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Congruent number problems
and their variants

JAAP TOP AND NORIKO YUI

ABSTRACT. The congruent number problem asks if a natural number n can be
realized as the area of a right-angled triangle with rational sides. This problem
is related to the existence of rational points on some elliptic curve defined over
Q. We present a survey on this problem and several variants, with special
emphasis on modularity and other arithmetic questions.
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1. Introduction

This survey discusses some innocent-looking longstanding unsolved prob-
lems: the congruent number problem, and the perfect rational cuboid problem,
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as applications of algorithmic number theory. These problems are indeed very
old; the congruent number problem dates back to the time of the Greeks; and
the perfect rational cuboid problem to the time of Euler or earlier. Accordingly,
there are a large number of articles attempting to solve the problems with various
different approaches, most of which use elementary number theoretic methods.

We take a geometric approach to the problems, by reformulating them as
arithmetic questions (e.g., the existence of rational points) on certain curves
and surfaces. We first consider the classical congruent number problem and a
generalization to arbitrary rational triangles (not necessarily right-angled), and
in particular the 2�=3-congruent number problem. The main results here were
obtained by Tunnell [1983], Long [2004, ~ 7], and S.-i. Yoshida [2001; 2002].
All these problems are recapitulated as the problem of finding rational points
on elliptic curves and/or on elliptic K3 surfaces defined over Q. Next, the
“semi-perfect” rational cuboid problem will be discussed. Some results here
may be found in an unpublished paper of Beukers and van Geemen [1995],
in Ronald van Luijk’s master’s thesis [van Luijk 2000], and in Narumiya and
Shiga’s report [2001] on [Beukers and van Geemen 1995]. Again the problems
are recapitulated as the problem of finding rational lines and points on certain
K3 surfaces (e.g., Kummer surfaces of product type) defined over Q.

The expositions of the problems discussed here involve properties of elliptic
K3 surfaces, and modular forms of integral and half-integral weight for some
arithmetic subgroups of PSL2.Z/. An extensive list of literature on these topics
is included. We have tried to emphasize material which is not readily available
elsewhere.

2. Precursors to the congruent number problem

The problem of finding all Pythagorean triples, i.e., all triples of integers
.a; b; c/ with c ¤ 0 and a2 C b2 D c2, is easily seen to be equivalent to the
problem of finding all pairs .r; s/ of rational numbers satisfying r2 C s2 D 1.
There is a well known geometric construction for all such pairs: the equation
x2Cy2 D 1 defines a circle of radius 1 and center .0; 0/ in the .x; y/-plane. The
rational points .r; s/ on it arise as intersection points with a line through .�1; 0/

having a rational (or infinite) slope. Explicitly, the equation of such a line with
slope t ¤ 1 is y D t.x C 1/ and this yields as second point of intersection

.r; s/ D

�
1�t2

1Ct2
;

2t

1Ct2

�
:

It follows that there exist infinitely many Pythagorean triples .a; b; c/, even with
the additional constraint gcd.a; b; c/ D 1.
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REMARK 2.1. In contrast, the Diophantine equation X n C Y n � Zn D 0 of
degree n�3 has no nontrivial solutions in integers .a; b; c/. Here, by a nontrivial
solution we mean a triple of integers .a; b; c/ with abc ¤ 0 satisfying the equa-
tion. This is the celebrated proof of Fermat’s Last Theorem [Wiles 1995; Taylor
and Wiles 1995]. More generally, one considers a generalized Fermat equation
X p C Y q � Zr D 0 where p; q; r are natural numbers, and asks for solutions
.a; b; c/ 2 Z3 with abc ¤ 0, gcd.a; b; c/ D 1. Darmon and Granville [1995]
showed that when 1=pC1=qC1=r < 1, then a generalized Fermat equation has
only finitely many such solutions. The interested reader is referred to [Darmon
1997] and [Kraus 1999] for a survey on generalized Fermat equations. Some
quite recent developments may be found in [Beukers 1998; Bruin 1999; 2000].

The result of Darmon and Granville is based on an ingenious application of a
theorem of Faltings [1983] on the set of solutions of certain Diophantine equa-
tions:

THEOREM 2.2. Let C be a smooth, geometrically irreducible, projective curve
defined over Q of genus at least 2. Then the set C.Q/ of rational points is finite.

A natural question arising from this theorem is, how to find all rational points on
a curve of genus at least 2. Recently remarkable progress has been made on this
problem, using a method of Coleman [1985] and Chabauty [1941]. Chabauty’s
theorem asserts that if C is a smooth projective curve of genus g � 2 defined
over a number field K, and if the Jacobian of C has Mordell–Weil rank < g

over K, then C.K/ is finite. Coleman [1985] gave an effective bound on the
cardinality of the set C.K/. For instance, for K D Q, the proof of Coleman’s
Corollary 4.6 readily gives the bound (compare [Joshi and Tzermias 1999])
#C.Q/ � # QC .Fp/ C 2g � 2 provided that p is a rational prime > 2g such that
C has good reduction QC at p (and of course, the Jacobian of C should have
rank < g). An explicit example where this is used to prove that all solutions
to a certain Diophantine equation have been found, is given by Grant [1994].
Nils Bruin discusses in his thesis [1988] techniques which allow one to apply
Chabauty’s method in situations where the rank is not smaller than the genus.

We will now focus on congruent number problems. This is done in the sec-
tions 3, 4 and 5 below where we discuss, respectively, the congruent number
problem, a generalized congruent number problem, and the 2�=3-congruent
number problem.

3. The classical congruent number problem

DEFINITION 3.1. A square-free natural number n 2 N is called a congruent
number if it occurs as the area of a right-angled triangle with rational length
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sides. In other words, n is a congruent number if and only if there is a right-
angled triangle with rational sides X; Y; Z 2 Q such that

X 2
C Y 2

D Z2; XY D 2 n:

EXAMPLES. n D 5 is a congruent number as there is a rational right-angled
triangle with sides 3=2; 20=3 and 41=6. Similarly, 41 is a congruent number
as there is a rational right-angled triangle with sides 123=20; 40=3 and 881=60.
Zagier has shown that 157 is a congruent number, since there is a rational right-
angled triangle with sides

X D
157841 � 4947203 � 526771095761

2 � 32 � 5 � 13 � 17 � 37 � 101 � 17401 � 46997 � 356441
;

Y D
22 � 32 � 5 � 13 � 17 � 37 � 101 � 157 � 17401 � 46997 � 356441

157841 � 4947203 � 526771095761
;

Z D
20085078913 � 1185369214457 � 9425458255024420419074801

2 32 5 13 17 37 101 17401 46997 356441 157841 4947203 526771095761
:

Determining whether a given square-free natural number is congruent is the
congruent number problem. It has not yet been solved in general. A wonderful
textbook on this subject was written by Koblitz [1993].

