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Diffuse Tomography as a Source of Challenging
Nonlinear Inverse Problems for a General Class
of Networks

F. ALBERTO GRUNBAUM

ABSTRACT. Diffuse tomography refers to the use of probes in the infrared
part of the energy spectrum to obtain images of highly scattering media.
There are important potential medical applications and a host of diffi-
cult mathematical issues in connection with this highly nonlinear inverse
problem. Taking into account scattering gives a problem with many more
unknowns, as well as pieces of data, than in the simpler linearized situa-
tion. The aim of this paper is to show that in some very simplified discrete
model, reckoning with scattering gives an inversion problem whose solution
can be reduced to that of a finite number of linear inversion problems. We
see here that at least for the model in question, the proportion of variables
that can be solved for is higher in the nonlinear case than in the linear one.
We also notice that this gives a highly nontrivial problem in what can be
called network tomography.

1. Introduction

Optical, or diffuse, tomography, refers to the use of low energy probes to
obtain images of highly scattering media.

The main motivation for this line of work is, at present, the use of an infrared
laser to obtain images of diagnostic value. There is a proposal to use this in
neonatal clinics to measure oxygen content in the brains of premature babies
as well as in the case of repeated mammography. With the discovery of highly
specific markers that respond well in the optical or infrared region there are
many potential applications of this emerging area; see [Al; A2].

There are a number of physically reasonable models that have been used in
the formulation of the associated direct and inverse problems. These models are
based on some approximation to a wave propagation model, such as the so-called
diffusion approximation, or a transport equation model resulting in some type
of linear Boltzmann equation. See [Al; A2; D; NW] for recent surveys of work
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in this area. These papers give a detailed description of the physically relevant
formulations that different authors have considered.

Our Markov chain formulation, going back to [G1l; GP1; SGKZ], is different
from those contained in these papers. We model the evolution of a photon as it
moves through tissue by means of a Markov chain. At any (discrete) instant of
time a photon occupies one of the states of the chain. These states are meant
to represent a discretization of phase space, i.e. they encode position as well
as velocity of a photon at a given time. The chain has three kinds of states:
incoming states (which are meant to represent source positions surrounding the
object of interest), hidden states (which are meant to represent the positions
and velocities of photons inside the tissue) and finally, outgoing states( which
represent detectors surrounding the object). We should also add an absorbing
state at the center of each pixel to indicate that a photon “entering the pixel”
can die in it. Instead of adding these extra states we simply do not assume that
the sum of the one-step transition probabilities from a state should add to one.
The difference between one and this sum is the probability of being absorbed
into the pixel in question when coming into it from the corresponding state.

The direct problem would consist of determining different “input-output”
quantities once the one-step transition probability matrix of our Markov chain
has been given.

The resulting inverse problem amounts to reconstructing the one-step transi-
tion probability matrix for our Markov chain (with three kinds of states) from
boundary measurements. This model is too simple and too general to faithfully
reflect the physics of diffuse tomography but could be of interest in other set-ups.
It gives a difficult class of nonlinear inverse problems for a certain general class
of networks with a complex pattern of connections which are motivated by the
diffuse tomography picture.

Since our model is the result of a discretization both in the positions occupied
by a photon as well as the direction in which it is moving, the states will be
indicated below by arrows placed at the boundaries of each pixel and pointing in
one of four possible directions. One of the smallest cases of interest in dimension
two is this:
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This simple model features four pixels, eight source positions, eight detector
positions as well as eight hidden states. In this figure, incoming states are labeled
by numbers enclosed in squares, outgoing states are labeled by numbers enclosed
in circles, and hidden states are labeled by numbers enclosed in diamonds. The
possible one step transitions are indicated in the next section, whereas the figure
below displays (by means of arrows, as explained earlier) only the eight states of
each kind.

In [G4] a discussion can be found of the corresponding smallest case in di-
mension three, where pixels are replaced by voxels and we have six different
directions for our states.

