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ABSTRACT. The classical (scalar-valued) theory of spherical functions, put
forward by Cartan and others, unifies under one roof a number of exam-
ples that were very well-known before the theory was formulated. These
examples include special functions such as like Jacobi polynomials, Bessel
functions, Laguerre polynomials, Hermite polynomials, Legendre functions,
which had been workhorses in many areas of mathematical physics before
the appearance of a unifying theory. These and other functions have found
interesting applications in signal processing, including specific areas such
as medical imaging.

The theory of matrix-valued spherical functions is a natural extension of
the well-known scalar-valued theory. Its historical development, however,
is different: in this case the theory has gone ahead of the examples. The
purpose of this article is to point to some examples and to interest readers
in this new aspect in the world of special functions.

We close with a remark connecting the functions described here with
the theory of matrix-valued orthogonal polynomials.

1. Introduction and Statement of Results

The theory of matrix-valued spherical functions (see [GV; T]) gives a natural
extension of the well-known theory for the scalar-valued case, see [He]. We start
with a few remarks about the scalar-valued case.

The classical (scalar-valued) theory of spherical functions (put forward by
Cartan and others after him) allows one to unify under one roof a number of
examples that were very well known before the theory was formulated. These ex-
amples include many special functions like Jacobi polynomials, Bessel functions,
Laguerre polynomials, Hermite polynomials, Legendre functions, etc.
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All these functions had “proved themselves” as the work-horse in many areas
of mathematical physics before the appearance of a unifying theory. Many of
these functions have found interesting applications in signal processing in gen-
eral as well as in very specific areas like medical imaging. It suffices to recall,
for instance, that Cormack’s approach [C]—for which he got the 1979 Nobel
Prize in Medicine, along with G. Hounsfield —was based on classical orthogonal
polynomials and that the work of Hammaker and Solmon [HS] as well as that of
Logan and Shepp [LS] is based on the use of Chebychev polynomials.

The crucial property here is the fact that these functions satisfy the integral
equation that characterizes spherical functions of a homogeneous space. For
a review on some of these topics the reader can either look at some of the
specialized books on the subject such as [He| or start from a more introductory
approach as that given in either [DMcK] and [T1, vol. I].

This integral equation is actually satisfied by all Gegenbauer polynomials and
not only those corresponding to symmetric spaces. This point is fully exploited
in [DG] where this property is put to use to show that different weight functions
can be used in carrying out the usual tomographic operations of projection and
backprojection. This works well for parallel beam tomography but has never
been made to work for fan beam tomography because of a lack of an underlying
group theoretical formulation in this case. For a number of issues in this area,
including a number of open problems, see [G2].

For a variety of other applications of spherical functions one can look at
[DMcK; T1].

We now come to the main issue in this article.

The situation with the matrix-valued extension of this theory is entirely dif-
ferent. In this case the theory has gone ahead of the examples and, in fact, to
the best of our knowledge, the first examples involving nonscalar matrices have
been given recently in [GPT1; GPT2; GPT3]. For scalar-valued instances of
nontrivial type, see [HeSc]|.

The issue of how useful these functions may turn out to be as a tool in areas
like geometry, mathematical physics, or signal processing in the broad sense is
still open. From a historical perspective one could argue, rather tautologically,
that the usefulness of the classical spherical functions rests on the many inter-
esting properties they all share. With that goal in mind, it is natural to try to
give a glimpse at these new objects and to illustrate some of their properties.
The rather mixed character of the audience attending these lectures gives us an
extra incentive to make this material accessible to people that might normally
not look in the specialized literature.

The purpose of this contribution is thus to present very briefly the essentials
of the theory and to describe one example in some detail. This is not the appro-
priate place for a complete description, and we refer the interested reader to the
papers [GPT1; GPT2; GPT3|.
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We hope to pique the curiosity of some readers by exploring the extent to
which the property of “positive linearization of products” holds in the case of
the spherical functions associated to P2(C). This result has been important
in the scalar case, including its use in the proof of the Bieberbach conjecture,
see [AAR]. The property in question is illustrated well by considering the case
of Legendre polynomials: the product of any two such is expressed as a linear
combination involving other Legendre polynomials with degrees ranging from
the absolute value of the difference to the sum of the degrees of the two factors
involved. Moreover, the coefficients in this expansion are positive.