REMARK 3.2. The congruent number problem may be formulated equivalently
in terms of “squares in arithmetic progressions”: a natural number n is a con-
gruent number if and only if the equation: 
 2 � ˇ2 D ˇ2 � ˛2 D n is solvable
in rational numbers ˛; ˇ; 
 . For instance, Fibonacci found a solution for n D 5

(˛ D 31=12; ˇ D 41=12 and 
 D 49=12). The transition from this problem to the
congruent number problem is easy: ˛ D .Y �X /=2, ˇ D Z=2, 
 D .Y CX /=2.

We recall the translation of the congruent number problem into arithmetic ques-
tions concerning elliptic curves. For the necessary background on elliptic curves,
the reader is referred to the text by Bjorn Poonen [2008] in this volume. Let Cn

denote the curve with equation y2 D x3 � n2x.

PROPOSITION 3.3. Let n be a square-free natural number. The following state-
ments are equivalent:

(i) n is a congruent number;
(ii) the elliptic curve Cn has a rational point .x; y/ with y ¤ 0;
(iii) the elliptic curve Cn has infinitely many rational points;
(iv) the Mordell–Weil group Cn.Q/ has rank � 1.

PROOF. (i) ) (ii): Suppose that n is a congruent number. Then there is a right-
angled triangle with rational sides X; Y; Z and XY D 2n. Put x WD .Z=2/2 and
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y WD Z.X �Y /.X CY /=8. This defines a point .x; y/ 2 Cn.Q/ with y ¤ 0, as
is readily verified.

(ii) ) (iii): To prove this, one needs to observe that the only nontrivial torsion
points .x; y/ in Cn.Q/ are the ones with y D 0. This follows, e.g., by using
that for any prime p not dividing 2n reduction modulo p injects the torsion
subgroup of Cn.Q/ into QCn.Fp/ and the latter group has order pC1 for all such
p � 3 mod 4.

(iii) ) (iv): This follows immediately from the Mordell–Weil theorem.
(iv) ) (i): If the rank of Cn.Q/ is positive, then certainly a rational point

.x; y/ on Cn exists with y ¤ 0. Put

X D

ˇ̌̌̌
.x C n/.x � n/

y

ˇ̌̌̌
; Y D 2n

ˇ̌̌̌
x

y

ˇ̌̌̌
; Z D

ˇ̌̌̌
ˇx2 C n2

y

ˇ̌̌̌
ˇ :

Then X; Y; Z > 0 and

X 2
C Y 2

D Z2; XY D 2n;

so n is a congruent number. �

REMARK 3.4. (1) There is no known algorithm guaranteed to compute the rank
of Cn.Q/. Nevertheless, Nemenzo [1998] calculated all n < 42553 for which
Cn.Q/ is infinite, hence all congruent numbers below this bound. Similarly,
Elkies [1994; 2002] computed that for all natural numbers n < 106 which are
� 5; 6; or 7 mod 8, the group Cn.Q/ has positive rank.

(2) The elliptic curve Cn has complex multiplication by the ring ZŒ
p

�1�. This
means that the endomorphism ring of Cn is isomorphic to ZŒ

p
�1�. The j -

invariant of Cn is j D 123 and the discriminant of Cn is � D .2n/6.

(3) The elliptic curve Cn W y2 D x3 � n2x is the quadratic twist of the elliptic
curve C1 W y2 D x3 � x by

p
n. In fact, .x; y/ ‘ .x=n; y=.n

p
n// yields an

isomorphism over Q.
p

n/ from Cn to C1.

(4) There are many quite old results on the rank of Cn.Q/ for special classes
of integers n. For instance, Nagell [1929, pp. 16, 17] has a very short and
elementary proof of the fact that this rank is zero in case n D p is a prime
number � 3 mod 8. Hence such primes are noncongruent numbers. Nagell also
points out that the same technique shows that 1; 2 and all n D 2q with q a prime
� 5 mod 8 are noncongruent.

(5) On the positive side, Heegner [1952] used the fact that C1 is isogenous to
X0.32/ (which is also an elliptic curve) plus the theory of complex multipli-
cation to construct a non-torsion point in C1.Q

p
�2p/ for an arbitrary prime

number p � 3 mod 4. This implies that the rank of C2p.Q/ is positive for such
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primes, hence all n D 2p with p prime � 3 mod 4 are congruent. Heegner’s
method was later extended by P. Monsky [1984]. For example, he showed that
primes � 5; 7 mod 8 are congruent. Since primes � 3 mod 8 are noncongruent
by Nagell’s result mentioned above, this only leaves the primes �1 mod 8. Here
the situation is still unknown. For instance, 17 is known to be noncongruent and
41 is congruent.

To be able to say more about the rank r of the Mordell–Weil group of Cn.Q/,
one invokes the conjecture of Birch and Swinnerton-Dyer. For this, one needs
the L-series of Cn=Q. Recall that n is assumed to be a square-free integer. This
L-series is for Re.s/ > 3=2 defined by

L.Cn; s/ D

Y
p 6 j2n

.1 � app�s
C p�2s/�1

where ap WD p C 1 � # QCn.Fp/. In fact, put

g.q/ WD �.q4/2�.q8/2
D

1X
nD1

bnqn;

with �.q/ D q1=24
Q1

nD1.1 � qn/ the Dedekind eta function. Then g is a cusp
form of weight 2 for �0.32/. Define

L.g; �; s/ D

1X
mD1;

gcd.m;N /D1

�.m/bmm�s

for � W .Z=N Z/� ! C� any primitive Dirichlet character modulo N . Then

L.Cn; s/ D L.g; �n; s/;

in which �n is the nontrivial quadratic character corresponding to the extension
Q.

p
n/=Q. It follows from this, that L.Cn; s/ extends to an analytic function

on all of C.

REMARK 3.5. The modularity theorem of Wiles [1995], Taylor and Wiles
[1995], and Breuil, Conrad, Diamond and Taylor [Breuil et al. 2001] shows that
analogous statements hold for an arbitrary elliptic curve E=Q : the L-series
L.E; s/ (defined analogously to that of Cn, see [Silverman 1986, Appendix C,
~ 16]) equals L.h; s/ for some cusp form h of weight 2 for a group �0.N /.
In particular, this implies that L.E; s/ has an analytic continuation to the en-
tire complex plane. The conjecture of Birch and Swinnerton-Dyer for elliptic
curves over Q (which was already formulated a long time before this analytic
continuation was known to exist) predicts how L.E; s/ behaves near s D 1.
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CONJECTURE [Birch and Swinnerton-Dyer 1965]. The expansion of L.E; s/ at
s D 1 has the form L.E; s/ D c.s � 1/r C higher order terms, with c ¤ 0 and
r the rank of E.Q/. In particular, L.E; 1/ ¤ 0 if and only if the Mordell–Weil
group E.Q/ is finite.

