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Engineering Applications of the Motion-Group
Fourier Transform
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ABSTRACT. We review a number of engineering problems that can be posed
or solved using Fourier transforms for the groups of rigid-body motions of
the plane or three-dimensional space. Mathematically and computationally
these problems can be divided into two classes: (1) physical problems that
are described as degenerate diffusions on motion groups; (2) enumeration
problems in which fast Fourier transforms are used to efficiently compute
motion-group convolutions. We examine engineering problems including
the analysis of noise in optical communication systems, the allowable po-
sitions and orientations reachable with a robot arm, and the statistical
mechanics of polymer chains. In all of these cases, concepts from non-
commutative harmonic analysis are put to use in addressing real-world
problems, thus rendering them tractable.

1. Introduction

Noncommutative harmonic analysis is a beautiful and powerful area of pure
mathematics that has connections to analysis, algebra, geometry, and the the-
ory of algorithms. Unfortunately, it is also an area that is almost unknown to
engineers. In our research group, we have addressed a number of seemingly
intractable “real-world” engineering problems that are easily modeled and/or
solved using techniques of noncommutative harmonic analysis. In particular, we
have addressed physical/mechanical problems that are described well as func-
tions or processes on the rotation and rigid-body-motion groups. The interac-
tions and evolution of these functions are described using group-theoretic convo-
lutions and diffusion equations, respectively. In this paper we provide a survey
of some of these applications and show how computational harmonic analysis on
motion groups is used.

The group of rigid-body motions, denoted as SE(N) (shorthand for “special
Euclidean” group in N-dimensional space), is a unimodular semidirect product
group, and general methods for constructing unitary representations of such Lie
groups have been known for some time (see [1; 25; 35|, for example). In the
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past 40 years, the representation theory and harmonic analysis for the Euclidean
groups have been developed in the pure mathematics and mathematical physics
literature. The study of matrix elements of irreducible unitary representation
of SE(3) was initiated by N. Vilenkin [39; 40] in 1957 (some particular matrix
elements are also given in [41]). The most complete study of SAI/E(?)) (the universal
covering group of SE(3)) with application to the harmonic analysis was given by
W. Miller in [28]. The representations of SE(3) were also studied in [16; 36; 37].
In recent works, fast Fourier transforms for SE(2) and SE(3) have been proposed
[24], and an operational calculus has been constructed [5].

However, despite the considerable progress in mathematical developments of
the representation theory of SE(3), these achievements have not yet been widely
incorporated in engineering and applied fields. In work summarized here we try
to fill this gap. A more detailed treatment of numerous applications can be found
in [6].

In Section 2 we review the representation theory of SE(2), give the matrix
elements of the irreducible unitary representations and review the definition of
the Fourier transform for SE(2). We also review operational properties of the
Fourier transform. We do not go into the intricate details of the Fourier transform
for SE(3), as those are provided in the references described above and they add
little to the understanding of how to apply noncommutative harmonic analysis
to real-world problems. Sections 3, 4 and 5 are devoted to application areas:
coherent optical communications, robotics, and polymer statistical mechanics,
respectively.

2. Fourier Analysis of Motion

In this section we review the basic definitions and properties of the Euclidean
motion groups. Our emphasis is on the motion group of the plane, but most of
the concepts extend in a natural way to three-dimensional space. See [6] for a
complete treatment.

2.1. Euclidean motion group. The Euclidean motion group, SE(N), is the
semidirect product of RY with the special orthogonal group, SO(N). We denote
elements of SE(N) as g = (a, A) € SE(N) where A € SO(N) and @ € R". The
identity element is e = (0, I) where I is the N x N identity matrix. For any g =
(a,A) and h = (r, R) € SE(N), the group law is written as goh = (a+ Ar, AR),
and g7 = (—ATa, AT). Any g = (a, A) € SE(N) acts transitively on a position
xz e RY as

g-x=Ax + a.
That is, position vector « is rigidly moved by rotation followed by a translation.

Often in the engineering literature, no distinction is made between a motion,
g, and the result of that motion acting on the identity element (called a pose
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or reference frame). Hence, we interchangeably use the words “motion” and
“frame” when referring to elements of SE(V).
It is convenient to think of an element of SE(N) as an (N + 1) x (N + 1)

matrix of the form:
A a
qg= .
0" 1

In the engineering literature, matrices with this kind of structure are called
homogeneous transforms.

