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Fast X-Ray and Beamlet Transforms for
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ABSTRACT. Three-dimensional volumetric data are becoming increasingly
available in a wide range of scientific and technical disciplines. With the
right tools, we can expect such data to yield valuable insights about many
important phenomena in our three-dimensional world.

In this paper, we develop tools for the analysis of 3-D data which may
contain structures built from lines, line segments, and filaments. These
tools come in two main forms: (a) Monoscale: the X-ray transform, offering
the collection of line integrals along a wide range of lines running through
the image—at all different orientations and positions; and (b) Multiscale:
the (3-D) beamlet transform, offering the collection of line integrals along
line segments which, in addition to ranging through a wide collection of
locations and positions, also occupy a wide range of scales.

We describe different strategies for computing these transforms and sev-
eral basic applications, for example in finding faint structures buried in
noisy data.

1. Introduction

In field after field, we are currently seeing new initiatives aimed at gathering
large high-resolution three-dimensional datasets. While three-dimensional data
have always been crucial to understanding the physical world we live in, this
transition to ubiquitous 3-D data gathering seems novel. The driving force is
undoubtedly the pervasive influence of increasing storage capacity and computer
processing power, which affects our ability to create new 3-D measurement in-
struments, but which also makes it possible to analyze the massive volumes of
data that inevitably result when 3-D data are being gathered.
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As examples of such ongoing developments we can mention: Extragalactic
Astronomy [50], where large-scale galaxy catalogs are being developed; Biological
Imaging, where methods like single-particle electron microscopy and tomographic
electron microscopy directly give 3-D data about structure of biological interest
at the cellular level and below[45; 26]; and Experimental Particle Physics, where
3-D detectors lead to new types of experiments and new data analysis questions
[22].

In this paper we describe tools which will be helpful for analyzing 3-D data
when the features of interest are concentrated on lines, line segments, curves,
and filaments. Such features can be contrasted to datasets where the objects
of interest might be blobs or pointlike objects, or where the objects of interest
might be sheets or planar objects. Effectively, we are classifying objects by
their dimensionality; and for this paper the underlying objects of interest are of
dimension 1 in R3.

Figure 1. A simulated large-scale galaxy distribution. (Courtesy of Anatoly
Klypin.)

1.1. Background motivation. As an example where such concerns arise,
consider an exciting current development in extragalactic astronomy: the com-
pilation and publication of the Sloan Digital Sky Survey, a catalog of galaxies
which spans an order of magnitude greater scale than previous catalogs and
which contains an order of magnitude more data.

The catalog is thought to be massive enough and detailed enough to shed
considerable new light on the processes underlying the formation of matter and
galaxies. It will be particularly interesting (for us) to better understand the
filamentary and sheetlike structure in the large-scale galaxy distribution. This
structure reflects gravitational processes which cause the matter in the universe
to collapse from an initially fully three-dimensional scatter into a scatter con-
centrated on lower-dimensional structures [41; 25; 49; 48].
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Figure 1 illustrates a point cloud dataset obtained from a simulation of galaxy
formation. Even cursory visual inspection suggests the presence of filaments and
perhaps sheets in the distribution of matter. Of course, this is artificial data.
Similar figures can be prepared for real datasets such as the Las Campanas cat-
alog, and, in the future, the Sloan Digital Sky Survey. To the eye, the simulated
and real datasets will look similar. But can one say more? Can one rigorously
compare the quantitative properties of real and simulated data? Existing tech-
niques, based on two-point correlation functions, seem to provide only very weak
ability to discriminate between various point configurations [41; 25].

This is a challenging problem, and we expect that it can be attacked using
the methods suggested in this paper. These methods should be able to quantify
the extent and nature of filamentary structure in such datasets, and to provide
invariants to allow detailed comparisons of point clouds. While we do not have
space to develop such a specific application in detail in this paper, we hope to
briefly convey here to the reader a sense of the relevance of our methods.

What we will develop in this paper is a set of tools for digital 3-D data
which implement the X-Ray transform and related transforms. For analysis of
continuum functions f(z,y,z) with (z,y,2) € R?, the X-ray transform takes
the form

(X)) = / (),

where L is a line in R?, and p is a variable indexing points in the line; hence the
mapping f — X f contains within it all line integrals of f.

It seems intuitively clear that the X-ray transform and related tools should be
relevant to the analysis of data containing filamentary structure. For example, it
seems that in integrating along any line which matches a filament closely over a
long segment, we will get an unusually large coefficient, while on lines that miss
filaments we will get small coefficients, and so the spread of coefficients across
lines may reflect the presence of filaments.

This sort of intuitive thinking resembles what on a more formal level would be
called the principle of matched filtering in signal detection theory. That principle
says that to detect a signal in noisy data, when the signal is at unknown location
but has a known signature template, we should integrate the noisy data against
the signature template shifted to all locations where the signal may be residing.
Now filaments intuitively resemble lines, so integration along lines is a kind of
intuitive matched filtering for filaments. Once this is said, it becomes clear that
one wants more than just integrating along lines, because filamentarity can be
a relatively local property, while lines are global objects. As filaments might
resemble lines only over moderate-length line segments, one might find it more
informative to compare them with templates of line integrals over line segments
at all lengths, locations, and orientations. Such segments may do a better job of
matching templates built from fragments of the filament.
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Hence, in addition to the X-ray transform, we also consider in this paper
a multiscale digital X-ray transform which we call the beamlet transform. As
defined here, the beamlet transform is designed for data in a digital n x n X n
array. Its intent is to offer multiscale, multiorientation line integration.

1.2. Connection to 2-D beamlets. Our point of view is an adaptation to the
3-D setting of the viewpoint of Donoho and Huo, who in [21] have considered
beamlet analysis of 2-D images. They have shown that beamlets are connected
with various image processing problems ranging from curve detection to image
segmentation. In their classification, there are several levels to 2-D beamlet
analysis:

e Beamlet dictionary: a special collection of line segments, deployed across ori-
entations, locations, and scales in 2-D, to sample these in an efficient and
complete manner.

e Beamlet transform: the result of obtaining line integrals of the image along
all the beamlets.

e Beamlet graph: a graph structure underlying the 2-D beamlet dictionary which
expresses notions of adjacency of beamlets. Network flow algorithms can use
this graph to explore the space of curves in images very efficiently. Multiscale
chains of 2-D beamlets can be expressed naturally as connected paths in the
beamlet graph.

e Beamlet algorithms: algorithms for image processing which exploit the beam-
let transform and perhaps also the beamlet graph.

They have built a wide collection of tools to operationalize this type of analysis
for 2-D images. These are available over the internet [1; 2]. In the BeamLab
environment, one can, for example, assemble the various components in the
above picture to extract filaments from noisy data. This involves calculating
beamlet transforms of the noisy data, using the resulting coefficient pyramid as
input to processing algorithms which are organized around the beamlet graph
and which use various graph-theoretical optimization procedures to find paths
in the beamlet graph which optimize a statistical goodness-of-match criterion.

Exactly the same classification can be made in three dimensions, and very
similar libraries of tools and algorithms can be built. Finally, many of the same
applications from the two-dimensional case are relevant in 3-D. Our goal in this
paper is to build the very basic components of this picture: describing the X-ray
and beamlet transforms that we work with, the resulting beamlet pyramids, and
a few resulting beamlet algorithms that are easy to implement in this framework.
Unfortunately, in this paper we are unable to explore all the analogous beamlet-
based algorithms—such as the algorithms for extracting filaments from noisy
data using shortest-path and related algorithms in the beamlet graph. We simply
scratch the surface.
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1.3. Contents. The contents of the paper are as follows:

e Section 2 offers a discussion of two different systems of lines in 3-D, one
system enumerating all line segments connecting pairs of voxel corners on the
faces of the digital cube, and one system enumerating all possible slopes and
intercepts.

e Section 3 discusses the construction of beamlets as a multiscale system based
on these systems of lines, and some properties of such systems. The most
important pair of properties being (a) the low cardinality of the system: it
has O(n*) elements as opposed to the O(n%) cardinality of the system of all
multiscale line segments, while (b) it is possible to express each line segment
in terms of a short chain of O(log(n)) beamlets.

e Section 4 discusses two digital X-ray transform algorithms based on the vertex-
pairs family of lines.

e Section 5 discusses transform algorithms based on the slope-intercept family
of lines.

e Section 6 exhibits some performance comparisons
e Section 7 offers some basic examples of X-ray analysis and synthesis.

e Section 8 discusses directions for future work.