This is in fact a weak form of the Birch and Swinnerton-Dyer conjecture, and
we will call it the BSD Conjecture. From results in [Breuil et al. 2001; Bump
et al. 1990; Coates and Wiles 1977; Gross and Zagier 1986; Kan 2000; Koly-
vagin 1988; Murty and Murty 1991; Taylor and Wiles 1995; Wiles 1995], the
BSD Conjecture is known to be true if L.E; s/ vanishes to order � 1 at s D 1.
However, the general case is still wide open, and this is in fact one of the seven
Millennium Prize Problems announced by the Clay Mathematics Institute with
$1 million prizes. A more thorough treatment on modular forms can be found
in the article of Stein [2008] in this volume. As a first application to congruent
numbers, one can observe (using the sign in the functional equation which relates
L.Cn; s/ to L.Cn; 2�s/; see [Koblitz 1993, p. 84]) that for square-free n > 0 the
order of vanishing of L.Cn; s/ at s D 1 is odd precisely when n � 5; 6; 7 mod 8.
Hence for these n we certainly have that L.Cn; 1/ D 0, which by the BSD
conjecture should imply that all such n are congruent numbers. At present, no
proof of this is known, however.

Here is a characterization of congruent numbers due to Tunnell [1983], as-
suming the validity of the BSD conjecture. We denote by Sk.N / the space
of cusp forms of weight k with respect to the congruence subgroup �0.N /.
Moreover define

f .q/ WD

1X
nD1

af .n/qn
D q

1Y
nD1

.1 � q8n/.1 � q16n/
X
n2Z

q2n2

and

f 0.q/ WD

1X
nD1

af 0.n/qn
D q

1Y
nD1

.1 � q8n/.1 � q16n/
X
n2Z

q4n2

:

These are in fact elements of S3=2.128/ and S3=2.128;�2/, respectively (com-
pare [Koblitz 1993, Ch. IV] for precise definitions). We owe the formulation
used in (v) below to Noam Elkies.

THEOREM 3.6. Let n be a square-free natural number. Assuming the validity
of the BSD Conjecture for Cn, the following statements are equivalent:

(i) n is a congruent number;
(ii) Cn.Q/ is infinite;
(iii) L.Cn; 1/ D 0;
(iv) For n odd, af .n/ D 0 and for n even, af 0.n=2/ D 0;
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(v) If n is odd, then there are as many integer solutions to 2x2 C y2 C 8z2 D n

with z even as there are with z odd.
If n is even, the analogous statement holds for x2 C y2 C 8z2 D n=2.

PROOF. (i) () (ii): This is proved in Proposition 3.3.
(ii) () (iii): This is the BSD Conjecture for Cn. As remarked earlier, the im-

plication (ii) ) (iii) is in fact known without assuming any conjectures [Coates
and Wiles 1977].

(iii) () (iv): This was proved in [Tunnell 1983], based on results by Shimura
[1973] and Waldspurger [1981]. Recall that L.Cn; s/ equals L.g; �n; s/ where
g is a cusp form of weight 2 for �0.32/. Tunnell shows that the modular forms
f and f 0 of weight 3=2 for �0.128/ are both related under a correspondence
described by Shimura to the modular form g. A formula due to Waldspurger
[1981] allows him to conclude that L.Cn; 1/ vanishes precisely when af .n/

(resp. af 0.n=2/) vanishes. For further details, see [Tunnell 1983] and [Koblitz
1993, IV, ~ 4].

(iv) () (v): This follows by expressing f and f 0 in terms of theta functions
(compare [Tunnell 1983]):

f .q/ D

X
x;y;z2Z

q2x2Cy2C32z2

�
1

2

X
x;y;z2Z

q2x2Cy2C8z2

and
f 0.q/ D

X
x;y;z2Z

q4x2Cy2C32z2

�
1

2

X
x;y;z2Z

q4x2Cy2C8z2

:

The translation from the ternary forms used here to the criterion given in (v) is
an amusing elementary exercise. �

EXAMPLE. (1) Tunnell showed that for p prime � 3 mod 8, the Fourier coef-
ficient af .p/ is � 2 .mod 4/, hence it is nonzero. This implies, using the full
force of Theorem 3.6 (no BSD conjecture is needed here) that such primes are
noncongruent, providing a new proof of Nagell’s half a century older result.

(2) Since it is relatively easy to calculate the number of representations of a not
too large n by the ternary forms mentioned in Theorem 3.6, assuming BSD one
can decide whether n is congruent at least for all n < 109.

REMARK 3.7. In general, one may find forms of weight 3=2 such as the ones
in Theorem 3.6 (iv) as follows. Starting from an arbitrary eigenform of weight
2, check whether it is in the image of the Shimura map using a criterion due
to Flicker [1980]. Then finding a form of weight 3=2 that maps to the given
weight 2 form is in principle reduced to a finite amount of computation. This is
because the spaces of modular (cusp) forms of fixed weight and level are finite-
dimensional. (For instance, the space S3=2.128/ has dimension 3, and testing
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if an element in that space maps to the weight 2 form g of level 32 under the
Shimura map or not can be done in finitely many steps.) There are algorithms
available for this problem: see Basmaji’s thesis [1996]. Recently, William Stein
implemented Basmaji’s algorithm.

4. A generalized congruent number problem

In this section, we will consider a generalized congruent number problem
which asks if a natural number n can occur as the area of any rational triangle
with some given angle � . The exposition is partly based on the article by Ling
Long [2004, ~ 7]. Classically, a triangle with rational sides and rational area is
called a Heron triangle. Heron of Alexandria proved almost 2000 years ago that
the area n of a triangle with sides a; b and c satisfy n2 D s.s �a/.s �b/.s � c/,
where s D .a C b C c/=2. Moreover, he provided the example a D 13; b D

14; c D 15 which shows that 84 is the area of a Heron triangle. The subject was
much studied in the first half of the 17th century, with contributions by famous
mathematicians such as François Viète, C.G. Bachet and Frans van Schooten, jr.
Basically, they constructed examples of Heron triangles by gluing right-angled
triangles along a common side. In the 19th century, many problems concerning
Heron triangles were discussed in the British journal Ladies’ Diary. Dickson
[1934, pp. 191–201] mentions numerous results on Heron triangles. A natural
number n occurs as the area of a Heron triangle if and only if positive rational
numbers a; b; c and a real number � with 0 < � < � exist such that

a2
D b2

C c2
� 2 b c cos � and 2 n D b c sin �:

The equations imply that .cos �; sin �/ must be a rational point ¤ .˙1; 0/ on the
upper half of the unit circle, hence a rational number t > 0 exists such that

sin � D
2t

1 C t2
and cos � D

t2 � 1

t2 C 1
:

Now fix a rational number t > 0.

DEFINITION 4.1. An integer n is called t -congruent if positive rational numbers
a; b; c exist such that

a2
D b2

C c2
� 2 b c

t2 � 1

t2 C 1
and 2 n D b c

2t

1 C t2
:

The case t D 1 corresponds to the classical congruent number problem. The t -
congruent number problem, which asks whether a given integer is t -congruent,
can be reformulated as an arithmetic question of certain elliptic curves. Basically
this was done using elementary methods by D. N. Lehmer [1899/1900] a century
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ago. Recently Ling Long constructed a family of elliptic curves corresponding
to t -congruent numbers.

PROPOSITION 4.2. Let t be a positive rational number and n2N. The following
statements are equivalent:

(i) n is a t -congruent number.
(ii) Either both n=t and t2C1 are nonzero rational squares, or the elliptic curve

Cn;t W y2 D x.x � n=t/.x C nt/ has a rational point .x; y/ with y ¤ 0.

