
Modern Signal Processing
MSRI Publications
Volume 46, 2003

Sampling of Functions and Sections
for Compact Groups

DAVID KEITH MASLEN

Abstract. In this paper we investigate quadrature rules for functions on
compact Lie groups and sections of homogeneous vector bundles associated
with these groups. First a general notion of band-limitedness is introduced
which generalizes the usual notion on the torus or translation groups. We
develop a sampling theorem that allows exact computation of the Fourier
expansion of a band-limited function or section from sample values and
quantifies the error in the expansion when the function or section is not
band-limited. We then construct specific finitely supported distributions on
the classical groups which have nice error properties and can also be used
to develop efficient algorithms for the computation of Fourier transforms
on these groups.
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1. Introduction

The Fourier transform of a function on a compact Lie group computes the
coefficients (Fourier coefficients) that enable its expression as a linear combina-
tion of the matrix elements from a complete set of irreducible representations
of the group. In the case of abelian groups, especially the circle and its lower
dimensional products (tori) this is precisely the expansion of a function on these
domains in terms of complex exponentials. This representation is at the heart
of classical signal and image processing (see [25; 26], for example).

The successes of abelian Fourier analysis are many, ranging from national
defense to personal entertainment, from medicine to finance. The record of
achievements is so impressive that it has perhaps sometimes led scientists astray,
seducing them to look for ways to use these tools in situations where they are
less than appropriate: for example, pretending that a sphere is a torus so as
to avoid the use of spherical harmonics in favor of Fourier series —a favored
mathematical hammer casting the multitudinous problems of science as a box of
nails.

There is now however in the applied and engineering communities, a growing
awareness, appreciation, and acceptance of the use of the techniques of non-
abelian Fourier analysis. A favorite example is the use of spherical harmonics
for problems with spherical symmetry. While this is of course classical mathe-
matical technology (see [2; 23], for example), it is only fairly recently that serious
attention has been paid to the algorithmic and computational questions that arise
in looking for efficient and effective means for their computation [4; 8; 22]. Re-
cent applications include the new analysis of the cosmic microwave background
(CMB) data— in this setting, the highest order Fourier coefficients of the func-
tion that measures the CMB in all directions from a central point are expected
to reveal clues to understanding events in the first moments following the Big
Bang [24; 32]. Other examples include the use of spherical harmonic transforms
in estimation and control problems on group manifolds [18; 19], and for the so-
lution of nonlinear partial differential equations on the sphere, such as the PDEs
of climate modeling [1]. The closely related problem of computing Fourier trans-
forms on the Lie group SO(3) is receiving increased attention for its applicability
in volumetric shape matching [13; 14; 17].

In order to bring these new transforms to bear on applications, we must
bring the well-studied analytic theory of the representations of compact groups
(see [33], for instance) into the realm of the computer. Generally speaking,
implementation requires that two problems need to be addressed. On the one
hand we need to find a reduction of the a priori continuous data to a finite set
of samples of the function, and possibly of its derivatives as well, and we must
solve the concomitant problem of function reconstruction, which may only be
approximate, from this finite set of samples. This is the sampling problem. On
the other hand, efficient and reliable algorithms are required in order to turn the
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discrete data into the Fourier coefficients. These sorts of algorithms go by the
name of Fast Fourier Transforms or FFTs.

In the abelian case the theory and practice are by now well-known. Shannon
sampling is the terminology often used to encompass the solution of the sam-
pling problem for functions on the line, or — and more relevant to this paper—
the problem of sampling for a function on the circle, while the associated FFT
provides tremendous efficiencies in computation.

In this paper we focus on the sampling problem for compact Lie groups,
through an investigation of quadrature rules on these groups. Following the
well-known abelian case we distinguish between two situations: the band-limited
case in which the function in question is known to have only a finite number
of nonzero Fourier coefficients, and the non-band-limited case. In the former
situation it is possible to exactly reconstruct the function from a finite collection
of samples, while in the latter, the best we can hope for is an approximation to the
Fourier expansion, as well as some measure of how close is this approximation.