The physics, or what is left of it, is best compressed into a multiterminal
network where the nodes are the states of our Markov chain and the oriented
edges indicate one-step transitions (with unknown probabilities) between the
corresponding nodes. This is what a probabilist would call a state diagram.

As an example, here is the network corresponding to the physical model shown
on the previous page (for clarity, when two nodes are joined by two opposite
edges, we draw a single edge with arrows at both ends):

Notice that there is an underlying linear dynamics governed by the (unknown)
one-step transition probability matrix of our Markov chain, but the inversion
problem of interest is still nonlinear.
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A remarkable feature of this simple model is that, at least for systems arising
from very coarse tomographic discretizations, it gives an exactly solvable system
of nonlinear equations, i.e., a certain number of unknowns are expressible in
terms of the data and a number of free parameters. The advantages of this
rather uncommon situation are clear: for instance it is possible to go beyond
iterative methods of solution, which are very common for nonlinear problems.

In both the two-dimensional and three-dimensional situations we can consider
as data the photon count for a source-detector pair which is defined as the proba-
bility that a photon that started at the source in question emerges at the detector
in question regardless of the number of steps involved. If we assume that every
one-step transition takes one unit of time we can consider the time-of-flight as a
random variable associated to each incoming-outgoing pair. The photon count
is the moment of order zero of this collection of random variables.

In Section 2 we see how far one can go using only the moment of order zero
of time of flight. Section 3 considers the situation when we also use a small part
of the information contained in the first moment of this collection of random
variables. Section 4 deals with the issue of dealing with those variables that
cannot be solved from the data. Finally Section 5 alludes to the fact that this
same machinery can be applied in the non-physical situation when the dimension
is neither two nor three but arbitrary.

It is also instructive in each case to consider the standard tomographic linear
problem when scattering is completely ignored and a photon can only be ab-
sorbed in a pixel or continue in its straight-line trajectory. In this case each one
of the four pixels, conveniently labeled (1,1), (1,2), (2,1) and (2, 2) as the entries
of a 2 x 2 matrix, is characterized by one parameter, its absorption probability.

The results regarding the ratio between the number of variables we can solve
for and the total number of unknowns for each one of these scenarios are given
below.

In the two-dimensional case, using four pixels (see figure on page 138) there are
three situations:

(1) The linear one where scattering is ignored, gives a problem with 4 unknowns
and 4 pieces of data, of which only three are independent and allows one to
solve for 3 out of 4 unknowns.

(2) The general model discussed above (as in [GP1; GP2]) allows one to solve
for 48 out of a total of 64 unknowns, leaving the ratio of % unchanged.

(3) The use of time-of-flight information, which is discussed in Section 4, as well

as in [G3], [GM1] gives a slightly better ratio, namely 25 = I.

When this comparison is done in dimension three, with a total of eight voxels,

we get three situations:

(1) The linear version of the problem (scattering being ruled out) gives a system
of 12 equations in 8 unknowns which can be solved for 7 of them in terms of
one arbitrary parameter, giving a ratio of g.
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(2) The general model (discussed in Sections 2 and 3) yields a system of 576

nonlinear equations in 288 variables that can be solved for 240 of them, with

a ratio of 220 = 3,

288 — 6
(3) The use of time-of-flight information (discussed in Section 4) raises the ratio
t % = % This shows that the consideration of a fully nonlinear problem

can (in some sense) lead to a better determined problem than the correspond-
ing linearized one.

We do not consider here the important issues of the difficulty in solving these
systems or the sensitivity to errors of the corresponding problem.

For a very nice and up-to-date discussion of work in this area one can see

[A1], [A2], [D], [NW]. These papers give a detailed description of the physically
relevant formulations that different authors have considered. For an early refer-
ence in the area of network tomography see [V]. For similar problems in an area
of great practical interest see the recent article [CHNY].
Remark This is an appropriate place to mention an oversight in [G4]. The
labeling of the states given in the introduction to that paper does not correspond
to the one used in [G4, Section 3]. The labeling used in the introduction to [G4]
represents an improvement over the one used in [G4, Section 3]. The results in
[G4] are correct, but some of the inversion formulas are unduly complicated since
they are written down using a more complicated labeling scheme. When we use
the labeling given in the introduction to [G4] we can reduce the entire problem
to a set of equivalent linear ones, obviating the last nonlinear step in [G4]. This
is reported in [GM2].

