
Algorithmic Number Theory
MSRI Publications
Volume 44, 2008

Elementary thoughts on discrete logarithms
CARL POMERANCE

ABSTRACT. We give an introduction to the discrete logarithm problem in
cyclic groups and treat the most important methods for solving them. These
include the index calculus method, the rho and lambda methods, and the baby
steps, giant steps method.

Given a cyclic group G with generator g, and given an element t in G, the
discrete logarithm problem is that of computing an integer l with gl D t . The
problem of computing discrete logarithms is fundamental in computational alge-
bra, and of great importance in cryptography. In this lecture we shall examine
how sometimes the problem may be reduced to the computation of discrete
logarithms in smaller groups (though this reduction may not always lead to
an easier problem). We give an example of how the reduction may be used
profitably in taking “square roots” in cyclic groups of even order. We shall look
at several exponential-time algorithms that work in a quite general setting, and
we shall discuss the index calculus algorithm for taking discrete logarithms in
the multiplicative group of integers modulo a prime.

1. “The” cyclic group of order n

I should begin by saying that the discrete logarithm (dl) problem is not always
hard. Obviously it is easy if the target element t is the group identity, or in
general, some small power of g. Less obviously, there are entire families of
cyclic groups for which the dl problem is easy. Take, for example, the additive
group G D Z=nZ. If we use the generator g D 1, the problem of computing
discrete logarithms is absolutely trivial. Here, and in the sequel, we identify
elements of Z=nZ with their least non-negative residue. As we shall see later
in connection with the index calculus algorithm, the fact that in some groups
we may naturally represent group elements as integers can be quite useful. If
we change to another generator, it is still trivial. In fact, if g is a generator,

385



386 CARL POMERANCE

then it is is coprime to n. Finding the multiplicative inverse of g.mod n/, via
Euclid’s extended algorithm, as in [Buhler and Wagon 2008], suffices for finding
the discrete logarithm of 1, and so we quickly get everything else. Let us take
n D 100, g D 11, t D 17 by way of example. The multiplicative inverse of
11 modulo 100 is 91, so the discrete logarithm of 17 is 91 � 17, that is, 47.

Now let us take another cyclic group of order 100, namely .Z=101Z/�, the
multiplicative group of reduced residues modulo 101. Coincidentally, 11 is still
a generator. But finding an integer l with 11l � 17.mod 101/ is no longer
immediate. Of course, in this small example we might simply try all possible
values l D 1; 2; : : : ; 100. But if we replace 101 by larger primes this soon
becomes very slow. Thus, if you ever hear someone talk of “the cyclic group of
order n,” beware. He is not talking about anything computational. The way the
cyclic group is presented to you makes all the difference.

2. Reductions

We first embark on a tour of some fairly straightforward ways to reduce a dl
problem in a cyclic group G to dl problems in various subgroups. To begin, it
is important to describe some ground rules. It is assumed that we know how
to multiply and take inverses in G. In some situations it may be difficult to see
if two elements in a group are equal, e.g., happen if the group is presented as
a quotient structure, or perhaps as a group of binary quadratic forms, but we
will always assume that the cost of determining whether two elements of G are
equal is of the same magnitude as performing a group operation. Finally, we
shall assume that it is possible to assign symbols to the group elements so that
they may be sorted.

For our first reduction, assume the order n of the cyclic group G may be
nontrivially factored as n D uv, where u and v are coprime, i.e., gcd.u; v/ D 1.
Then we may reduce the problem of solving for a discrete logarithm in G to
solving for discrete logarithms in the subgroups of G of order u and v. In
particular, if G D hgi, then gu generates the subgroup of u-th powers in G, changed hgui to gu (or we can

reinstate h i and change
“generates” to “is”which has order v, and similarly gv generates the subgroup of v-th powers,

which has order u. Say we solve the for the discrete logs lu; lv where

.gu/lu D tu; .gv/lv D tv:

The powers gu; gv; tu; tv are easy to find via repeated squaring, as in [Buhler
and Wagon 2008]. Say we also find integers a; b with au C bv D 1, using the
extended Euclidean algorithm. Then

t D tauCbv
D .tu/a.tv/b

D guluagvlvb
D gauluCbvlv ;

so that the discrete logarithm of t is aulu C bvlv, and we are through.



ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS 387

The next reduction considers the case when the order of G is a prime power,
say pa, where a > 1. The argument does not use the primality of p, but it may
as well be assumed because of the first reduction. We will see that a dl problem
in this group can be reduced to a dl problems in the cyclic subgroup of G of
order p. Say, as usual, we are trying to find l such that gl D t . If l is the least
nonnegative value that works, and we write l in the base p, we have

l D b0 C b1p C : : : C ba�1pa�1;

with each bj an integer in Œ0; p � 1�. We shall sequentially find b0; b1; : : : as
follows. First note that

tpa�1

D .gl/pa�1

D glpa�1

D gb0pa�1

D .gpa�1

/b0 ;

that is, b0 is the solution of a dl problem in the cyclic subgroup of pa�1-powers
generated by gpa�1

. Suppose that b0; : : : ; bj�1 have been computed. Consider

tj D tg�b0�b1p�:::�bj �1pj �1

. We have that tj is a pj -power, so that t
pa�j �1

j is
in the subgroup of pa�1-powers. Solve the dl problem

t
pa�j �1

j D .gpa�1

/bj

for bj . This is the next base p digit of l that we are searching for.
As an illustration of these reductions, let’s return to the example of g D11; t D

17 in .Z=101Z/�. Since the order of the group is 100, it suffices to solve two
dl problems each in groups of order 2 and 5. First, 1725 � �1.mod 101/, so
in our subgroup of order 4, the element 1725 must have discrete logarithm 2,
that is, l25 D 2. (We have solved now both dl problems in the group of order
2: the first is 0, the second 1, so l25 D 0 C 1 � 2 D 2.) Next, we must find l4
where 11l4 � 174 � 95.mod 101/, which is solving a dl problem in a cyclic
group of order 25. This is reduced to two dl computations in a group of order
5. We begin by computing 1720 � 955 � 1.mod 101/, so that l4 is a multiple of
5. Also, 1120 � 87 (mod 101). We have to find a power of 87 that is congruent
to 95 modulo 101, and we know the answer is 0; 1; 2; 3, or 4. Evidently it is not
0 or 1, and checking 2, we find that it works. Thus l4 D 0 C 2 � 5 D 10. Now
.�6/�4C1�25D1, so the discrete logarithm of 17 is .�6/�4�10C1�25�2D�190.
The least nonnegative discrete logarithm is 10.

So, if we have the group order in our possession (which is not always the
case), and since solving interesting dl problems is usually harder in practice
than factoring, we might first run a factorization algorithm on the order, and
reduce the problem to smaller cases as above. Smaller cases tend to be simpler,
although we will see that for some methods, such an those in the final section
of this paper involving smooth numbers, working in a subgroup can be as hard
as working in the full group.



388 CARL POMERANCE

3. An application

Before continuing, I will describe a nice application to the second dl reduc-
tion, namely reducing a dl problem in a cyclic group of order pa to a dl problems
in a cyclic group of order p. The application is to taking square roots in a cyclic
group. Say G is a cyclic group of order n. If n is odd, then every element is a
square, and square roots are simple: the square root of an element h is h.nC1/=2.
If n is even, exactly half of the elements of G are squares. There is a very simple
test for squareness: h is a square if and only if hn=2 D 1, where I am writing
the group identity as 1. Suppose n=2 is odd. Then again, it is very easy to find
a square root. If h is a square, then h.n=2C1/=2 is a square root. How can one
find the other square root? This is easy if you can find a group element that is
not a square. If g is such a group element, then x D gn=2 has order 2 and is not
1. Thus, if y is a square root of h, then xy is the other square root.

This last idea works in general, even when n is divisible by a high power of
2. If g is a nonsquare in G, then gn=2 is an element of order 2 and can be used
as x in the above.