For example, each element of SE(2) can be parameterized using polar coordi-
nates as:

cos¢ —sing rcosf
g(r,0,9) = sing cos¢ rsinf |,
0 0 1

where r > 0 is the magnitude of translation. SE(2) is a 3-dimensional man-
ifold much like R®. We can integrate over SE(2) using the volume element
d(g(r,0,¢)) = (472)"lrdrdfdy. This volume element is bi-invariant in the
sense that it does not change under left and right shifts by any fixed element
h € SE(2):

d(hog) =d(goh)=d(g).

Bi-invariant volume elements exist for SE(N) for N =2,3,4,.... A group with
bi-invariant volume element is called a unimodular group.

The Lie group SE(2) has an associated Lie algebra se(2). Physically, elements
of SE(2) describe finite motions in the plane, whereas elements of se(2) represent
infinitesimal motions. Since SE(2) is a three-dimensional Lie group, there are
three independent directions along which any infinitesimal motion can be de-
composed. The vector space of all such motions relative to the identity element
e € SE(2) together with the matrix commutator operation defines se(2). As
with any vector space, we can choose an appropriate basis. One such basis for
the Lie algebra se(2) consists of the following three matrices:

0 01 0 00 0 -1 0
Xi=(00O0]; Xo=1001]; Xgs=[1 0 O
0 00 0 00 0 0 O

The following one-parameter motions are obtained by exponentiating the above
basis elements of se(2):

1 0 ¢
g91(t) = exp(tX,) = 01 0 |;
0 0 1

g2(t) = exp(tXs) =

o O
O = O
—
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cost —sint 0
g3(t) = exp(tX3) = | sint cost 0
0 0 1

For the purposes of the current discussion, we can take as a definition of se(2)
the vector space spanned by any linear combination of X, X5, and X3. The
exponential mapping

exp : se(2) — SE(2)

is well-defined for every element of se(2) and is invertible except at a set of
measure zero in SE(2).

Any rigid-body motion in the plane can be expressed as an appropriate com-
bination of these three basic motions. For example, g = ¢1(2)g2(y)g3(d).

2.2. Differential operators on SE(2). The way to take partial derivatives of
a function of motion is to evaluate

X2 pgoep(tX)lmo,  KEF2 S plexp(tX,) o g)lo

(In our notation, R means that the exponential appears on the right, and L
means that it appears on the left. This means that XiR is invariant under left
shifts, while X’ZL is invariant under right shifts. Our notation is different than
others in the mathematics literature where the superscript denotes the invariance
of the vector field formed by the concatenation of these derivatives.) Explicitly,
we find the differential operators X’ZR in polar coordinates to be [6]

0 sin(¢—06) 0

Xl = cos(¢ — 9)5‘7’ BV
o . 0 cos(p—6) 0
R _ _ _nY il
Xy = =sin(o =0) g+ —— 55
cr_ O
3 a¢7
and in Cartesian coordinates to be
- 0 ., 0 5 ., 0 0 - 0
szcosqﬁa—x—&n(ba—y, Xf:sm(é%—l—comﬁa—y, Xf:a—qs.
The differential operators XZL in polar coordinates are
- 0 sinf 0 ~ 9 | cosf O - 0 0
XL —eospl Y9 S 9 xr_-9 .9
pEes T e Tt T e K T g8 o

2.3. Fourier analysis on SE(2). The Fourier transform, ¥, of a function of
motion, f(g) where g € SE(N), is an infinite-dimensional matrix defined as [6]:

=i /f p) d(g)
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where U(g,p) is an infinite dimensional matrix function with the property that
U(g1092,p) =U(g1,p)U(g2,p). This kind of matrix is called a matriz represen-
tation of SE(N). It has the property that it converts convolutions on SE(N) into
matrix products:

F(f1+ f2) = F(f2)F(f1)-

In the case when N = 2, the original function is reconstructed as

TP = 1) = [ tracelF0)U(g.p)p .
0
and the matrix elements of U(g, p) are expressed explicitly as [6]:

U (9(1,0,0),p) = j* e o m=mbl 1 (pr)

where J,, (z) is the v*" order Bessel function and j = \/—1. This inverse transform
can be written in terms of elements as

flo) = > /O " Frantinm (9, D)p . (2-1)

m,n€”’

In analogy with the classical Fourier transform, which converts derivatives
of functions of position into algebraic operations in Fourier space, there are
operational properties for the motion-group Fourier transform.