PROOF. (i) ) (ii): Suppose that n is a t -congruent number. Then there exist
positive rational numbers a; b; c satisfying the two equations given in Defini-
tion 4.1. The second of these equations can be written as n=t D bc=.1 C t2/.
Using this, it easily follows that .x; y/ WD .a2=4; .ab2 � ac2/=8/ is a point in
Cn;t .Q/. It satisfies y ¤ 0, unless we have b D c. In the latter case one verifies
that t2 C 1 D .2b=a/2 and n=t D .a=2/2.

(ii) ) (i): Suppose first that n=t and t2 C 1 are nonzero rational squares. Then
a D 2

p
n=t and b D c D

p
n.t2 C 1/=t show that n is t -congruent. For the other

case, if P D .x; y/ 2 Cn;t .Q/ with y ¤ 0 is a rational point on Cn;t , then

a D

ˇ̌̌̌
ˇx2 C n2

y

ˇ̌̌̌
ˇ ; b D

ˇ̌̌̌
.x C nt/.x � n=t/

y

ˇ̌̌̌
; c D n

ˇ̌̌̌
x.1=t C t/

y

ˇ̌̌̌
show that n is t -congruent. �

EXAMPLE. Consider n D 12; t D 4=3. The torsion subgroup of C12;4=3.Q/

is given by C12;4=3.Q/tors ' Z=2Z � Z=4Z. Two generators are .0; 0/ and
.�6; 30/. The latter point is not a 2-torsion point, and corresponds to a rational
triangle with sides 5; 5; 6 with area 12. Note that, contrary to the situation for
classical congruent numbers, here a torsion point in Cn;t .Q/ leads to n being
t -congruent.

Several people have given proofs of the fact that any natural number n occurs
as the area of some Heron triangle. A quite elementary proof was obtained by
Fine [1976], who in his paper also mentions an even simpler proof by S. and P.
Chowla. Also H. Cohen showed a proof of this to Ling Long and Noriko Yui
in the summer of 2000. All proofs are in the spirit of F. van Schooten’s 17th
century work on Heron triangles: consider two positive rational numbers r; s,
both ¤ 1. Gluing the two Pythagorian triangles with sides .2; jr �r�1j; r Cr�1/

and .2; js�s�1j; sCs�1/ along their common side with length 2 yields a Heron
triangle with area jr � r�1j C js � s�1j. It remains to find suitable r; s. After
first multiplying n by a square (which amounts to scaling a triangle), we may
assume n > 6. Then r D 2n=.n � 2/; s D .n � 2/=4 give area .n C 2/2=.4n/.
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Scaling the corresponding triangle by a factor 2n=.n C 2/ results in one with
area n. We have proved:

THEOREM 4.3. Any square-free natural number n can be realized as a t -
congruent number for some t 2 Q>0. �

In terms of Proposition 4.2 (considering n as a variable, using r; s as above,
and setting a D 2n.r C r�1/=.n C 2/ and b D 2n.s C s�1/=.n C 2/ and c D

2n.r � r�1 C s � s�1/=.n C 2/ ), this can be interpreted as the fact that the
curve Cn;.n�2/=4, given by y2 D x.x � 4n=.n � 2//.x C n.n � 2/=4/ contains a
Q.n/-rational point .x; y/ with y ¤ 0. In fact, ..�nC2/=2; .n2 �4/=4/ is such
a point. It has infinite order in the group Cn;.n�2/=4.Q.n//, as follows from the
fact that it specializes for n D 0 to .1; �1/ on the curve given by y2 D x3. The
latter point has infinite order, as follows from [Silverman 1986, III Prop. 2.5].

Long considered Cn;t W y2 D x.x � n=t/.x C n t/ as a surface over the t -
line. Note that geometrically, this defines the same surface for every nonzero n:
the map .x; y/ ‘ .x=n; y=.n

p
n// defines an isomorphism from Cn;t to C1;t .

For this reason we will only consider n D 1. A general introduction to elliptic
surfaces as considered here, may be found in [Shioda 1990].

PROPOSITION 4.4. Let C1;t W y2 D x.x � 1=t/.x C t/ and let ˚1 W E1 ! P1
t be

the smooth minimal model coresponding to C1;t ! P1
t W .x; y; t/ ‘ t .

(a) E1 is a singular elliptic K3 surface, and ˚1 has exactly four singular fibres,
which are of Kodaira type I2; I2; I�

4
; I�

4
, respectively.

(b) The Mordell–Weil group of C1;t over C.t/ is isomorphic to Z=2Z ˚ Z=2Z.
(c) In the Shioda–Inose classification of singular K3 surfaces, E1 corresponds

to the even positive definite binary quadratic form 2x2 C 2y2.
(d) The L-series of E1 is given by

L.E1; s/ D �.s � 1/18L.�4; s � 1/2L.f; s/

where f 2 S3.�0.1024/; .2=p// is the twist of �.q4/6 D q
Q1

nD1.1 � q4n/6

by the quadratic character . 2
p

/ and �4 is the nontrivial Dirichlet character
modulo 4.

PROOF. Since most of the notions used in the statement have not been defined
here, we only sketch the proof and meanwhile, explain these notions a bit more.

(a,b) The elliptic surface C1;t is birationally equivalent to the elliptic surface
y2 D x.x � t/.x C t3/ by the birational map .x; y/ ‘ .x=t2; y=t3/. Using
Tate’s algorithm [Birch and Kuyk 1975], one can read off the singular fibres of
˚1 from the latter equation. They occur at t D ˙

p
�1; 0; 1 and are of type

I2; I2; I�
4

and I�
4

, respectively. From this, one concludes that E1 has Euler
characteristic 24 and hence is an elliptic K3 surface.
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The Shioda–Tate formula (see [Shioda 1990]) asserts that the rank of the
Néron–Severi group (which is by definition the group of 1-cycles modulo alge-
braic equivalence) of E1 equals 2 C

P
v2˙ .mv � 1/ C r where ˙ is the finite

set of points v 2 P1
t such that the fiber of ˚1 over v is a reducible curve; mv

denotes its number of irreducible components. Moreover, r denotes the rank of
the group of sections of ˚1 (which equals the rank of C1;t .C.t//).

For an elliptic K3 surface in characteristic 0, the rank of the Néron–Severi
group is at most 20. By definition, a singular K3 surface is one for which this
rank is maximal. In the present case we have

2C

X
v2˙

.mv �1/Cr D 2C.2�1/C.2�1/C.9�1/C.9�1/Cr D 20Cr � 20

hence r D 0 and E1 is a singular K3 surface.
The torsion subgroup of C1;t .C.t// certainly contains a group Z=2Z˚Z=2Z.

Moreover, the torsion subgroup injects in the torsion subgroup of any fibre of
˚1. Since E1 contains a fiber of type I�

4
, whose torsion subgroup we read off

from the tables in [Birch and Kuyk 1975] to be isomorphic to Z=2Z ˚ Z=2Z,
we conclude that the Mordell–Weil group is isomorphic to Z=2Z ˚ Z=2Z.

