiently deal with them. In this paper,
which is mostly a survey of more or less classical algebraic number theory, we
include the modest amount of ring theory that is necessary to state and prove
the results in the generality required by algorithmic practice. The next section
introduces number rings and orders, and explains their relation to the classical
textbook ring, the ring of integers. In addition, it outlines the further contents
of this paper.

2. Number rings

A number ring is a domain R for which the field of fractions K D Q.R/ is
a number field, that is, a field of finite degree over Q. Note that this is a rather
general definition, and that already inside Q there are infinitely many number
rings, such as Q itself and ZŒ1

2
; 1

3
�. In many ways, Z is the ‘natural’ number

ring in Q to work with, as it governs the ‘arithmetic behavior’ of Q in a sense
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we will make precise. In a similar way, the arithmetic properties of an arbitrary
number field K are classically described in terms of the ring of integers

OK D fx 2 K W f x
Q 2 ZŒX �g (2-1)

of K, which consists of the elements x 2 K for which the monic irreducible
polynomial f x

Q
over Q, also known as the minimal polynomial of x over Q,

has integer coefficients. This integral closure of Z in K is a natural algebraic
notion and, as will be shown just before Theorem 6.5, a ring; it may however
be inaccessible in computational practice.

Already in the case of a quadratic field K D Q.
p

d/ associated to a nonsquare
integer d , we need to write d as d D m2 �d0 with d0 squarefree in order to find
OK , which is equal to ZŒ

p
d0� or, in the case d0 � 1 mod 4, to ZŒ.1C

p
d0/=2�.

The only way we know to find d0 proceeds by factoring d , which we may not
be able to do for large d . However, even if we are unable to find a non-trivial
square factor dividing d , we can often use the number ring R D ZŒ

p
d � (or

R D ZŒ.1 C
p

d/=2�/ instead of OK for our algorithmic purposes. Of course,
we do need to know in which ways the subring R will be ‘just as good’ as OK

itself, and in which ways it may fail to behave nicely. In this quadratic case, the
subrings of OK are well understood, and there is a classical description of their
arithmetic in terms of binary quadratic forms that goes back to Gauss. Among
their algorithmic ‘applications’, one finds a subexponential factoring algorithm
for arbitrary integers d , the class group method [Seysen 1987].

Our potential inability to find the square divisors of large integers is also
a fundamental obstruction [Buchmann and Lenstra 1994] to computing OK in
other number fields K. Indeed, let K be given as K D Q.˛/, with ˛ the root
of some monic irreducible polynomial f D f ˛

Q
2 QŒX � of degree n D ŒK W Q�.

Replacing ˛ by k˛ for a suitable integer k when necessary, we may assume
that f has integral coefficients. Then the index of R D ZŒ˛� D ZŒX �=.f / in
OK is finite, and we show in .7-7/ that its square divides the discriminant �.f /
of the polynomial f . Finding OK starts with finding squares dividing �.f /,
which may not be feasible if the integer �.f / is too large to be factored. Such
discriminants occur for the polynomials that are used in the number field sieve,
and they force us to work with subrings of K that are possibly smaller than the
ring of integers OK .

The simple integral extensions ZŒ˛� obtained by adjoining to Z a root ˛ of
some monic irreducible polynomial f 2 ZŒX �, also known as monogenic number
rings, are in many ways computationally convenient to work with. The ‘power
basis’ 1; ˛; ˛2; : : : ; ˛n�1 of K D Q.˛/ as a vector space over Q is also a basis
for ZŒ˛� as a module over Z. More generally, a subring R � K that is free of
rank n D ŒK W Q� over Z is called an order in K. An element x 2 K is integral if
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and only if ZŒx� is an order in K, so OK is the union of all orders ZŒx�� K. The
following will be proved in Section 7, as a direct corollary of formula .7-6/.

THEOREM 2.2. A number ring R � K is an order in K if and only if it is of
finite index in OK .

This shows that OK is the maximal order in K. It need not be monogenic
(Example 8.6).

In an arbitrary number ring R, the role played in Z by the prime numbers
is taken over by the nonzero prime ideals or primes of R. Every ideal in R

containing ˛ contains the multiples of the integer f ˛
Q
.0/, so nonzero ideals in R

‘divide’ ordinary integers in the ideal-theoretic sense of the word. As R=kR is
finite of order at most kn D k ŒK WQ� for k 2 Z�1, with equality in the case that R

is an order, every nonzero ideal in a number ring is of finite index. In particular,
all R-ideals are finitely generated, and all primes of R are maximal. In ring-
theoretic terms, number rings are noetherian domains of dimension at most 1.
Every prime p � R contains a unique prime number p, the characteristic of the
finite field R=p. We say that p extends p or lies over p, and call the degree
f .p=p/ of R=p over the prime field Fp the residue class degree of p over p.

In the next three sections, we describe ideal factorization in arbitrary number
rings R (Theorems 5.2 and 5.3), which turns out to be especially nice if R equals
or contains the ring of integers OK of its field of fractions (Theorems 5.7 and
6.5). Some linear algebra over Z (Section 7) is involved in explicit factorization
(Section 8), and the local computations involved in factoring rational primes in
R lead to algorithms to find OK starting from an order R (Section 9).

When using ideal factorization as a replacement for element factorization, the
need arises to control the difference between elements and ideals. The problem
of nonprincipality of ideals is quantified by the Picard group of the number
ring introduced in Section 4. The problem of element identities ‘up to units’
arising from ideal arithmetic necessitates control of the unit groups of num-
ber rings. The classical finiteness theorems in Section 10 show that the Picard
groups of number rings are finite (Corollary 10.6) and that the unit groups of
many number rings are finitely generated (Theorem 10.9). The proofs of these
theorems, which do not hold for arbitrary noetherian domains of dimension 1,
exploit embeddings of number rings and their unit groups as lattices in Euclidean
vector spaces. They are not directly constructive, and based on the geometry
of numbers. Section 12 presents various explicit examples showing how the
relevant groups may be computed using the explicit factorization techniques
from Section 8. To guarantee that no units or Picard group relations have been
overlooked, one uses the analytic information from Section 11 on the size of
Picard and unit groups for OK ; this information is encoded by the zeta function
of the underlying number field. Relating the Picard group of R to that of the
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ring of integers is made possible by the comparison statements Theorem 6.5 and
6.7.

Although actual computations are by their finite nature bound to process ra-
tional or algebraic numbers only, many mathematical ideas are most elegantly
expressed in terms of ‘limit objects’ such as real numbers, which can only be
approximated by computers. Number rings are naturally embedded in local
fields (Section 13) and adele rings (Section 14), which are similar in nature
to real numbers and provide a conceptual clarification of our local approach
to number rings. The final Section 15 deals with Galois theoretic aspects of
number rings.

3. Localization

When dealing algorithmically with a number field K defined by some monic
polynomial f 2 ZŒX �, one often starts out with the simple order R D ZŒ˛�

defined by f , and enlarges it to a bigger order whenever this is made possible
by computations. This makes it important to carry over knowledge about, say,
the primes over p in R to similar information in the larger ring. In this case,
‘nothing changes’ as long as the index of R in the extension ring is coprime to p.
Such statements are most conveniently made precise and proved by working ‘lo-
cally’, in a way that was already familiar to geometers in the nineteenth century.
Algebraically, the corresponding process of localization of rings and modules
[Atiyah and Macdonald 1969, Chapter 2] has become a standard procedure.

For a number ring R with field of fractions K, one can form a localized ring

S�1R D fr=s 2 K W r 2 R; s 2 Sg � K

whenever S � R is a subset containing 1 that is closed under multiplication.
There is a localization K D Q.R/ corresponding to S D R n f0g, and, more
generally, by taking S D R n p, we have localizations

Rp D fr=s 2 K W r 2 R; s 62 pg

at all prime ideals p of R. The number rings Rp are local number rings in the
sense that they have a unique maximal ideal

pRp D fr=s 2 K W r 2 p; s 62 pg

consisting of the complement of the unit group R�
p D f

r
s

2 K W r; s 62 pg. Con-
versely, a local number ring R with maximal ideal p is equal to its localization
Rp at p.

EXAMPLE 3.1. For R D Z, the localization Z.p/ D fr=s 2 Q W p - sg at the prime
p is a local ring with maximal ideal p D pZ.p/. Every fraction x 2 Q� can
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uniquely be written as x D upk with u 2 Z�
.p/ D fr=s 2 Q W p - rsg and k 2 Z.

It follows that the ideals of Z.p/ are simply the powers of the principal ideal p,
and this makes Z.p/ into the prototype of what is known as a discrete valuation
ring. As will become clear in Proposition 5.4, these particularly simple rings
arise as the localizations of a number ring R at all of its ‘regular’ primes.

Localization often enables us to reduce the complexity of a number ring R at
hand by passing to a localized ring S�1R. The ideals of S�1R are of the form
S�1I D fi=s W i 2 I; s 2 Sg, with I an ideal of the global ring R, and whenever
I \S is nonempty we have S�1I D S�1R. The primes of S�1R are the ideals
S�1p with p a prime of R that does not meet S , and the natural map R ! S�1R

induces an isomorphism between the local rings at p and at S�1p, respectively.
If R � R0 is of finite index, we have S�1R D S�1R0 � K for all localizations
for which the index is in S .

EXAMPLE 3.2. Taking R an arbitrary number ring and S D fx 2 Z W p - xg, as in
Example 3.1, we obtain a semilocal number ring R.p/ having only finitely many
primes p, all containing p. The primes of R.p/ correspond to the primes of R

lying over p. If R is of finite index in OK and p is a prime number not dividing
this index, the inclusion map R ! OK becomes the identity when localized at
S , and the local rings of R and OK are naturally isomorphic at primes over p.
Informally phrased, R and OK are ‘the same’ at all primes that do not divide
the index ŒOK W R�. Section 6 contains a more precise formulation of these
statements.

4. Invertible ideals

As Kummer discovered, it is not in general possible to factor a nonzero
element x in a number ring R into prime divisors, but something similar can
be obtained when looking at ‘ideal divisors’ of x, that is, the ideals I � R that
satisfy IJ D .x/ for some R-ideal J .

For the modern reader, ideals are defined more generally as kernels of ring
homomorphisms, and in this setting I is said to divide J whenever I contains J .
For a number ring R with field of fractions K, it is convenient to slightly extend
the concept of R-ideals and consider fractional R-ideals, that is, R-submodules
I � K with the property that rI is a nonzero R-ideal for some r 2 R. If we
can take r D 1, then I is an ordinary R-ideal, usually referred to as an integral
R-ideal. For fractional ideals I and J , we define the ideal quotient as

I W J D fx 2 K W xJ � Ig:

A standard verification shows that the sum, intersection, product, and quotient of
two fractional ideals are again fractional ideals. For every fractional R-ideal I ,
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the localized ideal S�1I is a fractional S�1R-ideal. Moreover, localization
respects the standard operations on ideals of taking sums, products, and inter-
sections.

A fractional R-ideal I is said to be invertible if there exists an R-ideal J

such that IJ is a nonzero principal R-ideal. These ‘ideals in Kummer’s sense’
are precisely the ones we need to ‘factor’ nonzero elements of R, and for which
ideal multiplication gives rise to a group operation. If I is invertible, we have
I � I�1 D R for the fractional R-ideal

I�1
D R W I D fx 2 K W xI � Rg;

and its multiplier ring

�.I/D fx 2 K W xI � Ig;

which clearly contains R, is actually equal to R as we have

�.I/D�.I/I � I�1
� I � I�1

D R:

The invertible fractional R-ideals form an abelian group I.R/ under ideal mul-
tiplication. Clearly, all principal fractional R-ideals are invertible, and they form
a subgroup P.R/D fxR W x 2 K�g D K�=R� of I.R/.

For a principal ideal domain R such as R D Z, all fractional ideals are of
the form xR with x 2 K�, and we have I.R/ D P.R/. For arbitrary number
rings R, the quotient group Pic.R/ D I.R/=P.R/ measuring the difference
between invertible and principal R-ideals is known as the Picard group or the
class group of R. It fits in an exact sequence

1 � R�
� K�

� I.R/� Pic.R/� 1: (4-1)

If R D OK is the ring of integers of K, then Pic.OK /, which only depends
on K, is often referred to as the ‘class group of K’ and is denoted by ClK . It is
a fundamental invariant of the number field K.

The Picard group of a number ring R vanishes if R is a principal ideal domain.
The converse statement does not hold in general: a number ring with trivial
Picard group may have noninvertible ideals that are nonprincipal.

EXAMPLES 4.2. In the quadratic field Q.
p

�3/, the ring of integers O D ZŒ˛�

with ˛ D .1 C
p

�3/=2 is a principal ideal domain as it admits a Euclidean
‘division with remainder’ with respect to the complex absolute value. In other
words: for nonzero ˇ; 
 2O there exist q; r 2O with ˇ=
 DqCr=
 and jr j< j
 j.
In a picture, this boils down to the observation that the open disks of radius 1
around the points of O in the complex plane cover all of C.

Taking R D ZŒ
p

�3� instead of O, the R-translates of ˛ are outside the open
disks of radius 1 around R, and we find that every fractional R-ideal is either
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principal or of the form xI with I D Z C Z � ˛. The nonprincipal ideals xI

have multiplier ring �.xI/D�.I/D ZŒ˛�) R, so they are not invertible, and
we still have Pic.R/ D 0. The prime ideal p D 2I D Z � 2 C Z � .1 C

p
�3/

of R of index 2 satisfies p2 D 2p, which shows that p is not invertible and that
multiplication of arbitrary ideals in R is not a ‘group-like’ operation.

For the order O D ZŒ
p

�5�, which is the ring of integers in Q.
p

�5/, the
analogous picture shows that every fractional O-ideal is either principal or of
the form xI with I D Z C Z � .1 C

p
�5/=2. In this case p D 2I � O satisfies

p2 D 2O, which shows that all fractional O-ideals are invertible and that Pic.O/
is cyclic of order 2.

If R is a number ring and I a fractional R-ideal, the localized ideals Ip at the
primes of R are fractional Rp-ideals, and they are equal to Rp for almost all p.
The ideal I can be recovered from its localizations as we have

I D
T

p Ip: (4-3)

To obtain the non-trivial inclusion �, note that for x 2
T

p Ip, the ideal fr 2 R W

rx 2 Ig equals R as it is not contained in any prime of R.

PROPOSITION 4.4. Let R be a number ring and I a fractional R-ideal. Then I

is invertible if and only if Ip is a principal Rp-ideal for all primes p.

PROOF. If I is invertible, there exist xi 2 I and yi 2 I�1 with
Pn

iD1 xiyi D 1.
Let p � R be a prime. All terms xiyi are in R � Rp, and they cannot all be in
the maximal ideal of Rp. Suppose that we have x1y1 2 R�

p D Rp n pRp. Then
any x 2 I can be written as x D x1 � .x1y1/

�1 � xy1 2 x1Rp. It follows that Ip

is principal with generator x1.
For the converse, we argue by contradiction. If I is not invertible, there exists

a prime p containing the ideal II�1 � R. Let x 2 I be an Rp-generator of Ip. If
I is generated over R by xi for i D 1; 2; : : : ; n, we can write xi D x.ri=s/2 Rp,
with s 2 Rnp independent of i . Then we have sx�1xi D ri 2 R for all i , whence
sx�1I � R. We obtain s D x � sx�1 2 II�1 � p, a contradiction. �

By Proposition 4.4, we may view the Picard group as a local-global obstruction
group measuring the extent to which the locally principal R-ideals are globally
principal.

5. Ideal factorization in number rings

It is not generally true that nonzero ideals in number rings, invertible or not,
can be factored into a product of prime ideals. We can however use .4-3/ to
decompose I � R into its p-primary parts

I.p/ D Ip \ R
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at the various primes p of R. We have I.p/ D R if p does not divide I .

LEMMA 5.1. Let Rp be a local number ring. Then every nonzero ideal of Rp

contains some power of the maximal ideal of Rp.

PROOF. As Rp is noetherian, we can apply noetherian induction: if there are
counterexamples to the lemma, the set of such ideals contains an element I that
is maximal with respect to the ordering by inclusion. Then I is not prime, as the
only nonzero prime ideal of Rp is the maximal ideal. Let x;y 2 R n I satisfy
xy 2 I . Then I C .x/ and I C .y/ strictly contain I , so they do satisfy the
conclusion of the lemma and contain a power of the maximal ideal. The same
then holds for .I C .x//.I C .y//� I . Contradiction. �

By Lemma 5.1, the p-primary part I.p/ of a nonzero ideal I � R contains some
power of p. As there are no inclusions between different primes in number rings,
this implies that p-primary parts at different p are coprime.