2. Systems of Lines in 3-D

To implement a digital X-ray transform one needs to define structured families
of digital lines. We use two specific systems here, which we call the vertex-
pair system and the slope-intercept system. Alternative viewpoints on ‘digital
geometry’ and ‘discrete lines’ are described in [33; 34].

2.1. Vertex-pair systems. Take an n x n X n cube of unit volume voxels, and
call the set of vertices V' the voxel corners which are not interior to the cube.
These vertices occur on the faces on the data cube, and there are about 6(n +1)?
such vertices. For an illustration, see Figure 2.

To keep track of vertices, we label them by the face they belong to 1 < f <6
and by the coordinates [k, ko] within the face.

Now consider the collection of all line segments generated by taking distinct
pairs of vertices in V. This includes many ‘global scale lines’ crossing the cube
from one face to another, at voxel-level resolution. In particular it does not
contain any line segments with endpoints strictly inside the cube.

The set has roughly 18n* elements, which can be usefully indexed by the pair
of faces (f1, f2) they connect and the coordinates [ki, k3], [k?, k3] of the endpoints
on those faces. There are 15 such face-pairs involving distinct faces, and we can
uniquely specify a line by picking any such face-pair and any pair of coordinate
pairs obeying k7 € {0,1,2,...n}.
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Figure 2. The vertices associated with the data cube are the voxel corners on
the surface; a digital line indicated in red, with endpoints at vertices indicated in
green.

2.2. Slope-intercept systems. We now consider a different family of lines,
defined not by the endpoints, but by a parametrization. For this family, it is best
to change the origin of the coordinate system so that the data cube becomes an
n x n x n collection of cubes with center of mass at (0,0,0). Hence, for (x,y, 2)
in the data cube we have |z|,|y|,|z| < n/2. We can consider three kinds of
lines: x-driven, y-driven, and z-driven, depending on which axis provides the
shallowest slopes. An z-driven line takes the form

Z2=8x+1t,, Y=S8,T+1

with slopes s.,s,, and intercepts ¢, and t,. Here the slopes |s.|,|sy| < 1. y- and
z-driven lines are defined with an interchange of roles between x and y or z, as
the case may be.

We will consider the family of lines generated by this, where the slopes and
intercepts run through an equispaced family:

Sz, Sy, 8, €{20/n L =—n/2,... ,n/2—1}, ty ty,t € {l:—n+1,...,n—1}.

3. Multiscale Systems: Beamlets

The systems of line segments we have just defined consist of global scale seg-
ments beginning and ending on faces of the cube. For analysis of fragments of
lines and curves, it is useful to have access to line segments which begin and
end well inside the cube and whose length is adjustable so that there are line
segments of all lengths between voxel scale and global scale.

A seemingly natural candidate for such a collection is the family of all line
segments between any voxel corner and any other voxel corner. For later use, we
call such segments 3-D beams. This set is expressive —it approximates any line
segment we may be interested in to within less than the diameter of one voxel.
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On the other hand, the set of all such beams can be of huge cardinality — with
O(n3) choices for both endpoints, we get O(n%) 3-D beams —so that it is clearly
infeasible to use the collection of 3-D beams as a basic data structure even for
n = 64. Note that digital 3-D imagery is becoming available with n = 2048 from
Resolution Sciences, Inc., Corte Madera, CA, and many important applications
involve the analysis of volumetric images that contain filamentary objects such
as blood vessel networks or fibers in a paper. For such datasets it seems natural
to use beams-based analysis tools, however, working with O(n%) storage would
be prohibitive.

The challenge, then, is to develop a reduced-cardinality substitute for the
collection of 3-D beams, but one which is nevertheless expressive, in that it can
be used for many of the same purposes as 3-D beams. Throughout this section
we will be working in the context of vertex-pair systems of lines.

3.1. The beamlet system. A dyadic interval D(j, k) satisfies D(j,k) =
[k/27,(k +1)/27] C [0,1] where k is an integer between 0 and 27; it has length
279, A dyadic cube C(k1,ke,ks,j) C [0,1]® is the direct product of dyadic
intervals

[k1/27, (k1 +1)/27] @ [ko/27, (ko +1)/27] @ [k3/27, (ks + 1)/27]

where 0 < k1, ko, ks < 27 for an integer 7 > 0. Such cubes can be viewed as de-
scended from the unit cube C(0,0,0,0) = [0, 1] by recursive partitioning. Hence,
the splitting C(0,0,0,0) in half along each axis D(j,k1) ® D(j, ko) ® D(4, k3)
yields the eight cubes C(ky, ko, ks, 1) where k; € {0,1}, splitting those in half
along each axis we get the 64 subcubes C'(k1, k2, k3,2) where k; € {0,1, 2,3}, and
if we decompose the unit cube into n® voxels using a uniform n-by-n-by-n grid
with n = 27 dyadic, then the individual voxels are the n® cells C(ky, ko, k3, J),
0< k‘l,kg,k‘g < n.

C(0,0,0,0) c(1,1,1,1)

€011,
05 05) (1,011
€(0.1.0,1)
0 0 C(1,0.0,1)
1 1
0.5 1 1
0.5 .
00 00 ¢or10m

Figure 3. Dyadic cubes.
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Associated to each dyadic cube we can build a system of lines based on vertex
pairs. For a dyadic cube Q = C(ki, ko, k3, 7) tiled by voxels of side 1/n for a
dyadic n = 27 with J > j, let V;,(Q) be the set of voxel corners on the faces of
Q@ and let B, (Q) be the collection of all line segments generated by vertex-pairs
from V,(Q).

DEFINITION 1. We call B, (Q) the set of 3-D beamlets associated to the cube Q.
Taking the collection of all dyadic cubes at all dyadic scales 0 < j < J, and all
beamlets generated by all these cubes, the 3-D beamlet dictionary is the union
of all the beamlet sets of all dyadic subcubes of the unit cube, and we denote
this set by B,,.

0

=
A mg

=\
[N
45

Figure 4. Vertices on dyadic cubes are always just the points on the faces of the
cubes.

\

Figure 5. Examples of beamlets at two different scales: (a) scale 0 (coarsest
scale); (b) scale 1 (next finer scale).

This dictionary of line segments has three desirable properties.

o It is a multi-scale structure: it consists of line segments occupying a range of
scales, locations, and orientations.

e It has controlled cardinality: there are only O(n*) 3-D beamlets, as compared
to O(n®) beams.
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e It is expressive: a small number of beamlets can be chained together to ap-
proximately represent any beam.

The first property is obvious: the multi-scale, multi-orientation, multi- location
nature has been obtained as a direct result of the construction.

To show the second property, we compute the cardinality of B,,. By assump-
tion, our voxel size 1/n has n = 27, so there are J + 1 scales of dyadic cubes.
Of course for any scale 0 < j < .J there are 2%/ dyadic cubes of scale j; each of
these dyadic cubes contains 23(/=7) voxels, approximately 6 x 22(/=7) boundary
vertices, and therefore 18 x 24(/=7) 3-D beamlets.

The total number of 3-D beamlets at scale j is the number of dyadic cubes
at scale j, times the number of beamlets of a dyadic cube at scale j, which gives
18x 2477, Summing for all scales gives a total of approximately 36 x2*/ = O(n*)
elements total.