(c) Shioda and Inose [1977] (see also [Inose 1978] for a very explicit description)
have shown that there is a one-to-one correspondence between singular K3 sur-
faces and SL2.Z/-equivalence classes of positive definite even integral binary
quadratic forms. Moreover, under this correspondence the discriminant of a
quadratic form (by which we mean the determinant of the associated symmetric
matrix) coincides up to sign with the determinant of the corresponding Néron–
Severi lattice. In case r D0, this determinant equals the product over the singular
fibres of the number of irreducible components with multiplicity one, divided
by the square of the order of the torsion subgroup of the Mordell–Weil group.
In our case, this yields 2 �2 �4 �4=16 D 4. The unique equivalence class of forms
with this discriminant is that of 2x2 C 2y2.

(d) One way to interpret this assertion is that for every odd prime p, the num-
ber # QE1.Fp/ of points equals p2 C 1 C 18p C �4.p/ C . 2

p
/ap where ap is the

coefficient of qp in �.q4/6. The factor �.s � 1/18L.�4; s � 1/2 in the assertion
refers to the fact that the Néron–Severi group has rank 20 and is generated by 18

rational 1-cycles and two conjugate ones over Q.i/. The fact that the remaining
factor (in case of a singular K3 surface) is the L-series of some modular form of
weight 3 follows from a general result of Livné [1995]. Arguing as in [Stienstra
and Beukers 1985] (or alternatively, as in [Livné 1987] and [Peters et al. 1992,
~ 4]), one can verify that this modular form is as given in the proposition. �
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The (unique) singular K3 surface corresponding to the form 2x2C2y2 has been
studied by many authors, including Vinberg [1983] and Inose [1976].

Next, we consider the family of elliptic curves

Ct;.t�2/=4 W y2
D x.x � 4t=.t � 2//.x C t.t � 2/=4/;

which appeared in the proof of Theorem 4.3.

PROPOSITION 4.5. Ct;.t�2/=4 defines a (smooth, relatively minimal) elliptic
surface ˚2 W E2 ! P1

t .

(a) E2 is a singular elliptic K3 surface, and ˚2 has exactly five singular fibres,
which are of Kodaira type I2; I2; I4; I�

0
; I�

4
, respectively.

(b) The Mordell–Weil group of Ct;.t�2/=4 over C.t/ is isomorphic to

Z ˚ Z=2Z ˚ Z=2Z:

(c) The L-series of E2 is given by L.E2; s/ D �.s � 1/18L.�4; s � 1/2L.f; s/,
where f 2 S3.�0.20/; .�5=p//.

PROOF. This is quite analogous to the proof of Proposition 4.4. Tate’s algorithm
shows that there are two I2-fibres at the roots of t2 � 4t C 20 D 0, an I4-fibre
at t D 1, an I�

0
-fibre at t D 0 and an I�

4
-fibre at t D 2. It follows that E2 is a

K3 surface.
We already saw that Ct; t�2

4
.Q.t// contains a point of infinite order. So the

Mordell–Weil rank r is � 1. The Shioda–Tate formula in this case yields

19 C 1 � 19 C r � 20;

hence r D 1 and the surface is a singular K3. For the torsion part of the Mordell–
Weil group of E2, apply the same argument as in Proposition 4.4. Hence the
Mordell–Weil group of E2 is isomorphic to Z ˚ Z=2Z ˚ Z=2Z.

The determinant of the Néron–Severi lattice in this case equals the product
over all bad fibers of the number of components with multiplicity one, multiplied
by the height of a generator of the Mordell–Weil group modulo torsion, and
divided by the square of the order of the torsion subgroup of the Mordell–Weil
group. This yields 16h.P / where h is the height and P a generator. For a
given point, this height can be calculated using an algorithm of Shioda [1990,
Thm. 8.6]; in the present case it yields the answer 5=4 which both implies that
the point we have is indeed a generator, and that the determinant is 20. Note that
there exist precisely two inequivalent forms here: 2x2 C10y2 and 4x2 C4xy C

6y2. Which of these corresponds to E2 can possibly be settled by determining
a finite morphism to some Kummer surface.



626 JAAP TOP AND NORIKO YUI

The statement concerning the L-series can be proven analogously to the pre-
vious case. Here we find

f .q/ D qC2q2
�4q3

�4q4
�5q5

�8q6
C4q7

�24q8
�11q9

�10q10
C16q12

C8q14
C20q15

�16q16
�22q18

C20q20
�16q21

�44q23
C96q24

�100q25

C152q27
�16q28

�22q29
C40q30

C160q32
�20q35

CO.q36/:

The form f .q/ cannot be written as a product of �-functions, as follows from
[Dummit et al. 1985] where a complete list of weight 3 newforms that can be
written in such form is given. �

5. The 2�=3-congruent number problem

Fujiwara [1998] and Kan [2000] considered a variant of the congruent num-
ber problem, called the � -congruent number problem. Suppose that there is
a triangle with rational sides containing an angle � . Then cos � is a rational
number, so write cos � D s=r with r; s 2 Z; jsj � r , gcd.r; s/ D 1. Note that
sin � D

1
r

p
r2 � s2, hence the following makes sense.

DEFINITION 5.1. Suppose � is a real number with 0 < � < � , such that cos � D

s=r with r; s 2 Z; jsj � r , gcd.r; s/ D 1. A natural number n is called � -
congruent if n

p
r2 � s2 occurs as the area of a triangle with rational sides and

an angle � .

In terms of the cosine rule and a formula for the area of a triangle, using the
same notations, n is � -congruent precisely when positive rational numbers a; b; c

exist such that c2 D a2 Cb2 �2abs=r and 2nr D ab. The � -congruent number
problem is the problem of describing all � -congruent integers n. Our exposition
is based on [Yoshida 2001; 2002; Fujiwara 1998; Kan 2000].

REMARK 5.2. The classical congruent number problem is a special case of
the t -congruent number problem, obtained by taking t D 1. The t -congruent
number problem is a special case of the � -congruent number problem in the
following sense. Write t D k=` for integers ` � k � 1 with gcd.k; `/ D 1. Take
the unique real number � such that cos � D .t2 �1/=.t2 C1/, 0 < � < � . Then
cos � is written in lowest terms as .`2 � k2/=.`2 C k2/ in case one of k; ` is
even, respectively

�
.`2 � k2/=2

�
=

�
.`2 C k2/=2

�
in case both k; ` are odd. So

it follows that an integer n is � -congruent precisely when k`n is t -congruent (in
case both k; ` are odd), respectively 2k`n is � -congruent (in case one of k; `

is even). In particular, the classical congruent number problem also equals the
�=2-congruent number problem.

PROPOSITION 5.3. Let n > 0 be an integer. The following statements are
equivalent.
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(i) n is a 2�=3-congruent number;
(ii) the elliptic curve Cn W y2 D x3 �2nx2 �3n2x D x.x Cn/.x �3n/ contains

a point .x; y/ with y ¤ 0;
(iii) the Mordell–Weil group Cn.Q/ has rank � 1.