THEOREM 5.2. Let R be a number ring. Then every nonzero ideal I ( R has a
primary decomposition I D

Q
p�I I.p/, and we have natural isomorphisms

R=I ��
Y

p�I
R=I.p/ ��

Y
p�I

Rp=Ip:

PROOF. We have I D
T

p Ip D
T

p I.p/ by .4-3/, and we may take the intersec-
tions over those p that contain I only. By the coprimality of p-primary parts,
the finite intersection obtained is actually a product I D

Q
p�I I.p/.

The isomorphism R=I ��
Q

p�I R=I.p/ is a special case of the Chinese
remainder theorem for a product of pairwise coprime ideals. The localization
map R=I.p/ ! Rp=Ip is injective by the definition of I.p/; for its surjectivity,
we show that every s 2 R n p is a unit in R=I.p/. By the maximality of p, there
is an element s0 2 Rnp such that ss0 �1 is in p. As I.p/ contains pn for some n

by Lemma 5.1, the element ss0 � 1 is nilpotent in R=I.p/, so s is a unit. �

For invertible ideals, we can decompose the group I.R/ of invertible fractional
R-ideals in a similar way into p-primary components. By Proposition 4.4, in-
vertible ideals are locally principal at each p, giving rise to elements of P.Rp/.

THEOREM 5.3. Let R be a number ring. Then we have an isomorphism

� W I.R/��
M

p prime

P.Rp/

that maps I to its vector of localizations .Ip/p at the primes p of R. �

To proceed from primary decomposition to prime ideal factorization, it is nec-
essary that the localizations Ip or, equivalently, the p-primary parts I.p/ of an
ideal I are powers of p. For the local rings Z.p/ of R D Z, this is the case by
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Example 3.1. For general number rings R, this depends on the nature of the
local rings Rp.

PROPOSITION 5.4. For a prime p of a number ring R, the three following are
equivalent:

(1) p is an invertible R-ideal;
(2) Rp is a principal ideal domain, and every Rp-ideal is a power of pRp;
(3) there exists � 2 Rp such that every x 2 K� can uniquely be written as

x D u ��k with u 2 R�
p and k 2 Z.

PROOF. For .1/ ) .2/, we use Proposition 4.4 to write pRp D�Rp and observe
that all inclusions in the chain of principal Rp-ideals Rp � pRp D .�/� .�2/�

.�3/� : : : are strict: an equality .�n/D .�nC1/ would imply �n D r�nC1 for
some r 2 Rp, whence r� D 1 and � 2 R�

p . We need to show there are no further
Rp-ideals. Let I � Rp be a nonzero ideal. As I contains all sufficiently large
powers of .�/ by Lemma 5.1, there is a largest value n � 0 for which we have
.�n/� I . Take any r 2 I n .�nC1/; then we have r D a�n with a 62 .�/. This
implies that a is a unit in Rp, so we have .r/D .�n/� I � .�n/ and I D .�n/.

For .2/ ) .3/, take for � a generator of pRp. For every x 2 Rp, we have
.x/ D .�k/ for some uniquely determined integer k � 0, and x D u � �k with
u 2 R�

p . Taking quotients, we obtain (3).
For .3/ ) .1/, we note that we have � 62 R�

p and therefore

Rp D fu ��k
W u 2 R�

p and k � 0g [ f0g:

This shows Rp is local with principal maximal ideal .�/; so p is invertible. �

If the conditions in Proposition 5.4 are met, we call p a regular prime of R and
the local number ring Rp a discrete valuation ring. The exponent k in (3) is
then the order ordp.x/ to which p occurs in x 2 K�, and the associated map
x ‘ ordp.x/ is the discrete valuation from which R derives its name. It is a
homomorphism K� ! Z satisfying

ordp.xy/D ordp.x/C ordp.y/;

ordp.x C y/� minfordp.x/; ordp.y/g
(5-5)

for all x;y 2 K. We formally put ordp.0/ D C1. With this convention, we
have

Rp D fx 2 K W ordp.x/� 0g: (5-6)

If x 2 K has negative valuation, we have RpŒx� D K, so a discrete valuation
ring in K is a maximal subring of K different from K.

If all primes of a number ring R are regular, R is said to be a Dedekind
domain. As the next section will show, all rings of integers in number fields are
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Dedekind domains. For such rings, the primary decomposition from Theorems
5.2 and 5.3 becomes a true prime ideal factorization, as all localizations Ip of any
fractional R-ideal I are then of the form pk for some exponent k D ordp.I/2 Z,
the valuation of I at p, that is equal to 0 for almost all p.

THEOREM 5.7. For a number ring R that is Dedekind, there is an isomorphism

I.R/��
M

p

Z

I ’ .ordp.I//p;

and every I 2 I.R/ factors uniquely as a product I D
Q

p pordp.I /. �

If R is Dedekind, then all fractional R-ideals are invertible, and the Picard group
Pic.R/ is better known as the class group Cl.R/ of R. It vanishes if and only
if the Dedekind domain R is a principal ideal domain.

6. Integral closure

A number ring R is Dedekind if all of its localizations Rp are discrete val-
uation rings, and in this case we have prime ideal factorization as in Theorem
5.7. Algorithmically, it may not be easy to test whether a given number ring is
Dedekind. Theoretically, however, every number ring R has a unique extension
R�O inside its field of fractions K that is of finite index over R, and is regular at
all primes. This normalization of R is the smallest Dedekind domain containing
R, and represents what geometers would call a ‘desingularization’ of R.

The normalization of a number ring R is defined as the integral closure of R

in its field of fractions K. It consists of those x 2 K that are integral over R,
that is, for which there exists a monic polynomial f 2 RŒX � with f .x/D 0. If
R equals its integral closure, it is said to be integrally closed. This is a ‘local
property’.

PROPOSITION 6.1. A number ring R is integrally closed if and only if all of the
localizations Rp at its primes p are integrally closed.

PROOF. Note that R and its localizations have the same field of fractions K.
If x 2 K is integral over R, it is obviously integral over all Rp. If all Rp are
integrally closed, we then have x 2

T
p Rp D R by .4-3/, so R is integrally

closed.
Conversely, suppose x 2 K satisfies an integrality relation xn D

Pn�1
kD0 rkxk

with rk 2Rp for some p. If s 2Rnp is chosen such that we have srk 2R for all k,
multiplication by sn yields an integrality relation .sx/n D

Pn�1
kD0 rksn�k.sx/k

for sx with coefficients rksn�k 2 R. If R is integrally closed, we have sx 2 R

and therefore x 2 Rp. Thus Rp is integrally closed. �
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PROPOSITION 6.2. A local number ring is integrally closed if and only if it is a
discrete valuation ring.

COROLLARY 6.3. A number ring is Dedekind if and only if it is integrally
closed.

Corollary 6.3 is immediate from Propositions 6.1 and 6.2. To prove 6.2, it is
convenient to rephrase the definition of integrality in the following way.

LEMMA 6.4. An element x 2 K is integral over R if and only if there exists a
finitely generated R-module M � K with M ¤ 0 and xM � M .

PROOF. For integral x, the ring RŒx� is finitely generated as an R-module and
yields a module M of the required sort. For the converse, observe that the
inclusion xM � M for M D Rm1 C � � � C Rmn gives rise to identities xmi DPn

jD1 rij mj for j D 1; 2; : : : ; n. As the n�n matrix A D x �idn�.rij /
n
i;jD1

with
entries in K maps the nonzero vector .mi/i 2 Kn to zero, we have det.A/D 0,
resulting in an integrality relation xn C

Pn�1
kD0 rkxk D 0 for x. �

PROOF OF PROPOSITION 6.2. If R � K is a discrete valuation ring, ordp is
the associated valuation, and x 2 K satisfies ordp.x/ < 0, then a relation xn DPn�1

kD0 rkxk with rk 2 R cannot hold since the valuation of the left hand side is
by .5-5/ and .5-6/ smaller than that of the right hand side. This shows that R

is integrally closed.
Conversely, let R be an integrally closed local number ring with maximal

ideal p, and pick a nonzero element a 2 p. By Lemma 5.1, there exists a smallest
positive integer n for which pn is contained in aR. Choose b 2 pn�1 n aR, and
take � D a=b. By construction, we have ��1 D b=a 62 R and ��1p � R. As p

is a finitely generated R-module and ��1 D b=a is not integral over R, we see
from Lemma 6.4 that we cannot have ��1p � p. It follows that ��1p equals R,
so we have p D �R, and R is a discrete valuation ring. �

Using Lemma 6.4, it is easy to see that the integral closure O of a number ring
R is indeed a ring: for R-integral x;y 2 K, the finitely generated module M D

RŒx;y� is multiplied into itself by x ˙y and xy. Moreover, if x 2 K is integral
over O and M � O is the R-module generated by the coefficients of an integrality
relation for x over O, then RŒx� � M is a finitely generated R-module that is
multiplied into itself by x. Thus x is integral over R and contained in O. This
shows that O, or, more generally, the integral closure in K of any subring of K,
is integrally closed. Clearly, O is the smallest Dedekind domain containing R.

THEOREM 6.5. The integral closure O of a number ring R in K D Q.R/ equals

O D ROK D OK ;T D fx 2 K W ordp.x/� 0 for all p 62 T g

for some set T D T .R/ of primes of OK .
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PROOF. It is clear that O contains R and OK , and therefore ROK . To see that
ROK is a Dedekind domain and therefore equal to O, we note that any of its
localizations .ROK /p contains as a subring the localization of OK at OK \ p.
This is a discrete valuation ring and, by the maximality of discrete valuation
rings, it is equal to .ROK /p.

We find that the primes of O correspond to a subset of the primes of OK ,
and that the local rings at corresponding primes coincide. Describing these
as in .5-6/, we arrive at the given description of O as the intersection of its
localizations. �

We say that the ring OK ;T in Theorem 6.5 is obtained from OK by ‘inverting the
primes in T ’. The set T D T .R/ consists of those primes p of OK for which R

is not contained in the localization of OK at p. It is empty if and only if R is an
order.

The class group of the Dedekind domain OK ;T can be obtained from Cl.OK /D

ClK . The localization map OK ! OK ;T yields a natural map I ‘ I �OK ;T from
I.OK / to I.OK ;T / which maps principal ideals to principal ideals. This induces
a homomorphism between the defining sequences .4-1/ for their class groups,
and the ‘middle map’ I.OK /!I.OK ;T / is by Theorem 5.7 the natural surjectionL

p Z !
L

p62T Z with kernel
L

p2T Z. It follows that the natural map

ClK ! Cl.OK ;T /

is surjective, and an easy application of the snake lemma [Lang 2002, Section
III.9] yields the exact sequence

1 � O�
K � O�

K ;T �
L

p2T Z �
' ClK � Cl.OK ;T /� 1: (6-6)

Here ' maps the generator corresponding to p 2 T to the class Œp� 2 ClK . Thus
Cl.OK ;T / is the quotient of ClK modulo the subgroup generated by the ideal
classes of the primes in T .

The inclusion map R ! O of a number ring R in its normalization O also
gives rise to an induced map Pic.R/! Cl.O/ given by ŒI �‘ ŒIO�. We conclude
this section by analyzing it in a similar way. As the relation between primes in
R and O is of a different nature, the argument is slightly more involved.

At every prime p of a number ring, the local ring Rp is a subring of the ring
Op obtained by localizing the normalization O of R at S D Rnp. If p is regular,
we have Rp D Op by the maximality property of discrete valuation rings in K,
and R and O are ‘locally the same’ at p. If p is noninvertible or singular, the
inclusion Rp � Op is strict as Op is integrally closed by Proposition 6.1 and Rp

is not. Define the conductor of R in its normalization O as

fR D fx 2 O W xO � Rg:
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This is an ideal in both R and O and the largest O-ideal contained in R. For
R D ZŒ

p
�3� � O D ZŒ.1 C

p
�3/=2� from 4.2, we have R D Z C 2O and

fR D 2O.
For an order R the conductor is nonzero by Theorem 2.2, proved in the next

section; for arbitrary R the same is true as the index of the order R\ OK in OK

is an integer that multiplies O D ROK into R. From the comparison of local
rings, we have

p is regular ” Rp D Op ” p - fR;

so the conductor fR is a measure of the ‘singularity’ of R. Note that only finitely
many primes of R can be singular, just as algebraic curves only have finitely
many singular points.

At the singular primes p, which divide fR and in particular the index ŒO W R�,
the local ring Rp is a subring of finite index in Op. The primes of the semilocal
ring Op are the ideals qOp coming from the primes q of O extending p. As Op is
a Dedekind domain with only finitely many primes, it has trivial Picard group
by the Chinese remainder theorem, and by Theorem 5.3 we can write its ideal
group as

I.Op/D

M
q�p

P.Oq/D P.Op/D K�=O�
p :

THEOREM 6.7. Let R � O be a number ring of conductor f in its normaliza-
tion O, and � W Pic.R/! Cl.O/ the natural map defined by �.ŒI �/D ŒI � O�. Then
we have a natural exact sequence

1 � R�
� O�

� .O=f/�=.R=f/� � Pic.R/�
� Cl.O/� 1:

PROOF. Write the Picard groups of R and O in terms of their defining exact se-
quence .4-1/, and express I.R/ and I.O/ as in Theorem 5.3. Using the identity
for K�=O�

p preceding the theorem, we obtain a diagram

1 // K�=R� //

��

L
p K�=R�

p
//

��

Pic.R/ //

��

1

1 // K�=O� //
L

p K�=O�
p

// Cl.O/ // 1

with exact rows. Again, the middle vertical map is surjective, this time with
kernel ˚pO�

p=R
�
p . By the snake lemma, Pic.R/ ! Cl.O/ is surjective and its

kernel N fits in an exact sequence 1 ! O�=R� !
L

p O�
p=R

�
p ! N ! 1. We are

thus reduced to giving a natural isomorphism .O=f/�=.R=f/� ��
L

p O�
p=R

�
p :

Note that we may restrict the direct sum above to the singular primes p j f, since
at regular primes we have Op D Rp, and therefore O�

p=R
�
p D 1.
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We first apply Theorem 5.2 to I D f to obtain localization isomorphisms
R=f Š

L
p Rp=fRp and O=f Š

L
p

L
q�p Oq=fOq Š

L
p Op=fOp. Taking unit

groups, we arrive at a natural isomorphism

.O=f/�=.R=f/� Š

M
p j f

.Op=fOp/
�=.Rp=fRp/

�: (6-8)

For p j f, an element x 2 Op is invertible modulo fOp if and only if it is not
contained in any maximal ideal qOp � pOp � fOp, that is, if and only if it is
in O�

p . It follows that the natural map O�
p ! .Op=fOp/

� is surjective. From the
equality fOD fR we obtain fOp D fRp, so .Rp=fRp/

� is a subgroup of .Op=fOp/
�,

and the image of x 2 O�
p lies in it exactly when we have x 2 R�

p . We obtain
natural maps O�

p=R
�
p �� .Op=fOp/

�=.Rp=fRp/
� at all p. Combining this with

.6-8/, we obtain the desired isomorphism. �

EXAMPLE 6.9. Let K be a quadratic field with ring of integers O D OK D ZŒ!�.
For each positive integer f , there is a unique subring R D Rf D ZŒf !� D

Z C Z � f! of index f in O. It has conductor fR D f O, and its Picard group
Pic.R/ is the ring class group of the order of conductor f in O. This class group
can be described as a form class group of binary quadratic forms, and it has an
interpretation in class field theory [Cohen and Stevenhagen 2008] as the Galois
group of the ring class field of conductor f over K. By Theorem 6.7, it is the
extension

1 � .O=f /�= imŒO��.Z=f Z/� � Pic.R/� ClK � 1

of ClK by a finite abelian group that is easily computed, especially for imaginary
quadratic K, which have O� D f˙1g in all but two cases.

For the order R D ZŒ
p

�3� of index 2 in O D ZŒ!� with !D .1C
p

�3/=2, the
group F�

4
=h!iF�

2
vanishes, and we find as in Examples 4.2 that, just like Cl.O/,

the Picard group Pic.R/ is trivial.

7. Linear algebra over Z

Before we embark on the algorithmic approach to the ring theory of the pre-
ceding sections, we discuss the computational techniques from linear algebra
that yield finiteness statements such as Theorem 2.2, and more.

Let A be a ring, and B an A-algebra that is free of finite rank n over A. For
x 2 B, let Mx W B ! B denote the A-linear multiplication map b ‘ xb. With
respect to an A-basis of B D

Ln
iD1 A � xi , the map Mx can be described by an

n � n matrix with coefficients in A, and we define the norm and the trace from
B to A by

NB=A.x/D det Mx and TrB=A.x/D trace Mx :
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It follows immediately from this definition that the norm is a multiplicative map,
whereas the trace TrB=A W B ! A is a homomorphism of the additive groups.