We first describe a general setting, a filtered algebra, where an extension of
the classical notion of band-limited, as in [28], makes sense, and adapt it to
the special case of functions on a compact Lie group, G. We define a space of
functions As on G, the band-limited functions with band-limit s, in such a way
that As.At is contained in As+t. Then we develop a sampling theorem of the
following form:

Assume ϕ is a distribution on G and f is a continuous function on G that
is sufficiently differentiable for the product f.ϕ to exist. There is a canonical
projection, Ps, from the space of distributions onto As. We describe norms, ‖ ‖,
‖ ‖∗, ‖ ‖∗∗ such that

‖Ps(f.(ϕ− µ))‖ ≤ M(s, t)‖ϕ− µ‖∗‖(1− Ps)f‖∗∗,
provided that Ps+t(ϕ − µ) = 0, where µ is Haar measure of unit mass on the
group and M(s, t) is a function which we explicitly bound in the case of the
classical groups.

When f is band-limited this gives a condition on the distribution used to
sample f that allows exact computation of the Fourier transform of f from the
sampled function. When f is not band-limited it quantifies the error introduced
when using the Fourier expansion of f.ϕ to approximate that of f . In particular
we show that for sufficiently differentiable functions the projection of the approx-
imate expansion onto a space of band-limited functions closely approximates the
projection of the original function onto this space without requiring significantly
more sample values than the dimension of the band-limited space. The amount
of oversampling is related to the growth function of the algebra generated by
the matrix coefficients, and hence to its Gel’fand–Kirillov dimension. This is the
content of Section 2.

In Section 3 we extend these results to the expansion of sections of homoge-
neous vector bundles in terms of basis sections coming from the decomposition of
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the corresponding induced representation, e.g. the expansion of a tensor field on
the sphere in tensor spherical harmonics [16]. Finally in Section 4 we construct
finitely supported distributions on the classical groups which are convolutions
of distributions supported on one parameter subgroups and which have all the
properties required by the sampling theorem, i.e. Ps+t(ϕ− µ) = 0 and ‖ϕ− µ‖∗
is bounded. These distributions can be used to develop fast algorithms for the
computation of Fourier transforms on these groups. A general algebraic ap-
proach for such algorithms, which uses efficient algorithms for computing with
orthogonal polynomial systems [5], is presented in [21].

Remark. This paper only considers the compact case, but the non-compact
is at least as interesting. In this setting G. Chirikjian has pioneered the use of
representation theoretic techniques for a broad range of interesting applications
including robotics, image processing, and computational chemistry [3].

2. Sampling of Functions

Before going into the general situation it is instructive to consider the familiar
case of functions on the 2-sphere S2, identified with the subalgebra of functions
on the compact Lie group SO(3) that right-invariant with respect to transla-
tion by SO(2), the subgroup of rotations that leave fixed the North Pole. See
Section 2.2.1 for notation.

Example: The Fourier transform on S2. Let Ylm, with |m| ≤ l, denote the
spherical harmonic on S2 of order l and degree m (see [23] for explicit definitions).
Any continuous function, f , on S2 has an expansion in spherical harmonics∑

lm almYlm which converges under suitable conditions on f , e.g., when f is C2.
The coefficients alm are called the Fourier coefficients of the function f .

Assume s is a nonnegative integer; then f is said to be band-limited with
band-limit s if all the coefficients alm in the expansion of f are zero for l > s,
i.e. if f =

∑
|m|≤l≤s almYlm. If we now pick N = (s + 1)2 points x1, . . . , xN on

S2 in general position, then the function values of f at these points completely
determine f provided f is band-limited with band-limit s, so the linear map
from function values (f(xi))1≤i≤N to coefficients (alm)|m|≤l≤s is a vector space
isomorphism. The numbers alm can be found from the function f using the
formula alm =

∫
S2 f.Ylmdµ, where µ is the invariant measure on the sphere of

unit mass. We can also find these numbers by inverting the equations f(xi) =∑
|m|≤l≤s almYlm(xi). Another method would be calculate the integrals using

sums of the form

N∑

i−1

f(xi)Ylm(xi)wi,
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where the wi are numbers, called sample weights, depending only on the points
xi. This is only possible, however, if the wi and the xi satisfy

N∑

i=1

Ylm(xi)wi = δ(0,0),(l,m) for |m| ≤ l ≤ s,

which is not usually possible for general sets of N = (s + 1)2 points, but is
possible for general sets of N = (2s + 1)2 points; the condition then determines
the sample weights, wi. This is precisely the condition that we can integrate
exactly any band-limited function of band-limit 2s using the points and weights,
and it follows from the fact that the product of two band-limited functions of
band-limit s has band-limit 2s.