PROOF. (i) () (ii): Suppose that n is a 2�=3-congruent number. Then there
exist positive rational numbers a; b; c such that c2 D a2 Cb2 Cab and ab D 4 n.
Substituting b D 4n=a in the first equality and multiplying by a2 yields .ca/2 D

a4 C4na2 C16n2. Now put x D .caCa2 C2n/=2 and y D a.caCa2 C2n/=2.
Then .x; y/ is a rational point on Cn with y ¤ 0.

Conversely, if .x; y/ is a rational point with y ¤ 0 on Cn, then after possibly
changing the sign of y we have that

a D
.x C n/.x � 3n/

y
D

y

x
> 0 and b D 4n

x

y
> 0 and c D

x2 C 3n2

jyj

show that n is a 2�=3-congruent number.
(ii) () (iii): Since all 2-torsion on Cn is rational, the torsion subgroup

Cn.Q/tors is isomorphic to a group of the form .Z=2Z/ � .Z=2M Z/ for some
M 2 f1; 2; 3; 4g by a theorem of Mazur [1978]. Hence if the torsion sub-
group of Cn.Q/ is unequal to the 2-torsion subgroup, then a rational torsion
point of order 3 or 4 exists. The 3-division polynomial of Cn is n4.3.x

n
/4 �

8.x
n

/3 �18.x
n

/2 �9/, which is irreducible over Q. The 4-division polynomial is
4y.x�n/.xC3n/.x2C3n2/.x2�6nx�3n2/. All its rational zeroes correspond
to points of order 2. Therefore the Mordell–Weil group Cn.Q/ has rank � 1 if
and only if Cn.Q/ has a rational point .x; y/ with y ¤ 0. �

Similarly, all of the �=3-congruent numbers can be characterized. The proof is
left to the interested reader as an exercise.

PROPOSITION 5.4. Let n > 0 be an integer. Then the following statements are
equivalent.

(i) n is a �=3-congruent number;
(ii) the elliptic curve C�n W y2 D x.x � n/.x C 3n/ has a rational point .x; y/

with y ¤ 0;
(iii) the Mordell–Weil group C�n.Q/ has rank � 1.

REMARK 5.5. (1) The j -invariant of the elliptic curves Cn and C�n is 24133

32 62Z.
This implies that they have no complex multiplication. In this respect, these
variants are different from the classical congruent number problem; compare
Remark 3.4(2).

(2) The elliptic curves Cn and C�n are quadratic twists of C1.
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The weak form of the conjecture of Birch and Swinnerton-Dyer for the elliptic
curves Cn and C�n plus modularity of C1 allow one to obtain results analogous
to the result of Tunnell [1983] for the �=2-congruent number problem. There
is a modular form of weight 3=2 on some congruence subgroup of PSL.2; Z/

such that the vanishing of the n-th coefficient in its Fourier expansion gives
a criterion for 2�=3-congruent numbers. A prototypical result is given in the
following theorem.

THEOREM 5.6. Let n be a positive square-free integer such that n � 1; 7 or 13

.mod 24/. Assume the validity of the conjecture of Birch and Swinnerton-Dyer
for Cn W y2 D x.x C n/.x � 3n/. The following statements are equivalent.

(i) n is a 2�=3-congruent number;
(ii) Cn.Q/ has infinitely many rational points;
(iii) L.Cn; 1/ D 0;
(iv) af .n/ D 0, where af .n/ is the n-th Fourier coefficient of the modular form

f of weight 3=2 for �0.576/ defined by

f .q/ D

1X
nD1

b.n/qn
D

X
x;y;z2Z

qQ1.x;y;z/
�

X
x;y;z2Z

qQ2.x;y;z/
� G2;

where

Q1.x; y; z/ D x2
C 3y2

C 144z2; Q2.x; y; z/ D 3x2
C 9y2

C 16z2

and

G2 D
1

2

X
n2Z

��3.n/n qn2

C 4
X
n2Z

��3.n/n q4n2

C 8
X
n2Z

��3.n/n q16n2

:

Here ��3 is the nontrivial Dirichlet character modulo 3.

PROOF. This is due to Yoshida [2002]. Note in particular that the BSD conjec-
ture is only used in (iii) ) (ii).

Also, note that for square-free n > 1, the form G2 does not contribute to
af .n/. Hence, assuming BSD, the theorem claims that n is 2�=3-congruent if
and only if the number of representations of n by x2 C 3y2 C 144z2 equals the
number of representations by 3x2 C 9y2 C 16z2. �

Considering the sign in the functional equation for L.C˙n; s/, the BSD conjec-
ture predicts the following.

PROPOSITION 5.7 [Yoshida 2001]. Let n be a square-free natural number.
Assume the BSD conjecture for Cn and C�n.

(a) If n � 5; 9; 10; 15; 17; 19; 21; 22; 23 .mod 24/, then n is 2�=3-congruent.
(b) If �n � 3; 6; 11; 17; 18; 21; 22; 23 .mod 24/, then n is �=3-congruent.
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As for the classical congruent number problem, so-called Heegner point con-
structions (compare [Kan 2000]) can be used to show that certain types of num-
bers are indeed 2�=3-congruent (or �=3-congruent).

THEOREM 5.8. If p be a prime such that p � �1 .mod 24/, then p; 2p and 3p

are 2�=3-congruent and p; 2p and 6p are �=3-congruent.

REMARK 5.9. Some negative results may be obtained by showing directly that
the rank of C˙1.Q/ is zero for certain sets of numbers n, or alternatively, by
checking that L.Cn; 1/ or L.C�n; 1/ is nonzero.

(a) Let p be a prime such that p � 7; 13 .mod 24/. Then a direct computa-
tion in the spirit of [Silverman 1986, X, Prop. 6.2] reveals that p is not 2�=3-
congruent. Alternatively, the p-th Fourier coefficient ap.f / of the appropriate
modular form f is given by

#f.x; y; z/ 2 Z3
j x2

C 3y2
C 144z2

D pg

� #f.x; y; z/ 2 Z3
j 3x2

C 9y2
C 16z2

D pg;

which is congruent to 4 .mod 8/. Hence ap.f / ¤ 0, and consequently p is not
a 2�=3-congruent number.

(b) A similar argument shows that a prime p � 5; 7; 19 .mod 24/ is not �=3-
congruent. (See [Goto 2001; 2002; Kan 2000; Yoshida 2001; 2002] for more
general n like 2p, 3p, 6p or pq, 2pq, etc.)

6. The rational cuboid problems

DEFINITION 6.1. We say that a cuboid K is a perfect rational cuboid if the sides
and the three face diagonals and the body diagonal are all integers.

The existence of a perfect rational cuboid is easily seen to be equivalent to the
existence of a rational point with nonzero coordinates on the surface SK in P6

defined by

X 2
C Y 2

D P2; Y 2
C Z2

D Q2; Z2
C X 2

D R2; X 2
C Y 2

C Z2
D W 2:

REMARK 6.2. The problem of whether a perfect rational cuboid K exists was
known to Euler and is still unsolved. It is shown by Korec [1984] that no perfect
rational cuboid K exists with shortest side � 106. In December 2004, B. Butler
improved the search up to smallest side � 2:1 � 1010, not finding any examples.
Ronald van Luijk [van Luijk 2000] showed that the surface SK is of general
type.