The notions of norm and trace are stable under base change. This means that
if f W A ! A0 is any ring homomorphism and f� W B ! B0 D B ˝A A0 is
the induced map from B to the free A0-algebra B0 D

Ln
iD1 A0 � .xi ˝ 1/, the

diagrams

B
f� //

NB=A

TrB=A

��

B0D B ˝A A0

NB0=A0

TrB0=A0

��
A

f // A0

describing the ‘base change’ A ! A0 for norm and trace commute. Indeed, for
an element x 2 B the multiplication matrix of f�.x/ on B0 with respect to the
A0-basis x1 ˝ 1;x2 ˝ 1; : : : ;xn ˝ 1 is obtained by applying f to the entries of
Mx with respect to the A-basis x1;x2; : : : ;xn.

Base changing a domain A to its field of fractions suffices to recover the
classical ‘linear algebra fact’ that norms and traces do not depend on the choice
of a basis for B over the domain A. In fact, the issue of dependency on a basis
does not even arise if one uses coordinatefree definitions for the determinant and
the trace of an endomorphism M 2 EndA.B/ of a free A-module B of rank n.
For the determinant, one notes [Bourbaki 1989, Section III.8.1] that the n-th
exterior power

Vn
B is a free A-module of rank 1 on which M induces scalar

multiplication by det M 2 A. For the trace [Bourbaki 1989, Section II.4.1], one
views EndA.B/ D B ˝A B� as the tensor product of B with its dual module
B� D HomA.B;A/ and defines TrB=A.

P
b ˝f /D

P
f .b/.

For an order B D R in K, base changing from A D Z to Q and to Fp,
respectively, shows that the norm and trace maps R ! Z are the restrictions to
R of the ‘field maps’ K ! Q, and that their reductions modulo p are the norm
and trace maps R=pR ! Fp for the Fp-algebra R=pR.

For B D K a number field of degree n over A D Q, we can use the n distinct
embeddings �i W K ! C and the base change Q ! C to diagonalize the matrix
for Mx as Mx D .�i.x//

n
iD1

; since we have an isomorphism

K ˝Q C �� Cn

x ˝ y ’ .�i.x/y/
n
iD1:

(7-1)

This yields the formulas NK=Q.x/D
Qn

iD1 �i.x/ and TrK=Q.x/D
Pn

iD1 �i.x/

for the norm and trace from K to Q.
In a free A-algebra B of rank n, the discriminant of x1;x2; : : : ;xn 2 B is

defined as
�.x1;x2; : : : ;xn/D det.TrB=A.xixj //

n
i;jD1;
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and the discriminant �.B=A/ of B over A is the discriminant of any A-basis
of B. We have .TrB=A.yiyj //

n
i;jD1

D T � .TrB=A.xixj //
n
i;jD1

�T t for any n�n

matrix T 2 GLn.A/ over A transforming fxig
n
iD1

to fyig
n
iD1

, so the discriminant
of a free A-algebra does depend on the choice of the basis, but only up to the
square of a unit in A. Over a field A, it is usually the vanishing of �.B=A/
that has intrinsic significance, and the algebras of non-vanishing discriminant
are known as separable A-algebras. Over A D Z, the discriminant

�.R/D det.TrR=Z.xixj //
n
i;jD1 2 Z (7-2)

of an order R D
Ln

iD1 Z � xi of rank n is a well-defined integer. Considering
arbitrary Z-linear transformations of bases, one obtains, for an inclusion R0 � R

of orders in K, the index formula

�.R0/D ŒR W R0�2 ��.R/: (7-3)

The discriminant of an order R D
Ln

iD1 Z �xi in K can also be defined in terms
of the embeddings �i W K ! C from .7-1/ as

�.R/D Œdet.�i.xj //
n
i;jD1�

2: (7-4)

To see that .7-4/ agrees with .7-2/, one multiplies the matrix X D .�i.xj //
n
i;jD1

by its transpose and uses the description of the trace map following .7-1/ to find

X t � X D
�Pn

kD1 �k.xixj /
�n

i;jD1
D

�
TrL=K .xixj /

�n

i;jD1
:

Taking determinants, the desired equality follows.
For an order ZŒ˛� in K D Q.˛/, the elements ˛i D �i.˛/ are the roots of f ˛

Q
,

and by .7-4/ its discriminant can be evaluated as the square of a Vandermonde
determinant and equals the polynomial discriminant �.f ˛

Q
/:

�.ZŒ˛�/D�.1; ˛; ˛2; : : : ; ˛n�1/D Œdet.�i.˛
j�1//ni;jD1�

2

D Œdet.˛j�1
i /ni;jD1�

2
D

Q
i>j .˛i � j̨ /

2 D�.f ˛
Q
/:

(7-5)

In the same way, one shows that the discriminant over a field A of a simple
field extension A � A.˛/ is up to squares in A� equal to �.f ˛

A
/. The extension

A � A.˛/ is separable (as a field extension of A, or as an A-algebra) if and only
if f ˛

Q
is a separable polynomial.

For an order R in K containing ZŒ˛�, the identities .7-3/ and .7-5/ yield

�.f ˛
Q /D ŒR W ZŒ˛��2 ��.R/; (7-6)

so �.R/ is nonzero. We also see that we have ZŒ˛� � R � d�1ZŒ˛� for every
order R containing ˛, with d the largest integer for which d2 divides �.f ˛

Q
/.

It follows that OK itself is an order contained in d�1ZŒ˛�, and in principle OK

can be found by a finite computation starting from ZŒ˛�: there are finitely many
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residue classes in d�1ZŒ˛�=ZŒ˛�, and for each class one decides whether it is in
OK=ZŒ˛� by computing the irreducible polynomial of an element from the class
and checking whether it is integral. Finally, .7-6/ implies that any order in K is
of finite index in OK ; so we have proved Theorem 2.2.

The discriminant �K D�.OK / is often referred to as the discriminant of K.
It is a fundamental invariant of K, and by .7-6/ it satisfies

�.f ˛
Q /D ŒOK W ZŒ˛��2 ��K (7-7)

for every ˛ 2 OK of degree n. In cases where �.f ˛
Q
/ can be factored, .7-7/ is

used as the starting point for the computation of the extension ZŒ˛�� OK . If we
are lucky and�.f ˛

Q
/ can be shown to be squarefree, then we know immediately

that ZŒ˛� is the full ring of integers OK , and that we have �K D�.f ˛
Q
/.

EXAMPLE 7.8. Let K be imaginary quadratic of discriminant �K , and let
� 2 K n Q be a zero of the irreducible polynomial f �

Z D aX 2 CbX C c 2 ZŒX �.
Then I D Z C Z � � is an invertible ideal for the order

R� D ZŒa��D�.I/D fx 2 K W xI � Ig:

As a� is a zero of X 2 C bX C ac 2 ZŒX �, the order R� has discriminant

�.R� /D b2
� 4ac D f 2�K

by .7-5/ and .7-7/, with f the index of R� in OK .
As any quadratic order R has field of fractions K D Q.

p
�.R//, it is deter-

mined up to isomorphism by its discriminant, which can uniquely be written as
�.R/ D f 2�K . In higher degree, there exist non-isomorphic maximal orders
having the same discriminant.

To compute polynomial discriminants, one makes use of the resultant. The
resultant of nonzero polynomials g D b

Qr
iD1.X �ˇi/ and h D c

Qs
jD1.X �
j /

with coefficients and zeros in some field is defined as

R.g; h/D bscr
rY

iD1

sY
jD1

.ˇi � 
j /:

It can be expressed [Lang 2002, Section IV.8] as a determinant in terms of the
coefficients of g and h, but computations are usually based on the following
obvious properties:

(R1) R.g; h/D .�1/rsR.h;g/;
(R2) R.g; h/D bs

Qr
iD1 h.ˇi/;

(R3) R.g; h/Dbs�s1R.g; h1/ if h1 ¤0 satisfies h1 �h mod g and s1 Ddeg h1.
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For an element g.˛/ 2 K D Q.˛/, property (R2) yields

NK=Q.g.˛//D R.f;g/:

For f D f ˛
Q

as above and ˛i D �i.˛/, one has f 0.˛1/D
Q

i�2.˛1 �˛i/. Taking
g to be the derivative f 0 of f , one can write the discriminant of f as

�.f /D

Y
i<j

.˛i � j̨ /
2

D .�1/n.n�1/=2NK=Q.f
0.˛//D .�1/n.n�1/=2R.f; f 0/:

This reduces the computation of norms and polynomial discriminants to the
computation of resultants, which can be performed inside the field containing
the coefficients of the polynomials.

EXAMPLE 7.9. The discriminant of the polynomial X n C a equals

.�1/n.n�1/=2R.X n
C a; nX n�1/D .�1/n.n�1/=2nnan�1:

For f D X 3 � X 2 � 15X � 75, long division shows that the remainder of f
upon division by its derivative f 0 D 3X 2 �2X �15 equals f �

1
9
.3X �1/f 0 D

�
9

88
.X �

15
2
/. This is a linear polynomial with zero 15

2
, so we find

�.f /D �R.f 0; f /D 32
� R.f 0;�88

9
.X �

15
2
//

D 32
� R.�88

9
.X �

15
2
/; f 0/

D �32
� .�88

9
/2 �f 0.15

2
/D �24

� 3 � 52
� 112:

8. Explicit ideal factorization

In order to factor an ideal I in a number ring R in the sense of Theorem 5.2,
we have to determine for all primes p � I the p-primary part I.p/ of I . Every
prime p � I divides the index ŒR W I �, so a first step towards factoring I consists
of factoring ŒR W I � in Z to determine the rational primes p over which the primes
p j I lie.

The index map I ‘ ŒR W I � for integral R-ideals extends to a multiplicative
map I.R/ ! Q� on invertible ideals known as the ideal norm. Its multiplica-
tivity follows from Theorems 5.2 and 5.3 and the observation that for principal
Rp-ideals, the index is a multiplicative function. At regular primes p, all ideals
in Rp are principal by Proposition 5.4. At singular primes this is not the case,
and the behavior of the singular prime p D .2; 1 C

p
�3/ � R D ZŒ

p
�3� in

Examples 4.2 is typical: ŒR W p2�D ŒR W 2p�D 23 > 22 D ŒR W p�2:

If R is an order, the ideal norm of a principal ideal xR � R equals jNR=Z.x/j

as the element norm is by definition the determinant of the multiplication map
Mx W R ! R, and we have ŒR W Mx ŒR�� D jdet M j for the Z-module R. By
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multiplicativity, this compatibility of element and ideal norms in orders extends
to all x 2 K�.

If singular primes are encountered in R, one usually replaces R by an exten-
sion ring in which the primes over p are all regular, and then ordp.I/ can be
determined to complete the factorization of I . If possible, one tries to take R to
be the ring of integers OK , which has no singular primes at all.

Given a number field K D Q.˛/ generated by an element ˛ with irreducible
monic polynomial f 2 ZŒX �, we have the simple order ZŒ˛� � OK as a first
approximation to OK , and factoring p in OK or ZŒ˛� is ‘the same’ as long as
p does not divide the index ŒOK W ZŒ˛�� from .7-7/. For such p we have an
isomorphism ZŒ˛�=pZŒ˛��� OK=pOK , and the order ZŒ˛� is called p-maximal
or regular above p.

The primes over p in ZŒ˛� are the kernels of the ring homomorphisms

' W ZŒ˛�D ZŒX �=.f /! Fp

from ZŒ˛� to an algebraic closure Fp of the field Fp of p elements. As ' factors
via ZŒ˛�=pZŒ˛�D Fp ŒX �=.f /, such kernels correspond to the irreducible factors
g 2 Fp ŒX � of f D f mod p. Pick monic polynomials gi 2 ZŒX � such that f
factors as f D

Qs
iD1 g

ei

i 2 Fp ŒX �: Then the ideals in ZŒ˛� lying over p are the
ideals

pi D .p;gi.˛//� ZŒ˛�: (8-1)

From the isomorphism ZŒ˛�=pi Š Fp ŒX �=.gi/, we see that the residue class
degree of pi over p equals f .pi=p/ D deg.gi/. For any polynomial t 2 ZŒX �,
the element t.˛/ 2 ZŒ˛� is in pi if and only if gi divides t in Fp ŒX �.

THEOREM 8.2 (KUMMER–DEDEKIND). Let p and ZŒ˛� be as above, and define
pi D .p;gi.˛//�ZŒ˛� corresponding to the factorization f D

Qs
iD1 g

ei

i 2Fp ŒX �

as in .8-1/. Then the inclusion Qs
iD1 p

ei

i � .p/

of ZŒ˛�-ideals is an equality if and only if all pi are invertible. If ri 2 ZŒX � is the
remainder of f upon division by gi in ZŒX �, say f D qigi C ri , then we have

pi is regular ” ei D 1 or p2 - ri 2 ZŒX �:

If pi is singular, then 1
p

qi.˛/ 62 ZŒ˛� is an integral element of Q.˛/.

PROOF. Write R D ZŒ˛�. As
Qs

iD1 gi.˛/
ei is in f .˛/CpR D pR, the inclusionQs

iD1 p
ei

i � pR C
Qs

iD1 gi.˛/
ei � pR is immediate. If it is an equality, all pi

are clearly invertible. Conversely, if all pi are invertible, then the invertible idealQs
iD1 p

ei

i has index
Qs

iD1 pei deg.gi / D pdeg f D ŒR W pR�, so equality holds.
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As the remainder ri of f upon division by gi in ZŒX � is divisible by p, there
are polynomials qi ; si 2 ZŒX � satisfying f D qi �gi Cpsi and deg.si/< deg.gi/.
Substitution of ˛ yields the relation

psi.˛/D �qi.˛/gi.˛/ 2 pi .�/

between the two R-generators p and gi.˛/ of pi . If gi occurs with exponent
ei D 1 in f , we have gi - qi 2 Fp ŒX �, so qi.˛/ is not in pi . In this case qi.˛/ is
a unit in Rpi

, and .�/ shows that piRpi
is principal with generator p. Similarly,

the hypothesis ri D psi 62 p2ZŒX � means that si 2 Fp ŒX � is nonzero of degree
deg.si/ < deg.gi/. This implies gi - si , so now si.˛/ is a unit in Rpi

and piRpi

is principal with generator gi.˛/. In either case pi is regular by Proposition 5.4.
If we have ei > 1 and p2 divides ri in ZŒX �, then pi is singular, as the identity

1
p

qi.˛/pi D
1
p

qi.˛/ � pR C
1
p

qi.˛/ � gi.˛/R D qi.˛/R C si.˛/R � pi

shows that its multiplier ring �.pi/ contains the integral element 1
p

qi.˛/ 62 Rpi
,

so Rpi
is not integrally closed. �

If ZŒ˛� is regular above p, we can factor p in ZŒ˛� or OK using the Kummer–
Dedekind theorem, whereas if ZŒ˛� is singular above p, then p divides the index
ŒOK W ZŒ˛��, and p2 divides �.f ˛

Q
/ by .7-7/. For every singular prime pi j p of

ZŒ˛� we encounter, an element p�1qi.˛/ is provided by Theorem 8.2 that can
be adjoined to the order ZŒ˛� to obtain an order of smaller index in OK .

EXAMPLE 8.3. Let ˛ be a zero of f D X 3 C 44 D X 3 C 22 � 11 2 ZŒX �, and
ZŒ˛� the associated cubic order in K D Q.˛/. Then f is separable modulo the
primes p ¤ 2; 3; 11 coprime to �.X 3 C 44/ D �24 � 33 � 112, and for these p

we can factor .p/ into prime ideals in ZŒ˛� as

.p/D

8<:
p1p2p3 if p � 1 mod 3 and 44 is a cube modulo p,
.p/ if p � 1 mod 3 and 44 is not a cube modulo p,
pP if p � 2 mod 3.

In the first case, the primes pi D .p; ˛ � ki/ corresponding to the three cube
roots ki of �44 modulo p are of degree 1. In the second case, the rational
prime p is called inert as it remains prime in ZŒ˛� (but becomes of degree 3).
For p � 2 mod 3, the element �44 2 F�

p has a unique cube root k giving rise
to a prime p D .p; ˛� k/ of degree 1, and the irreducible quadratic polynomial
g D .X 3 C44/=.X �k/2 Fp ŒX � yields the other prime P D .p;g.˛// of degree
2 lying over p.

For p D 2; 11, the triple factor X of f mod p leaves as remainder 44 D 22 �11

upon division in ZŒX �. For p D 11, this yields the factorization .11/D .11; ˛/3.
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For p D2, it implies that the unique prime p2 D .2; ˛/ above 2 in ZŒ˛� is singular,
and that ˇ D ˛2=2 is an integral element outside ZŒ˛�. We have

f
ˇ

Q
D X 3

� 2 � 112;

and ZŒˇ� is a 2-integral ring in which we have .2/ D .2; ˇ/3 by Theorem 8.2.
This factorization also holds in ZŒ˛; ˇ� and in OK .