By the definition of the SE(2)-Fourier transform F and operators X R and XZ-L,
we can write the Fourier transform of the derivatives of a function of motion as

FIXIf) = u(Xip)f(p),  FIXFf] = —F(p)u(Xi,p),
where

X0 & GUCEX. )
Explicitly,
Unn (exp(tX1),p) = j" " Jm—n(pl).
We know that

d
2 Im (@) = 3[Im—1(x) = Jimia(2)]
and
1 form—n=0,
- (0) = {0 for m —n # 0.
Hence,
. _d _Jp
umn(th) = aumn(exp(tXl)ap) = _5(5m,n+1 + 5m,n—1)-
t=0
Likewise,

Umn(GXp(tX2)7p) = .n_me_j(n_m)ﬂ—/QJmfn(pt) = Jmfn(pt%
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and so

- d
Umn <X27 p) = %umn (eXp<tX2)a p)
t=0

= 7(‘]771—71—1(0) - Jm—n-‘rl(o)) - g((sm,n-‘rl - 5m,n—1)~

Similarly, we find
Umn (exp(tXs),p) = e_jmtém,n
and
= —jMOm n-

t=0

Fast Fourier transforms for SE(2) and SE(3) have been outlined in [6; 24].
Operational properties for SE(3) which are analogous to those presented here for
SE(2) can be found in [5; 6]. Subsequent sections in this paper describe various
applications of motion-group Fourier analysis to problems in engineering.

_ d
Umn (Xg, p) = %umn (exp(th), p)

3. Phase Noise in Coherent Optical Communications

In optical communications, laser light is used to transmit information along
fiber optic cables. There are several methods that are used to transmit and
detect information within the light. Coherent detection (in contrast to direct
detection) is a method that has the ability to detect the phase, frequency, ampli-
tude and polarization of the incident light signal . Therefore, information can be
transmitted via phase, frequency, amplitude, or polarization modulation. How-
ever, the phase of the light emitted from a semiconductor laser exhibits random
fluctuations due to spontaneous emissions in the laser cavity [19]. This phenom-
enon is commonly referred to as phase noise. Phase noise puts strong limitations
on the performance of coherent communication systems. Evaluating the influ-
ence of phase noise is essential in system design and optimization and has been
studied extensively in the literature [10; 12]. Analytical models that describe the
relationship between phase noise and the filtered signal are found in [2; 11]. In
particular, the Fokker—Planck approach represents the most rigorous description
of phase noise effects [13; 14]. To better apply this approach to system design
and optimization, an efficient and powerful computational tool is necessary. In
this section, we describe one such tool that is based on the motion-group Fourier
transform. Readers unfamiliar with the technical terms used below are referred
to [21]. The discussion in the following paragraph provides a context for this
particular engineering application, but the value of noncommutative harmonic
analysis in this context is solely due to its ability to solve equation (3-1).

Let s(t) be the input signal to a bandpass filter which is corrupted by phase
noise. Using the equivalent baseband representation and normalizing it to unit
amplitude, this signal can be written as [14]

S(t) = I¢)
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where ¢(t) is the phase noise, usually modeled as a Brownian motion process.
The function h(t) is the impulse response of the bandpass filter. The output of
the bandpass filter is denoted z(t). Let us represent z(t) through its real and
imaginary parts:
2(t) = z(t) + jy(t) = r(t)e??®.
The 3-D Fokker—Planck equation defining the probability density function (pdf)
of z(t) is derived as [2; 45]:
af af DOo*f

% = —h(t) cos gb% — h(t)sin (ba—y + 290 (3-1)
with initial condition f(x,y, $;0) = §(x)d(y)d(¢), where § being the Dirac delta
function. The parameter D is related to the laser line width Av by D = 27Aw.
Having an efficient method for solving equation (3-1) is of great importance in
the design of filters.

A number of papers have attempted to solve the above equations using a
variety of techniques including series expansions, numerical methods based on
discretizing the domain, and analytical methods [42; 45]. However, all of them
are based on classical partial differential equation solution techniques.