We will now turn to our third claim —that the collection of 3-D beamlets is
expressive. To develop our support for this claim, we will first introduce some
additional terminology and make some simple observations, and then state and
prove a formal result.

3.2. Decompositions of beams into chains of beamlets. In decomposing
a dyadic cube @ at scale j into its 8 disjoint dyadic subcubes at scale j + 1, we
call those subcubes the children of ), and say that @ is their parent. We also
say that 2 dyadic cubes are siblings if they have the same parent. Terms such
as descendants and ancestors have the obvious meanings. In this terminology,
except at the coarsest and finest scales, all dyadic subcubes have 8 children, 7
siblings and 1 parent. The data cube has neither parents nor siblings and the
individual voxels don’t have children. We can view the inheritance structure of
the set of dyadic cubes as a balanced tree where each node corresponds to a
dyadic cube, the data cube corresponds to the root and the voxel cubes are the
leaves. The depth of a node is simply the scale parameter j of the corresponding
cube C(kl, kg, kg,j).

The dividing planes of a dyadic cube are the 3 planes that divide the cube
into its 8 children; we refer to them as the z-divider, y-divider and z-divider.
For example the z-divider of C(0,0,0,0) is the plane {(1/2,y,2) : 0 < y,z < 1},
the y-divider is {(x,1/2,2) : 0 < x,z < 1}, and the z-divider is {(z,y,1/2) : 0 <
x,y <1}

We now make a remark about beamlets of data cubes at different dyadic n.
Suppose we have two data cubes of sizes n; = 271 and n, = 272, and suppose
that ng > ny. Viewing the two data cubes as filling out the same volume [0, 1]3,
consider the beamlets in each system associated with a common dyadic cube
C(k1,k2,k3,7), 0 < j < j1 < jo. The collection of beamlets associated with
the ny-based system has a finer resolution than those associated with the no-
based system; indeed every beamlet in the B, also occurs in the B,,. Hence,
in a natural sense, the beamlet families refine, and have a natural limit, B,
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Figure 6. Dividing planes of a cube.

say. B, of course, is the collection of all line segments in [0,1]® with both
endpoints on the boundary of some dyadic cube. We will call members of this
family the continuum beamlets, as opposed to the members of some B,,, which
are discrete beamlets. Every discrete beamlet is also a continuum beamlet, but
not the reverse.

LEMMA 1. Divide a continuum beamlet associated to a dyadic cube @ into the
components lying in each of the child subcubes. There are either one, two, three
or four distinct components, and these are continuum beamlets.

PROOF. Traverse the beamlet starting from one endpoint headed toward the
other. If you travel through more than one subcube along the way, then at any
crossing from one cube to another, you will have to penetrate one of the z-, y-,
or z-dividers. You can cross each such dividing plane at most once, and so there
can be at most 4 different subcubes traversed. O

THEOREM 1. Each line segment lying inside the unit cube can be approximated
by a connected chain of m discrete beamlets in B,, where the Hausdorff distance
from the chain to the beam is at most 1/n and where the number of links m in
the chain is bounded above by 6loga(n).

ProOOF. Consider the arbitrary line segment ¢ inside the unit cube with end-
points v; and ve that are not necessary voxel corners. We can approximate ¢
with a beam b by replacing each endpoint with the closest voxel corner. Since the
v/3/(2n) neighborhood of any point inside the unit cube must include a vertex,
the Hausdorff distance between £ and b is bounded by v/3/(2n).

We now decompose the beam b into a minimal cardinality chain of connected
continuum beamlets, by a recursive algorithm which starts with a line segment,
and at each stage breaks it into a chain of continuum beamlets, with remainders
on the ends, to which the process is recursively applied.

In detail, this works as follows. If b is already a continuum beamlet for
C(0,0,0,0) we are done; otherwise, b can be decomposed into a chain of (at most
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Figure 7. Decomposition of several beamlets into continuum beamlets at next
finer scale, indicating cases which can occur.

four) segments based on crossings of b with the 3 dividing planes of C(0,0,0,0).
The interior segments of this chain all have endpoints on the dividing planes and
hence are all continuum beamlets for the cubes at scale j = 1. We go to work
on the remaining segments. Either endmost segment of the chain might be a
continuum beamlet for the associated dyadic cube at scale 7 = 1; if so, we are
done with that segment; if not, we decompose the segment into its components
lying in the children dyadic cubes at scale j = 2. Again, the internal segments of
this chain will be continuum beamlets, and additionally, at least one of the two
endmost segments will be a continuum beamlet. If both endmost segments are
continuum beamlets, then we are done. If not, take the segment which is not a
beamlet and break it into its crossings with the dividing planes of the enclosing
dyadic cube. Continue in this way until we reach the finest level, where, by
hypothesis, we obtain a segment which has an endpoint in common with the
original beam b. Since b is a beam, it ends in a vertex corner, and since the
segment arose from earlier stages of the algorithm, the other endpoint is on the
boundary of a dyadic cube. Hence the segment is a continuum beamlet and we
are done.

Let’s upperbound the number of beamlets generated by this algorithm. As-
sume always that we never fortuitously get an end segments to be a beamlet when
it is not mandated by the above comments. So we have 2 continuum beamlets
at the 1st scale and we are left with 2 segments to replace by 2 chains of discrete
beamlets at finer scales. In the worst case, each of the segments when decom-
posed at the next scale, generates 3 continuum beamlets and 1 non-beamlet.
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Continuing to the finest scale, in which the dyadic cubes are the individual vox-
els, we can have at most 2 beamlets in the chain at the finest scale. So in the
worst case our chain will include 2 continuum beamlets at the 1st scale, 2 at the
finest scale and 6 at any other scale 2,3, ...,J — 1, So we get a maximum total
of 24 6(J — 1)+ 2 = 6J — 2 continuum beamlets needed to represent any line
segment in the unit cube.

We now take the multiscale chain of beamlets and approximate it by a chain
of discrete beamlets. The point is that the Hausdorff distance between line
segments is upperbounded by the distance between corresponding endpoints.
Now both endpoints of any continuum beamlet in B, lie on certain voxel faces.
Hence they lie within a 1/(1v/2n) neighborhood of some voxel corner. Hence
any continuum beamlet in B, can be approximated by a discrete beamlet in B,
within a Hausdorff distance of 1/(v/2n). Notice that there may be several choices
of such approximants; we can make the choice of approximant consistently from
one beamlet to the next to maintain chain connectivity if we like.

So we get a maximum total of 6J — 2 connected beamlets needed to ap-
proximate any line segment in the unit cube to within a Hausdorff distance of

max{v/3/(2n),1/(v/2n)} < 1/n. O

The fact that arbitrary line segments can be approximated by relatively few
beamlets implies that every smooth curve can be approximated by relatively few
beamlets.

To see this, notice that a smooth curve can be approximated to within distance
1/m? by a chain about m line segments — this is a simple application of calculus.
But then, approximating each line segment in the chain by its own chain of
6log(n) beamlets, we get approximation within distance 1/m?+1/n by O(log(n)-
m) beamlets. Moreover, we can set up the process so that the individual chains of
beamlets form a single unbroken chain. Compare also [17, Lemma 2.2, Corollary
2.3, Lemma 3.2].

4. Vertex-Pairs Transform Algorithms

Let v = (k1, k2, k3) be a voxel index, where 0 < k; < n and let I(v) be the
corresponding voxel intensities of a 3D digital image. Let f(x) be the function
on R? that represents the data cube by piecewise constant interpolation—i.e.
the value f(x) = I(v) when z € v.

DEFINITION 2. For each line segment b € B,,, let 74(-) correspond to the unit
speed path traversing b.