For p D 3, the triple factor X � 1 of f mod 3 leaves remainder 45 D 32 � 5

upon division in ZŒX �, so the unique prime ideal p3 D .3; ˛ � 1/ over 3 in
ZŒ˛� is singular, and from X 3 C 44 D .X � 1/.X 2 C X C 1/C 45 we see that

 D

1
3
.˛2 C ˛ C 1/ is integral. Its irreducible polynomial is the polynomial

f



Q
D X 3 � X 2 C 15X � 75 of discriminant �24 �3 �52 �112 from Example 7.9,

so ZŒ
 � is regular above 3 and Theorem 8.2 gives us the factorization .3/ D

.3; 
 /2.3; 
 � 1/ in any K-order containing 
 .
In this small example, ZŒ˛� has index 6 D 2�3 in OK D ZŒ˛; ˇ; 
 �, and we have

�.OK /D�K D 6�2 ��.f /D �22 �3 �112. The multiplier rings of the singular
primes p2 D .2; ˛/ and p3 D .3; ˛ � 1/ of ZŒ˛� contain ˇ and 
 , respectively,
so fZŒ˛� D p2p3 is a ZŒ˛�-ideal of index 6 that multiplies OK into ZŒ˛�. As an
OK -ideal, it is the regular ideal .2; ˇ/2.3; 
 /.3; 
 � 1/ of norm 36.

Having computed OK D ZŒˇ; 
 �, one may verify that ˇ�
 D .˛2 �2˛�2/=6

has irreducible polynomial X 3 C X 2 � 7X � 13 and generates OK over Z, so
in this case OK is actually a simple extension of Z. However, finding such a
generator starting from X 3 C 44 is not immediate.

(2) (3) (5) (7) (11) (13) (17)
Spec(Z)

Spec(R)

Spec(OK)

p2

p̃2

p3

p̃3

q̃3

p5

p25

p5

p25

(7)

(7)

p11

p11

p13

q13

r13

p13

q13

r13

p17

p289

p17

p289

Z

O

The picture above is a ‘geometric’ rendering of the cubic order R D ZŒ
3
p

44�

and its normalization OK . The inclusions Z � R � OK correspond to ‘covering
maps’ Spec OK ! Spec R ! Spec Z. Here the spectrum of a number ring (see
[Eisenbud and Harris 2000] for more details) is represented as a ‘curve’ having
the primes of the ring as its points, and the covering maps intersect primes in
the larger ring with the smaller ring. As suggested by the picture, Spec R is a
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3-to-1 cover of Spec Z. The fiber above any rational prime different from the
prime divisors 2, 3, and 11 consists of exactly three extension primes, provided
that we count a prime p j p with ‘weight’ f .p=p/. Primes of weight 2 and 3 are
represented by vertical dashes intersecting 2 or 3 of the lines rather than points.
The primes p2 and p3 over 2 and 3 in R are singular ‘triple points’, whereas
the unique prime p11 D .11; ˛/ in R over 11 is a regular prime in which the
three lines are tangent to each other, illustrating the identity p3

11
D .11/. The

normalization OK of R is locally isomorphic to R at all primes not dividing
fZŒ˛� D p2p3. The singular prime p2 has a unique extension ep2 in OK , for
which we have p2OK D ep2

2 . The singular prime p3 factors in OK as a product
p3OK Dep3eq3 of two primes, and we have 3O Dep2

3
eq3 with ep3 D .3; 
 /.

If R is regular above p, we can factor the rational prime p in R as pR DQ
p j p pe.p=p/. The exponent e.p=p/ D ordp.pR/ is known as the ramification

index of p over p. We say that p is unramified in R if all e.p=p/ equal 1, and
ramified in R if we have e.p=p/ > 1 for some p. Thus, the primes 2, 3 and 11
are ramified in the ring OK in Example 8.3, and all other primes are unramified.
This example also shows the validity of the following relation for orders, which,
for orders of the form ZŒ˛�, is immediate from the identity f .pi=p/D deg gi in
Theorem 8.2.

THEOREM 8.4. Let R be an order of rank n, and suppose that R is regular
above p. Then we have

P
p j p e.p=p/f .p=p/D n.

PROOF. The ideal norm of pR, which is #.R=pR/D pn, is also equal toY
p j p

#.R=pe.p=p//D

Y
p j p

#.R=p/e.p=p/
D p

P
p j p e.p=p/f .p=p/

by the multiplicativity of the ideal norm for powers of regular primes. �

In the situation of Theorem 8.4, we call p totally split (or just split) in R if there
are n extension primes over p, which then have e.p=p/Df .p=p/D 1. If there is
a single prime p j p with e.p=p/D n, we call p totally ramified in R. If p D pR

is a prime ideal of R, we have f .p=p/D n, and we say that p is inert in R.
For singular primes p j p, the ramification index of p over p is not defined.

THEOREM 8.5. Let R be an order and p a prime number. If R is singular
above p, then p2 divides �.R/. If R is regular above p, we have

p divides �.R/ ” p is ramified in R.

PROOF. If R is singular above p, then p divides the index of R in its integral
closure O, so p2 divides �.R/D ŒO W R�2 ��.O/ by .7-3/.
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We have �.R/ � 0 mod p if and only if the discriminant �.R=pR/ 2 Fp

of the Fp-algebra R=pR vanishes. If p is unramified in R, then R=pR is a
product

Q
p j p R=p of finite fields and �.R=pR/ is a product of discriminants

of field extensions of Fp, each of which is nonzero by the remark following
.7-5/. If p is ramified in R, the Fp-algebra R=pR has a nonzero nilradical.
Taking a basis containing nilpotent elements, which have trace zero, we see that
its discriminant vanishes. �

If R is an order of rank n in which some prime p < n splits completely, then R

is not monogenic as a monogenic ring admits at most p homomorphisms to Fp.
This makes it easy to construct examples of number fields K for which OK is
not monogenic, and for which every order ZŒ˛� has index in OK divisible by p.

EXAMPLE 8.6. The ring of integers of K D Q.
p

�7;
p

17/ is generated by ˇD

.1C
p

�7/=2 and 
 D .1C
p

17=2/, and f ˇ
Q

D X 2 � X C 2 and f 

Q

DX 2�X �4

each have two roots in F2. This yields four different maps OK D ZŒˇ; 
 �! F2,
so 2 splits completely in OK . The discriminant �K D 72 � 172 is odd, but every
order R D ZŒ˛� in K has �.R/� 0 mod 4.

9. Computing the integral closure

If R is a number ring, the integral closure O of R in K D Q.R/ contains R

as a subring of finite index. As the example R D ZŒ
p

d � in Section 2 shows,
efficient computation of O from R is hampered by our inability to factor integers
or, more precisely, to determine the largest squarefree divisor of a given integer.
The algorithms we do have to compute O from R are mostly ‘local at p’ for
a rational prime number p. They work inside the Fp-algebra R=pR, which is
finite of rank at most ŒK W Q� even in case R is not assumed to be an order. As
they only use linear algebra over Fp, they are fairly efficient. However, it may
not be easy to find the primes p dividing ŒO W R� at which these computations
need to be performed.

In the case of an order of discriminant �.R/, the ‘critical’ primes are the
primes that divide �.R/ more than once. For such p, one wants to find a p-
maximal extension

R � Op D fx 2 OK W pkx 2 R for some k 2 Z�0g

of R inside OK , for which the index in OK is coprime to p. The index ŒOp W R�

is a p-power, and its square ŒOp W R�2 divides �.R/. Taken together, the rings
Op with p2 j�.R/ generate OK over R.

In practice one starts with a simple order ZŒ˛�, which has �.ZŒ˛�/D�.f ˛
Q
/,

and applies the Kummer–Dedekind theorem to determine for which critical
primes p the order ZŒ˛� is singular above p and the inclusion ZŒ˛� � Op is
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strict. In case singular primes over p are encountered, the elements p�1qi.˛/2

Op n ZŒ˛� provided by the theorem are adjoined to ZŒ˛� to obtain an extension
ring R for which the index ŒR W ZŒ˛�� is a power of p, and which has by .7-6/ a
discriminant�.R/ having fewer factors p than�.f ˛

Q
/. If p2 still divides�.R/,

it may be necessary to further extend the ring R to obtain Op, and as R will
not in general be simple, we now need an algorithm that is not restricted to the
monogenic setting of the Kummer–Dedekind theorem to obtain the extension
R � Op. There are two ways to proceed.

The first method considers the individual primes p j p and is also useful to
compute valuations at p in case p is regular. It tries to compute the fractional
R-ideal

p�1
D R W p D fx 2 K W xp � Rg;

which clearly satisfies R � p�1 �
1
p

R. In fact, p�1 strictly contains R. To see
this, one picks a nonzero element x 2 p and notices that, by Theorem 5.2 and
Lemma 5.1, the ideal .x/ contains a product of prime ideals of R. We can write
this product as p � I � .x/ and we may assume I ( .x/ by taking the minimal
number of primes in the product. For y 2 I n .x/, the element a D y=x is in
p�1 n R.

Finding an element a D
1
p

r in p�1 nR amounts to finding a nonzero element
r 2 R=pR that annihilates the ideal p=pR � R=pR, and this is a matter of
linear algebra in R=pR. If we have p in its ‘standard form’ p D .p; ˇ/� R on 2
generators, then we only need to find a nonzero element annihilating ˇ2 R=pR.

An element a 2 p�1 nR tells us all about p. As .RCRa/p � R is an R-ideal
containing the maximal ideal p, we have two possibilities. If .RCRa/p equals
p, then a is in the multiplier ring �.p/ but not in R, so p is singular, and we
have found an element of O n R that we use to enlarge R. If it equals R, then
R C Ra D p�1 is the inverse of the regular ideal p in I.R/, and we can use a

to determine valuations at p.

PROPOSITION 9.1. Let p be an invertible R-ideal, and p�1 D R C Ra its
inverse. Then the p-adic valuation of an ideal I � R equals

ordp.I/D maxfk � 0 W akI � Rg:

PROOF. The valuation ordp.I/ of an integral ideal I is the largest integer k for
which p�kI D .R C Ra/kI is contained in R. �

The second method to enlarge a number ring R to a p-maximal extension is
similar in nature, but does not find the individual primes over p first. Assuming
that p is not a unit in R, it defines the p-radical of R as the intersection or,
equivalently, the product

Ip D
T

p2p p D
Q

p2p p � pR (9-2)
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of the primes of R lying over p. Then Ip=pR, being the intersection of all
prime ideals of R=pR, is the nilradical nil.R=pR/ of the finite ring R=pR.
To compute it, we let Fp W R=pR ! R=pR be the Frobenius map defined by
Fp.x/ D xp. Then Fp is an Fp-linear map that can be described by a matrix
with respect to a basis of the finite Fp-algebra R=pR. We have Ip=pR D

nil.R=pR/D ker Fk
p if k is chosen so that pk exceeds dimFp

.R=pR/� ŒK W Q�.
This makes the computation of Ip=pR � R=pR a standard matter of linear
algebra over Fp.

If we find Ip=pR D 0, then R is regular and unramified at p, and finding
the primes over p amounts to splitting the separable Fp-algebra R=pR into a
product of finite fields. This is done by finding the idempotents in R=pR, which
is easy as these span the kernel of the linear map Fp � id.

The more interesting case arises when the inclusion in .9-2/ is strict, that is,
when R is singular or ramified above p. To find out whether R is singular above
p and the inclusion R � Op strict, one now considers the multiplier ring

R0
D�.Ip/D fx 2 K W xIp � Ipg

of the p-radical of R. From p 2 Ip we obtain R � R0 �
1
p

R, and as Ip is a
finitely generated R-ideal, we have R0 � Op by Lemma 6.4.

PROPOSITION 9.3. Define the extensions R�R0 �Op as above. If the inclusion
R � Op is strict, then so is the inclusion R � R0.

PROOF. Suppose we have ŒOp W R�D pr > 1. As all sufficiently high powers of
Ip contain pR, we have Ik

p Op � R for large k. Let m � 0 be the largest integer
for which we have Im

p Op 6� R, and pick x 2 Im
p Op n R � Op n R. For y 2 Ip

we now have xy 2 ImC1
p Op � R \ IpOp D Ip, so x is in R0 n R. �

By Proposition 9.3, we can find Op by repeatedly replacing R by R0 until we
have R D R0 D Op. As we can work ‘modulo p’ all the time, the resulting
Pohst–Zassenhaus algorithm reduces to linear algebra over Fp. One starts by
computing Fp-bases for Ip=pR and Ip=pIp from a basis of R=pR. As Ip=pIp

is an R-module, we have a structure map

' W R ! End.Ip=pIp/;

and we find R0 D
1
p

N for N D ker'. Note that N D ker' contains pR since '
factors via R=pR, and that R0 is generated over R by 1=p times the lifts to R

of an Fp-basis for N=pR. Computing N is again a matter of linear algebra. A
slight drawback of the method is that for Ip=pIp of Fp-dimension n � ŒK W Q�,
the endomorphism ring End.Ip=pIp/ is a matrix ring of dimension n2 over Fp.
Thus, the relevant map ' W R=pR ! End.Ip=pIp/ is described by a matrix of
size n2 � n over Fp.
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Once a p-regular ring R has been obtained, the extension primes p j p are
found by finding the idempotents of the Fp-algebra R=pR. We refer to [Cohen
1993, Chapter 6] for further details.

10. Finiteness theorems

In order to use ideal factorization in a number ring R to establish divisibility
results between elements as one does in Z, there are two obstacles one has to deal
with. The first is the obstruction to invertible ideals being principal, which is
measured by the Picard group Pic.R/. The second is the problem that generators
of principal ideals in R are only unique up to multiplication by units in R. As
the example of the number ring R D ZŒ

p
d � occurring in Pell’s equation shows,

the unit group R� may be infinite. We do however have two basic finiteness
theorems: the Picard group Pic.R/ of a number ring R is a finite abelian group,
and for orders R, the unit group R� is a finitely generated abelian group. These
are not algebraic properties of one-dimensional Noetherian domains, and the
proofs use the fact that number rings allow embeddings in Euclidean vector
spaces, in which techniques from the geometry of numbers can be applied.

Let V be an n-dimensional real vector space equipped with a scalar product
h � ; � i W V �V ! R, that is, a positive definite bilinear form on V �V . Then we
define the volume of a parallelepiped B D fr1x1Cr2x2C� � �Crnxn W 0 � ri < 1g

spanned by x1;x2; : : : ;xn as

vol.B/D jdet.hxi ;xj i/ni;jD1j
1=2:

Thus, the ‘unit cube’ spanned by an orthonormal basis for V has volume 1, and
the image of this cube under a linear map T has volume jdet.T /j. If the vectors
xi are written with respect to an orthonormal basis for V as xi D .xij /

n
jD1

, then
we have

jdet.hxi ;xj i/ni;jD1j
1=2

D jdet.M � M t /j1=2
D jdet.M /j

for M D .xij /
n
i;jD1

. The volume function on parallelepipeds can be extended to
a Haar measure on V that, under the identification V Š Rn via an orthonormal
basis for V , is the well-known Lebesgue measure on Rn.

A subgroup L D Z � x1 C Z � x2 C � � � C Z � xk � V spanned by k linearly in-
dependent vectors xi 2 V is called a lattice of rank k in V . We clearly have
k � n, and all discrete subgroups of V are of this form. If L � V has maximal
rank n, the covolume vol.V =L/ of L in V is the volume of a parallelepiped F

spanned by a basis of L. Such a parallelepiped is a fundamental domain for L

as every x 2 V has a unique representation x D f C l with f 2 F and l 2 L. In
fact, vol.V =L/ is the volume of V =L under the induced Haar measure on the
factor group V =L.
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All finiteness results in this section are applications of Minkowski’s ‘con-
tinuous version’ of Dirichlet’s box principle. His theorem is simple to state
and amazingly effective in the sense that many results can be derived from it.
However, like the box principle itself, it has little algorithmic value since its
proof is a pure existence proof that suggests no efficient algorithm.

THEOREM 10.1 (MINKOWSKI). Let L be a lattice of maximal rank n in V .
Then every closed bounded subset of V that is convex and symmetric and has
volume vol.X /� 2n � vol.V =L/ contains a nonzero lattice point.

PROOF. Suppose first that we have vol.X / > 2n � vol.V =L/. Then the set
1
2
X D f

1
2
x W x 2 X g has volume vol.1

2
X / > vol.V =L/, so the map 1

2
X ! V =L

cannot be injective. Pick distinct points x1;x2 2 X with 1
2
x1 �

1
2
x2 D ! 2 L.

As X is symmetric, �x2 is contained in X . By convexity, we find that the
convex combination ! of x1 and �x2 2 X is in X \ L.

Under the weaker assumption vol.X / � 2nvol.V =L/, we observe that each
of the sets X" D .1C"/X with 0<"� 1 contains a nonzero lattice point !" 2 L.
There are only finitely many distinct lattice points !" 2 L \ 2X , and a point
occurring for infinitely many is in the closed set X D \"X". �

If K is a number field of degree n over Q, the base change Q ! C provides us
with a canonical embedding of K in the n-dimensional complex vector space
KC D K ˝Q C:

˚K W K � KC Š Cn

x ’ .�.x//� :

Here the isomorphism KC Š Cn is as in .7-1/, with � ranging over the n em-
beddings K ! C. Note that ˚K is a ring homomorphism, and that the norm
and trace on the free C-algebra KC extend the norm and the trace of the field
extension K=Q. The image of K under the embedding lies in the R-algebra

KR D f.z� /� 2 KC W z� D z�g

consisting of the elements of KC invariant under the involution F W .z� /� ‘

.z� /� . Here � denotes the embedding of K in C that is obtained by composition
of � with complex conjugation.