If one relaxes the rationality requirement for one of the seven coordinates, then
the resulting problem of finding semi-perfect rational cuboids turns out to be
more tractable. We will take this direction in this survey. From a geometric
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point of view, this means passing from the surface SK to a quotient by some
automorphism. We first formulate the problems that we will consider.

PROBLEM 1. Find semi-perfect rational cuboids K with rational face diagonals
P; Q and a rational body diagonal W (dropping the integrality condition for R).
In other words, find rational points with nonzero coordinates on the surface in
P5 defined by

X 2
C Y 2

D P2; Y 2
C Z2

D Q2; X 2
C Y 2

C Z2
D W 2:

EXAMPLE. .X; Y; Z; P; Q; W / D .104; 153; 672; 185; 680; 697/ is a solution
to Problem 1. In Section 7 below we show that infinitely many solutions exist.

PROBLEM 2. Find semi-perfect rational cuboids K with rational face diagonals
P; Q; R (relaxing the integrality condition for W ). In other words, find rational
points with nonzero coordinates on the surface in P5 defined by

X 2
C Y 2

D P2; Y 2
C Z2

D Q2; Z2
C X 2

D R2:

EXAMPLE. Some small solutions are .X; Y; Z; P; Q; R/ D .44; 117; 240; 125;

267;244/, .231;160;792;281;808;825/, and .748;195;6336;773;6339;6380/.
We show in Section 8 below that infinitely many such solutions exist.

The “semi-perfect” rational cuboid problems have attracted considerable atten-
tion. There are many papers on the problem, such as [Colman 1988]; see the
references in [van Luijk 2000].

7. The semi-perfect rational cuboid problem, I

In this section we find solutions to Problem 1 following [Narumiya and Shiga
2001; Beukers and van Geemen 1995; van Luijk 2000] and we discuss arithmetic
properties (e.g., L-series, modularity) of the associated varieties.

Using affine coordinates, Problem 1 becomes:

PROBLEM 1A. Find nonzero rational numbers x; y; z; q; w satisfying

x2
C y2

D 1; y2
C z2

D q2; 1 C z2
D w2: .�/

The substitutions

x D
1 � t2

1 C t2
; y D

2t

1 C t2
; z D

2s

1 � s2
; w D

1 C s2

1 � s2
; q D

2u

.1 C t2/.1 � s2/

give a birational map over Q from the surface defined by .�/ to the surface
defined by

u2
D .s2t2

C 1/.s2
C t2/:

We now apply a series of birational maps (changes of variables) over Q in
order to bring this equation into a familiar form.
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(i) The change of variables .v1; t1; u1/ WD .st; t; tu/ transforms our equation
into u2

1
D .v2

1
C 1/.v2

1
C t4

1
/:

(ii) The change of variables .v2; t2; u2/ WD .v1; 1=.t1 � 1/; u1=.t1 � 1/2/ trans-
forms the resulting equation into u2

2
D .v2

2
C 1/.t4

2
v2

2
C .t2 C 1/4/.

(iii) In the new variables .v3; t3; u3/ WD .v2; .v2
2

C 1/t2; .v2
2

C 1/u2/ this be-
comes u2

3
D t4

3
C 4t3

3
C 6.v2

3
C 1/t2

3
C 4.v2

3
C 1/2t3 C .v3 C 1/3.

(iv) Using .v4; t4; u4/ WD .v3; t3 C 1; u3/ one obtains

u2
4 D t4

4 C 6v2
4 t2

4 C 4v2
4.v2

4 � 1/t4 C v2
4.v4

4 � v2
4 C 1/:

(v) One transforms this quartic into a cubic as explained in [Cassels 1991, p. 35].
Explicitly, with .x1; y1; v5/ WD .�2u4C2t2

4
C6v2

4
; 4t4u4�4t3

4
�12t4v2

4
; v4/,

the equation becomes

y2
1 � 8v2

5.v2
5 � 1/y1 D x3

1 � 12v2
5x2

1 � 4v2
5.v4

5 � 10v2
5 C 1/x1:

(vi) Next, put .x2; y2; v6/ WD .x1 C4v2
5
; y1 �4v2

5
.v2

5
�1/; v5/. This transforms

the equation into y2
2

D x3
2

� 4v2
6
.v2

6
C 1/2x2.

(vii) Finally, the change of variables

.x3; y3; z3/ WD

�
x2

2v6 .v2
6

C 1/
;

y2

v6 .v2
6

C 1/
; 2v6

�
gives the equation

y2
3 D z3.z2

3 C 4/x3.x2
3 � 1/:

PROPOSITION 7.1. (a) Take C1 W w2
1

D x.x2 � 1/ and E2 W w2
2

D z.z2 C 4/,
and let � W ..x; w1/; .z; w2// ‘ ..x; �w1/; .z; �w2// be the Œ�1�-map on the
abelian surface C1 � E2 and �0 the Œ�1�-map on C1 � C1. Then the algebraic
surface S given by y2 D x.x2 � 1/z.z2 C 4/ is birational to the Kummer
surface Kum.C1 � E2/ D .C1 � E2/=�.

(b) The elliptic curves C1 and E2 are 2-isogeneous over Q. The Kummer sur-
face X WD .C1 �C1/=�0, defined by �2 D �.�2 �1/�.�2 �1/, is a double cover
of S .

PROOF. (a) This is clear from the definitions.

(b) The 2-isogeny C1 ! E2 and its dual isogeny E2 ! C are well known; see,
e.g., [Silverman and Tate 1992, p. 79]. Explicitly, the isogeny from C1 to E2 is
given as

.x; w1/ ‘

�
w2

1

x2
;

w1.x2 C 1/

x2

�
:
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The 2 W 1 map from X D Kum.C1 � C1/ to S is then given by

x D �; z D
�2

�2�.�2 � 1/
; y D

�.1 C �2/

�2
: �

REMARK 7.2. B. van Geemen pointed out to us that the surface S is birational
to the quartic Fermat surface. Hence it corresponds in the Shioda–Inose classifi-
cation to the form 8x2 C8y2. A nice summary of the arithmetic of this surface,
including a description of its Néron–Severi group and its L-series, is provided in
[Pinch and Swinnerton-Dyer 1991]. An explicit birational map from the quartic
Fermat surface to S is given in the (hand-written, Japanese) doctoral thesis of
Masumi Mizukami, written around 1980.

The above considerations show that to find solutions to Problem 1A, one may
construct rational points on the Kummer surface X D Kum.C1 � C1/. To de-
scribe such points, first note that a rational point on X lifts to a pair .P; Q/ of
points in C1 � C1, defined over some quadratic extension K=Q. If � denotes
conjugation in K=Q, then the image of .P; Q/ being rational precisely means
that .�.P /; �.Q// D ˙.P; Q/. Hence either P and Q are both in C1.Q/ (which
means they are points of order 2 on C1), or they are both rational points of infinite
order on a quadratic twist Cn of C1. This discussion is summarized as follows.