The discrete X-ray transform based on global-scale vertex-pairs lines is defined
as follows. With B,,(]0,1])3 denoting the collection of vertex-pairs line segments
of associated to the cube [0,1]3

/f ’Yb , bGBn([O’ 1])3'
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The beamlet transform based on multiscale vertex-pairs lines is the collection of
all multiscale line integrals

Ti(b) = / fOw(0)de, be B,

4.1. Direct evaluation. There is an obvious algorithm for computing beamlet/
X-ray coefficients: one at a time, simply compute the sums underlying the defin-
ing integrals. This algorithm steps systematically through the beamlet dictionary
using the indexing method we described above, identifies the voxels on the path
vy for each beamlet, visits each voxel and forms a sum weighting the voxel value
with the arc length of v, in that voxel.

In detail, the sum we are referring to works as follows. Let Q(v) denote the
cube representing voxel v and -, the curve traversing b

Tr(b) = Y I(v) Length(y, N Q(v)).

Hence, defining weights wy(v) = Length(vy,(1) N Q(v)) as the arc lengths of the
corresponding fragments, one simply needs the sum ) wy(v)I(v).

Of course, most voxels are not involved in this sum; one only wants to involve
the voxels where wy, > 0. The straightforward way to do this, explicitly following
the curve 7, from voxel to voxel and calculating the arc length of the fragment of
curve within the voxel, is inelegant and bulky. A far better way to do this is to
identify three equispaced sequences and then merge them. Those sequences are:
(1) the intersections of +y, with the parallel planes z = k; /n; (2) the intersections
with the planes y = ko/n; and (3) the intersections with the planes z = k3 /n.
Each of these collections of intersections is equispaced and easy to calculate. It
is also very easy to merge them in the order they would be encountered in a
traverse of the beamlet in definite order. This merger produces the sequence of
intersections that would be encountered if we pedantically tracked the progress
of the beamlet voxel-by-voxel. The weights wy,(v) are just the distances between
successive points.

The complexity of this algorithm is rather stiff: on an n x n x n voxel array
there are order O(n*) beamlets to follow, and most of the sums require O(n)
flops, so the whole algorithm requires O(n®) flops in general. Experimental
studies will be described below.

4.2. Two-scale recursion. There is an asymptotically much faster algorithm
for 3-D X-ray and beamlet transforms, based on an idea which has been well-
established in the two-dimensional case; see articles of Brandt and Dym [12], by
Gotze and Druckenmiller [29], and by Brady [9], or the discussion in [21].

The basis for the algorithm is the divide and conquer principle. As depicted
in Figure 7, and proven in Lemma 1, each 3-D continuum beamlet can be de-



92 DAVID L. DONOHO AND OFER LEVI

composed into 2, 3, or 4 continuum beamlets at the next finer scale:
b=|Jb: (4-1)
i

It follows that
/fm“))dg: Z/f(%i (0))de.

This suggests that we build an algorithm on this principle, so that for b € B,, we
identify several b; associated to the child dyadic cubes of b, getting the formula

Tr(b) = > Ti(by).

Hence, if we could compute all the beamlet coefficients at the finest scale, we
could then use this principle to work systematically from fine scales to coarse
scales, and produce all the beamlet coefficients as a result.

The computational complexity of this fine-to-coarse strategy is obviously very
favorable: it is bounded by 4B, flops, since each coefficient’s computation re-
quires at most 4 additions. So we get an O(n*) rather than O(n®) algorithm.

There is a conceptual problem with implementing this principle, since in gen-
eral, the decomposition of a discrete beamlet in B, into its fragments at the
next finer scale (as we have seen) produces continuum beamlets, i.e. the b; are
in general only in By, and not B,,. Hence it is not really the case that the terms
Ty (b;) are available from finer scale computations. To deal with this, one uses
approximation, identifying discrete beamlets b; which are ‘near’ the continuum
beamlets, and approximates the T (b;) by combinations of ‘nearby’ Ty (b;).

Hence, in the end, we get favorable computational complexity for an approx-
imately correct answer. We also get one very large advantage: instead of com-
puting just a single X-ray transform, it computes all the scales of the multiscale
beamlet transform in one pass. In other words: it costs the same to compute all
scales or to compute just the coarsest scale.

As we have described it, there are no parameters to ‘play with’ to control
the accuracy, at perhaps greater computational expense. What to do if we want
high accuracy? Staying within this framework, we can obtain higher precision
by oversampling. We create an N x N x N data cube, where N = 2°n where e
is an oversampling parameter (e.g. e=3), fill the values from the original data
cube by interpolation (e.g. piecewise constant interpolation), run the two-scale
algorithm for By, and then keep only the coefficients associated to b € By N B,,.
The complexity goes up as 2%¢.

5. Slope-Intercept Transform Algorithms

We now develop two algorithms for X-ray transform based on the slope-angle
family of lines described in Section 2.2. Both are decidedly more sophisticated
than the vertex-pairs algorithms, which brings both benefits and costs.
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5.1. The slant stack/shearing algorithm. The first algorithm we describe
adapts a fast algorithm for the X-ray transform in dimension 2, using this as
an ‘engine’, and repeatedly applying it to obtain a fast algorithm for the X-ray
transform in dimension 3.

5.1.1. Slant Stack The fast slant stack algorithm has been developed by Aver-
buch et al. (2001) [6] as way to rapidly calculate all line integrals along lines in
2-dimensional slope/angle form; i.e. either a-driven 2-dimensional lines of the
form

y=sr+t,—n/2<z<n/2;

where s = k/n for —n < k < n and where —n < t < n or y-driven 2-dimensional
lines of the form
r=sy+t,—n/2<y<n/2

where s and ¢ run through the same discrete ranges. The algorithm is approx-
imate, because it does not exactly compute the voxel-level definition of X-ray
coefficient assumed in Section 3 above (involving sums of voxel values times
arc lengths). Instead, it computes exactly the appropriate sums deriving from
so-called sinc-interpolation filters. For the set of z-driven lines we have

n/2—1
SlantStack(y = sx +¢,I) = Z I(u, su+ z),

u=-—n/2

where T is a 2D discrete array and I is its 2D sinc interpolant. The transform
for the y-driven lines is defined in a similar fashion with the roles of z and y
interchanged. The algorithm can obtain approximate line integrals along all lines
of these two forms in O(n?log(n)) flops, which is excellent considering that the
number of pixels is O(n?). It is achieved by using a discrete Projection-Slice
theorem that relates the Slant Stack coefficients and the 2D Fourier coefficients.
To be more specific, we are able to calculate the slant stack coefficients by first
calculating the 2D Fourier Transform of I on a pseudopolar grid (see Figure
8) and then applying a series of 1-D inverse FFTs along radial lines. Each
application of the 1-D inverse FFT yields a vector of coefficients that correspond
to the slant-stack transform of I along a family of parallel lines.

Figure 9 shows backprojections of different delta sequences, each concentrated
at a single point in the coefficient space and corresponding to a choice of slope-
intercept pair. The panels show the 2-D arrays of weights involved in the coef-
ficient computation. Summing with these weights is approximately the same as
exactly summing along lines of given slope/intercept.

As Averbuch et al. point out, the fast slant stack belongs to a group of algo-
rithms developed over the years in synthetic aperture radar by Lawton [40] and
in medical imaging by Pasciak [44] and by Edholm and Herman [24], where it is
called the Linogram. The Linogram has been exploited systematically for more
than ten years in connection with many problems of medical imaging, including
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Figure 8. The Pseudopolar Grid is constructed from concentric squares n = 8 are
converted into data at the intersections of concentric squares and lines radiating
from the origin with equispaced slopes.
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Figure 9. 2D Slant Stack Lines.

cone-beam and fan-beam tomography, which concern image reconstruction from
subsets of the X-ray transform. In a 3-D context the most closely related work
in medical imaging concerns the planogram; see [38; 39], and our discussion in
Section 10.5 below. The terminology ‘slant stack’ comes from seismology, where
this type of transform, with different algorithms, has been in use since the 1970’s
[15].