We should stress that the intriguing property described here is one enjoyed by
a matriz-valued function put together from different spherical functions of a given
type. In the classical scalar-valued case these two notions agree and the warning
is not needed. This combination of spherical functions has already been seen,
see [GPT1; GPT2; GPT3] to enjoy a natural form of the bispectral property.
For an introduction to this expanding subject we could consult, for instance,
[DG1; G12]. The roots of this problem are too long to trace in this short paper,
but the reader may want to take a look at [S1]. For off-shoots that have yet to
be explored further one can also see [G13; G15]. The short version of the story
is that some remarkably useful algebraic properties that have surfaced first in
signal processing and which one would like to extend and better understand have
a long series of connections with other parts of mathematics. For a collection of
problems arising in this area see [HK].

The issue of linearization of products, without insisting on any positivity
results, plays (in the scalar-valued case) an important role in fairly successful
applications of mathematics. For example, the issue of expressing the product
of spherical harmonics of different degrees as a sum of spherical harmonics plays
a substantial role in both theoretical and practical algorithms for the harmonic
analysis of functions on the sphere. For some developments in this area see [DH]
as well as [KMHR].

In the context of quantum mechanics this discussion is the backbone of the
addition rule for angular momenta as can be seen in any textbook on the subject.

In the last section we make a brief remark connecting the functions described
here with the theory of matrix-valued orthogonal polynomials, as developed for
instance in [D] and [DVA].

2. Matrix-Valued Spherical Functions

Let G be a locally compact unimodular group and let K be a compact sub-
group of G. Let K denote the set of all equivalence classes of complex finite
dimensional irreducible representations of K; for each § € K , let &5 denote the
character of §, d(0) the degree of 4, i.e. the dimension of any representation in
the class ¢, and x5 = d(6)&s.
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Given a homogeneous space G/K a zonal spherical function ([He]) ¢ on G is
a continuous complex valued function which satisfies ¢(e) = 1 and

o(x)p(y) = /Kw(xky) dk r,y €G. (2-1)

The following definition gives a fruitful generalization of this concept.

DEFINITION 2.1 [T; GV]. A spherical function ® on G of type § € K is a
continuous function on G with values in End(V') such that

(i) ®(e) equals I, the identity transformation.
(i) ®(x)®(y) = [r xs(k™1)®(xky) dk, for all z,y € G.

The connection with differential equations of the group G comes from the prop-
erty below.

Let D(G)X denote the algebra of all left invariant differential operators on G
which are also invariant under all right translation by elements in K. If (V,7)
is a finite dimensional irreducible representation of K in the equivalence class
§ € K, a spherical function on G of type d is characterized by:

(i) @ : G — End(V) is analytic.
(ii) P(k1gke) = w(k1)®(g)m(k2), for all k1, ke € K, g € G, and ®(e) = 1.
(iii) [D®](g) = ®(g)[D®](e), for all D € D(G)¥, g € G.

We will be interested in the specific example given by the complex projective
plane. This can be realized as the homogeneous space G/K, where G = SU(3)
and K = S(U(2) x U(1)). In this case iii) above can be replaced by: [A2®](g) =
A2®(g), [As®](g) = A3®(g) for all g € G and for some Ay, A3 € C. Here A,
and Az are two algebraically independent generators of the polynomial algebra
D(G)€ of all differential operators on G which are invariant under left and right
multiplicatioP by elements in G. A0

The set K can be identified with the set Z x Z>o. If k= <0 a)’ with
A€ U(2) and a = (det A)~1, then

7(k) = mpi(A) = (det A)" A,

where A! denotes the I-symmetric power of A, defines an irreducible representa-
tion of K in the class (n,l) € Z xZ>o.

For simplicity we restrict ourselves in this brief presentation to the case n > 0.
The paper [GPT1] deals with the general case. The representation m,; of U(2)
extends to a unique holomorphic multiplicative map of M(2,C) into End(V),
which we shall still denote by 7, ;. For any g € M(3,C), we shall denote by A(g)
the left upper 2 x 2 block of g, i.e.