In our work, we present a new method for solving these methods using har-
monic analysis on groups. These techniques reduce the above Fokker—Planck
equations to systems of linear ordinary differential equations with constant or
time-varying coefficients in a generalized Fourier space. The solution to this
system of equations in generalized Fourier space is simply a matrix exponential
for the case of constant coefficients. A usable solution is then generated via the
generalized Fourier inversion formula.

Using the differential operators defined on the motion group, the 3-D Fokker—
Planck equation in (3—1) can be rewritten as

af ~ D -

o = (~hOXf + FER?) 1 (3-2)
ot 2

This equation describes a kind of process that evolves on the group of rigid-

body motions SE(2). Applying the motion-group Fourier transform to (3—-2), we
can convert it to an infinite system of linear ordinary differential equations:

af _

=AM/ (3-3)

For equation (3-2), the matrix is
N D, 2
A(t) = —h(t)u(Xz, p) + E(U(X&p))

and its elements are

D
A(t)mn = _h(t)g(ém,rwrl - 6m,n71) - 5m25m,n-

[\
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Numerical methods such as Runge-Kutta integration can be applied to easily
solve the truncated version of this system. In the case when h(t) is a constant,
then A is a constant matrix and the solution to the resulting linear time-invariant
system can be written in closed form as

f(pit) = exp(At)
with the initial condition that f (p; 0) is the infinite-dimensional identity matrix.
In practice we truncate A at finite dimension, then exponentiate.
Once we get the solution to (3-3), we can then substitute it into the Fourier
inversion formula for the motion group in (2-1) to recover the pdf f(g;t) of z(t).
To get the pdf f(r,6;t) is just an integration with respect to ¢ as

27 o0
Fo0st) = 5= [ rlatido = S5 [ ot aorindn (-4)

2w
nez

Integrating equation (3—4) over 6 will give us the marginal pdf of |z(t)| as:

Frit) = / " o) dolpr)pdp. (35)

Using our method, we can get a simple and compact expression for the marginal
pdf for the output of the bandpass filter given in (3-5).
For details and numerical results generated using this approach, see [43].

4. Robotics

A robotic manipulator arm is a device used to position and orient objects in
space. The set of all reachable positions and orientations is called the workspace
of the arm. A robot arm that can attain only a finite number of different states
is called a discretely-actuated manipulator. For such manipulators, it is a com-
binatorially explosive problem to enumerate by brute force all possible states for
arms that have a high degree of articulation. The function that describes the
relative density of reachable positions and orientations in the workspace (called
a workspace density function) has been shown to be an important quantity in
planning the motions of these manipulator arms [4]. This function is denoted as
f(g; L) where g € SE(N), and L is the length of the arm.

Noncommutative harmonic analysis enters in this problem as a way to reduce
this complexity. It was shown in [4] that the workspace density function f(g; L1+
L,) for two concatenated manipulator segments with length L; and Lo is the
motion-group convolution

(g n + Lo) = £(g: 1) * f(g; Lo) = /G F(h L) f(h o g Lo)dh,  (4-1)

where h is a dummy variable of integration and dh is the bi-invariant (Haar) mea-
sure for SE(NNV). That is, given two short arms with known workspace densities,
we can generate the workspace density of the long arm generated by stacking one
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short arm on the other using equation (4-1). In order to perform these convolu-
tions efficiently, the concept of FFTs for the motion groups was studied in [6].

In the rest of this section, we discuss an alternative method for generating
manipulator workspace density functions that does not explicitly compute con-
volutions. Instead, it relies on the same kinds of degenerate diffusions we have
seen already in the context of phase noise.

4.1. Inspiration of the algorithm. Consider a discretely-actuated serial
manipulator which consists of concatenated segments called modules. Suppose
that each module can reach 16 different states. The workspace of this manipu-
lator with 2 modules, 3 modules and 4 modules can be generated by brute force
enumeration because 162, 163, and 16* are not terribly huge numbers. It is easy
to imagine that the size of the workspace will spread out with the increment of
modules. This enlargement of the workspace is just like the diffusion produced
by a drop of ink spreading in a cup of water. Inspired by this observation, we
view the workspace of a manipulator as something that grows/evolves from a
single point source at the base as the length of the manipulator increases from
zero. The workspace is generated after the manipulator grows to full length.

4.2. Implementation of the algorithm. With this analogy, we then need to
determine what kind of diffusion equation is suitable to model this process. We
get such an equation by realizing that some characteristics of manipulators are
similar to those of polymer chains like DNA.