But how would one find even one square root of a square h if n is divisible by
a power of 2 higher than the first power? We again will make use of a nonsquare
g. Say n D 2uv, where v is odd. Then the element gv has order 2u. The element
hv is in hgvi. Solve for the discrete log. As we have seen, this is very simple,
since the order of the group is 2u. Say hv D .gv/l . Of necessity, since h is a
square and g is a nonsquare, l must be even. Then a square root of h, as is easily
checked, is h.vC1/=2.gv/�l=2, and we are done.

This polynomial time algorithm has one small flaw. It is the production of
a nonsquare g. Of course, if you are given a cyclic generator of G, then you
may use this generator as a nonsquare. But what if you are not given this? For
example, say G D .Z=pZ/�, where p is a large prime. It may be hard to find a
generator (a primitive root), especially if we don’t know the prime factorization
of p � 1. But surely, finding a nonsquare shouldn’t be hard, since half of all
elements in the group are nonsquares, and the test for one is simple. So, we
have a random algorithm that will work very nicely. Choose elements from G

at random, and test for nonsquareness. The expected number of trials is 2. This
method begs the question of how one is supposed to choose elements from a
group at random. This is not so hard for .Z=pZ/�, but is conceivably a problem
in general. So, modulo this problem of finding some nonsquare, taking square
roots is easy.

As you might notice, this idea generalizes to taking p-th roots for all primes
p. Further, if p is small, the various dl problems that arise may all be handled
quickly.



ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS 389

4. Baby steps, giant steps

As before, take a group G D hgi of order n, with t 2 G. Our task is to find an
integer l with 0 � l � n � 1 and gl D t . Suppose m D d

p
ne and we write our

discrete logarithm l in the base m. Then l D b0Cb1m where 0 � b0; b1 � m�1.
It is evident that to find l , it is sufficient to find b0; b1.

We prepare two lists: 1; g; : : : ; gm�1 by taking ‘baby steps’, and t; tg�m;

: : : ; tg�.m�1/m by taking ‘giant steps’. Since gb0 D tg�b1m, there must be a
common element in the two lists. Moreover, any common element immediately
allows us to find the discrete logarithm of t . We’re done.

You might wonder how to find the element in common in the two lists. Maybe
one should just sequentially make up to m2 comparisons to see if an element
from the first list matches with an element from the second list, expecting about
m2=2 comparisons on average. That is one way to do it, but there is a better way.
As one of our ground rules, we assumed that we can label group elements in such
a way that they can be sorted. Sort the elements in the first list. Then sequentially
run through the second list to check for membership in the first list. The sorting
can be done in O.m log m/ comparisons, and each membership check, via a
binary search, can be done in O.log m/ comparisons. (A binary search involves
identifying the midpoint of the sorted list, deciding if the searched-for element
is in the first half or the second half, and then iterating in the appropriate half.)
So in total we do about O.m log m/ D O.

p
n log n/ comparisons after the lists

are computed.
It is clear the first list, 1; g; : : : ; gm�1, can be computed in m � 2 group

operations. After these baby steps, the giant step g�m can be computed in two
more operations, and then we can sequentially get the terms of the giant step
sequence t; tg�m; tg�2m; : : : with one group operation per step. Note that after
each giant step is taken, the look-up can be done in the baby step list, and we
may stop as soon as the match is found. Thus, on average, we expect to traverse
only about half of the giant steps before completion. Note too that if we wish
to find the discrete logarithm of another group element t 0, the same baby step
sequence may be reused.

It may seem that one needs the group order n to use baby steps, giant steps.
However, all that is needed in the above is that m �

p
n. So start with a small

choice for m, try the algorithm out, and if it fails try again with 2m, etc. Even-
tually it will work, and when this happy event occurs, the total time spent is of
the shape O.

p
n log n/, even though we may still not know what n is.