5.1.2. Overall Strategy We can use the slant stack to build a 3-D X-ray transform
by grouping together lines into subfamilies which live in a common plane. We
then extract that plane from the data cube and apply the slant stack to that
plane, rapidly obtaining integrals along all lines in that plane. We ignore for the
moment the question of how to extract planes from digital data when the planes
are not oriented along the coordinate axes.
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In detail, our strategy works as follows. Suppose we want to get transform
coefficients corresponding to x-driven 3-D lines, i.e. lines obeying

Y=8yT+1y, z=5x+1,.

Within the family of all n* lines of this type, consider the subfamily Lozn(sz,ty)
of all lines with a fixed value of (s.,t,) and a variable value of (s,,¢,). Such lines
all lie in the plane P,,(s,,t,) of (x,y, z) with (x,y) arbitrary, z = s,z +t,. We
can consider this set of lines as taking all x-driven 2-D lines in the (z,y) plane
and then ‘tilting’ the plane to obey the equation z = s,x 4+ t,. Our intention
is to extract this plane, sampling it as a function of x and y, and use the slant
stack to evaluate all the line integrals for all the z-driven lines in that plane,
thereby obtaining all the integrals in L, ,(s.,t.) at once, and to repeat this for
other families, working systematically through values of s, and ..

Some of these subfamilies with constant intercept ¢ and varying slope s are
depicted in Figure 10.
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Figure 10. Planes generated by families of lines in the Slope-Angle dictionary;
subpanels indicate various choices of slope.
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In the end, then, our coordinate system for lines has one slope and one inter-
cept to specify a plane and one slope and one intercept to specify a line within

the plane.
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5.1.3. 3-D Shearing To carry out this strategy, we need to extract data lying in
a general 2-D plane within a digital 3-D array.

We make a simple observation: to extract from the function f(z,y, z) defined
on the full cube its restriction to the plane with z = s,x + t,, and x, y varying,
we simply create a new function f'(z,y, z) defined by

f’(:v,y,z) = f(x,y72 — 52X _tz)

for z,y,z varying throughout [0,1]®, with f taken as vanishing at arguments
outside the unit cube. We then take g(z,y) = f/(z,y,0) as our extracted plane.
The idea is illustrated in Figure 12.

In order to apply this idea to the case of digital arrays I(x,y, z) defined on a
discrete grid, note that, in general, z — s,x — ¢, will not be an integer even when
z and x are, and so the expression I(z,y,z — s,z — t,) is not defined; one needs
to make sense of this quantity somehow. At this point we invoke the notion of
shearing of digital images as discussed, for example, in [54; 6]. Given a 2-D nxn
image I(x,y) where —n/2 < z,y < n/2, we define the shearing of y as a function
x at slope s, Shg;,), according to
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O

Figure 12. Shearing and slicing a 3D image. Extracting horizontal slices of a
sheared 3-D image is the same as extracting slanted slices of the original image.

In words, the image is shifted vertically in each column x =constant, with the
shift varying from one column to the next in an z-dependent way. Here I(x,y) is
an image which has been interpolated in the vertical direction so that the second
argument can be a general real number and not just an integer. Specifically,

Ir(z,u) = Zqi)n(u —v)I(z,v),

where ¢, is an interpolation kernel—a continuous function of a real variable
obeying ¢,(0) = 1, ¢, (k) = 0 for k # 0. The shearing of = as a function of y
works similarly, with

(Sh{ ) (x,y) = Li(x — sy, y),

with

L(wy) =3 dulu—v)I(v,y).

We define a shearing operator for a 3-D data cube by applying a 2-D operator
systematically to each 2-D planes in a family of parallel planes normal to one of
the coordinate axes. Thus, if we speak of shearing in z as a function of x, we
mean

ShI(x,y,2) = Is(z,y, 2 — sx).

What shearing does is map a family of tilted parallel planes into a plane normal
to one of the coordinate axes. In the above example, data along the plane
z = sr + t is mapped onto the plane z = t. Figure 12 illustrates the process
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graphically, exaggerating the process, by allowing pieces of the original image to
be sheared out of the original data volume. In fact those pieces ‘moving out’ of
the data volume get ‘chopped away’ in actual computations.

5.1.4. The Algorithm Armed with this tool, we define the slant stack based X-ray
transform algorithm as follows, giving details only for a part of the computation.
The algorithm works separately with z-driven, y-driven, and z-driven lines. The
procedure for z-driven lines is as follows:

e for each slope s,

— Shear z as a function of x with slope s,, producing the 3-D voxel array
Ipzs,
— for each intercept ¢,
« Extract the 2-D image Iy, 1, (2,y) = Lpss. (2,9, 12).
x Calculate the 2-D X-ray transform of this image, obtaining an array of
coefficients X (s,,t,), and storing these in the array Xs3('z’, sy, ty, s.,t.).

— end for

e end for

The procedure is analogous for y- and z- driven lines.

The lines generated by this algorithm are as illustrated in Figure 11.

The time complexity of this algorithm is O(n*log(n)). Indeed, the cost of the
2-D slant-stack algorithm is order n?log(n) (see [6]), and this must be applied
order n? times, one for each member of L, ,(s.,t.)

5.2. Compatibility with cache memory. A particularly nice property of
this algorithm is that it is cache-aware , i.e. it is very well-organized for use with
modern hierarchical memory computers [32]. In currently dominant computer
architectures, main memory is accessed at a speed which can be an order of
magnitude slower than the cache memory on the CPU chip. As a result, other
things being equal, an algorithm runs much faster if it operates as follows:

e Load n items from main memory into the cache
e Work intensively to compute n results
e Send the n results out to main memory

Here the idea is that the main computations involve relatively small blocks of
data that can be kept in cache all at once, are referred to many times while in
the fast cache memory, saving dramatically on main memory accesses.

The Slant-Stack/Shearing algorithm we have described above has exactly this
form. In fact it can be decomposed in steps, every one of which can be concep-
tualized as follows:

e Load n items from main memory into the cache
e Do some combination of:
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— Compute an n-point forward FFT ; or
— Compute an n-point inverse FFT ; or

— Perform elementwise transformation on the n-vector;

e Send the n results out to main memory

Thus the 2-D slant stack and the 3-D data shearing operations can all be decom-
posed into steps of this form. For example, data shearing requires computing
sums of the form I'(x,y,2) = >, ¢(z — sx — u)I(x,y,u). For each fixed (z,y),
we take the n numbers (I(z,y,u) : v = —n/2,...,n/2 — 1), take their 1-D FFT
along the last slice, multiply the FFT by a series of appropriate coefficients, and
then take their inverse 1-D. The story for the slant stack is similar, but far more
complicated. A typical step in that algorithm involves the 2-D FFT, which is
obtained by applying order 2n 1-D FFT’s, once along each row and once along
each column. For more details see comments in [6].

It is also worth remarking that several modern CPU architectures offer FFT
in silico, so that the FFT step in the above decomposition runs without any
memory accesses for instruction fetches. Such architectures (which include the
G4 processor running on Apple Macintosh and IBM RS/6000) are even more
favorable towards this algorithm.

As a result of this cache- and CPU-favorable organization the observed behav-
ior of this algorithm is far more favorable than what asymptotic theory would
suggest. The vertex-pairs algorithms of the previous section sit at the opposite
extreme; since those algorithms involve summing data values along lines, and
the indices of those values are scattered throughout the linear storage allocated
to the data cube, those algorithms appear to be performing essentially random
access to memory; hence such algorithms run at the memory access speed rather
than the cache speed. In some circumstances those algorithms can even run
more slowly still, since cache misses can cost considerably more than one mem-
ory access, and random accesses can cause large numbers of cache misses. These
remarks are in line with behavior we will observe empirically below.

5.3. Frequency domain algorithm. Mathematical analysis shows that the
3-D X-ray transform of a continuum function f(z,y, z) can be obtained from the
Fourier transform [51; 47]. This frequency-domain approach requires coordina-
tizing planes through the origin in frequency space by

:Pul,llz = {f =wé + 11252}

extracting sections of the Fourier transform along such planes,

9(61,62) = f(wi&r +u2é),

and then taking the inverse Fourier transform of those sections:

g=9""4g.
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The resulting function g gives the X-ray transform for lines
g(x1,22) = /f(xlvl + x9Va + tvy)dt,

with an appropriate orthobasis (v1, va, vs).