What about functions that may not be band-limited? To treat this more
general case we first rewrite this discussion. Let As denote the space of band-
limited functions with band-limit s, let ϕs =

∑
wiδxi

be a finitely supported
measure on S2, and let blm =

∫
S2 f.Ylmdϕs be the Fourier coefficients of the

finite measure f.ϕs. If f is in As and 〈ϕs − µ, A2
s〉 = 0, then alm = blm for

|m| ≤ l ≤ s; to obtain the condition above note that A2
s = A2s. If f is not in

As, then we can not assume that we will have alm = blm for l ≤ s, but we can
bound the error. It follows from the example immediately after Theorem 3.7
that, provided 〈ϕs − µ, A2s〉 = 0, we have

s∑

l=0

(2l+1)

( l∑

m=−l

(blm−alm)2
)1/2

≤ 2(s+1)4
( N∑

i=1

wi

)∑

l>s

(2l+1)

( l∑

m=−l

a2
lm

)1/2

.

Let Ps denote the projection from the space of distributions C0(S2)′ onto As

given by truncation of the expansion in spherical harmonics, then we can rewrite
the above inequality to obtain

‖Ps(f.(ϕs − µ))‖C0 ≤ ‖Ps(f.(ϕs − µ))‖A0 ≤ 2(s + 1)4‖ϕs‖C′0‖(1− Ps)f‖A0

≤ K‖ϕs‖C′0‖(1− Ps)f‖W6 ,

where ‖ ‖A0 is the norm of absolute summability inherited from that on SO(3),
‖ ‖W6 is the Sobolev norm on C6, and K is a positive constant; the last inequality
follows from an application of Bernstein’s theorem on SO(3) (see [6; 27]). Hence,
of f is in C6, and ϕs is a sequence of measures on S2 which converges weak-∗ to
µ and for which 〈ϕs, A2s〉 = 0, then ‖Ps(f.(ϕs − µ))‖C0 tends to zero as s tends
tends to infinity.

This approach to the construction of quadrature rules for functions on S2,
can be generalized, and is the goal of the remainder of this section, which is
divided into two parts. First we generalize the band-limited sampling of the
introduction to filtered algebras and outline an approach for dealing with func-
tions which are not band-limited. Next we treat the case of continuous functions
on a compact Lie group, G. Any such function, f , has a Fourier expansion in
terms of the matrix coefficients of irreducible unitary representations of G. The
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Fourier transform of f is the collection of all coefficients in this expansion, and
may be represented as an element of the space

∏
γ End Vγ , where γ ranges over

the irreducible unitary representations of G, and Vγ is the space on which this
representation acts. Sampling a Cm function, f , corresponds to multiplying it by
a distribution, ϕ, of order at most m. By putting norms on the space

∏
γ End Vγ

we can, under suitable assumptions on ϕ, bound the difference between a finite
number of the Fourier coefficients of f and f.ϕ.

In what follows we assume a familiarity with the basic ideas and tools of the
representation theory of compact groups. There are many excellent resources for
this material. Standard texts include [33; 29].

2.1. An Abstract Framework. Several of the results of this paper fit into a
simple framework. Assume A is a complex algebra and {As} is a set of subspaces
of A such that As.At ⊆ As+t, where s and t range over some semigroup, which
we shall take to be the non-negative integers or reals. Let A′ denote the dual of
A, and define a A-module structure of A′ by

(a.ϕ)(g) = ϕ(g.a)

for any a, g in A, and ϕ in A′. Let Ps denote the projection from A′ onto A′s
given by restriction of linear functionals. Then we have the following trivial
result.

Lemma 2.1. Assume ϕ, µ are linear functionals in A′ such that Ps+t(ϕ−µ) = 0.
Then

Ps(f.ϕ) = Ps(f.µ)

for any f in At.

This lemma simply states that, if the linear functionals, ϕ and µ, agree on the
subspace As+t, then they also agree on the subspace As.At.