Ay = (9 92

g21  g22
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For any 7 = 7(,, ;) with n > 0 let ® : G — End(V;) be defined by

,(9) = Pni(9) = Tni(Alg))-

It happens that @ is a spherical function of type (n, ), one that will play a very
important role in the construction of all the remaining spherical functions of the
same type.

Consider the open set

A={geG:detA(g) #0}.

The group G = SU(3) acts in a natural way in the complex projective plane
P,(C). This action is transitive and K is the isotropy subgroup of the point
(0,0,1) € P»(C). Therefore P»(C) = G/K. We shall identify the complex plane
C? with the affine plane { (z,y,1) € P(C) : (x,y) € C? }.

The canonical projection p : G — P»(C) maps the open dense subset .4 onto
the affine plane C2. Observe that A is stable by left and right multiplication by
elements in K.

To determine all spherical functions ® : G — End(V;) of type 7 = m,;, we
use the function @, introduced above in the following way: in the open set A
we define a function H by

where ® is suppose to be a spherical function of type m. Then H satisfies:

(i) H(e) =1.
(ii) H(gk) = H(g), forallg e Ak € K.
(iii) H(kg) = m(k)H(g)m(k~1), for all g € A,k € K.

Property ii) says that H may be considered as a function on C2.

The fact that ® is an eigenfunction of Ay and A3 makes H into an eigenfunc-
tion of certain differential operators D and F on C2.

We are interested in considering the differential operators D and E applied
to a function H € C*°(C?)®End(V;) such that H(kp) = w(k)H (p)m(k)~!, for
all k € K and p in the affine complex plane C2. This property of H allows us to
find ordinary differential operators D and E defined on the interval (0, 00) such
that

(D H)(r,0) = (DE)(r),  (EH)(,0) = (BH)(r),
where H(r) = H(r,0).

Introduce the variable ¢t = (1+72)~!, which converts the operators Dand E
into new operators D and F.

The functions H turn out to be diagonalizable. Thus, in an appropriate basis
of Vi, we can write H(r) = H(t) = (ho(t), ..., hi(t)).

We find it very convenient to introduce two integer parameters w, k subject to
the following three inequalities: 0 < w, 0 < k <[, which give a very convenient
parametrization of the irreducible spherical functions of type (n,l). In fact, for
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each pair (I,n), there are a total of [+ 1 families of matrix-valued functions
of t and w. In this instance these matrices are diagonal and one can put these
diagonals together into a full matriz-valued function as we will do in the next two
sections. It appears that this function, which coincides with the usual spherical
function in the scalar case, enjoys some interesting properties.

The reader can consult [GPT1] to find a fairly detailed description of the
entries that make up the matrices mentioned up to now. A flavor of the results
is given by the following statement.

For a given [ > 0, the spherical functions corresponding to the pair (I,n) have
components that are expressed in terms of generalized hypergeometric functions
of the form ,9F, 41, namely

_ i(b);

i(c);

; (L+dij+---+dpi?)t.

a,bysi+1,...,5,+1 > = (a)
+2F+1< it) =
Py C, 81,82, Sp JZ:;) !

3. The Bispectral Property

For given nonnegative integers n, [ and w consider the matrix whose rows are
given by the vectors H(t) corresponding to the values k = 0,1,2,...,1 discussed
above. Denote the corresponding matrix by

O(w,t).
As a function of ¢, ®(w,t) satisfies two differential equations
Do (w,t)! = ®(w,t)'A, E®(w,t)' = ®(w,t)'M .
Here A and M are diagonal matrices with

A(iyi) = —w(w+n+it+l+1)—(i—1)(n+1i),
M(i,i) = A(4,1)(n—14+3i—3)=3(t—1)({—i+2)(n+1),

for 1 < i <I[l+4+1; D and E are the differential operators introduced earlier.
Moreover we have

THEOREM 3.1. There exist matrices Ay, By, Cy, independent of t, such that
Ap®(w—1,t)+ By®(w,t) + Cp®(w+1,t) = t®(w, t) .

The matrices A,, and C,, consist of two diagonals each and B,, is tridiagonal.
Assume, for convenience, that these vectors are normalized in such a way that
for t = 1 the matrix ®(w, 1) consists of all ones.