The baby steps, giant steps method was originally invented by Dan Shanks
as a means of computing the order of an abelian group G that is not necessar-
ily cyclic. He was interested in particular in the class group of an imaginary
quadratic number field. Here’s how it works. By other means he gets a rough



390 CARL POMERANCE

estimate of the order of the group: say it is in the interval Œx; x C y�, where
y < x. (In fact, using the Extended Riemann Hypothesis, he is able to get such
an interval for the group order with y < x1�c for some positive c.) He then
chooses a random element h1 in the group, and via baby steps, giant steps, he
finds an integer n1 2 Œx; xCy� such that h

n1

1
D 1. By factoring n1 into primes, it

is then possible to compute the actual order m1 of h1, and if it is n1, we are done;
this must be the order of the group. If m1 < n1 there is more work to be done.
Choose another random element h2, use baby steps, giant steps to compute the
order m2 of the subgroup hh1; h2i, and so on. When finally a subgroup order
mk is found in Œx; x Cy�, we have n D mk and we are done. In the case at hand
of class groups, it is also possible to use the ERH to find a fairly small set of
group elements known to generate the group, so that randomness is not needed
at all.

5. The �-method

The baby steps, giant steps method, while a rigorous method of “square-root
complexity,” suffers from a high memory load, also about the square root of the
group order. In contrast, John Pollard’s � method, which also runs in about the
square root of the group order, has negligible space requirements. The down
sides are that the � method requires the group order, and it does not (yet) have
a rigorous analysis. As with many other algorithms which produce a readily
checkable answer, the fact that the method of achieving the answer is heuristic
is not a practical concern, only a mathematical one.

The � method is based heuristically on the birthday paradox. If you throw
balls randomly into n urns, where each urn is equally likely to receive a ball
even if it already has one, how many balls should you expect to throw before
some urn has two balls in it? The answer is surprisingly small, it is of magnitude
p

n. In particular, if c
p

n balls are thrown, the probability that some urn has at
least two balls is about 1 � e�c2=2. So, in a room of 23 people, it is better than
even odds that two of them have the same birthday.

Suppose G D hgi has order n. If x1; x2; : : : ; xk is a random sequence of
elements of G, we would expect to see some xi D xj when k is of order

p
n.

However, we do not wish to use a truly random sequence, even if we had the
means of generating it. We specifically wish to use a pseudorandom sequence,
in fact one where the next term xiC1 depends in a specific manner on the cur-
rent term xi . As you will see, this conscious choice of avoiding randomness
is important. It is also what keeps us at present from rigorously analyzing the
algorithm.

So, we would like to define a function f W G ! G which is both easy to
compute, and seemingly random. Say we have some straightforward method



ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS 391

of labeling the elements of G with the integers 1; 2; : : : ; n. For example, in the
case G D .Z=pZ/� we may label, as we have been doing, the elements of G

with the integers 1; 2; : : : ; p � 1. It now makes sense to talk of elements in the
first third of G, the second third, and the third third. Call these type I, type II,
and type III elements, respectively.

Suppose we are trying to find the discrete logarithm of a group element t .
For x 2 G, let

f .x/ D

8<:
tx if x is type I,
x2 if x is type II,
gx if x is type III.

We shall take for our pseudorandom sequence, g; f .g/; f .f .g//; : : :. Let xi be
the i -th term of this sequence, i D 0; 1; 2; : : :. We also wish to keep track of the
different types of elements we see as we traverse the sequence. Consider the
sequence .ai ; bi/ of pairs of residues modulo n with initial term .0; 1/ and the
rule

.aiC1; biC1/ D

8<:
.ai C 1; bi/ if xi is type I,
.2ai ; 2bi/ if xi is type II,
.ai ; bi C 1/ if xi is type III.

Then, as is easily checked, xi D tai gbi . And if it is discovered that xi D xj ,
then gbi �bj D taj �ai . If aj � ai is coprime to n, the discrete logarithm of t is
the inverse of aj � ai modulo n multiplied by bi � bj .

The condition that aj � ai is coprime to n is not a strenuous one. As we
saw above, it is possible to reduce the dl problem to the case of prime group
orders. So, it might be assumed that n is prime. And so the only way for the
equation xi D xj not to lead to the discrete logarithm of t is if the pair .ai ; bi/

is identical to the pair .aj ; bj /. In practice this event does not frequently occur.
If it did occur, one could try for a new sequence where now one is searching for
the discrete logarithm of gt , for example. Or, one could let the initial seed be
gr for some random choice of r .