To carry this out with digital data would require developing a method to
efficiently extract many planes through the origin of the Fourier transform cube,
and then perform 2-D inverse FFT’s of the data in those planes. But how to
rapidly extract a rich selection of planes through the origin? (The problem
initially sounds similar to the problem encountered in the previous section, but
recall that the set of planes needed there were families of parallel planes, not
families of planes through the origin.

Our approach is as follows. Pick a fixed preferred coordinate axis, x, say.
Pick a subordinate axis, z, say. In each constant-y slice, do a two-dimensional
shearing of the FT data, shearing z as a function of x at fixed slope s,. In
effect, we have tilted the data cube, so that slices normal to the z-axis in the
sheared volume correspond to tilted planar slices in the original volume. So now
take each y-z plane, and apply idea of Cartesian-to-pseudopolar conversion as
described in [6]. This uses interpolation to convert a planar Cartesian grid into
a new point set consisting of n lines through the origin at various angles, and
equispaced samples along each line. This conversion being done for each plane
with x fixed, then, grouping the data in a given line through the origin across all
x values produces a plane; see Figure 13. We then take a 2-D inverse transform
of the data in this plane.

The computational complexity of the method goes as follows. O(n®log(n))
operations are required for transforming from the original space domain to the
frequency domain; O(n? log(n)) work for each conversion of a Cartesian plane to

Figure 13. Selecting planes through the origin. Performing cartesian-to-pseudo-
polar conversion in the yz plane and then gathering all the data for one radial
line across different values of x produces a series of planes through the origin.
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pseudopolar coordinates, giving O(n®log(n)) work to convert a whole stack of
parallel planes in this way; O(n®log(n)) work to shear the array as a function of
the preferred coordinate; and 3n such shearings need to be performed. Overall,
we get O(n?) coefficients in O(n*log(n)) flops.

We have not pursued this method in detail, for one reason: it is mathematically
equivalent to the slant-stack-and-shearing algorithm, providing exactly the same
results (assuming exact arithmetic). This is a consequence of the projection-slice
theorem for the slant stack transform proved in [6].

6. Performance Measures

We now consider two key measures of performance of the fast algorithms just
defined: accuracy and timing.

6.1. Accuracy of two-scale recursion. To estimate the accuracy of the two-
scale recursion algorithm, we considered a 16% array and compared coefficients
from two-scale approximation with direct evaluation. We computed the average
error for the different scales and applied the algorithms both to a 3-D image that
contains a single beamlet and to a 3-D image that contains randomly distributed
ones in a sea of zero, chose so that both 3D images has the same (2 norm. The
table below shows that the coefficients obtained from the two-scale recursion are
significantly different from those of direct evaluation.

Analyze Single Beamlet | Analyze Random Scatter
scale relative error scale relative error

0 0.117 0 0.056

1 0.107 1 0.061

2 0.076 0 0.048

3 1.5 x 10717 3 3.7 x 10717

One way to understand this phenomenon is to look at what the coefficients are
measuring by studying the equivalent kernels for those coefficients. Let T be the
linear transform on I corresponding to the exact evaluation of the line integrals
and let 72 be the linear transform corresponding to the two-scale recursion
algorithm. Apply the adjoint of each transform to a coefficient-space vector
with a one in one position and a zero in other positions, getting

w) = (T7)6%, j=1,2. (6-1)

Each wg lives in image-space—i.e., it is indexed by voxels v, and the entries
wp(v) indicate the weights such that T7[b] = Y, I(v)wy(v). In essence this ‘is’
the beamlet we are using in that beamlet transform. For later use: we call the
operation of calculating w;, that of ‘backprojection’, because we are going back
from coefficient space to image space. This usage is consistent with usage of the
term in the tomographic literature, i.e. [47; 15].
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Figure 14. Timing comparison.

6.2. Timing comparison. The defining feature of 3-D processing is the
massive volume of data involved and the attendant long execution times for
even basic tasks. So the burning issue is: how do the algorithms perform in
terms of CPU time to complete the task? The display in Figure 14 below shows
that both the direct evaluation and the two scale recursion methods slow down
dramatically as n increases — one expects a 1/n°/3 or 1/n*/3 scaling law to be
evident in this display, and in rough terms, the display is entirely consistent with
that law. The surprising thing in this display is the improvement in performance
of the slant stack with increasing n. This seeming anomaly is best interpreted
in terms of the cache-awareness of the slant stack algorithm. The slant stack
algorithm becomes more and more immune to cache misses as n increases (at
least in the range we are studying), and so the number of cache misses per
coefficient drops lower and lower for this algorithm, while this effect is totally
absent for the direct evaluation and two-scale recursion algorithm.

7. Examples of X-Ray Transforms

We now give a few examples of the X-ray transform based on the slant stack
method.

7.1. Synthesis. While we have not discussed it at length, the adjoint of the
X-ray transform is a very useful operator; for each variant of the X-ray transform
that we have discussed, the corresponding adjoint can be computed using ideas
very similar to those which allowed to compute the transform itself, and with
comparable computational complexity. Just as the X-ray transform takes voxel
arrays into X-ray coefficient arrays, the adjoint transform takes X-ray coefficient
arrays into voxel arrays.
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We have already mentioned, near (6-1) above, that when the adjoint operator
is applied to a coefficient array filled with zeros except for a one in a single slot,
the result is a voxel array. This array contains the weights wy(v) underlying
the corresponding X-ray transform coefficient. In formal mathematical language
this is the Riesz representer of the b-th coefficient. Intuitively, the representer
should have its nonzero weights all concentrated on or near the corresponding
‘geometrically correct’ line.

To check this, we depict in Figure 15 representers of four different X-ray
coefficients. Evidently, these are geometrically correct.

N 9 79
iakarkiai
vl a ks

Figure 15. Representers of several X-ray coefficients.

It is also worth considering what happens if we apply the adjoint to coefficient
vectors which are ones in various regions and zeros elsewhere in coefficient space.
Intuitively, the result should be a bundle of lines. Depending on the span of the
region in slope and intercept, the result might be simply like a thick rod (if only
intercepts are varying) or like a dumbbell (if only slopes are varying). To check
this, we depict in Figure 16 backprojection of six different region indicators.
With a little reflection, we can see that these are geometrically correct.

It is of interest to consider backprojection of more interesting coefficient ar-
rays, such as wavelets with vanishing moments. We have done so and will discuss
the results elsewhere.
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Figure 16. X-ray back-projections of various rectangles in coefficient space.
Note that if the rectangle involves intercepts only, the backprojection is rect-
angular (until cut off by cube boundary). If the rectangle involves slopes, the
backprojection is dumbbell-shaped (see lower right)

7.2. Analysis. Now that we have the ability to generate linelike objects in 3-D
via backprojection from the X-ray domain, we can conveniently investigate the
properties of X-ray analysis.

Consider the example given in Figure 17. A beam is generated by backpro-
jection as in the previous section. It is then analyzed according to the X-ray
transform. If the X-ray transform were orthogonal, then we would see perfect
concentration of the transform in coefficient space, at precisely the location of the
spike used to generate the beam. However, the transform is not orthogonal, and
what we see is a concentration — but not perfect concentration —in coefficient
space near the location of the true generator.

Also, if the transform were orthogonal, the rearranged sorted coefficients
would have a single nonzero coefficient. As the figure shows, the coefficients
decay linearly on a semilog plot, indicating power-law decay. The lower right
subpanel shows the decay of the wavelet-X-ray coeflicients that are computed by
applying a four dimensional periodic orthogonal wavelet transform to the X-ray
coefficients. As expected, the decay is much faster than the decay of the X-ray
coefficients.