For details on these matrices as well as for a full proof of this statement, which
was conjectured in [GPT1], the reader can consult [GPT2] and [PT].
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4. Linearization of Products

The property in question states that the product of members of certain families
of (scalar-valued) orthogonal polynomials is given by an expansion of the form
j+i
PPi= > aP
k=[j—il

and that the coefficients in the expansion are all nonnegative.

For a nice and detailed account of the situation in the scalar case, see for
instance [A], [S]. Very important contributions on these and related matters are
[G] and [K].

It is important to note that the property in question is not true for all families
of orthogonal polynomials, in fact it is not even true for all Jacobi polynomials
RE,“’B), normalized by the condition Pé,a“@)(l) positive. For our purpose it is
important to recall that nonnegativity is satisfied if &« > § and a+ 3 > 1.

The case [ =0, n > 1.

From [GPT1] we know that when [ = 0 and n > 0 the appropriate eigenfunc-
tions (without the standard normalization) are given by

—w, w+n+2
<I)(w,t) = 2F1 ( v t)

n+1 ’

This means that with the usual convention that the Jacobi polynomials are
positive for t = 1 we are dealing with the family

PL(t).

If n =0 or n =1 the family PM™ meets the sufficient conditions for nonneg-
ativity given above. For n = 0 the coefficients aj are all strictly positive; in the
case n = 1 the coefficients aj;_j|;.2x, are strictly positive while the coefficients
a)i—j|+k, k odd, are zero, as the example below illustrates.

We now turn our attention to the case n > 1.

CONJECTURE 4.1. For n an integer larger than one, the coefficients in the
expansion for the product P;P; above alternate in sign.

This conjecture is backed up by extensive experiments, one of which is shown
below. It deals with the case of w (that is, ¢ and j) equal to 3 and 4. Richard
Askey supplied a proof of this conjecture. This gives us a new chance to thank
him for many years of encouragement and help.

The product of the (scalar-valued, and properly normalized) functions ®(3,t)
and ®(4,t) is given by the expansion
D(3,6)P(4,t) = a1P(1,t) +a2®(2,t) +az®(3,t) + a1 P(4,1)
+a5<I>(5, t) + a6<1>(6, t) +a7<I>(7, t),
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with coefficients given by the expressions

_ (n+2)(n+3)(n+4)
-~ (n+8)(n+9)(n+10)’

6(n—1)(n+3)(n+4)(n+6)?

2T T )+ 8)(n+9)(n+10)(n+11)°
~ 3(n+4)(n+5)(Tn®+52n +67n+162)
B T )+ 9)(n+10)(n+11)(n+12)
~ 4(n—1)(n+6)(11n3+123n% +436n + 648)
T T 8t ) (n 1) (nt 12)(n+13)
~ 3(n+5)(n+6)(n+7)(19n3 +155n% 4+ 162n + 504)
O T i+ 8)(n+9)(n+ 10)(n+ 11)(n+13)(n+14)
B 42(n—1)(n+5)(n+6)*(n+7)(n+8)
YT T 9 (n+10)(n+11)(n+12)(n+13)(n+ 15)°
0 — 14(n+5)(n+6)%(n+7)%(n+8)

(n+10)(n+11)(n+12)(n+13)(n+14)(n+15).

This shows that even in the scalar-valued case, as soon as we are dealing
with nonclassical spherical functions we encounter an interesting sign alternating
property that is quite different from the more familiar case. Here and below we
see that things become different once n is an integer larger than one.

Now we explore the picture in the case of general [.
The case [ >0, n > 1
CONJECTURE 4.2. If i < j then the product of ®(i,t) and ®(j,t) allows for a
(unique) expansion of the form
it
i RG )= Y Ak, 1),
k=min{j—i—1,0}

Here the coefficients Ay, are matrices and the matriz-valued function ®(w,t) is
the one introduced in Section 3. This conjecture holds for all nonnegative n and
is well known for 1 =0 and n = 0.

In the case of [ = 0 we obtain the usual range in the expansion coefficients
ranging from j—14 to j+4 as in the case of addition of angular momenta. For
larger values of | we see that extra terms appear at each end of the expansion.