On KC Š Cn, we have the standard hermitian scalar product, which satisfies
hFz1;Fz2i D hz1; z2i. Its restriction to KR is a real scalar product that equips
KR with a Euclidean structure and a canonical volume function.

It is customary to denote the real embeddings of K by �1; �2; : : : ; �r and the
pairs of complex embeddings of K by �rC1; �rC1; �rC2; �rC2; : : : ; �rCs; �rCs .
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We have r C 2s D n and an isomorphism of R-algebras

KR �� Rr
� Cs

.z� /� ’ .z�i
/rCs
iD1

:
(10-2)

The inner product on KR is taken componentwise, with the understanding that
at a ‘complex’ component .�; �/, the inner product of z1 D x1 C iy1 and z2 D

x2 C iy2 equals

h
�

z1

z1

�
;
�

z2

z2

�
i D z1z2 C z1z2 D 2 Re.z1z2/D 2.x1x2 C y1y2/:

This differs by a factor 2 from the inner product under the identification of C

with the ‘complex plane’ R2, so volumes in KR are 2s times larger than they
are in Rr

� Cs with the ‘standard’ Euclidean structure. The following theorem
shows that the ‘canonical’ volume is indeed canonical.

LEMMA 10.3. Let R be an order in a number field K. Then ˚K ŒR� is a lattice
of covolume j�.R/j1=2 in KR .

PROOF. Choose a Z-basis fx1;x2; : : : ;xng for R. Then ˚K ŒR� is spanned by
the vectors .�xi/� 2 KR . In terms of the matrix X D .�i.xj //

n
i;jD1

following
.7-4/, the covolume of ˚K ŒR� equals

jdet.h.�xi/� ; .�xj /� i/ni;jD1j
1=2

D jdet.X t
� X /j1=2

D j�.R/j1=2: �

For I 2 I.R/, the lattice ˚K ŒI � has covolume N.I/ � j�.R/j1=2 in KR . De-
fine the closed convex symmetric subset Xt � KR by Xt D f.z� /� 2 KR WP

� jz� j � tg; and choose t such that its volume vol.Xt / D 2r�stn equals
2nN.I/ � j�.R/j1=2. Using the arithmetic-geometric-mean inequality, we find
that Xt contains the ˚K -image of a nonzero element x 2 I of absolute norm

jNK=Q.x/j D

Y
�

j�.x/j �

�
1

n

X
�

j�.x/j
�n

�
tn

nn D MR � N.I/;

where the Minkowski constant of the order R is defined as

MR D

�
4

�

�s n!

nn � j�.R/j1=2: (10-4)

It follows that xI�1 is integral and of norm at most MR. As R has only finitely
many ideals of norm at most MR, we obtain our first finiteness result.

THEOREM 10.5. Let R be an order and MR its Minkowski constant. Then
every ideal class in the Picard group Pic.R/ contains an integral ideal of norm
at most MR, and Pic.R/ is a finite abelian group. �

COROLLARY 10.6. The Picard group of a number ring is finite.
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PROOF. If O is Dedekind, this is clear from Theorem 6.5 and .6-6/. The case
of a general number ring R of conductor f in its normalization O then follows
from Theorem 6.7, as .O=f/� is a finite group. �

As the Minkowski constant MR in .10-4/ is at least equal to 1, the absolute
value of the discriminant of an order of rank n satisfies

j�.R/j �

�
�

4

�2s�
nn

n!

�2
:

This lower bound grows exponentially with n, and for R ¤ Z we have n > 1

and j�.R/j � �2=4 > 2. By Theorem 8.5, it follows that every order R ¤ Z

has singular or ramifying primes. In particular, the ring of integers of a number
field K ¤ Q is ramified at the primes p dividing the integer j�K j> 1.

If we fix the value of the discriminant�.R/ in Lemma 10.3, this puts a bound
on its rank n, and one can use Theorem 10.1 to generate R by elements lying
in small boxes of KR . This leads to Hermite’s theorem: up to isomorphism,
there are only finitely many orders of given discriminant D. It gives rise to
the problem of finding asymptotic expressions for x ! 1 for the number of
number fields K, say with r real and s complex primes, for which j�K j is at
most x. As the suggested proof of the theorem, based on Theorem 10.1, is not
at all constructive, this is a non-trivial problem for n > 2. For n > 3 there has
only recently been substantial progress [Bhargava 2005; � 2008].

In a more geometric direction, the finiteness of the number of curves (up to
isomorphism) of given genus and ‘bounded ramification’ that are defined over
Q is a 1962 conjecture of Shafarevich that was proved by Faltings [Cornell and
Silverman 1986] in 1983. The ineffective proof yields no explicit cardinalities
of any kind.

The unit group of a number ring R has a finite cyclic torsion subgroup �R

consisting of the roots of unity in R. As R is countable, R�=�R is countably
generated. Not much more can be said in general, as the case R D K shows,
but for orders we can be more precise by considering the restriction of the ring
homomorphism ˚K to R�:

˚K W R�
! K�

R D f.z� /� 2 K�
C W z� D z�g:

In order to produce lattices, we apply the logarithm z ‘ log jzj componentwise
on K�

C
D .C�/n to obtain a homomorphism K�

C
! Rn that sends .z� /� to

.log jz� j/� .

THEOREM 10.7 (DIRICHLET UNIT THEOREM). Let R be an order of maximal
rank n D r C 2s in K, with r and s as in .10-2/. Then the homomorphism

L W R�
�
L

Rn; x ’ .log j�xj/�

has kernel �R and maps R� onto a lattice of rank r C s � 1 in Rn.
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PROOF. For a bounded set B D Œ�M;M �n � Rn, the inverse image in K�
R un-

der the logarithmic map is the bounded set f.z� /� 2 KR W e�M � jz� j � eM g,
which has finite intersection with the lattice ˚.R/. Thus L�1ŒB�� R� is finite,
and the discrete subgroup LŒR��� Rn is a lattice in Rn. Taking M D 0, we see
that ker L is finite and equal to �R.

We have log j�.x/jD log j�.x/j for every x 2K�, so LŒR�� lies in the .rCs/-
dimensional subspace f.x� /� 2 Rn

W x� D x�g � Rn, and we lose no information
if we replace L by its composition L0 WR� !Rn

DRrC2s
!RrCs of L with the

linear map that adds the components at each of the s pairs of complex conjugate
embeddings .�; �/ into a single component.

For � 2 R� we have ŒR W �R� D jNR=Z.�/j D
Q

� j�.x/j D 1, so L0ŒR�� Š

R�=�R is a lattice in the ‘trace-zero-hyperplane’

H D f.xi/
rCs
iD1

W
P

i xi D 0g � RrCs: (10-8)

Showing that L0ŒR�� has maximal rank r C s � 1 in H is done using Theorem
10.1. Let E D f.z� /� W

Q
� z� D ˙1g � K�

R be the ‘norm-˙1-subspace’ that is
mapped onto H under the composition ' W K�

R �
log

Rn
! RrCs , and choose t

such that the box X Df.z� /� 2KR W jz� j� t for all �g has vol.X /D2n �j�K j1=2.
For every e D .e� /� 2 E, the set

eX D fex W x 2 X g D f.z� /� 2 KR W jz� j< je� jtg

is a box around the origin with volume vol.eX / D vol.X /, so it contains an
element˚.xe/2˚ŒR� by Theorem 10.1. The norm N.xe/ of xe 2 R is bounded
by

Q
� je� jt D tn for each e, so the set of ideals fxeR W e 2 Eg is finite, say

equal to faiRgk
iD1

. Now

Y D E \
�Sk

iD1˚.a
�1
i /X

�
is a bounded subset of E as all boxes˚.a�1

i /X are bounded in KR . By the norm
condition on the elements of Y � E, the absolute values jy� j of y D .y� /� 2 Y

are bounded away from zero, so 'ŒY � is a bounded subset of H .
To show that L0ŒR�� has maximal rank in H , it now suffices to show that we

have L0ŒR��C 'ŒY � D H or, equivalently, ˚ŒR�� � Y D E. For the non-trivial
inclusion �, pick e 2 E. Then there exist a nonzero element a 2 R such that
˚.a/ is contained in e�1X and an element ai 2 R as defined above satisfying
aia

�1 D u 2 R�. It follows that e is contained in ˚.a�1/X D ˚.u/˚.a�1
i /X ,

whence in ˚ŒR�� � Y . �

Less canonically, Theorem 10.7 states that there exists a finite set �1; �2; : : :,
�rCs�1 of fundamental units in R such that we have

R�
D �R � h�1i � h�2i � � � � � h�rCs�1i:
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Such a system of fundamental units, which forms a Z-basis for R�=�R, is only
unique up to GLrCs�1.Z/-transformations and multiplication by roots of unity.

The regulator of a set f"1; "2; : : : ; "rCs�1g of elements of norm ˙1 in K� is
defined as

Reg."1; "2; : : : ; "rCs�1/D
ˇ̌
det.ni log j�i"j j/rCs�1

i;jD1

ˇ̌
:

Here the integer ni 2 f1; 2g equals 1 if �i is a real embedding and 2 otherwise.
The regulator Reg.R/ of an order R in K is the regulator of a system of funda-
mental units for R�, with Reg.R/D1 if R� is finite. Its value is the covolume of
the lattice L0ŒR�� in the trace-zero-hyperplane H from .10-8/ after a projection
H �� RrCs�1 obtained by leaving out one of the coordinates.

The regulator of the ring of integers of K is simply referred to as the regulator
RK of K. Unlike the discriminant �K , which is an integer, RK is a positive
real number which is usually transcendental, as it is an expression in terms of
logarithms of algebraic numbers. For an order R in K, we have ŒO�

K
W�K R��D

Reg.R�/=RK : For a subring R � K that is not an order, we can extend Theorem
10.7 to describe R�, even though LŒR��� H is a dense subset.

THEOREM 10.9. Let R be a number ring with field of fractions K, and define r

and s as in .10-2/. Write T for the set of primes p of OK for which R contains
elements of negative valuation. Then we have an isomorphism

R�
Š �R ˚ ZrCs�1

˚ ZT ;

and R� is finitely generated if and only if T is finite.

PROOF. The unit group R� of R is by Theorem 6.7 of finite index in the unit
group O� of the normalization O of R. By Theorem 6.5, we have O D OK ;T for
our set T , and .6-6/ provides us with an exact sequence 1 ! O�

K
! O�

K ;T
!

ZT ! ClK . As subgroups of finite index in ZT are free of the same rank, we
have a split exact sequence 1 ! O�

K
! O�

K ;T
! Z#T ! 1, and the result follows

from Theorem 10.7. �

The r real embeddings and the s complex conjugate pairs of embeddings of K

are often referred to as the real and complex primes of K, a point of view on
which we will elaborate in Section 13. It is customary to include the set T1 of
these infinite primes in the set T we use in Theorem 6.5 to define the ring OK ;T .
With this convention, Theorem 10.9 states that the group O�

K ;T
of T -units is the

product of �K and a free abelian group of rank #T � 1.
The group �K of roots of unity is easily found. For r > 0 we simply have

�K D�R D f˙1g, and for totally complex K the group �K reduces injectively
modulo all odd unramified primes of K. This implies that the order wK of
�K is an integer dividing #.OK=p/

� D pf .p=p/ � 1 for all primes p - 2�K .
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As wK is actually the greatest common divisor of these orders, a few well-
chosen primes are usually enough to determinewK and the maximal cyclotomic
subfield Q.�K /� K.

11. Zeta functions

Although our approach to number rings has been mostly algebraic, we do
need a few results from analytic number theory that play an important role in
the verification of the correctness of any computation of Picard and unit groups.
We do not give the proofs of these results.

For a number field K, the Dedekind zeta function �K is the complex analytic
function defined on the half plane Re.t/ > 1 by

�K .t/D
P

I¤0 NK=Q.I/
�t ; (11-1)

where the sum ranges over all nonzero ideals I � O of the ring of integers
OK of K. For K D Q, this is the well-known Riemann zeta function �.t/ DP1

nD1 n�t . The sum defining �K .t/ converges absolutely and uniformly on
compact subsets of Re.t/ > 1, and the holomorphic limit �K can be expanded
into an Euler product

�K .t/D

Y
p
.1 � NK=Q.p/

�t /�1
D

Y
p
.1 � p�f .p=p/t /�1 (11-2)

over the primes of OK ; this shows that �K is zero-free on Re.t/ > 1. To see this,
note first that for each rational prime number p, there are at most n D ŒK W Q�

primes p j p by Theorem 8.4, and each of these has NK=Q.p/ D pf .p=p/ � p.
The resulting estimateX

NK=Q.p/�X
jNK=Q.p/

�t
j � n

X
p�X

p� Re.t/

shows that
P

p NK=Q.p/
�t converges absolutely and uniformly in every half

plane Re.t/ > 1 C ", so the same is true for the right hand side of .11-2/.
Multiplication of the geometric series

.1 � NK=Q.p/
�t /�1 D

P1
kD0 NK=Q.p/

�kt

for all primes p reduces .11-2/ to .11-1/, as every ideal I has a unique factor-
ization as a product of prime ideal powers.

Hecke proved that �K can be extended to a holomorphic function on C nf1g,
and that it has particularly nice properties when Euler factors are added in .11-2/
for the r real and s complex primes of K. More precisely, the function

Z.t/D j�K j
t=2

�
� .t=2/��t=2

�r �
� .t/.2�/�t

�s
�K .t/ (11-3)
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satisfies the simple functional equation Z.t/D Z.1�t/. In [Lang 1994, Chapter
XIII and XIV], one can find both Hecke’s classical proof and Tate’s 1959 adelic
proof of this result. More details on Tate’s approach are found in [Ramakrishnan
and Valenza 1999].

Hecke’s techniques have been used by Zimmert to show that not only�K but
also the regulator RK grows exponentially with the degree. An explicit lower
bound [Skoruppa 1993] is

RK=wK � :02 � exp.:46r C :1s/; (11-4)

with wK D #�K the number of roots of unity in K. Depending on the degree
and the size of the discriminant, there are better lower bounds [Friedman 1989].
For all but nine explicitly known fields, one has RK=wK � 1=8.

The functional equation shows that the meromorphic extension of �K to C

has ‘trivial zeros’ at all negative integers k 2 Z<0: for k odd the multiplicity of
the zero equals s, whereas for k even the multiplicity equals r C s. All other
zeros � satisfy 0< Re.�/ < 1, and one of the deepest open problems in number
theory, the Generalized Riemann Hypothesis (GRH), predicts that we actually
have Re.�/D 1=2 for these non-trivial zeros.

At t D 1, the Dedekind zeta function �K has a simple pole. Its residue

2r .2�/s
hK RK

wK j�K j1=2

at t D 1 can be found using extensions of the techniques in the previous section
[Lang 1994, Section VIII.2, Theorem 5]. It gives us information on the funda-
mental invariants hK , RK , and �K of K we have defined before. For K D Q

the residue equals 1, and for general K we can approximate it by evaluating the
limit limt!1 �K .t/=�Q.t/ using .11-2/ to obtain

hK RK

wK

D 2�r .2�/�s
j�K j

1=2
Y

p
E.p/; (11-5)

where the Euler factor E.p/ at the rational prime p is defined by

E.p/D
1 � p�1Q

p j p.1 � p�f .p=p//
:

Identity .11-5/ allows us to approximate hK RK by multiplying the Euler factors
E.p/ for sufficiently many p. Convergence is slow, but we will only need single
digit precision. In fixed degree n, it suggests that hK RK is a quantity of order
of magnitude j�K j1=2. In an asymptotic sense, this is made precise by the
Brauer–Siegel theorem [Lang 1994, Section XIII.4, Theorem 4], which states
that the quotient of the logarithms log.hK RK / and 1

2
log j�K j tends to 1 in any

sequence of pairwise non-isomorphic normal number fields K of some fixed
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degree. The condition of normality can be dispensed with under assumption of
GRH, and for the degree it actually suffices to assume that ŒK W Q�= log j�K j

tends to 0. Unfortunately, the theorem is not effective.
At t D 0, the functional equation shows that �K has a zero of order r C s � 1

with leading coefficient �hK RK=wK in the Taylor expansion. The idea that
such a coefficient should ‘factor over �-eigenspaces’, much like zeta functions
themselves factor into L-functions, underlies the largely conjectural theory of
Stark units [Tate 1984].