What remains to be discussed is an efficient way of searching for a pair i; j

with xi D xj . We certainly don’t want to write down all of the terms and
exhaustively check all pairs. Not only would this kill the square root running
time, it would consume too much space. There is a very neat method for finding
a repeat in the sequence, known as the Floyd cycle-finding algorithm. The idea
is to compute the sequences xi ; .ai ; bi/ twice, once at single speed, and once at
double speed. That is, if you have xi ; .ai ; bi/ and x2i ; .a2i ; b2i/, use the rules to
compute xiC1; .aiC1; biC1/, x2iC1; .a2iC1; b2iC1/, x2iC2; .a2iC2; b2iC2/, so
that at each stage you have at hand xi ; x2i . Check only these pairs for equality.

At first glance it would appear that a great deal of generality is lost if we
insist that j D 2i for our equation xi D xj . But here is where we use that our



392 CARL POMERANCE

sequence is not random, but rather an orbit for our function f . Note that if
xi0

D xj0
, where i0 < j0 is the first occurrence of equality, then so too do we

have xi0C1 D xj0C1; xi0C2 D xj0C2, etc. Thus, if � D j0 � i0, then xu D xv

whenever u; v � i0 and u � v.mod �/. That is, the sequence becomes purely
periodic starting at the i0-th term. If we now take u as the first multiple of �

that is at least i0, namely, u D �di0=�e, then xu D x2u. Note that u satisfies
i0 � u < j0. That is, it is hardly a restriction at all to search for an equality of
the form xu D x2u. We have so transformed a potentially quadratic search into
a linear one. There are negligible memory requirements, since one only needs
the current candidate xi ; x2i to find the next one.

The �-method can be used as a factoring algorithm, also an idea of Pollard.
To factor n, use the function f .x/ D x2 C a mod n, where a is not 0; �2.
Instead of checking for an equality xi D x2i , check for a nontrivial value of
gcd.xi � x2i ; n/.

The �-method gets its name from the suggestive shape of the letter �, which
can be thought of as the diagram for a sequence with a non-periodic beginning
that eventually becomes periodic.

6. The �-method

Pollard also suggested a version of the �-method that lends itself fairly easily
to being parallelized, i.e., to many computers sharing the job of computing one
discrete logarithm. The key part of the shape of the letter � where the actual
success is found is the point where the round part intersects the straight part.
Focusing then on the convergence of two streams, the key Greek letter is �.

Suppose we have k computers each following its own random sequence in the
group G. If the order of G is n, then when the length of the sequences is about
p

n=k, we will begin to expect that some term in one computer’s sequence will
have a match with some term in another computer’s sequence. Of course, we
will not want to make every possible comparison. So we introduce the idea of
a “distinguished point” and use a pseudorandom iteration that has the property
that once there is a match between two streams, they stay identical from then
on.

To be specific, suppose we use the same iteration as in the �-method, but we
have computer m initialize its pseudorandom sequence at grm , where rm is a
random number. We also make use of a perfect hash of group elements, an easily
computable mapping of group elements to integers, which is 1:1. (This can be
the same labeling as in the �-method.) We call a group element distinguished if
its hash is divisible by 220, say. Then each computer goes merrily along down
its sequence, but whenever it arrives at a distinguished point, which occurs about
every millionth iterate, it reports the event to a central computer. The central



ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS 393

computer then sorts the incoming hashes of distinguished points, looking for
a match. When one occurs, the data involved, if actually representing some
xi D xj , can then be used to compute the desired discrete logarithm. So on av-
erage, our first match with distinguished points occurs only about a half-million
iterations after the first match in any pair of streams. Note that it is possible for
the match to occur between two reports of the same computer, namely for some
reason, that computer had extraordinary luck with the � method. That’s fine, the
� method will take it.

One can take other pseudorandom functions f . One way of choosing f is to
have a small set of integers S , and pre-compute gs for s 2 S . Then, the function
f would send x to some gsx, which one depending on some property of the
hash of x. An initial seed is tr for some random exponent r . This version is
sometimes referred to as the kangaroo method, where the various values of gs

are considered as “hops.”
There are numerous ideas for fine-tuning and speeding up both the � and �

methods. For this I refer you to a survey paper by one of the most sophisticated
practitioners, Edlyn Teske [2001]. As of this writing the champion calculations
for groups of prime order involve primes near 2109 (one group arises from an
elliptic curve over a prime finite field, the other for an elliptic curve over F2109).