CONJECTURE 4.3. Ifi < j then the coefficients Ay, in the expansion

J+i+l
(i, t)®(j,t) = > Ap®(k,t).

k=min{j—i—1,0}
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with k in the range j—1, j+1 have what we propose to call “the hook alternating
property.”

We will explain this conjecture by displaying one example. First notice that we
exclude those coefficients that are not in the traditional or usual range discussed
above.

At this point it may be appropriate in the name of truth in advertisement
to admit that we have no concrete evidence of the significance of the property
alluded to above and displayed towards the end of the paper. We trust that the
reader will find the property cute and intriguing. It would be very disappointing
if nobody were to find some use for it.

The results illustrated below have been checked for many values of [ > 0, but
are displayed here for [ = 1 only.

Recall that from [GPT1] the rows that make up the matrix-valued function
H(t,w) are given as follows: the first row is obtained from the column vector

A —w, w+n+3, A—n
1_7 .
( n+1>3F2< n+2, A\—n—1 ’t>
—w, w+n+3
2F1< nt1 ,t)
with
A= —w(w+n+3)

and the second row comes from the column vector

F (—w, w+n—|—4;t)

n+2
)= 1 3, A
—w—1, w+n+s, A
—(n+1)3F2( ptl A-1 ,t)

with
A= —ww+n+4)—n—-2.
The product of the matrices ®(2,¢) and ®(6,t) is given by the expansion
D(2,1)D(6,t) = A3D(3,t) + Ay P(4,t) + A5 P(5,t) + AgP(6, 1)
—|—A7CD(7, t) +A8‘b(8, t) +A9(I>(9, t),

where

0
Az = 16(n+4)(n+5)(n+6)?(n+7)> ;
(n+11)(n+12)(n+13)(n+14)(n+15)(n+16)

(L1 Lio .
A4 = (L21 L22) with
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15(n+5)%(n+6)(n+8)
2(n+12)(n+13)(n+14)(n+15)’

5(n+5)(n+6)(4n?+55n+216)
6(n+13)(n+14)(n+15)(n+16)’
L~ (n+5)(n+6)(n+7)(8n?+153n+724)
T 9(n+12)(n+13)(n+14)(n+15)(n+16)’

5(n+6)(n+7)(248 n* +4665 n> + 27202 n® + 45137 n — 23252)
12(n+11)(n+13)(n+14)(n+15)(n+16)(n+17) ’

L1 =

12 =

Ly = —

(M1 My .
A5 = (M21 Mgg) with

(n+5)(n+6)(185n3+3284n2 + 15732 n+ 10368)

My = —
1 6(n+7)(n+12)(n+14)(n+15)(n+16)
M _ (n+5)(85n* +1817n% +11380 1" +7072 n — 93460)
2 7(n+7)(n+13)(n+15)(n+16)(n+17) ’
Mor — (n+6)%(170 n* +4735n> 4+ 42068 n? + 99767 n — 168628)
2 12(n+7)(n+12)(n+14)(n+15)(n+16)(n+17)
4327 n" + 163698 nS + 2480127 n® + 19091004 n* + 78090428 n?
M 1163454544 n2 4172290528 n + 132098688
22 = 5

14(n+7)(n+12)(n+13)(n+15)(n+16)(n+17)(n+18) ’

Nll N12> .
Ag = with
0 (N21 Nay

2(193 n® 45832 n* + 65284 n> + 328884 n? 4 727621 n + 634422)

Ny =
" 7(n+8)(n+13)(n+14)(n+16)(n+17) ’

N, = 1710’ +4729 0 + 45764 n” 4 188570 n” 4 442336 1+ 1133640
2 8(n+8)(n+14)(n+15)(n+17)(n+18) ’

N 17118 + 7071 n° + 116213 n* 4+ 959879 n® 4- 4245034 n? + 10640548 n + 15755112
21 —

T(n+8)(n+13)(n+14)(n+16)(n+ 17)(n+ 18) :

4269 n™ +169934 n°® + 2677678 n® + 21066480 n* + 85737209 n®

Nog = — +169428298 n2 4+ 129986220 n — 46794888 .
8(n+8)(n+13)(n+14)(n+15)(n+17)(n+18)(n+19) ’