8. Application: Detecting Fragments of a Helix

We now sketch briefly an application of beamlets to detecting fragments of
a helix buried in noise. We suppose that we observe a cube of noisy 3-D data,
and that, possibly, the data contains (buried in noise) a filamentary object. By
‘filamentary object’ we mean the kind of situation depicted in Figure 18. A series
of pixels overlapping a nonstraight curve is highlighted there, and we imagine
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Figure 17. X-Ray analysis of a beam. (a) The X-ray transform sliced in the con-
stant-intercept plane. (b) The X-ray transform sliced in the constant-slope plane.
(c) The sizes of sorted X-ray coefficients. (d) The sizes of sorted wavelet-X-ray
coefficients.

that, when such an object is ‘present’ in our data, that a constant multiple of
that 3-D template is added to a pure noise data cube.

Figure 18. A noiseless helix.

When this is done, we have a situation that is hard to depict graphically, since
one cannot ‘see through’ such a noisy cube. By this we mean the following: to
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visualize such a data cube, it seems that we have just two rendering options.
We can view the cube as opaque, render only the surface, and then we certainly
will not see what’s going on inside the cube. Or we can view the cube as trans-
parent, in which case, when each voxel is assigned a gray value based on the
corresponding data value, we see a very uniformly gray object.

Being stymied by the task of 3-D visualization of the noisy cube, we instead
display some 2-D slices of the cube; see the rightmost panel of Figure 19. For
comparison, we also display the same slices of the noiseless helix. The key point
to take away from this figure is that the noise level is so bad that the presence
of the helical object would likely not be visible in any slice through the data
volume.

Figure 19. Three orthogonal slices through (a) a noiseless helix; (b) the noisy
data volume.

Here is a simple idea for detecting a noisy helix: beamlet thresholding. We
simply take the beamlet transform, normalize each empirical beamlet coefficient
by dividing by the length of the beamlet, and then identify beamlet coefficients
(if any) that are unusually large compared to what one would expect if we were
in a noise-only situation.

Figure 20 shows the results of applying such a procedure to the noisy data
example of Figures 18-19. The extreme right subpanel shows the beamlets that
were found to have significant coefficients. The center panel shows the result of
backprojecting those significant beamlets; a rough approximation to the filament
(far left) has been recovered.

9. Application: A Frame of Linelike Elements

We also briefly sketch an application in using the X-ray transform for data
representation. As we have seen in Section 7.1, the backprojection of a delta
sequence in X-ray coefficient space is a line-like element. We have so far in-
terpreted this as meaning that the X-ray transform defines an analysis of data



FAST X-RAY AND BEAMLET TRANSFORMS FOR 3-D DATA 107

Figure 20. A noiseless helix, a reconstruction from noisy data obtained by
backprojecting coefficients exceeding threshold, and a depiction of the beamlets
associated to significant coefficients.

via line-like elements. But it may also be interpreted as saying that backpro-
jection from coefficient space defines a synthesis operator, which, for the ‘right’
coefficient array, can synthesize a volumetric image from linelike elements.

The trick is to find the ‘right’ coefficient array to synthesize a given desired
object. This can be conceptually challenging because the X-ray transform is
overdetermining, giving order n* coefficients for an order n* data cube. Iterative
methods for solving large-scale linear systems can be tried, but will probably be
ineffective, owing to the large spread in singular values of the X-ray operator.

There is a way to modify the (slant-stack/shearing) X-ray transform to pro-
duce something that has reasonably controlled spread of the singular values. This
uses the fact, as described in Averbuch et al. [6], that there is an effective precon-
ditioner for the 2-D slant stack operator S (say), such that the preconditioned
operator S obeys

collIll2 < IST]2 < e1|/1]]2.

Here ¢1/co < 1.1. Hence, the transform from 2-d images to their coefficients is
almost norm-preserving. In effect, S performs a kind of fractional differentiation
of the image before applying S. If, in following the construction of the X-ray
transform that was laid out in Section 5.1, we simply replace each invocation
of S by S. Then effectively, the transform coefficients, grouped together in the
families L. (s.,t,) have in each such group, roughly the same norm as the data
in the corresponding plane P, ,(s.,t,), say of the data cube. For each fixed
slope s, the family of planes P, ,(s.,t,) with different intercepts ¢,, fill out the
whole data cube, and so the norms of all these planes, combined together by a
sum of squares, gives the squared norm of the whole data cube. It follows that
the transform of a volumetric image I(x,y, z) should yield a coefficient array
with 2 norm roughly proportional to the ¢2 norm of the array I.

DEFINITION 3. The preconditioned X-ray transform X is the result of following
the prescription for Section 5.1 to build an X-ray transform, only using the
preconditioned slant stack rather than the slant stack.
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We should note that in the theory of the continuum X-ray transform [51], there
is the notion of X-ray isometry, which preserves the L? norm while mapping
from physical space to line space. This can be viewed as applying the X-ray
transform to a fractional differentiation of the object f, rendering the whole
system an isometry. The preconditioned digital X-ray operator X we have just
described is a digital analog, although it does not provide a precise isometry.

Standard facts in linear algebra (e.g. [28; 30]) imply that, because the output
norm ||XI||, is (roughly) proportional to the input norm ||I||2, iterative algo-
rithms (relaxation, conjugate gradients, etc.) should be able to efficiently solve
equations XI= 1.

The X-ray transform is highly redundant (as it maps n® arrays into O(n*)
arrays). As a way to obtain greater sparsity, one might consider applying an
orthogonal wavelet transform to the X-ray coefficients. This will preserve the
norm of the coefficients, while it may compress the energy into a few large coef-
ficients. The transform is (naturally) 4-dimensional, but as the display in Figure
17 suggests, our concern is more to compress in the slope variable where the
analysis of a beam is spread out, rather than in the intercept variables, where
the analysis of a beam is already compressed.

DEFINITION 4. The wavelet-compressed X-ray transform WX is the result of
applying an orthogonal 4-D wavelet transform to the preconditioned X-ray trans-
form.

Label the coefficient indices in the wavelet-compressed X-ray transform domain
as A € A, and let the entries in WX be labeled a = (an); they are the wavelet-
compressed preconditioned X-ray coeflicients.

It turns out that one can reconstruct the original image I from its coefficients
«a. As the wavelet transform is norm-preserving, the map I — WXI is pro-
portional to an almost norm-preserving transform, and hence one can go back
from coefficient space to image space, using iterative linear algebra. Call this

generalized inverse (linear) transformation ﬂT. Then certainly I = I/I//?(Ta.
This can be put in a more interesting form. The result of applying this

generalized inverse transform to a delta coefficient sequence &y, () spiking at

coefficient index Ag (say) provides a volumetric object ¢y, (v). Hence we may

I = Za)\(b)\.
A

The object ¢ is a frame element, and we have thus defined a frame of linelike
elements in 3-space. Emmanuel Candés in personal correspondence has called
such things tubelets, although we are reluctant to settle on that name for now
(tubes being flexible rather than straight and rigid).

write

In [16] a similar construction has been applied in the continuum case: a
wavelet tight frame has been applied to the X-ray isometry to form a linelike
frame in the continuum RS3.
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X

Figure 21. A frame element.

This construction is also reminiscent of the construction of ridgelets for rep-
resentation of continuous functions in 2-D [14]. Indeed, orthonormal ridgelets
can be viewed as the application of orthogonal wavelet transform to the Radon
isometry [18]. In [19] a construction paralleling the one suggested here has been
carried out for 2-D digital data.

10. Discussion
We finish up with a few loose ends.

10.1. Availability. The figures in this paper can be reproduced by code
which is part of the beamlab package. Point your web browser to http://
www-stat.stanford.edu/~beamlab to obtain the software. The software has the
ability to reproduce all the figures in this paper and has been produced consistent
with the philosophy of reproducible research.