12. Computing class groups and unit groups

The actual computations of class groups and units groups are inextricably
linked, in the sense that one uses a single algorithm yielding both the class
group and the unit group. The complexity of the calculation is exponential
in any reasonable measure for the size of the number field, and for number
rings that do allow explicit calculations of the type discussed in this section,
factoring discriminants and computing normalizations are not expected to pose
great difficulties. For this reason, we will focus on the computation of the class
group and unit group of a number field K. For other number rings R � K, the
results from Section 5 can be used to relate Pic.R/ and R� to ClK and O�

K
.

The kind of computation that yields ClK and O�
K

has become standard in
algorithmic number theory: it factors smooth elements over a suitably chosen
factor base and produces relations using linear algebra over Z. In this volume,
it occurs in [Lenstra 2008; Pomerance 2008a; 2008b; Stevenhagen 2008; Schi-
rokauer 2008; Schoof 2008b].

Suppose we are given a number field

K D QŒX �=.f /

of degree n D r C2s by means of a defining monic polynomial f 2 ZŒX � having
r real and s complex conjugate pairs of roots. Computing r and s from f is
classical and easy: one counts sign changes in a Sturm sequence that can be
obtained as a by-product of the computation of the discriminant �.f / from the
resultant R.f; f 0/ as in Example 7.9 [Cohen 1993, Theorem 4.1.10]. We take
the order ZŒ˛� defined by f D f ˛

Q
, and extend it to O D OK using the methods

of Sections 8 and 9. Note that this requires factoring �.f /. We then select a
smoothness bound B such that ClK is generated by the primes p in O of norm
at most B. One can take for B the Minkowski constant

MK D

�
4

�

�s n!

nn � j�K j
1=2
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from .10-4/ or use the asymptotically much smaller Bach bound

BK D 12.log j�K j/2;

which is good enough if one is willing to assume GRH [Bach 1990]. In practice
even the Bach bound is usually overly pessimistic, and correct results may be
obtained using even smaller values of B.

EXAMPLE 12.1. For f DX 3C44 from Example 8.3, we have�K D�22 �3�112

and r D s D 1. In this case the Minkowski constant MK < 11 is so small
that all calculations can be done by hand. As 44 as not a cube modulo 7, the
prime 7 is inert in K, and ClK is generated by the primes over 2, 3, and 5.
We factored these primes explicitly in Theorem 8.4 as .2/ D p3

2
, .3/ D p2

3
q

3

and .5/D p5p25, where the subscripts denote the norms of the primes involved.
Using g D X 3 C X 2 � 7X � 13, the irreducible polynomial of the generating
element ıDˇ�
 D .˛2 �2˛�2/=6 of OK we found in Example 8.3, it suffices
to tabulate a few smooth values of g and compute the factorization of those
principal ideals .k � 
 / of norm NK=Q.k � 
 /D g.k/ that are 5-smooth.

k �3 �2 �1 0 1 2 3

g.k/ �2 � 5 �3 �2 � 3 13 �2 � 32 �3 � 5 2

.k � ı/ p2p5 q3 p2p3 � p
2
q2

3
p3p5 p2

Note that g has a double zero modulo 3 at k D �1 mod 3 giving rise to the
ramified prime p3 D .3; ıC1/ dividing .�1�ı/, whereas the unramified prime
q3 D .3; ıC 2/ divides .k � ı/ at the values k � 1 mod 3. The table shows that
p2 D .3 � ı/ and q3 D .2 C ı/ are principal, and by the entries for k D �1 and
k D �3, the other generators p3 D .1 C ı/=.3 � ı/ and p5 D .3 C ı/=.3 � ı/ of
ClK are principal as well, so without any further computation we have ClK D 0.
The unused entries k D 1; 2 now yield different generators for .1�ı/ and .2�ı/,
namely .3�ı/.2Cı/2 and .1Cı/.3Cı/=.3�ı/2. Their quotients are the unit
.1 � ı/.3 � ı/�1.2 C ı/�2 D �1 and the non-trivial unit

"D .2 � ı/.1 C ı/�1.3 C ı/�1.3 � ı/2 D �5ı2
C 17ı� 7:

In terms of the root ˛ of f D X 3 C 44, we have "D
1
6
.17˛2 � 4˛� 226/. The

unit " is actually fundamental, so we have O�
K

D h�1i � h"i. To prove this fact,
we have several options.

One can generate more units using the prime ideal factorizations of 5-smooth
ideals such as .2/, .3/, .5/, and .8 C ı/D q4

3
p

5
, find that they are all up to sign

a power of ", and decide on probabilistic grounds that " must be fundamental.
Alternatively, one can divide the regulator Reg."/ � 8:3 by the absolute lower
bound for RK following from .11-4/ to obtain ŒO�

K
W h�1i�h"i�� 33, and show

that �", which has norm 1, is not a p-th power for any prime number p � 31.
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For this, it suffices to find a prime p of norm N p � 1 mod p in OK and to show
that we have ".N p�1/=p ¤ 1 2 OK=p. If " is not a p-th power in K, such p

are usually abundant. A third possibility consists in approximating the Euler
product .11-5/ to precision sufficient to convince oneself that RK is not equal
to Reg."/=k for some k > 1. We will do this in the case of a larger example in
Example 12.4.

For a ‘small’ number field K D QŒX �=.f / defined by a monic polynomial f 2

ZŒX �, the basic invariants of K can be found from a small table of factored
values of f .

EXAMPLE 12.2. We take f D X 3 C X 2 C 5X � 16, which gives rise to the
values in Table 1. As f has no zeros modulo 11, 13, and 17, it is irreducible
modulo these primes, and in ZŒX �. The discriminant�.f /D �R.f; f 0/ can be
computed as in Example 7.9, and equals

�R.X 3
CX 2

C5X �16; 3X 2
C2X C5/D �32R.28

9
X �

149
9
; 3X 2 C2X C5/

D �32
�
�

28
9

�2
�
�
3
�

149
28

�2
C2

�
149
28

�
C5

�
D �8763

D �3 � 23 � 127:

As �.f / is squarefree, K D QŒX �=.f / has �K D �8763 and O D OK D ZŒ˛�.
As f has a single real root, we have r D s D 1, and Minkowski’s constant equals

MK D
3!

33

4

�

p
8763 � 26:5:

The primes in O of norm at most 25 can be found by factoring the rational primes
up to 23 in O. This is an application of Theorem 8.2 using the values of f in

k f .k/

�10 �2 � 3 � 7 � 23

�9 �709

�8 �23 � 32 � 7

�7 �3 � 5 � 23

�6 �2 � 113

�5 �3 � 47

�4 �22 � 3 � 7

�3 �72

�2 �2 � 3 � 5

�1 �3 � 7

k f .k/

0 �24

1 �32

2 2 � 3

3 5 � 7

4 22 � 3 � 7

5 3 � 53

6 2 � 7 � 19

7 3 � 137

8 23 � 3 � 52

9 839

Table 1. Values of f D X 3 C X 2 C 5X � 16.
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our table. Leaving out the inert primes 11, 13, and 17, we obtain factorizations

2O D p2p4 D .2; ˛/ � .2; ˛2
C˛C 1/

3O D p2
3q3 D .3; ˛C 1/2 � .3; ˛� 1/

5O D p5p25 D .5; ˛C 2/ � .5;x5/

7O D p7q7r7 D .7; ˛C 1/.7; ˛� 3/.7; ˛C 3/

19O D p19p361 D .19; ˛� 4/ � .19;x19/

23O D p2
23q23 D .23; ˛C 7/2.23; ˛C 10/

in which x5 and x19 denote elements that we do not bother to compute. This
shows that ClK is generated by the classes of the primes p2, p3, p5, p19, p23,
and two of the primes over 7. We can express the classes of the large primes
in those of smaller primes using the factorizations of principal ideals .k � ˛/

resulting from the values of f .k/ in our table.
The entry k D �7 yields .�7 � ˛/ D p3p5p23, so we can omit Œp23� from

our list of generators. Similarly, we can omit Œp19� as the entry k D 6 gives
.6 � ˛/ D p2p7p19. The primes over 7 can be dealt with using the identities
.�1�˛/Dp3p7 and .3�˛/Dp5q7. The relation .�2�˛/Dp2q3p5 D3p

2
p�2

3
p

5

takes care of Œp5�, and finally .2�˛/D p2p3 shows that the class group of K is
generated by Œp2�. The order of this class divides 4 since we have .˛/D p4

2
, and

further relations do not indicate that it is smaller.
To show that p2

2
is not principal and that ClK D hŒp2�i is cyclic of order 4,

we need to know the group O�=.O�/2. As in Example 12.1, we can produce a
non-trivial unit from the fact that the factorizations of 3, .˛/, .˛�1/, and .˛�2/

involve only p2 and the primes over 3. One deduces that

�D
.˛� 1/.˛� 2/4

9˛
D 4˛2

C˛� 13

is a unit of norm N.�/D 1. From the Dirichlet unit theorem (with r D s D 1)
we have O� Š h�1i � P , where P Š Z can be taken to be the group of units of
norm 1. In order to prove that � generates P=P2, it suffices to show that � is not
a square in O�. This is easy: reducing modulo p3 we find �� 4 � 1 � 13 � �1,
and �1 is not a square in O=p3 D F3.

Suppose now that p2
2

D .y/ is principal. Then y2 and ˛ are both generators
of p4

2
, so there exists a unit " with y2 D " �˛. As the norm N." �˛/D 16N."/D

N.y/2 is positive, we have " 2 P . If " is in P2, then ˛ D "�1y2 is a square,
contradicting that we have ˛� �2 mod p5. If " is in �P2, then � �˛ is a square,
and this is contradicted by the congruence

� �˛ � .4.�2/2 C .�2/� 13/ � �2 � 3 mod p5:
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We conclude that no unit " exists, and that p2 has order 2 in ClK Š Z=4Z. As
in Example 12.1, we can show in various ways that � is actually a fundamental
unit, and that we have O� D h�1i � h�i.

In number fields K D Q.˛/ that are bigger than the two baby examples we just
did, more work is involved, but the underlying idea remains the same. Having
chosen a factor bound B, one explicitly obtains the factorization of all primes
p � B using the Kummer–Dedekind theorem for ZŒ˛�. For those primes p

dividing the index of ZŒ˛� in OK , some extra work is needed as O=pO may
not be monogenic over Fp. However, everything can be determined using the
techniques of Section 9, using linear algebra over Fp. One is left with a factor
base consisting of the set T of primes of norm at most B.

Next, one tries to factor sufficiently many principal ideals .x/ � OK over
the chosen factor base. The B-smooth elements x 2 OK n f0g for which this is
possible generate the subgroup O�

K ;T
� K� of T -units, and we have an exact

sequence

1 ! O�
K � O�

K ;T �
F

ZT
�
C ClK ! 0:

Here F is the ‘factorization map’ that sends x 2 O�
K ;T

to its exponent vector
.ordp.xOK //p2T , and C is the natural map sending the characteristic function
of p 2 T to the ideal class of Œp�. As O�

K ;T
is a free abelian group of rank

#T C r C s �1 by Theorem 10.9, we expect it to be generated by any ‘random’
subset of its elements of cardinality substantially larger than its rank.

EXAMPLES 12.3. In K D Q.
3
p

44/ from Example 12.1, the set T of primes
of norm at most 5 consists of 4 primes, and #T C r C s � 1 equals 5. The 6
elements k � ı with jkj 2 f1; 2; 3g already generate O�

K ;T
Š h�1i � Z5.

In Example 12.2, with T consisting of the 3 primes of norm at most 3, the
elements 3, .˛/, .˛� 1/, and .˛� 2/ are independent in O�

K ;T
Š h�1i � Z4.

For a subset X � O�
K ;T

generating a subgroup of maximal rank, it is a matter of
linear algebra over Z to reduce the matrix of exponent vectors .F.x//x2X and
to compute the group ZT =F ŒX �, which will be of finite order

h0
D ŒF ŒO�

K ;T � W F ŒX � � � hK

if X is sufficiently large. The dependencies found between the vectors give
rise to elements u 2 O�

K
D ker.F / generating a subgroup U � O�

K
. For these

elements we compute their log-vectors L0.u/ 2 H � RrCs as in Theorem 10.7.
Linear algebra over R will give us r C s � 1 independent units generating the
lattice LŒU � if X is sufficiently large, and the associated regulator is

R0
D ŒO�

K W LŒU �� � RK :
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If our set X truly generates O�
K ;T

, then we have h0 D hK and R0 D RK , so

ClK Š ZT =F ŒX �

and O�
K

D U . If this is not the case, h0R0 > hK RK will be an integral multiple
of hK RK , and we discover this by comparing our value h0R0 with the analytic
estimate of hK RK obtained by approximating .11-5/ with a truncated Euler
product. The factors E.p/ in .11-5/ are computed from the ‘factorization type’
of p in OK , which we know already for p <B, and which follows for more p,
if desired, from the factorization type of the defining polynomial f modulo p.

The description of the fundamental units furnished by the algorithm is a
power product representation in terms of T -units in X . Although the set X

we pick to generate O�
K ;T

usually consists of elements that are relatively small,
the units obtained from them can be huge when written out on a basis of K over
Q. This is unavoidable in view of the order of magnitude j�K j1=2 of hK RK :
in many cases hK appears to be rather small, and this means that the regulator
measuring the logarithmic size of the unit group will be of size j�K j1=2. In
such cases the units themselves require a number of bits that is exponential in
log j�K j. Already in the simplest non-trivial case of real quadratic fields, the
phenomenon of the smallest solution of the Pell equation x2 � dy2 D 1 being
very large in comparison to d > 0 was noticed 350 years ago by Fermat.

This paper does not intend to present cutting-edge examples of the perfor-
mance of the algorithm above, which involve serious linear algebra to reduce
large matrices over Z. The final example below is small and ‘hands-on’ like the
cubic Examples 12.1 and 12.2. It illustrates the use of log-vectors in the deter-
mination of the unit group, and the analytic confirmation of the algebraically
obtained output.

EXAMPLE 12.4. Let K be the quartic field generated by a root ˛ of the poly-
nomial

f D X 4
� 2X 2

C 3X � 7 2 ZŒX �

of prime discriminant�.f /D �98443. Then we have OK D ZŒ˛�, an order with
r D 2, s D 1 and Minkowski constant MK � 37:4. To deal with all primes of
norm up to 37, we tabulate consecutive values of f in Table 2 on the next page.

This shows that f has no roots modulo the primes p D 2; 3; 17; 23; 29, and
also modulo 37 once we check 37 - f .18/. In fact, f is irreducible modulo 2
and 3, and the factorization .5/D p5q5p25 shows that ClK is generated by the
ideals of prime norm p 2 Œ5; 31�, which all ‘occur’ in Table 2.
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n f .n/

�18 127 � 821

�17 5 � 112 � 137

�16 64969

�15 50123

�14 52 � 72 � 31

�13 19 � 1483

�12 5 � 7 � 11 � 53

�11 83 � 173

�10 13 � 751

�9 5 � 19 � 67

�8 31 � 127

�7 52 � 7 � 13

n f .n/

�6 11 � 109

�5 7 � 79

�4 5 � 41

�3 47

�2 �5

�1 �11

0 �7

1 �5

2 7

3 5 � 13

4 229

5 11 � 53

n f .n/

6 5 � 13 � 19

7 7 � 331

8 5 � 797

9 72 � 131

10 11 � 19 � 47

11 52 � 577

12 20477

13 5 � 5651

14 7 � 5437

15 149 � 337

16 5 � 7 � 11 � 132

17 31 � 2677

Table 2. Values of f D X 4 � 2X 2 C 3X � 7 2 ZŒX �.

In case f .n/ D ˙p is prime, the prime ideal .p; ˛ � n/ is principal and
generated by ˛� n. The following list of ideals of prime norm p � 31 results.

p5 D .˛� 1/ q5 D .˛C 2/

p7 D .˛/ q7 D .˛� 2/

p11 D .˛C 1/ q11 D .11; ˛� 5/

p13 D .13; ˛� 3/ q13 D .13; ˛� 6/

p19 D .19; ˛� 6/ q19 D .19; ˛C 9/

p31 D .31; ˛C 8/ q31 D .31; ˛C 14/

The primes lying over 5 and 7 are all principal, and so is p11. This suggests
strongly that Cl.O/ is trivial. In order to prove this, we try to express all primes
in the table in terms of the principal ideals. From the entry with k D 3 in our
table we obtain .3 � ˛/ D p13q5, showing that p13 is principal. The relation
.16�˛/D p

5
q

7
q

11
p2

13
then shows that q11 is also principal. Similarly, we have

principality of q13 from .�7�˛/Dq2
5
p

7
q

13
and of p19 from .6�˛/Dp5q13p19.