(P Pro .
A7 = (P21 P22> with
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3(n+5)(129 n* 43710 n> 4- 36430 n* + 129960 n + 76536)

Pi=—
H 8(n+9)(n+14)(n+15)(n+16)(n+ 18) ’

P _ (n45)(n+10)(57n® +917n* +2274n — 11268)
2 3(n+9)(n+15)(n+16)(n+17)(n+19) '

P — —3(57n® 42505 n® 444489 n* + 389955 n® 4 1576582 n? + 1465908 n — 4434696)
T 8(n+9)(n—+14)(n+15)(n+16)(n + 18)(n + 19) ’

2(n+10)(829n° 427979 n® + 352571 n* +2024521 n®

P 15197384 n2 45712396 n -+ 5004720)

22 = 5

3(n+9)(n+14)(n+15)(n+16)(n+17)(n+19)(n+20) ’

_ Qll Q12 .
A8 B (QQl Q22) with

5(n+5)(n+6)(21n? 4401 n+1920)

Q= 6(n+15)(n+16)(n+17)(n+18)

Qs = 15(n+5)(n+6)(n+8)(n+11)
7 9(n+16)(n+17)(n+18)(n+19)°

0 ~ 5(n+6)(10n* + 329 n® 44942 n? + 36611 n+96300)
e 6(n~+15)(n+16)(n+17)(n+18)(n +20) ’

0 3(n+6)(n+11)(430 n* + 9773 n® + 67728 n? + 129129 n — 59220)
22 — — 5

4(n+15)(n+16)(n+17)(n+18)(n+19)(n+21)

0 0
Ag = with
? (T21 5o )

99(n+4)(n+6)(n+7)(n+10)
4(n+16)(n+17)(n+18)(n+19)(n+20)’
165(n+4)(n+6)(n+7)(n+8)(n+10)(n+12)
2(n+16)(n+17)(n+18)(n+19)(n+20)(n+21)"

1o =

22 —

Notice that if we concentrate our attention on the coefficients within the
traditional range we see that the first matrix A4 has its first hook made up of
positive entries, the second hook (which in this example consists of only one
entry) has negative signs. The second matrix As has its first hook negative, the
second hook positive. The third matrix Ag repeats the behavior of the first one,
the fourth one A7 imitates the second one, and so on.

Extensive experimentation shows that this double alternating property holds
for values of [ greater than zero. For coeflicient matrices in the traditional
expansion range, the first matrix has its first hook positive, the second one
negative, the third one positive, etc. The second matrix has the same alternating
pattern of signs for the hooks but its first hook is negative. The third matrix
imitates the first, etc.
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The following picture captures the phenomenon described above for n larger
than one and when the index k is in the traditional range.

NIRRT .
A e

e e+ ST

NI — - etc.
+—+ -+ -

5. The Relation with Matrix-Valued Orthogonal Polynomials

We close the paper remarking, once again, that our matrix-valued spherical
functions are orthogonal with respect to a nice inner product and have polyno-
mial entries. Yet, they do not fit directly into the existing theory of matrix-valued
orthogonal polynomials as given for instance in [D] and [DVA].

It is however possible to establish such a connection: define the matrix-valued
function ¥(j,¢) by means of the relation

O(4,t) =0(4,t)P(0,1).

It is now a direct consequence of the definitions that the family W(j,t) satisfies
all the standard requirements in [DVA] and not only satisfies a three term recur-
sion relation but also ¥(j,t)! satisfies a fixed differential equation with matrix
coefficients and only the “eigenvalue matrix” depends on j. In other words the
family W(j,t) meets all the conditions given at the beginning of Section 3 and
meets also the conditions of the standard theory in [DVA] giving an example
of a classical family of matriz-valued orthogonal polynomials. In particular, the
coefficients in the differential operator D (obtained by conjugation from the one
in [GPT1]) are matrix polynomials of degree going with the order of differenti-
ation. For a nice introduction to this circle of ideas, see the pioneering work in
[D].

Acknowledgments. We are much indebted to the editors for suggesting a
number of places where the exposition could be improved. Griinbaum acknowl-
edges a useful conversation with A. Duran that steered him in the direction to
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