2. General Framework and Some Results

The one-step transition probability matrix P is naturally broken up into blocks
that connect different types of states. We denote by Pro the block dealing with
a one-step transition from an arbitrary incoming state to an arbitrary outgoing
state. Pgpy denotes the corresponding block connecting hidden to hidden states,
Prg the one connecting incoming to hidden states and finally Pyo accounts for
one-step transitions between hidden and outgoing states. For completeness we
give these matrices below.

0 N11S 0 0 0 0 NI11E 0
S21N 0 0 S21E 0 0 0 0
W2IN 0 0 W21E 0 0 0 0
P = 0 0 E22W 0 0 E22N 0 0 ]
0 0 S522W 0 0 522N 0 0 '
0 0 0 0 N12S 0 0 N12W
0 0 0 0 E12S 0 0 E12W
0 W118 0 0 0 0 WI11E 0
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N11W 0 0 0 0 0 0 NI1IN
0 S21W 5218 0 0 0 0 0
0 W21W  W21S 0 0 0 0 0
Pro = 0 0 0 E22S5 E22E 0 0 0 )
0 0 0 5225 S22E 0 0 0 ’
0 0 0 0 0 N12E NI12N 0
0 0 0 0 0 E12E EI12N 0
WI11W 0 0 0 0 0 0 WI1IN
0 E118 0 0 0 0 E11E 0
E21N 0 0 E21E 0 0 0 0
N21IN 0 0 N21E 0 0 0 0
Py = 0 0 N22W 0 0 N22N 0 0 )
0 0 W22W 0 0 W22N 0 0 ’
0 0 0 0 W128 0 0 Wi12W
0 0 0 0 S128 0 0 S12W
0 S11S 0 0 0 0 S11E 0
E11W 0 0 0 0 0 0 E11IN
0 E21W  E21S 0 0 0 0 0
0 N21W N21S 0 0 0 0 0
Pro = 0 0 0 N22S N22E 0 0 0
0 0 0 W225 W22E 0 0 0
0 0 0 0 0 WI12E WI2N 0
0 0 0 0 0 S12E  SI12N 0
S11W 0 0 0 0 0 0 S11N

The choice of names for the variables in P is meant to indicate the corre-
sponding transitions, for instance N11S means that we enter pixel (1,1) going
north and exit it going south. It is convenient to refer to the figure on page 138
at this point.

Just as in [GP1], [GP2] we find it convenient to introduce matrices 4, X, Y,
W by means of

A= Py,
Pio=XA"', Puy =AW, Py =XA"'W Y.
The transformation, for a given Py, from the matrices Py, Pro, Prg to the
matrices W, X, Y was introduced by S. Patch in [P3]. Notice that from A, X,
W and Y it is possible to recover (in that order) the matrices Pyo, Pro, Pun

and, finally, Pry.
One advantage of introducing these matrices is that the input-output relation

Qro = Pro + Prg(I — Pyn) ' Pro
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can be rewritten, by multiplying both sides first by A on the right and then by
(I — A='W) on the right again, in the form

Qio(A~W)=X - Y.

In [GP1], [GP2] we exploited the block structure of the matrices A, W, X, Y
to show that once Qo is given then A is arbitrary. After choosing A, it is then
possible to derive explicit formulas for X, Y and W.

In the three-dimensional case the situation is a bit better, although the equa-
tions that we have to handle are naturally harder to deal with. We find that the
matrix A can no longer be picked arbitrarily but only 2/3 of it is arbitrary. This
means that using photon count alone it is possible to express 24 of the 72 entries
in the matrix A in terms of the data and 48 free parameters in A. By the photon
count matrix we refer to the matrix whose entries are given by the probabilities
that a photon that starts at a given source position would emerge from the tissue
at a specified detector position. For details consult [G4] and [GM2].