During our study of conformational statistics in polymer science, we derived a
diffusion-type equation defined on the motion group [7]. This equation describes
the probability density function of the position and orientation of the distal
end of a stiff macromolecule chain relative to its proximal end. By involving
parameters which indicate the kinematic properties of a manipulator into this
equation, we can modify it to the diffusion-type equation describing the evolution
of the workspace density function. It is written explicitly as

O~ (0P + B(XF)? + XF + (P (12)
Here f stands for the workspace density function, and L is the manipulator
length. The differential operators X and X2 are those defined on SE(2) given
earlier. Parameters (3, € and a describe the kinematic properties of manipulators.
We define these kinematic properties as flexibility, extensibility and the degree
of asymmetry. The parameter 5 describes the flexibility of a manipulator in the
sense of how much a segment of the manipulator can bend per unit length. A
larger value of 0 means that the manipulator can bend a lot. The parameter
describes the extensibility of a manipulator in the sense of how much a manip-
ulator can extend along its backbone direction. A larger value of € means that
the manipulator can extend a lot. The parameter o describes the asymmetry in
how the manipulator bends. When « = 0, the manipulator can reach left and
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right with equal ease. When a < 0, there is a preference for bending to the left,
and when « > 0 there is a preference for bending to the right. Since «, 3, and
¢ are qualitative descriptions of the kinematic properties of a manipulator, they
are not directly measurable.

This simple three-parameter model qualitatively captures the behavior that
has been observed in numerical simulations of workspace densities of discretely-
actuated variable-geometry truss manipulators [23]. Clearly, equation (4-2) can
be solved in the same way as the phase-noise equation. We have done this in [43].

5. Statistical Mechanics of Macromolecules

In this section, we show how certain quantities of interest in polymer physics
can be generated numerically using Euclidean-group convolutions. We also show
how for wormlike polymer chains, a partial differential equation governs a pro-
cess that evolves on the motion group and describes the diffusion of end-to-end
position and orientation. This equation can be solved using the SE(3)-Fourier
transform in a manner very similar to the way the phase-noise Fokker—Planck
was addressed in Section 3. This builds on classical works in polymer theory
such as [8; 15; 20; 22; 34; 44].

5.1. Mass density, frame density, and Euclidean group convolutions.
In statistical mechanical theories of polymer physics, it is essential to compute
ensemble properties of polymer chains averaged over all of their possible confor-
mations [9; 27]. Noncommutative harmonic analysis provides a tool for comput-
ing probability densities used in these averages.

In this subsection we review three statistical properties of macromolecular
ensembles. These are: (1) The ensemble mass density for the whole chain p(x),
which is generated by imagining that one end of the chain is held fixed and a
cloud is generated by all possible conformations of the chain superimposed on
each other; (2) The ensemble tip frame density f(g) (where g is the frame of
reference of the distal end of the chain relative to the fixed proximal end); (3)
The function u(g,x), which is the ensemble mass density of all configurations
which grow from the identity frame fixed to one end of the chain and terminate
at the relative frame g at the other end. Figures that describe these quantities
can be found in [3].

The functions p, f, and u are related to each other. Given u(g,x), the en-
semble mass density is calculated by adding the contribution of each p for each
different end position and orientation:

@)= [ utg.)ds. (5-1)

This integration is written as being over all motions of the end of the chain, but
only frames g in the support of x contribute to the integral. Here G is shorthand
for SE(3) and dg denotes the invariant integration measure for SE(3).
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In an analogous way, it is not difficult to see that integrating the x-dependence
out of p provides the total mass of configurations of the chain starting at frame
e and terminating at frame g. Since each chain has mass M, this means that
the frame density f(g) is related to u(g, x) as:

flo) = 47 | nlo.w)da. 6-2)

We note the total number of frames attained by one end of the chain relative
to the other is

F= [ fa)ds
G
It then follows that
/ p(x)de = F - M.
RB

If the functions p(x) and f(g) are known for the whole chain then a number
of important thermodynamic and mechanical properties of the polymer can be
determined [6].

We can divide the chain into P segments that are short enough to allow brute
force enumeration calculation of p;(x) and f;(g) for i = 1,..., P, where g is the
relative frame of reference of the distal end of the segment with respect to the
proximal one. For a homogeneous chain, such as polyethylene, these functions
are the same for each value of i =1,..., P.