Example. Assume A is a finitely generated C-algebra with identity, and let S

be a finite generating set containing the identity. Define S0 = C.1, and let Sk

denote the span of all products of k elements of S. Then Sk.Sl = Sk+l for any
nonnegative integers k and l.

The lemma above does not necessarily hold for elements, f , which do not belong
to At. To deal with this case, let us introduce norms on the algebra, A. Assume
that ‖ ‖A′s is a norm on A′s and that ‖ ‖A, ‖ ‖B are norms on A. Let AA′ be
the continuous dual of A with respect to ‖ ‖A, let ‖ ‖′A denote the dual norm,
and let AB be the completion of A with respect to ‖ ‖B . Now define

M(s, t) = sup{‖Ps(h.ϕ)‖A′s : ‖h‖B = 1, ‖ϕ‖′A = 1, h ∈ A, ϕ ∈ A′, Ps+tϕ = 0}.

When there is a possibility of confusion, we shall denote this M
A′s,A
B (s, t). If

M(s, t) < ∞ then Ps(h.ϕ) is well defined whenever ϕ is in the A-continuous
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dual of A, Ps+tϕ = 0, and h is in the B-completion of A. In addition, it only
depends on the coset of h modulo At.

Lemma 2.2. Assume ϕ, µ are linear functionals in AA′ such that Ps+t(ϕ−µ) =
0, and let h ∈ AB. Then

‖Ps(f.ϕ)− Ps(f.µ)‖A′s ≤ M(s, t)‖ϕ− µ‖′A‖f‖B/At

where ‖ ‖B/At
denotes the quotient seminorm on AB/At.

The next section of this paper is concerned with bounding M(s, t) in the case
where A is the algebra spanned by the matrix coefficients of finite dimensional
representations of a compact Lie group. We shall also bound the quantity

M(s, t) = sup{‖e.h‖A/As+t
: ‖e‖As = 1, ‖h‖B = 1, e ∈ As, h ∈ A}

for some particular choices of norms ‖ ‖As
on As. If As is finite dimensional

and ‖ ‖A′s is dual to ‖ ‖As , then we have M(s, t) ≤ M(s, t). Weakening ‖ ‖A or
‖ ‖A′s , or strengthening ‖ ‖B or ‖ ‖As will decrease M(s, t) and M(s, t).

When the algebra A has a symmetric bilinear form 〈 , 〉 such that 〈a1, a2.a3〉 =
〈a1.a2, a3〉, then we have an A-module morphism from A into A′. Thus we can
translate Lemma 2.1 into a statement about subspaces of A.

Lemma 2.3. (i) A⊥s+t.As ⊆ A⊥t .
(ii) Let A−s = ∪t≤sAt, then A−⊥s+t.As ⊆ A−⊥t .

Proof. Part (ii) holds because As.A
−
t ⊆ A−s+t. ¤

2.2. Sampling of Functions on a Compact Lie Group

2.2.1. Notation and conventions. In what follows, we’ll assume G is a connected
compact Lie group, with Lie algebra g. Let T be a maximal torus of G and t be
it’s Lie algebra, then h = tC is a Cartan subalgebra of gC . Choose a fundamental
Weyl chamber and for any dominant integral weight, λ, let ∆λ be the irreducible
Lie algebra representation of highest weight λ. If Ĝ denotes the unitary dual of
G, then the map sending an irreducible unitary representation, ρ, to it’s highest
weight allows us to identify Ĝ with a subset of the set the set of all dominant
integral weights. For any λ in Ĝ denote the group representation of highest
weight λ by ∆λ as well, and set dλ = dim∆λ =

∏
α∈∆+(〈λ + δ, α〉 / 〈δ, α〉) where

δ = 1
2

∑
α∈∆+ α and 〈 , 〉 is the Killing form, and ∆+ is the set of positive roots.