Finally, we use .�14 � ˛/D p2
5
p2

7
q

31
to eliminate q31. This exploits all useful

relations from our table, leaving us with the primes q19 and p31. In order to
prove that these primes are also principal, we factor a small element in them.
Modulo q19 D .19; ˛ C 9/ we have ˛ D �9 2 F19, and 1 � 2˛ is therefore a
small element in the ideal. Similarly, we have ˛ D �8 2 F31 when working
modulo p31 D .31; ˛ C 8/, so 1 C 4˛ is in p31. The norms of these elements
are N.1 � 2˛/ D 24f .1=2/ D �5 � 19 and N.1 C 4˛/ D .�4/4f .�1=4/ D

5 � 13 � 31, which implies that q19 and p31 are principal. The corresponding
explicit factorizations are .1 � 2˛/ D q5q19 and .1 C 4˛/ D p5p13p31. This
proves that Cl.O/ is trivial.
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At this stage, we have produced explicit generating elements for all prime
ideals of norm below the Minkowski bound. Although we do not need all of
these generators, we list them for completeness sake.

p5 D .˛� 1/ q5 D .˛C 2/

p7 D .˛/ q7 D .˛� 2/

p11 D .˛C 1/ q11 D .32˛3 C 53˛2 C 25˛C 138/

p13 D .˛3 � 2˛2 � 2˛� 2/ q13 D .2˛3 � 4˛2 C 5˛� 6/

p19 D .˛3 C˛2 C˛C 8/ q19 D .˛3 � 2˛2 C 2˛� 3/

p31 D .2˛3 C 3˛2 C 2˛C 11/ q31 D .˛3 C˛2 C 6/

These generators are not necessarily the smallest or most obvious generators
of the ideals in question, they happen to come out of the arguments by which
we eliminated all generators of the class group. The search for units that is
to follow will provide other generators, and one can for instance check that
the large coefficients of our generator for q11 are not necessary as we have
q11 D .˛2 � 3/.

From now on every further factorization of a principal ideal .x/ as a product
of primes in this table will give us a unit in O: since both x and a product
of generators from our table generate .x/, this means that their quotient is a
unit. Trying some elements a C b˛, for which we can easily compute the norm
NK=Q.a C b˛/ D b4f .�a=b/, one quickly generates a large number of units.
The rank of the unit group O� for our field K equals r C s � 1 D 2, so some
administration is needed to keep track of the subgroup of O� generated by these
units. As in the proof of the Dirichlet unit theorem, one looks at the lattice in R2

generated by the ‘log-vectors’ L.u/D .log j�1.u/j; log j�2.u/j/ for each unit u.
Here �1 and �2 are taken to be the real embeddings K ! R, so they send ˛ to
the real roots ˛1 � �2:195 and ˛2 � 1:656 of f .

The table below lists a couple of units obtained from small elements aCb˛.

relation u L.u/

.2˛C 1/D q11q13 ˛3 � 2˛2 C 3˛� 4 .3:4276;�3:7527/

.2˛� 3/D q31 ˛3 � 2˛2 C 3˛� 4 .3:4276;�3:7527/

.2˛C 3/D p2
5
q7 �3˛3 � 5˛2 � 2˛� 12 .�3:4276; 3:7527/

.3˛C 1/D q5q7p19 5˛3 � 11˛2 C 14˛� 16 .5:0281;�1:2731/

.3˛� 5/D q13 ˛3 � 4˛C 2 .�1:6005;�2:4796/

.3˛� 4/D q2
5
q11 �4743˛3 C 10412˛2 .11:8833;�8:7785/

�13371˛C 15124

.4˛� 7/D q5p7p11 �˛3 C 2˛2 � 3˛C 4 .3:4276;�3:7527/
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We see that

�1 D ˛3
� 2˛2

C 3˛� 4 and �2 D ˛3
� 4˛C 2

are likely to be fundamental. From the log-vectors, the units in the fourth and
sixth lines of the table are easily identified (up to sign) as being equal to �1�

�1
2

and �3
1
��1

2
.

In order to show that O� is equal to h�1i�h�1i�h�2i, we have to check that
the regulator of K is equal to

Reg.�1; �2/D

ˇ̌̌̌
log j�1.�1/j log j�1.�2/j

log j�2.�1/j log j�2.�2/j

ˇ̌̌̌
�

ˇ̌̌̌
3:4276 �1:6005

�3:7527 �2:4796

ˇ̌̌̌
� 14:506:

If this is the case, the residue in t D 1 of the zeta function �K .t/ of K should
equal

2r .2�/shK R.�1; �2/

wK

p
j�j

�
22.2�/ � 1 � 14:506

2 �
p

98443
� 0:5810:

We can approximate this residue using .11-5/, using the Euler product
Q

p E.p/,
with

E.p/�1
D

Q
p j p.1 � NK=Q.p/

�1/

1 � p�1
:

The factor E.p/�1 is a polynomial expression in p�1 that depends only on the
residue class degrees of the primes p j p, that is, on the degrees of the irreducible
factors of the defining polynomial f modulo p. If we disregard the single ram-
ified prime 98443, there are 5 possible factorization types of f modulo p. If
the number np of zeros of f mod p equals 4, 2, or 1, we immediately know
the degree of all irreducible factors of f mod p. For np D 0, the polynomial f
is either irreducible modulo p or a product of two quadratic irreducibles, and
we can use the fact that the parity of the number g of irreducible factors of
f mod p can be read off from

��.f /
p

�
D .�1/n�g for p -�.f /. It follows that

we have

E.p/�1
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.1 � p�1/3 if np D 4I

.1 � p�1/.1 � p�2/ if np D 2I

1 � p�3 if np D 1I

.1 C p�1/.1 � p�2/ if np D 0 and
��.f /

p

�
D 1I

1 C p�1 C p�2 C p�3 if np D 0 and
��.f /

p

�
D �1:

The following data indicate the speed of convergence of this product.
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N
Q

p<N E.p/

100 0:625211

200 0:595521

500 0:581346

1000 0:584912

2000 0:585697

N
Q

p<N E.p/

5000 0:579408

10000 0:579750

20000 0:581892

50000 0:581562

100000 0:581423

We see that the convergence is non-monotonous and slow, but all values are
close to the expected value 0.5810. If our units �1 and �2 were not fundamental,
the Euler product should be at least twice as small as 0.5810, which is highly
unlikely. Under GRH, one can effectively bound the error of a finite approxi-
mation [Buchmann and Williams 1989, Theorem 3.1] and prove the correctness
of the result obtained.

13. Completions

We have seen in Section 5 that a regular prime p of a number ring R gives
rise to a discrete valuation ring Rp � R with maximal ideal containing p. If p

is singular, there is a discrete valuation ring with this property for every primeep over p in the normalization of R from Theorem 6.5. Thus, the discrete valu-
ation rings having a given number field K as their field of fractions correspond
bijectively to the primes of the ring of integers OK of K. One may even follow
the example of the geometers in their definition of abstract non-singular curves
[Hartshorne 1977, Section I.6] and say that these discrete valuation rings are the
primes or places of K.

For each prime p of OK , one can use the discrete valuation ordp WK !Z[f1g

to define a p-adic absolute value or exponential valuation on K by

jx � yjp D NK=Q.p/
�ordp.x�y/: (13-1)

By .5-5/, it satisfies jxyjp D jxjpjyjp for x;y 2 K and the ultrametric inequality

jx C yjp � maxfjxjp; jyjpg: (13-2)

Instead of NK=Q.p/ D #.OK=p/, we could have taken any real number c > 1

in .13-1/ to get an equivalent metric inducing the same topology on K, but our
normalization will be natural in view of .13-4/ and the remark following it.

One may now complete the number field K as in [Weiss 1963, Section I.7]
with respect to the metric in .13-1/ to obtain a field Kp that is complete with
respect to the p-adic absolute value, using a process similar to the construction
of the field of real numbers R as consisting of limits of Cauchy sequences of
rational numbers. If we choose a uniformizer � 2 K of order ordp.�/ D 1 as
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in Proposition 5.4(3) and some finite set S � O of representatives of the cosets
of p in O, then every x 2 Kp can uniquely be written as a converging Laurent
series

x D
P1

kDk0
ak�

k 2 Kp

with ‘digits’ ak 2 S . The field operations can be performed as for real numbers
represented in terms of their decimal expansions, so effective computations in
Kp are possible to any given p-adic precision.

Topologically, the fields Kp are locally compact fields, but their topology is
different from that of the more familiar archimedean locally compact fields R

and C. As a result of the non-archimedean ultrametric inequality .13-2/, small
quantities do not become large when repeatedly added to themselves in Kp, so
all open disks fx 2 Kp W jxjp < "g around 0 2 Kp are additive subgroups of Kp.
By the discreteness of the absolute value, these open disks are also closed in
Kp, and Kp is a totally disconnected topological space.

The closure Op of the ring of integers OK in Kp, which is equal to the closed
unit disk of radius 1 in Kp, is a compact ring consisting of the p-adic integers,
that is, elements of the form

P
k�0 ak�

k .
For K D Q, the completion at primes leads as in [Gouvêa 1993; Koblitz 1984]

to the rings Zp of p-adic integers and the p-adic fields Qp from [Buhler and
Wagon 2008, Section 4.3]. Just like the field of real numbers, the field Qp is
algebraically ‘simpler’ than Q: the number of extensions of Qp of fixed degree n

(inside an algebraic closure) is a finite number. In fact, defining such extensions
by a monic polynomial from Zp ŒX �, one can derive this from the compactness
of Zp by showing (Krasner’s lemma [Lang 1994, Proposition II.2.3]) that irre-
ducible polynomials in Zp ŒX � that are coefficientwise sufficiently close define
the same extension of Qp. In particular, all finite extensions of Qp arise as
completions of number fields at primes over p.

For a number field K D Q.˛/ defined by a monic polynomial f Df ˛
Q

2 ZŒX �,
finding the primes of K lying over a rational prime p amounts to factoring f
over Qp, as a factorization f D

Qs
iD1 fi 2 Qp ŒX � yields an isomorphism

K ˝Q Qp D Qp ŒX �=.f /��
Qs

iD1 Qp ŒX �=.fi/D
Qs

iD1 Kpi
(13-3)

that maps the subring ZŒ˛�˝Z Zp D Zp ŒX �=.f / into
Qs

iD1 Opi
, with equality if

and only if ZŒ˛� is regular over p.
By Hensel’s lemma [Buhler and Wagon 2008, Section 4.3], the factorization

of f over Qp can be found by factoring f modulo a sufficiently high power of
p and lifting the factors by a Newton-type algorithm. Finite precision is enough
to determine the nature of the extension field Kpi

corresponding to a factor fi in
.13-3/, and in this light the Kummer–Dedekind Theorem 8.2 is a first step that
exploits the factorization of .f mod p/ 2 Fp ŒX �. In case f mod p is separable,
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Hensel’s lemma yields the ‘unramified case’ of the Kummer–Dedekind theorem
(Theorem 8.2), and Kpi

D Qp ŒX �=.fi/ is the unramified extension of Qp of
degree f .pi=p/D deg.fi/.

Apart from the completions at the primes p of the ring of integers, we also
have completions of K arising from the embeddings � W K ! C occurring in
.10-2/. Up to complex conjugation, there are r real and s complex embeddings
known as the infinite primes of K, and the completion is either R or C for these
primes. We normalize the absolute values at an infinite prime p corresponding to
� in each of these cases by putting jxjp D j�.x/j if p is real, and jxjp D j�.x/j2

if p is complex.
The normalization of infinite absolute values is actually the same as for the

finite absolute values in .13-1/. To explain this, we note that each local field Kp

obtained by completing K at a prime p is locally compact, and comes with a
translation invariant measure [Ramakrishnan and Valenza 1999, Theorem 1.8]
that is unique up to a scalar factor; this is the Haar measure �p. For the infinite
primes, �p is a multiple of the familiar Lebesgue measure on R or C that we
used implicitly in the volume computations in the R-algebra KR D

Q
p j 1 Kp

from .10-2/. The normalization of the infinite absolute values is inspired by the
fact that for x 2 Kp, we have �p.xBp/D jxjp�p.Bp/ for all measurable subsets
Bp � Kp. For finite p, the very same identity gives rise to the normalization
.13-1/: multiplication by x increases all volumes in Kp by a factor jxjp.

With our normalization, the product
Q

p j 1 jxjp of the infinite absolute values
of x equals jNK=Q.x/j by the remark following .7-1/. In view of .13-1/ and
the compatibility of element and ideal norm, we arrive at the product formulaQ

p jxjp D 1 for x 2 K�, (13-4)

where the product is taken over all primes of K, both finite and infinite. It is
the arithmetic analogue of the complex geometric fact that functions on curves
have ‘as many zeros as they have poles’ when we count them with multiplicity
and all ‘points at infinity’ are included in our (projective) curves.

14. Adeles and ideles

Despite the intrinsic differences between finite and infinite primes, the prod-
uct formula already indicates that it is often useful to treat them equally, in order
to obtain a closer analogy with the geometric situation, where all ‘places’ of a
curve are of the same finite nature. This has given rise to the concept of the
adele ring AK D

Q0
p Kp of K, a global object obtained by taking a restricted

direct product of all completions Kp, both finite and infinite. The restriction
means that we deal only with elements that are in the local ring of integers Op
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at almost all finite p, that is,

AK D f.xp/p 2
Q

p Kp W jxpjp � 1 for almost all pg:

With this restriction, the adele ring is naturally a locally compact ring whose
topology is generated by sets of the form

Q
p2T Xp �

Q
p62T Op. Here T is a

finite set of primes containing the infinite primes, Xp is some open subset of
the locally compact field Kp, and Op is the compact ring of integers in Kp at
finite p. The diagonal embedding K ! AK defined by x ‘ .x/p makes K into
a subring of AK .

For AQ D R�
Q0

p Qp, the compact open neighborhood W D Œ�1
2
; 1

2
��

Q
p Zp

of 0 satisfies W \ Q D f0g and Q C W D AQ. It follows that Q is discrete in
AQ=Q and that the quotient group AQ=Q is compact. The same statements
hold for K � AK and the quotient group AK , as .13-3/ shows that the adele
ring AK Š AQ ˝Q K is obtained from AQ by applying the base change Q ! K.
One can show that the locally compact group AK is naturally isomorphic to its
Pontryagin dual, and that isomorphism makes K into its own annihilator. This
lies at the basis of the adelic proof of the functional equation of the zeta function
alluded to after .11-3/.

The unit group A�
K

D
Q0

p K�
p of the adele ring of K is the idele group

A�
K

D f.xp/p 2
Q

p K�
p W jxpjp D 1 for almost all pg: (14-1)

This is naturally a locally compact group, when its topology is generated as
above by sets of the form

Q
p2T Yp �

Q
p62T O�

p . The idele group contains K�

diagonally as a discrete subgroup of principal ideles. We define the norm of an
idele by

k.xp/pk D

Y
p

jxpjp; (14-2)

which is well defined by .14-1/, and we note that the norm map factors by the
product formula .13-4/ via the idele class group CK D A�

K
=K�. The idele class

group is of fundamental importance in class field theory, which describes the
Galois group of the maximal abelian extension of K over K as a quotient of
CK under the Artin map [Cohen and Stevenhagen 2008]. In the most classical
case where K is imaginary quadratic and the class field theory goes under the
name of complex multiplication, ideles have proved to be a most convenient tool
even in a computational setting [Gee and Stevenhagen 1998].

For every prime p, the local unit group Up D fxp 2 K�
p W jxpjp D 1g is a

maximal compact subgroup of K�
p . It is equal to O�

p if p is finite, and to the
group fz W jzj D 1g in R� or C� if p is infinite and Kp is isomorphic to R

or C. The subgroup UK D
Q

p Up is a maximal compact subgroup of A�
K

that
intersects K� in the group �K of roots of unity of K. It is the kernel of the
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surjective homomorphism

A�
K �

ı DivK D

M
p<1

Z �

M
p j 1

R

.xp/p ’ ..ordp.xp//p; .� log jxpj/p/

to the Arakelov divisor group DivK of K. The elements of DivK are usually
represented as finite formal sums D D

P
p npp, with np 2 Z if p is finite and

np 2 R if p is infinite. One can think of DivK as a ‘completion’ of the group
I.OK / D

L
p<1 Z of finite divisors from Theorem 5.7 by

L
p j 1 R D RrCs ,

the group of infinite divisors occurring in .10-8/. In these terms, every x 2 K�

gives rise to a principal Arakelov divisor ı.x/D .xOK ;�L0.x// 2 DivK , with
L0 the homomorphic extension to K� of the logarithmic map L0 W R� ! RrCs

from the proof of the Dirichlet unit theorem (Theorem 10.7). The quotient PicK

of DivK modulo its subgroup of principal divisors fits in an exact sequence

1 ! �K � K�
�

ı DivK � PicK ! 1

that is analogous to .4-1/, and much closer to the definition of the Picard group
of a complete algebraic curve.