7. The index calculus and the search for smoothness

The methods we have described so far have an exponential run time. For some
cyclic groups there are subexponential algorithms that involve smooth numbers,
as introduced in [Pomerance 2008]. The idea here is to recognize the cyclic
group as the unit group in a homomorphic image of the ring of integers Z or of
another ring in which it makes sense to speak of smooth elements.

The prime example is the cyclic group G D .Z=pZ/�. For p prime, G is
cyclic of order p � 1, and there is an obvious way to realize G as the group of
units of a homomorphic image of Z. Whenever we represent elements of G by
integers, we are tacitly thinking in terms of this homomorphism. In particular, a
multiplicative relation among integers leads to a multiplicative relation among
group elements.

The idea with the index calculus method is to look at powers of a generator g

of G. Again, staying with our example, if gr is represented by an integer in the
range Œ1; p � 1� and we happen to have the prime factorization of this integer,
say as p

a1

1
� � � p

ak

k
, then we have the index, or discrete logarithm, relation

r � logg gr
� a1 logg p1 C : : : C ak logg pk .mod p � 1/: .1/



394 CARL POMERANCE

However, even though we know r and a1; : : : ; ak , we don’t know the discrete
logarithms logg p1; : : : ; logg pk . Thus, we may view (1) as sort of an equation
in k unknowns.

Say we choose a smoothness bound B, and suppose that p1; : : : ; pk are the
primes up to B. We continually take random values of r , find the least positive
integer representing gr , and see if it is B-smooth. If it is, we get a relation as
in (1). Continuing, suppose we assemble more than k of these relations. Then
presumably, linear algebra will allow us to solve for the unknowns, namely the
discrete logarithms logg p1; : : : ; logg pk .

So, this would allow us to find the discrete logarithms of the small primes.
However, suppose you are interested in the discrete logarithm of t , and the inte-
ger representing t is not B-smooth. Then continue to choose random exponents
r until one is found with the integer representing gr t being B-smooth, say it is
p

b1

1
� � � p

bk

k
. Then

r C logg t � b1 logg p1 C : : : C bk logg pk .mod p � 1/:

But now, the only thing unknown in our relation is logg t , and this is then found
instantly.

Choosing an optimal value of B and using Lenstra’s elliptic curve factoring
method discussed in [Poonen 2008] to recognize B-smooth integers, the ex-
pected complexity of the outlined method is exp..

p
2Co.1//

p
log p log log p/.

Moreover, once the initial work is done to find the discrete logarithms of the
small primes, the additional time to find the discrete logarithms of a given group
element is much smaller, only about exp..1=

p
2 C o.1//

p
log p log log p/. If a

larger value of B is used, the precomputation takes longer, but once it is done,
the individual dl computations are even speedier.

Even though the elliptic curve factoring method has not been rigorously
analyzed in toto, it can be shown that it recognizes sufficiently many smooth
numbers in subexponential time, that it may be used as a subroutine in some
rigorously analyzed algorithms. This somewhat paradoxical, but happy occur-
rence pertains to the index calculus method in .Z=pZ/�.

The key aspect of the index calculus algorithm is the use of smooth numbers.
Can this always be done? That is an important question, and we really do not
have a complete answer for various groups of interest. But for some groups, we
can. For example, say we look at the multiplicative group of a finite field, F�

q ,
where q D pa is a prime power. We’ve just looked at the case a D 1. Let us
look at the other extreme, p D 2. Does it make sense to speak of elements of
F�

2a being smooth?
To answer this question, we think how the finite field F2a is constructed.

One way is to view it as F2Œx�=.f .x//, where f .x/ is an irreducible polyno-



ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS 395

mial over F2 of degree a. We may then view our group as the group of units
in a homomorphic image of the polynomial ring F2Œx�. This ring is a unique
factorization domain, where the prime elements are irreducible polynomials,
and the degree of a polynomial gives us a measure of size. That is, we can say a
polynomial is B-smooth if all of its irreducible factors have degrees at most B.
There is a completely analogous development of the study of the distribution
of smooth polynomials as with the study of smooth integers, and yes we can
obtain a rigorous, subexponential discrete logarithm algorithm for F�

2a . In fact
this works more generally for F�

pa , and I showed with Renet Lovorn Bender that
it is subexponential in pa as long as a ! 1 arbitrarily slowly.