Let r = dim([G,G] ∩ T ) be the semisimple rank of G, l be the dimension of the
center of G, and k be the number of positive roots of G. Then 2k+r+l = dim G,
and dλ is a polynomial of degree k on h∗. For any representation, ρ, of G, let ρ∨

be the representation dual to ρ. This gives an involution, ( )∨ on Ĝ.
Choose a norm on g. For any nonnegative integer, m, define a norm on Cm(G),

by ‖f‖Cm = sup{‖L(X1 . . . Xp)f‖∞ : 0 ≤ p ≤ m, X1, . . . , Xp ∈ g, ‖X1‖ = . . . =
‖Xp‖ = 1}, where L is the left regular representation. Denote the dual norm
on Cm(G)′, by ‖ ‖Cm

′ . These norms are all invariant under the right regular
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representation. If we were to replace the left regular representation by the right
regular representation in the above definitions, we would get an equivalent set of
norms invariant under the left regular representation. For 0 ≤ m ≤ ∞, denote
bilinear pairing between Cm(G)′ and Cm(G) by 〈 , 〉. For ϕ in Cm(G)′, and
g, h in Cm(G), we have 〈ϕ, g.h〉 = 〈ϕ.g, h〉. Define an involution on C∞(G) by
f̆(x) = f(x−1), and anti-involutions by f̄(x) = f(x), f∗(x) = f(x−1). These
extend to involutions and anti-involutions on C∞(G)′ by setting 〈T̆ , f〉 = 〈T, f̆〉,
〈T̄ , f〉 = 〈T, f̄〉, and T ∗ = ˘̄T , for any T ∈ C∞(G)′ and f ∈ C∞(G). If µG denotes
Haar measure on G of unit mass, then the map f 7→ f.µG gives us an inclusion
L1(G) ⊆ C0(G)′, and since G is compact, we also have inclusions Lp(G) ⊇ Lq(G)
for 1 ≤ p ≤ q ≤ ∞. Denote the Lp norm on Lp(G) by ‖ ‖p.

Let A denote the span of all matrix coefficients of finite dimensional unitary
representations of G. Then A is a subalgebra of C∞(G) under pointwise multi-
plication of functions. A is invariant under the involutions, ,̄ ,̆ ∗, and the pairing
〈 , 〉 restricts to a nondegenerate bilinear form on A. The hermitian form 〈f, g〉
is positive definite so the bilinear form is nondegenerate on any subspace of A

closed under .̄ In particular, if As = As then we can use the bilinear form to
identify A′s with As. We shall use ⊥ to refer to orthogonal complements taken
with respect to the bilinear form. For a subspace closed under ¯ this is the same
as the complement taken with respect to the hermitian form. For any λ ∈ Ĝ, let
Aλ be the span of the matrix coefficients of ∆λ. The Schur relations show easily
that A⊥λ =

∑
µ∈Ĝ\{λ⊥}Aµ.

2.2.2. The Fourier transform. Let F(Ĝ) =
∏

λ∈Ĝ EndVλ, where Vλ is the Hilbert
space on which ∆λ acts. Choose a norm on h∗. For 1 ≤ q < ∞ and 0 ≤ m < ∞,
define on F(Ĝ) the following norms, which may possibly be infinite:

‖A‖Fq =

( ∑

λ∈Ĝ

dλ‖Aλ‖q
q,λ

)1/q

,

‖A‖F∞ = sup{‖Aλ‖∞ : λ ∈ Ĝ},
‖A‖Am = ‖A0‖1,0 +

∑

λ∈Ĝ\{0}
dλ‖λ‖m‖Aλ‖1,λ,

‖A‖A′m = sup{‖λ‖−m‖Aλ‖∞,λ : λ ∈ Ĝ, λ 6= 0} ∪ {‖A0‖∞,0},

where ‖ ‖∞,λ is the operator norm on EndVλ relative to the Hilbert space
norm on Vλ, and for 1 ≤ q < ∞, ‖ ‖q,λ is the norm on End Vλ given by
‖Aλ‖q,λ = (Tr(Aλ(Aλ)∗)q/2)1/q. Let Fq(Ĝ), Am(Ĝ) and A′m(Ĝ) be the cor-
responding subspaces of F(Ĝ) on which these norms are finite. For general
properties of norms of these types see [11].

Recall that if H is a complex Hilbert space, and A is a linear operator on
H, then A∗ is a linear operator on H, and At is a linear operator on its dual
space, H ′, as is Ā = A∗t. Hence we can define an involution on F(Ĝ), by
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(At)λ = (Aλ∨)t, for A ∈ F(Ĝ), λ ∈ Ĝ, and anti-involutions, (A∗)λ = (Aλ)∗,
(Ā)λ = Aλ∨ .