Just as for functions on an algebraic curve, we define a degree map deg W

A�
K

! R in terms of the norm .14-2/ by deg.x/ D � log kxk. As ideles in
UK and principal ideles have degree 0, this gives rise to a homomorphism deg W

PicK ! R. Its kernel Pic0
K is the Arakelov class group of K that occurs center

stage in [Schoof 2008b]. As in [Proposition 2.2] there, it is an extension

0 ! H=L0ŒO�
K �! Pic0

K ! ClK ! 0 (14-3)

of the ordinary class group ClK of K by the ‘unit torus’ obtained by taking the
trace-zero-hyperplane H � RrCs from .10-8/ modulo the unit lattice L0ŒO�

K
� of

covolume the regulator RK of K. The algorithm in Section 12 for computing
class groups and unit groups in K can be viewed as an algorithm for computing
the Arakelov class group Pic0

K , and it is in these terms that a proper analysis of
the algorithm can be given; see [Lenstra 1992, Section 6] and [Schoof 2008b,
Section 12].

By .14-3/, the compactness of the Arakelov class group Pic0
K is tantamount

to the finiteness of ClK and the compactness of H=L0ŒO�
K
� expressed by the

Dirichlet unit theorem (Theorem 10.7). As Pic0
K is the quotient of the group

C 1
K

D kerŒdeg W CK ! R� of idele classes of norm 1 (and degree zero) by the
compact group UK , the compactness of Pic0

K implies the compactness of C 1
K

.
One can also go in the reverse direction, prove the compactness of C 1

K
directly as

in [Cassels and Fröhlich 1967, Section II.16], and derive from this the finiteness
results of Corollary 10.6 and Theorem 10.7.
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15. Galois theory

Let K be a number field that is Galois over Q with group G D Gal.K=Q/.
Then G acts on every object that is ‘intrinsically defined’ in terms of K. Exam-
ples of such objects are the ring of integers OK , its unit group O�

K
, and its class

group ClK , and in each of these examples the natural problem of determining
their Galois module structure over ZŒG� was and is an area of active research
[Fröhlich 1983; Weiss 1996].

A number ring with field of fractions K does not necessarily have an action
of G, but the number ring R generated by all G-conjugates of the original ring
is a Galois number ring that does. For an order ZŒ˛�, this amounts to passing to
the ‘Galois order’ R generated by all roots of f D f ˛

Q
. The invariant ring

RG
D fx 2 R W �.x/D x for all � 2 Gg D R \ Q

is equal to Z for such an order, and the fundamental observation that we have a
transitive G-action on the primes of R extending a given rational prime is true
in great generality.

LEMMA 15.1. Let A be a commutative ring and G � End.A/ a finite group
of automorphisms. If '; W A ! k are homomorphisms to a domain k that
coincide on the invariant ring AG , then ' equals  ı � for some � 2 G.

PROOF. Extend ' and  coefficientwise to homomorphisms '; W AŒX � !

kŒX �. An element a 2 A is a zero of the polynomial f D
Q

�2G.X � �a/ 2

AG ŒX � on which ' and  coincide, so '.a/ is a zero of '.f / D  .f / DQ
�2G.X � �a/2 kŒX �, and we have '.a/D . �/.a/ for some � 2 G since k

is a domain. Now � depends on a, but our argument shows that the union over
� 2 G of

A� D fa 2 A W '.a/D . �/.a/g

equals A. To show that we have A D A� for some � , as stated by the lemma,
we repeat the previous argument starting with the maps '; W AŒX �! kŒX � to
obtain

AŒX �D
S

�2G.AŒX �/� D
S

�2G A� ŒX �:

If a� 2 A n A� exists for all � 2 G, all polynomials
P

�2G a�X n� that are
sums of monomials of different degrees n� are in AŒX � but not in A� ŒX � for
any � 2 G. �

The primes over p in a Galois number ring R are kernels of homomorphisms
R ! k, with k D Fp an algebraic closure of Fp, and they extend the homomor-
phism RG D Z ! Fp. By Lemma 15.1, they are transitively permuted by the
Galois group. As a consequence, the residue class degree fp D f .p=p/ for a
prime p j p does not depend on the choice of the extension prime p in R. If
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R is regular above p, the same is true for the ramification index ep D e.p=p/,
and, with gp the number of primes in R lying over p, Theorem 8.4 for Galois
number rings becomes

epfpgp D ŒK W Q�: (15-2)

Identity .15-2/ is actually an identity for the primes over p in a Galois number
field K. It also holds for the infinite prime p D 1 of Q, as does Theorem 8.4,
if we set f1 D 1 and e1 D ŒKp W R� 2 f1; 2g.

EXAMPLE 15.3. Let f D X 3 C44 be as in Example 8.3, and K D Q.�3;
3
p

44/

a splitting field of f over Q. Then K is Galois over Q with nonabelian Ga-
lois group of order 6. The prime 3 ramifies in the quadratic subfield Q.�3/ D

Q.
p

�3/, so the primes in K over 3 have even ramification index e3. As 3 has
two extensions in Q.

3
p

44/ by Example 8.3, we have g3 � 2. From e3f3g3 D 6

we find e3 D2, f3 D1, and g3 D3. This shows without any explicit computation
that the primes occurring in the factorization .3/ D p2

3
q

3
in Q.

3
p

44/ factor in
the quadratic extension K of Q.

3
p

44/ as p3OK D P
3
P0

3
and q3OK D Q2

3
. A

similar argument leads to the same values of e, f , and g for describing the
‘ramification’ of the infinite prime p D 1.

The prime 5 is inert in Q.�3/ and splits as .5/D p5p25 in Q.
3
p

44/. For this
prime, f5 is even and g5 is at least 2, so we have e5 D 1, f5 D 2, and g5 D 3.
We conclude that p5 is inert in Q.

3
p

44/ � K, giving rise to a prime P25 of
norm 25, and that p25 splits into two primes Q25 and R25 of norm 25 each.

Let K be Galois over Q, and p j p a prime of K. Then the stabilizer

Gp D f� 2 G W �p D pg � G

of p is the decomposition group of p. It is the subgroup of automorphisms in G

that leave the p-adic absolute value on K invariant, and it may be identified with
the Galois group Gal.Kp=Qp/ of the p-adic completion over Qp. For p D 1,
read Q1 D R.

As G acts transitively on the primes over p, all decomposition groups of
primes over p are conjugate in G. The G-set G=Gp of left cosets of Gp in G

may be identified with the set of extensions of p to K. As G=Gp has cardinality
gp, the order of Gp equals epfp by .15-2/.

For finite primes, the decomposition group Gp acts naturally as a group of
automorphisms on the residue class field extension Fp � kp D OK=p, which
is cyclic of degree fp and has a canonical generator of its Galois group in the
Frobenius automorphism Frobp W x ‘ xp on kp.

LEMMA 15.4. For every prime p j p in K, there exists �p 2 Gal.K=Q/ inducing
the Frobenius automorphism Frobp on kp.
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PROOF. Applying Lemma 15.1 with  W OK ! kp the reduction map and ' D

Frobp ı , we find that there exists �p 2 G that induces Frobp. �

Denoting the kernel of reduction modulo p in Gp by Ip, we obtain an exact
sequence

1 � Ip � Gp � Gal.kp=Fp/� 1: (15-5)

The inertia group Ip is a normal subgroup of Gp of order ep. Its invariant field
KIp is the largest subfield of K on which the p-adic valuation is an unramified
prime over p. The invariant subfield KGp of the decomposition group itself is
the largest subfield of K for which the completion under the p-adic valuation is
equal to Qp. For infinite primes p, we use the convention Ip D Gp to make this
correct.

EXAMPLE 15.6. Take K D Q.�3;
3
p

44/ as in Example 15.3. The primes 2
and 11 are unramified and inert in Q � Q.�3/, with extensions that are totally
ramified in K=Q.�3/. Their decomposition groups are equal to G itself, and
their inertia groups are equal to the normal subgroup of index 2 in G Š S3.

The decomposition groups at the three primes over 3 in G are the three sub-
groups of order 2. Note that these are conjugate subgroups, and that GQ3

D IQ3

is the subgroup with invariant field Q.
3
p

44/. For the three unramified primes
over 5, we have the same three decomposition groups of order 2, and GP25

is
the one with invariant field Q.

3
p

44/.
The prime 7 splits in Q.�3/ into two primes that remain inert in K=Q.�3/.

Their decomposition group is the normal subgroup of order 3 in G. The decom-
position groups of the six extension primes of the totally splitting prime 13 are
trivial.

For unramified primes p, the decomposition group Gp Š Gal.kp=Fp/ in .15-5/
is cyclic of order fp with canonical generator �p, the Frobenius at p in G. The
elements Frobp 2 G for the primes p j p form a conjugacy class Cp � G in case
p is unramified in K. In the case of Example 15.6, the three conjugacy classes
of G Š S3 are realized by the smallest unramified primes 5, 7, and 13. It is even
true that every conjugacy class occurs as the Frobenius class for infinitely many
p, in the following precise sense.

THEOREM 15.7 (CHEBOTAREV DENSITY THEOREM). Let Q � K be Galois
with group G and C � G a conjugacy class. Then the set of rational primes p

that are unramified in K and have C as their Frobenius class is infinite and has
natural density #C=#G in the set of all primes.

EXAMPLE 15.8. In the case of the degree 6 field K from Example 15.6, the
totally splitting primes p having ‘trivial’ Frobenius class Cp D fidg � G form
a set of density 1=6, whereas the unramified primes p � 2 mod 3 having the
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three elements of order 2 in G in their Frobenius class form, as expected, a set
of density 1=2. The primes p modulo which X 3 C 44 is irreducible have the
two elements of order 3 in G in their Frobenius class and form a set of density
1=3.

The cyclotomic field Q.�n/ is abelian over Q with Galois group

Gal.Q.�n/=Q/ Š .Z=nZ/�

.�a W �n ‘ �a
n/$ .a mod n/:

(15-9)

Here f�pg is the Frobenius class of p, and Theorem 15.7 reduces to Dirichlet’s
theorem on primes in arithmetic progressions: the primes p - n are equidis-
tributed over .Z=nZ/�. Chebotarev’s original proof (1924) of Theorem 15.7
reduces the general case by a clever trick (see [Stevenhagen and Lenstra 1996,
Appendix]) to the cyclotomic case, and forms a key ingredient in the proof of
Artin’s reciprocity law in class field theory [Cohen and Stevenhagen 2008], a
far reaching generalization of Example 15.8 to arbitrary abelian extensions of
number fields. Assuming class field theory, there are shorter proofs [Lang 1994,
Theorem VIII.4.10] of Theorem 15.7.

If K is not Galois over Q, the absolute Galois group GQ D Gal.Q=Q/ of Q

acts not on K itself but on its fundamental set XK D Hom.K;Q/ of embeddings
of K in Q. Choosing Q as a subfield of C, the elements of XK are the n

embeddings � W K ! C considered in Section 10. The images �ŒK� � Q for
� 2 XK generate the normal closure L of K in Q, which is Galois over Q. The
natural left action of GQ on XK by composition factors via the finite quotient
Gal.L=Q/. Writing K D Q.˛/, one may, more classically, identify XK with the
GQ-set of roots of f ˛

Q
in Q under � ‘ �.a/, and view L as the splitting field

over Q of the polynomial f ˛
Q

. The splitting of a prime p in K can be described
in terms of the Galois action on XK of the decomposition and inertia groups
GP and IP in Gal.L=Q/ of a prime P j p in L.

THEOREM 15.10. Let K be a number field with fundamental set XK and normal
closure L over Q. Given a prime p and integers ei ; fi > 0 for i D 1; 2; : : : ; t

with
Pt

iD1 eifi D ŒK W Q�, the following are equivalent:

(1) there are t different primes p1; p2; : : : ; pt over p in K having e.pi=p/D ei

and f .pi=p/D fi ;
(2) for any prime P over p in L, there are t different GP-orbits Xi � XK

of length #Xi D eifi ; under the action of IP on Xi , there are fi orbits of
length ei .

We will merely sketch the proof, stressing once more the analogy between finite
and infinite primes. For the infinite prime p D 1, we embed Q in the algebraic
closure C of the completion R of Q at p to view XK as the set of embeddings



262 PETER STEVENHAGEN

of K in C. Then the absolute Galois group GR D Gal.C=R/ of R acts on XK ,
and embeddings in C give rise to the same infinite prime on K if and only if
they are complex conjugate, as in Section 10, and we see that the GR-orbits of
XK of length 1 and 2 correspond to the real and complex primes of K.

For finite p, we embed Q in an algebraic closure Qp of Qp, to which the
p-adic absolute value extends uniquely [Weiss 1963, Corollary 2-2-11], and we
have GQp

D Gal.Qp=Qp/ act on XK . Again, two embeddings of K in Qp give
rise to the same p-adic value on K if and only if they are in the same GQp

-orbit,
and the length of such an orbit is

HomQp
.Kp;Qp/D ŒKp W Qp �D e.pi=p/f .pi=p/:

A concrete application of Theorem 15.10 is the following classical method to
obtain Gal.L=Q/ for the normal closure L of a field K D Q.˛/ generated by
the root ˛ of a monic irreducible polynomial f 2 ZŒX �.

COROLLARY 15.11. Let f , K and L be as above. Then the following are
equivalent:

(1) there exists a prime p for which f mod p factors as a product of t distinct
irreducible factors of degrees d1; d2; : : : ; dt .

(2) Gal.L=Q/, viewed as a permutation group on XK , contains a permutation
that is the product of t disjoint cycles of lengths d1; d2; : : : ; dt .

PROOF. For a prime as in (1), apply the Kummer–Dedekind theorem (Theorem
8.2) to the number ring ZŒ˛� D ZŒX �=.f / to deduce that the primes over p

in K D Q.˛/ are unramified with residue class degrees d1; d2; : : : ; dt . The
Frobenius of such a prime, which generates the decomposition group, will act
on XK as a product of t disjoint cycles of lengths d1; d2; : : : ; dt , as these are
the orbit lengths under the action of Frobenius by Theorem 15.10. Conversely,
every element of Gal.L=Q/ is the Frobenius of some prime over p - �.f /
by Theorem 15.7, so all cycle types can be obtained from the factorization of
f mod p for a suitable prime p in 1. �

EXAMPLES 15.12. An irreducible cubic polynomial f 2 ZŒX � has S3 as the
Galois group of its splitting field if and only if it splits as a product of a linear
and an irreducible quadratic factor modulo some prime p.

For the quartic polynomial f D X 4 � 2X 2 C 3X � 7 from Example 12.4,
we noticed that it was irreducible modulo 2 and 3, and had exactly two zeros
modulo 5. The Galois group of its splitting field is therefore a subgroup of S4

containing a 4-cycle and a 2-cycle. As the value f .�4/ D 5 � 41 is the only
root of f modulo 41, the factorization modulo 41 shows that the Galois group
contains a 3-cycle as well, and is therefore equal to the full symmetric group S4.
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More generally, one can show that the Galois group Gal.f / over Q of the
splitting field of any polynomial f 2 ZŒX � of squarefree discriminant is the
full symmetric group. This is because a prime p that divides �.f / only once
has a unique ramified extension p to K D QŒX �=.f /, with e.p=p/ D 2. By
Theorem 15.10, we deduce that all non-trivial inertia groups in Gal.f / are gen-
erated by a single 2-cycle in their action on the fundamental set XK . Now the
Galois group of a number field over Q is generated by its inertia groups, as
every proper extension of Q ramifies at some finite prime. We can then apply
the group theoretical fact that Gal.f /, as a transitive subgroup of the symmetric
group that is generated by transpositions, is equal to the full symmetric group.

EXAMPLE 15.13. From Theorem 15.7 and Corollary 15.11, it follows that the
factorization type of an irreducible polynomial f 2 ZŒX �modulo rational primes
p occurs with a frequency that depends on the group Gal.f / of its splitting field
over Q. We illustrate this for the quartic polynomial f D X 4 � 2X 2 C 3X � 7

from Example 12.4, which has group S4.

X # primes 4 1-3 2-2 1-1-2 1-1-1-1

103 194 .27976 .35714 .10119 .23810 .02381
104 1229 .26688 .34255 .11391 .23759 .03905
105 9592 .25378 .33208 .12407 .24617 .04390
106 78498 .25063 .33377 .12448 .25048 .04064
107 664579 .24962 .33366 .12517 .25003 .04152
1 1 .25000 .33333 .12500 .25000 .04167

There are five (separable) factorization types of polynomials of degree 4, just
like there are five cycle types in S4. They correspond to the partitions of 4. In
the table above, we have counted the fractions of the primes up to some bound
X yielding a given factorization type. For increasing X , the fractions tend to
the limit fractions 1

4
, 1

3
, 1

8
, 1

4
and 1

24
in the bottom line that come from the

five conjugacy classes in Gal.f / Š S4. In fact, the general density result for
‘factorization types’ of a polynomial in ZŒX � modulo primes is a weak version
of Theorem 15.7 that is due to Frobenius, and Theorem 15.7 can be seen as
a common generalization of this result and Dirichlet’s theorem on primes in
arithmetic progressions.
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