In the general case of a heterogeneous chain, we can calculate the functions
piit1(x), fiit1(g9), and p; ;41(g, &) for the concatenation of segments i and i+ 1
from those of segments ¢ and i + 1 separately in the following way:

(@) = Fapi(e) + [ fihpia(ht o) d, (5-3)
e
Jiiv1(g) = (fi * fix1)(g) = /Gfi(h)fi+1(h_1 o g)dh. (5-4)
and
Hii+1(9, %) = /G (1i(h, ) fiyr(h™ o g) + filh)pigr(h™ o g, h™ " 0 @) dh.
(5-5)

In these expressions h € G = SE(3) is a dummy variable of integration.
The meaning of equation (5-3) is that the mass density of the ensemble of all
conformations of two concatenated chain segments results from two contribu-
tions. The first is the mass density of all the conformations of the lower seg-
ment (weighted by the number of different upper segments it can carry, which
is Fiy1 = fG fit1dg). The second contribution results from rotating and trans-
lating the mass density of the ensemble of the upper segment, and adding the
contribution at each of these poses (positions and orientations). This contribu-
tion is weighted by the number of frames that the distal end of the lower segment

1

can attain relative to its base. Mathematically L(h)p;+1(x) = piz1(h~ o) is



74 GREGORY S. CHIRIKJIAN AND YUNFENG WANG

a left-shift operation which geometrically has the significance of rigidly trans-
lating and rotating the function p;41(x) by the transformation h. The weight
fi(h) dh is the number of configurations of the i*" segment terminating at frame
of reference h.

The meaning of equation (5-4) is that the distribution of frames of reference
at the terminal end of the concatenation of segments ¢ and i 4+ 1 is the group-
theoretical convolution of the frame densities of the terminal ends of each of the
two segments relative to their respective bases. This equation holds for exactly
the same reason why equation (4-1) does in the context of robot arms.

Equation (5-5) says that there are two contributions to u; ;+1(g, Z). The first
comes from adding up all the contributions due to each u;(h,Z). This is weighted
by the number of upper segment conformations with distal ends that reach the
frame ¢ given that their base is at frame h. The second comes from adding
up all shifted (translated and rotated) copies of u;11(g, ), where the shifting is
performed by the lower distribution, and the sum is weighted by the number of
distinct configurations of the lower segment that terminate at h. This number
is f;(h) dh.

Equations (5-3), (5-4) and (5-5) can be iterated as described in [3; 6].

5.2. Statistics of stiff molecules as solutions to PDEs on SO(3) and
SE(3). Experimental measurements of the stiffness constants of DNA and other
stiff (or semi-flexible) macromolecules have been reported in a number of papers,
as well as the statistical mechanics of such molecules. See [17; 26; 29; 30; 31; 32;
33; 38], for example.

The stiffness and chirality (how helical the molecule is) can be described with
parameters Dy, and d; for [,k = 1,2,3. In particular, Dj; are the elements
of the inverse of the stiffness matrix. When a force is applied, these constants
determine how easily one end of the molecule deflects from the helical shape that
it assumes when no forces act on it. The parameters d; describe the helical shape
of an undeformed molecule with flexibility described by D;;. These parameters
are described in detail in [7].

Degenerate diffusion equations describing the evolution of position and orien-
tation of frames of reference attached to points on the chain at different values
of length, L, have been derived [6; 43]. These equations incorporate stiffness and
chirality information and are written in terms of SE(3) differential operators as

3 3

g 1 R CR L %

(aL -5 > DuXFRE -3 Ak + X§> f=o. (5-6)
k=1 =1

The initial conditions are f(a, A;0) = 6(a)d(A) where g = (a, A).
This equation has been solved using the operational properties of the SE(3)
Fourier transform in [5; 6; 43].
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6. Conclusions

This paper has reviewed a number of applications of harmonic analysis on
the motion groups. This illustrates the power of noncommutative harmonic
analysis, and its potential as a computational and analytical tool for solving
real-world problems. We hope that this review will stimulate interest among
others working in the field of noncommutative harmonic analysis to apply these
methods to problems in engineering, and we hope that those in the engineering
sciences will appreciate noncommutative harmonic analysis for the powerful tool
that it is.
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