We shall now assume that the norm on h∗ satisfies ‖λ∨‖ = ‖λ‖ for any λ ∈ Ĝ.
Then the maps ( )t, ( )∗, and ( ) preserve all the above norms on F(Ĝ). Define
a bilinear pairing between A′m and Am, by 〈A′, A〉 =

∑
λ∈Ĝ dλ Tr((A′t)λAλ).

The map T : A′m(Ĝ) → Am(Ĝ)′ given by TA′(A) = 〈A′, A〉 is an isometric
isomorphism, and so we shall use this map to identify Am(Ĝ)′ and A′m(Ĝ) from
now on.

Define the Fourier transform to be the map F : C∞(G)′ → F(Ĝ), given by
〈ϕ,F(s)λv〉 = 〈s, x 7→ 〈ϕ,∆λ(x)v〉〉 for any ϕ ∈ V ∗

λ and v ∈ Vλ. When f is
a function in L1(G) this becomes (Ff)λ =

∫
G

f(x)∆λ(x)dµG(x). To make the
statement of the next lemma simpler, it is convenient to assume choose the
norms on h∗ and g so that ‖∆λ(X)‖∞,λ ≤ ‖λ‖.‖X‖; to see that this is possible,
just consider the case where the norm on g is Ad-invariant. This condition
can always be achieved by scaling either the norm on h∗ or the norm on g.
More specifically, this condition avoids additional constants in the statements of
Lemma 2.4((d),(f)).

Lemma 2.4 (Properties of F). Assume m is a nonnegative integer, 1 ≤ q ≤ 2
and 1/q + 1/q′ = 1.

(i) F : C∞(G)′ → F(Ĝ) is one to one.
(ii) ‖Ff‖q′ ≤ ‖f‖q. These are the Hausdorff–Young inequalities.
(iii) F(Lq′(G)) ⊇ Fq(Ĝ), and for any A in Fq(Ĝ) we have ‖F−1(A)‖q′ ≤ ‖A‖q

(iv) F(Cm(G)) ⊇ Am(Ĝ), and for any A in Am(Ĝ) we have ‖F−1A‖Cm ≤
‖A‖Am .

(v) Assume T ∈ Cm(G)′, A ∈ Am(Ĝ), and f = F−1A. Then 〈T, f〉 = 〈FT, Ff〉.
(vi) For any s in Cm(G)′ we have ‖Fs‖A′m ≤ ‖s‖Cm

′

(vii) For any s in C∞(G)′ we have F(s) = Fs, Fs̆ = (Fs)t, and Fs∗ = (Fs)∗.
In particular, F is real relative to the real structures on C∞(G)′ and F(Ĝ)
induced by the anti-involutions, ( ), on these spaces.

(viii) (F(s1 ∗ s2))λ = (Fs1)λ (Fs2)λ, for any distributions, s1, s2, in C∞(G)′,
and any λ in Ĝ, where s1 ∗ s2 denotes the convolution of the distributions s1

and s2.
(ix) ‖F(s1 ∗ s2)‖A′m1+m2

≤ ‖Fs1‖A′m1
‖Fs2‖A′m2

.

Proof. See [20; 11]. ¤

The image FA consists of precisely those elements, A, of F(Ĝ) such that Aλ = 0
except for finitely many λ. All the norms defined above are finite on FA, and
FA is dense in each of these spaces under the corresponding norm. As F is one
to one, we can transfer the algebra structure on A to FA, and hence obtain a
A-module structure on the spaces Am and A′m. The map T , is an isomorphism
of of A-modules, and we can use same formula to get a dual pairing between
F(Ĝ) and FA, and hence a A-module isomorphism between (FA)′ and F(Ĝ).
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2.2.3. Simple bounds for M(s,t). Let us assume that an increasing set of finite di-
mensional subspaces {As}, is given, that As.At ⊆ As+t, and that

⋃
s≥0 As = A.

Examples for such subspaces can be obtained from finite dimensional generating
sets of A, or as described in Section 2.2.4, from a norm on h∗. We shall bound
M(s, t) for several different choices of norms, ‖ ‖A, ‖ ‖B , ‖ ‖As , on A and As.