10.2. In practice. There are of course many variations on the above schemes,
but we have restrained ourselves from discussing them here, even when they
are variations we find practically useful, in order to keep things simple. A few
examples:

e We find it very useful to work with an alternative vertex-pair dictionary, where
the vertices of beamlets are not at corners of boundary voxels for a dyadic
cube, but instead at midpoints of boundary faces of boundary voxels.

o We find it useful to work with slight variations of the slant stack defined in
[6], where the angular spacing of lines is chosen differently than in that paper.

Rather than burden the reader with such details, we suggest merely that the
interested reader study the released software.



110 DAVID L. DONOHO AND OFER LEVI

10.3. Beamlet algorithms. As mentioned in the introduction, in this paper
we have not been able to describe the use of the graph structure of the beamlets
in which two beamlets are connected in the graph if and only if they have an
endpoint in common. In all the examples above, each beamlet is treated in-
dependently of other beamlets. As we showed earlier, every smooth curve can
be efficiently approximated by relatively few beamlets in a connected chain. In
order to take advantage of this fact we must use some mechanism for examining
different beamlet chains. The graph structure affords us such a mechanism.

This structure can be useful because there are some low complexity, network-
flow based procedures [43; 27] that allow one to optimize over all paths through
a graph. Such paths in the beamlet graph correspond to connected chains of
beamlets. When applied in the multiscale graph provided by 2-D beamlets,
these algorithms were found in [21] to have interesting applications in detecting
filaments and segmenting data in 2-D. One expects that the same ideas will prove
useful in 3-D.

10.4. Connections with particle physics. In a series of interesting papers
spanning both 2-D and 3-D applications, David Horn and collaborators Halina
Abramovicz and Gideon Dror have found several ways to deploy line-based sys-
tems in data analysis and detector construction[4; 5; 22]. Most relevant to our
work here is the paper [22] which describes a linelike system of feature detec-
tors for analysis of data from 3-D particle physics detectors. Professor Horn
has pointed out to us, and we agree, that such methods are very powerful in
the right settings, and that the main thing holding back widespread deployment
of such methods is the immense size of the number of lines needed to give a
comprehensive analysis of 3-D data.

10.5. Connections with tomography and medical imaging. The field of
medical imaging is rapidly developing these days, and particularly in the last few
years, 3-D tomography has become a ‘hot topic’, with several major conferences
and workshops. What is the connection of this work to ongoing work in medical
imaging?

Obviously, the X-ray transform, as we have defined it, is closely connected
to problems of medical imaging, which certainly obtain line integrals in 3-space
and aim to use these to reconstruct the object of interest.

However, the layout of our X-ray transform is (seemingly) rather different
than current medical scanners. Such scanners are designed according to physical
and economic constraints which place various constraints on the line integrals
which can be observed by the system. In contrast, we have only computational
constraints and we seek to represent a very wide range of line integrals in our
approach. For example, in an X-ray system, a source is located at a fixed point,
and can send out beams in a cone, and the line integrals can be measured by
a receiving device (film or other) on a planar surface. One obtains many line
integrals, but they all have one endpoint in common. In a PET system, events
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in the specimen generate are detected by pairs of detectors collinear with the
event. One obtains, by summing detector-pair counts over time, an estimated
line integral. The collection of integrals is limited by the geometry of the detector
arrays.

Essentially, in the vertex-pairs transform, we contemplate a situation that
would be analogous, in PET tomography, to having cubical room, with arrays
of detectors lining the walls, floor, and ceiling, and with all pairs of detectors
corresponding to lines which can be observed by the system. In (physical) X-ray
tomography, our notion of X-ray transform would correspond to a system where
there is a ‘source wall’ and the rest of the surfaces were ‘receivers’, with the
specimen or patients being studied oriented successively standing, prone, facing
and in profile to the ‘source wall’. The (omnidirectional) X-ray source would be
located for a sequence of exposures at each point of an array on the source wall
(say).

Neither situation is quite what medical imaging experts mean when they say
3-D tomography. For the last ten years or so, there has been a considerable body
of work on so called cone-beam reconstruction in 3-D physical X-ray tomography;
see [47; 35]. In an example of such a setting [47], a source is located at a fixed
point, the specimen is mounted on a turntable in front of a screen, and an
exposure is made by generating radiation, which travels through the specimen
and the line integral is recorded by a rectangular array at the the screen. This is
repeated for each orientation of the turntable. This would be the equivalent of
observing the X-ray transform only for those lines which originate on a specific
circle in the z = 0 plane, and is considerably less coverage than what we envisage.

In PET imaging there are now so-called ‘fully 3-D scanners’, such as the CTI
ECAT EXACT HR+ described in [46]. This scanner comprises 32 circular de-
tector rings with 288 detectors each, allowing for a total of 77 x 10° lines. While
this is starting to exhibit some of the features of our system, with very large
numbers of beams, the detectors are only sensitive to lines occurring within a
cone of opening less than 30 degrees. The closest 3-D imaging device to our
setting appears to be the fully 3-D PET system described in [37; 38; 39] where
two parallel planar detector arrays provide the ability to gather data on all pairs
of lines joining a point in one detector plane to a point in the other plane. In
[38] a mathematical analysis of this system has suggested the relevance of the
linogram (known as slant stack throughout our article) to the fully 3-D problem,
without explicitly defining the algorithm suggested here. Without doubt, ongo-
ing developments in 3-D PET can be expected to exhibit many similarities to
the work in this paper, although it will be couched in a different language and
aimed at different purposes.

Another set of applications in medical imaging, to interactive navigation of
3-D data, is described in [10], based on supporting tools [9; 11; 55] which are
reminiscent of the two-scale recursive algorithm for the beamlet transform.
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10.6. Visibility We conclude with a more speculative connection. Suppose we
have 3-D voxel data which are binary, with a ‘1’ indicating occupied and a ‘0’
indicating unoccupied. Then a beam which hits only ‘0’ voxels is ‘clear’, whereas
a beam which hits some ‘1’ voxels is ‘occluded’. Question: can we rapidly tell
whether a beam is ‘clear’ or ‘occluded’, for a more or less random beam?

The question seems to call for rapid calculation of line integrals along every
possible line segment. Obviously, if we proceed in the ‘obvious’ way, the algo-
rithmic cost of answering a such a query is order n, since there are line segments
containing order n voxels.

Note that, if we precompute the beamlet transform, we can approximately
answer any query about the clarity of a beam in order O(log(n)) operations.
Indeed the beam can written as a chain of beamlets, and we merely have to
examine all those beamlet coeflicients checking that they are all zero. There are
only O(log(n)) coeflicients to check, from Theorem 1 above.

We can also rapidly determine the maximum distance we can go along a ray
before becoming occluded. That is, suppose we are at a given point and might
want to travel in a fixed direction. How far can we go before hitting something?

To answer this, consider the the segment starting at our fixed point and head-
ing in the given direction until it reaches the boundary of the data cube —we
obviously wouldn’t want to go out of the data cube, because we don’t have infor-
mation about what lies there. Take the segment and decompose into beamlets.
Now check that all the beamlets are ‘clear’, i.e. have beamlet coefficients zero.
If any are not clear, go to the occluded beamlet closest to the origin, and divide
it into its (at most four) children at the next level. If any are not clear, go to the
occluded beamlet closest to the origin, and, once again, divide it into its (at most
four) children at the next level. Continuing in this way, we soon reach the finest
level, and determine the closest occlusion along that beam. The algorithm takes
O(log(n)) operations, assuming the beamlet transform has been precomputed.

This allows for rapid computation of what might be called safety graphs,
where for each possible heading one might consider taking from a given point,
one obtains the distance one can go without collision. The cost is proportional
to #headings x log(n), which seems to be quite reasonable.

Traditional visibility analysis [23] assumes far more about the occluding ob-
jects (e.g. polyhedral structure); perhaps our approach would be more useful
when occlusion is very complicated and arises in natural systems subject to di-
rect voxelwise observation.
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