3. Using the First Moment of Time-of-Flight

Now we go beyond the photon count and consider the first moment of the
time-of- flight. As observed in the introduction the moment of order zero of
this collection of random variables (one for each source-detector pair) gives the
photon count matrix Q.

If we denote the expression

Pry(I — Pyy) *Ppo
by R, we have:

LEMMA. The first moment of the “time-of-flight” can be expressed as

Qro + R.

PrROOF. Start from the observation that the j-th moment of the time of flight
is given by
B =Pro+ > PraPlyPuo(k+2). (3-1)
k=0
In particular, if 7 = 0 we recover (after an appropriate summation of the cor-
responding geometric series) the expression for Qo = Q?g given in Section 2.
We will return to this expression later in this section.
For j =1 we get
Erlo) =Pio+2Piy(I — Pup) 'Puo + PiuPun(I — Pyn) *Puo
= (1(3 + Prg(I — Pup) [l — Pup + Pun|Puo
=Q\y +R. O
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Since Qo is taken as data we can consider R as the extra information provided
by the expected value of time of flight.
Observe now that we have the relation

QroA — X(A) = R(A—-W(A)).

This follows, for instance, by noticing that each side of this identity is given by
Pruy(I— Pug)™h

In the two-dimensional case ([GP2; GM1]) this concludes the job since we can
use some of the entries of the matrix R to determine the ratios among eight pairs
of the entries in A. Explicit formulas are given in [GM1].

The three-dimensional case has been given a first treatment in [G4]. By using
the labeling mentioned in the introduction to that paper it is possible to obtain
explicit formulas similar to those mentioned above. For details see [GM2].

It is very important to notice that in either dimension the entire problem
of determining the blocks in P admits a natural “gauge transformation” given
exactly by a diagonal matrix D. Consider the transformation that goes from a
given set of blocks, to a new one given by the relations

Pro = Pio,

Pry = PyD7,
Pyy = DPyyD™*,
Pro = DPpo.

Notice that this gauge transformation preserves the required block structure of
all the matrices in question. Moreover the probability of going from an arbitrary
incoming state to an arbitrary outgoing state in m steps, given by the matrix
Pro if m = 1 and by PIHPZ‘}fPHO if m > 2, is clearly invariant under the
transformation mentioned above. It follows then by referring to (3-1) for the
j-th moment of the time of flight distribution that this is not affected by this
gauge.

In conclusion, we have shown that the zeroth and first moments of the time-
of-flight distribution determine the matrix P up to the choice of the arbitrary
diagonal matrix D introduced above.

4. Taking into Account a Physical Model

An important question remains: how should the values of the 24 free param-
eters be picked (or the 8 free parameters in dimension two)? A similar question
was discussed in [GP2] where we considered the effect of imposing on our very
general model the assumption of “microscopic reversibility”, i.e., a one-step tran-
sition from a state (of our Markov chain) given by the vector v to a state given
by the vector w has the same probability as a transition from the sates given
by the vectors —w and —v respectively. On the other hand, in [G2], [GZ] we
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considered the case of isotropic scattering. Each one of these cases leads to a
dramatic reduction in the number of free parameters.

It is tempting to make some of these simplifying assumptions at the very
beginning of the process, thereby reducing the number of unknowns. Experience
seems to indicate that the possibility of reducing the already nonlinear system of
equations to a linear one is greatly enhanced by making use of these assumptions
at the end of the process.

5. A Network Tomography Problem for the Hypercube

The two-dimensional and three-dimensional problems discussed above have a
firm foundation in diffuse tomography. It is however possible to go to higher
dimensions and consider the corresponding d- dimensional hypercube and the
network that goes along with it. By using the techniques in [GM1] and [GM2]
it is possible to see that by measuring the first two moments (zeroth and first)
of time-of-flight we can determine everything explicitly up to a total of d 2¢ free
parameters. This happens to be the dimension of the gauge that appears at the
end of Section 3, and thus this result is optimal. Details will appear in [GM3].

Acknowledgments. We thank the editors for useful suggestions on ways to
improve the presentation.
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