Using the Leibniz rule one sees that for f, g ∈ Cm(G), we have ‖fg‖Cm
≤

2m‖f‖Cm‖g‖Cm . Therefore

Result. Assume the A, B norms are both ‖ ‖Cm and that ‖ ‖As is the restriction
of ‖ ‖Cm to As. Then M(s, t) ≤ 2m

When m = 0, this tells us that if ϕ is a regular bounded complex Borel measure
on G satisfying Ps+t(ϕ − µG) = 0, h is a continuous function on G, and Y =
(g 7→ 〈∆λ(g)u, v〉 is a matrix coefficient in As, then

∣∣∫
G

h.Y dϕ− ∫
G

h.Y dµG

∣∣ ≤
‖u‖‖v‖‖ϕ‖C′0‖h‖C0/At

. Clearly ‖h‖C0/At
tends to zero as t tends to infinity.

In a similar fashion, we can bound M(s, t) for weaker choices of the norm
‖ ‖As

on As.

Result. Assume the A, B norms are both ‖ ‖Cm and that ‖ ‖As is the restriction
of ‖ ‖C′0 to As, then for some K > 0, independent of m,

M(s, t) ≤ Km

(
1 +

∑

As∩Aλ 6=φ

d2
λ‖λ‖m

)
.

Consider this for s = t. Assume that ϕ is a distribution of order m on G

satisfying P2s(ϕ− µG) = 0, and h is a Cm function of G. Then

‖Ps(h.ϕ− h.µ)‖C0 ≤ 2m

(
1 +

∑

As∩Aλ 6=φ

d2
λ‖λ‖m

)
‖ϕ‖C′m‖h‖Cs/As

,

but the sum in this bound is bounded from below by a constant times s2k+m+r+l,
and we are forced to consider higher differentiability conditions on h in order to
get convergence of ‖Ps(h.ϕ − h.µ)‖C0 to zero. Doing so leads us naturally to
the consider the norms Am, on A, and more careful arguments with these new
norms will give us more refined bounds on M(s, t) in the situation above.

2.2.4. Norms on Ĝ. Let ‖ ‖ be a norm on h∗. For any s ≥ 0 let As be
the span of all the matrix coefficients of representations ∆λ for ‖λ‖ ≤ s, i.e.
As =

∑
‖λ‖≤s Aλ. There are several properties we may require of this norm on

h∗. We say that a norm ‖ ‖ on h∗ has property I if whenever λ, µ, ν are in Ĝ,
and ∆ν is a summand of ∆λ ⊗∆µ, then ‖ν‖ ≤ ‖λ‖+ ‖ν‖. We say that ‖ ‖ has
property II if ‖ν′‖ ≤ ‖λ‖ whenever ν′ is a weight of ∆λ.

Lemma 2.5. ‖ ‖ has property I if and only if for any s, t > 0, As.At ⊆ As+t

Lemma 2.6. (i) If ‖ ‖ satisfies property I, and ∆ν is a summand of ∆λ ⊗∆µ,
then

∣∣‖λ‖ − ‖µ‖
∣∣ ≤ ‖ν‖.
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(ii) ‖ ‖ has property I if and only if
∣∣‖λ‖−‖ν‖

∣∣ ≤ ‖µ‖ whenever ∆ν is a summand
of ∆λ ⊗∆µ.

Proof. Part (ii) is a direct consequence of (i). To prove (i), assume I, and
suppose ∆ν is a summand of ∆λ ⊗ ∆µ. Then Aν ⊆ Aλ.Aµ. For any s ≥ 0,
let A−s =

∑
‖ρ‖<s Aρ. Then Aλ ⊆ A−⊥‖λ‖, and Aµ ≤ A‖µ‖. Assume ‖λ‖ ≥ ‖µ‖.

Lemma 2.3 shows that A−⊥‖λ‖.Aµ ⊆ A−⊥‖λ‖−‖µ‖. Hence Aν ⊆ A−⊥‖λ‖−‖µ‖, and so
‖λ‖ − ‖µ‖ ≤ ‖ν‖. ¤

To show that II implies I, we need the following lemma.