What about the case a>1, a fixed? Then we can represent Fpa as the quotient
ring of p in the ring of integers of an algebraic number field of degree a in
which p is inert. And we may define smoothness in a number ring: an element
is smooth if its norm to the rational integers is smooth. This heuristically gives
a subexponential dl algorithm for all the cases of a fixed or slowly growing, and
it does so rigorously in the case a D 2, a result of Lovorn Bender.

What makes elliptic curve groups of prime order so attractive for cryptogra-
phy at present, is that we know no way of introducing smooth numbers to solve
dl’s in them. We seem to be condemned to use the earlier exponential methods
of this paper.

There are cryptosystems such as XTR that are based on the dl problem in
large subgroups of very large cases of F�

q . What about index calculus? Yes, it
can be used, but only in the parent group, which is very large. So, as a function
of the size of the subgroup, the complexity is prohibitive, even though it is a
subexponential function of q. So, another unsolved problem is to find a way of
introducing smooth numbers directly into the subgroup.

The basic ideas of the index calculus can be taken much further, with tremen-
dous gains in efficiency. In particular, the number field sieve for factoring in-
tegers may be adapted to the dl problem for the multiplicative group of a finite
field, see [Schirokauer 2008].

For further reading, connections to cryptography, and references to original
papers and other surveys, see [Crandall and Pomerance 2005; Odlyzko 2000;
Schirokauer et al. 1996].

References

[Buhler and Wagon 2008] J. P. Buhler and S. Wagon, “Basic algorithms in number
theory”, pp. 25–68 in Surveys in algorithmic number theory, edited by J. P. Buhler
and P. Stevenhagen, Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, New
York, 2008.



396 CARL POMERANCE

[Crandall and Pomerance 2005] R. Crandall and C. Pomerance, Prime numbers: a
computational perspective, 2nd ed., Springer, New York, 2005.

[Odlyzko 2000] A. Odlyzko, “Discrete logarithms: the past and the future”, Des.
Codes Cryptogr. 19:2-3 (2000), 129–145. Towards a quarter-century of public key
cryptography.

[Pomerance 2008] C. Pomerance, “Smooth numbers and the quadratic sieve”, pp.
69–81 in Surveys in algorithmic number theory, edited by J. P. Buhler and P.
Stevenhagen, Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, New York,
2008.

[Poonen 2008] B. Poonen, “Elliptic curves”, pp. 183–207 in Surveys in algorithmic
number theory, edited by J. P. Buhler and P. Stevenhagen, Math. Sci. Res. Inst. Publ.
44, Cambridge University Press, New York, 2008.

[Schirokauer 2008] O. Schirokauer, “The impact of the number field sieve on the
discrete logarithm problem in finite fields”, pp. 397–420 in Surveys in algorithmic
number theory, edited by J. P. Buhler and P. Stevenhagen, Math. Sci. Res. Inst. Publ.
44, Cambridge University Press, New York, 2008.

[Schirokauer et al. 1996] O. Schirokauer, D. Weber, and T. Denny, “Discrete loga-
rithms: the effectiveness of the index calculus method”, pp. 337–361 in Algorithmic
number theory (ANTS II) (Talence, 1996), edited by H. Cohen, Lecture Notes in
Comput. Sci. 1122, Springer, Berlin, 1996.

[Teske 2001] E. Teske, “Square-root algorithms for the discrete logarithm problem (a
survey)”, pp. 283–301 in Public-key cryptography and computational number theory
(Warsaw, 2000), edited by K. Alster et al., de Gruyter, Berlin, 2001.

CARL POMERANCE
DEPARTMENT OF MATHEMATICS
DARTMOUTH COLLEGE
HANOVER, NH 03755-3551
(603) 646-2415

carl.pomerance@dartmouth.edu