THEOREM 7.3. Suppose that n is a nonzero integer, and .a; b/ and .c; d/ ratio-
nal points on Cn W y2 D x3 � n2x. Then�

a

n
;

c

n
;
bd

n3

�
is a rational point on the Kummer surface X W w2 D x.x2 � 1/z.z2 � 1/.
Conversely, every non-trivial rational point on X is obtained like this. �

Note that the above result links congruent numbers to semi-perfect rational
cuboids: from a pair of rational right-angled triangles with area n, one can
construct a semi-perfect rational cuboid. In general, the problem of describing
the set of rational points on a Kummer surface Kum.E1 � E2/ of a product of
two elliptic curves has been studied by Kuwata and Wang [1993].

The Kummer surface X of C1 � C1 has been studied extensively, e.g., in
[Keum and Kondō 2001; Shioda and Inose 1977; Vinberg 1983; Ahlgren et al.
2002]. Here are some of its properties:

THEOREM 7.4. Let X be the Kummer surface given by w2 Dx.x2�1/z.z2�1/.

(a) X is a singular K3 surface. Its Néron–Severi lattice has discriminant �16.
(b) X corresponds in the Shioda–Inose classification to the positive definite

even binary quadratic form 4x2 C 4y2.
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(c) The L-series of X is

L.X; s/ D �.s � 1/19L.�4; s � 1/L.f; s/;

with
f .q/ D �.q4/6

2 S3.�0.8/; .2=�//:

8. The semi-perfect rational cuboid problem, II

We now consider Problem 2 of finding nonzero integers satisfying

X 2
C Y 2

D P2; Y 2
C Z2

D Q2; Z2
C X 2

D R2:

Euler recorded in 1772 the following parametric solution to this system:

X D 8�.�2
� 1/.�2

C 1/;

Y D .�2
� 1/.�2

� 4� C 1/.�2
C 4� C 1/;

Z D 2�.�2
� 3/.3�2

� 1/;

P D .�2
� 1/.�4

C 18� C 1/;

Q D .�2
C 1/6;

R D 2�.5�4
� 6�2

C 5/:;

The system of equations defines a surface W � P5. Bremner [1988] has shown
that W is birational to the quartic surface given by

.X 2
� Y 2/.Z2

� R2/ D 2YZ.X 2
� R2/:

He has produced pencils of elliptic curves on this quartic surface, and some
rational curves on such pencils yield new parametric solutions over Q of degree
8 (different from that of Euler’s) to Problem 2. A somewhat similar approach
to that of Bremner was taken by Narumiya and Shiga [2001]. We briefly sketch
their approach. Using affine coordinates, the surface is given by

x2
C y2

D 1; y2
C z2

D q2; z2
C x2

D r2:

Put t D y=.x C 1/, so that

x D
1 � t2

1 C t2
and y D

2t

1 C t2
:

Next, change coordinates to .t; x0; x2; x3/ WD .t; z.1Ct2/; q.1Ct2/; r.1Ct2//.
The surface is now given by

x2
0 C 4t2

D x2
2 ; x2

0 C .1 � t2/2
D x2

3 :
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We will denote this surface, regarded as a family of curves over the t -line, by
Rt .

LEMMA 8.1. The family Et=Q defined by y2 D x.x C 4t2/.x C .1 � t2/2/ is
birational over Q to Rt .

PROOF. Put M D 4t2 and N D .1 � t2/2. Then the map Rt ! Et is given by
.x0; x2; x3/ ‘ .x; y/ with

x D MN.x3 � x2/=f.M � N /x0 C N x2 � M x3g;

y D MN.N � M /=f.M � N /x0 C N x2 � M x3g:

The inverse map Et ! Rt is given by

x0 D fy2
� M.x C N /2

g= .2.x C N /y/ ;

x2 D fy2
C M.x C N /2

g= .2.x C N /y/ ;

x3 D fy2
C N.x C M /2

g= .2.x C M /y/ :

The maps are clearly defined over Q. �

Using a similar analysis as given in Section 7, Narumiya and Shiga [2001]
showed that over Q.

p
2/, the surface Et is birational to the Kummer surface

associated with a product of two isogenous elliptic curves with CM by ZŒ
p

�2�.
An explicit rational curve in Et is then used to show the following.

PROPOSITION 8.2 [Narumiya and Shiga 2001]. One parametric solution to
Problem 2 is given by

X D �2.�2
� 4� C 5/2.�2

� 5� C 5/.�2
� 5/;

Y D �4�.� � 2/.2� � 5/.�2
� 4� C 5/.�2

� 5� C 5/;

Z D �.� � 1/.� � 2/.� � 3/.� � 5/.2� � 5/.3� � 5/;

P D �2.�2
� 4� C 5/.�2

� 5� C 5/.�4
� 4�3

C 8�2
� 20� C 25/;

Q D �.� � 2/.2� � 5/.�5�4
C 48�3

� 166�2
C 240� � 125/;

R D 2�8�26�7C14�6�446�5C1066�4�2230�3C3525�2�3250�C1250:

We remark that Narumiya and Shiga’s method implies that Et defines a singular
K3 surface and has Mordell–Weil rank 2. One section of infinite order is given
by x D 4t2 (defined over Q.

p
2/). This is found using that Et is a double

cover of the rational elliptic surface defined by y2 D x.x C 4s/.x C .1 � s/2/.
Using the table in [Oguiso and Shioda 1991], the Mordell–Weil group of the
latter surface is seen to be isomorphic to Z ˚.Z=2Z/2, with a generator modulo
torsion of height 1=4. It is then easily verified using [Shioda 1990] that x D 4s

defines such a generator. A second point on Et is found by using the complex
multiplication acting on the associated Kummer surface.
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Kummer surfaces associated with the product of two elliptic curves”, Trans. Amer.
Math. Soc. 353:4 (2001), 1469–1487.

[Koblitz 1993] N. Koblitz, Introduction to elliptic curves and modular forms, vol. 97,
2nd ed., Graduate Texts in Mathematics, Springer, New York, 1993.

[Kolyvagin 1988] V. A. Kolyvagin, “Finiteness of E.Q/ and SH.E; Q/ for a subclass
of Weil curves”, Izv. Akad. Nauk SSSR Ser. Mat. 52:3 (1988), 522–540. In Russian;
translated in Math. USSR. Izv. 32 (1989), 523–542.

[Korec 1984] I. Korec, “Nonexistence of a small perfect rational cuboid, II”, Acta Math.
Univ. Comenian. 44/45 (1984), 39–48.

[Kraus 1999] A. Kraus, “On the equation xp C yq D zr : a survey”, Ramanujan J. 3:3
(1999), 315–333.

[Kuwata and Wang 1993] M. Kuwata and L. Wang, “Topology of rational points on
isotrivial elliptic surfaces”, Internat. Math. Res. Notices 1993:4 (1993), 113–123.

[Lehmer 1899/1900] D. N. Lehmer, “Rational triangles”, Ann. of Math. .2/ 1:1-4
(1899/1900), 97–102.
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