Lemma 2.7. Assume λ, µ, ν are dominant integral weights. If ∆ν is a summand
of ∆λ ⊗∆µ, then ν = µ + ν′ where ν′ is a weight of ∆λ

Proof. Follows from Steinberg’s formula for the decomposition of tensor prod-
ucts. See [12] ¤

Corollary 2.8. II implies I

All the norms on h∗ which we will use, will satisfy property I. Let us now show
that norms satisfying properties I or II really do exist.

Assume 〈 , 〉 is a positive definite Ad-invariant inner product on gC . Then
define ‖µ‖Ad =

√
〈µ, µ〉. This gives a norm on h∗ which is invariant under the

Weyl group.
For calculations involving the classical groups another set of norms is more

convenient. Assume G is a simple classical group and let λ1, . . . , λr be the fun-
damental dominant weights with the standard labeling (i.e. that which appears
in [12, p. 58]). Define the linear functional, H, on h∗ by requiring that for
µ =

∑
aiλi, we have

(i) H(µ) =
∑r

i=1 ai when G is SU(r + 1) or Sp(r).
(ii) H(µ) =

∑r−1
i=1 ai + 1

2ar when G is SO(2r + 1).
(iii) H(µ) =

∑r−2
i=1 ai + 1

2 (ar−1 + ar) when G is SO(2r).

Define a norm ‖ ‖H on h∗ by requiring that ‖µ‖H = H(µ) for any dominant
weight and ‖ ‖H is invariant under the Weyl group. Note that in each of the
above cases ‖ ‖H is also invariant under ∨.

To verify that we indeed have defined norms it is easiest to use a different
description. Let {ei} denote the usual basis of Cr. When G is SU(r + 1) we
have an isomorphism between h∗ and Cr+1/ 〈e1 + . . . er+1 = 0〉. such that λi =∑i

j=1 ei. When G is any other simple classical group we have an isomorphism
between h∗ and Cr with λi =

∑r−2
j=1 for 1 ≤ i ≤ r−2, and λr−1 = e1 + · · ·+er−1,

λr = e1+· · · er for Sp(r), λr−1 = e1+· · ·+er−1, λr = 1
2 (e1+. . . er) for SO(2r+1),

and λr−1 = 1
2 (e1 + · · ·+ er−1 − er), λr = 1

2 (e1 + · · ·+ er) for SO(2r). When G

is Sp(r), SO(2r + 1) or SO(2r), the norm ‖ ‖H corresponds to the sup norm on
Cr. When G is SU(r + 1) it corresponds to twice the quotient of the sup norm
on Cr+1.
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Lemma 2.9. (i) If g is abelian, then any norm on h∗ has property II.
(ii) Assume ‖ ‖1, ‖ ‖2 are norms on g1 and g2 which both satisfy the same

property I or II. Assume g = g1⊕ g2, and ‖λ1 + λ2‖ = ‖λ1‖1 + ‖λ2‖2 for any
λ1 ∈ h1 and λ2 ∈ h2. Then ‖ ‖ satisfies the corresponding property I or II on
h∗ = h∗1 ⊕ h∗2.

(iii) ‖ ‖Ad has property II for any g.
(iv) ‖ ‖H has property II for any of the simple classical groups.

Proof. Parts (i) and (ii) are trivial. For (iii), note that g = z ⊕ [g, g] is
an orthogonal direct sum, so we need only prove the result in the case where
G is semisimple and 〈 , 〉 on it is simply the Killing form. So let’s assume
that this is the case, λ ∈ Ĝ, and µ is a weight of λ. Since all elements of
the Weyl group are isometries, we may also assume that µ is dominant. Then
〈λ, λ〉 − 〈µ, µ〉 = 〈λ + µ, λ− µ〉 , which is greater than 0 because λ + µ is a
dominant weight and λ− µ is in the positive root lattice.

Part (iv) is equivalent to the condition that H(α) ≥ 0 for any simple root α.
This is easily checked by inspection of the Cartan matrices of the simple classical
lie algebras. ¤

There is a nice interpretation of As in the case where G is SU(r + 1), Sp(r) or
SO(2r+1), and ‖ ‖ = ‖ ‖H . In this case, A1 is the span of the matrix coefficients
of the representations with highest weight a fundamental analytically integral
dominant weight (i.e. an element of a basis for the analytically integral dominant
weight over the nonnegative integers) or 0. Hence A1 is a finite dimensional
generating set for A, and for any positive integer s, As is the span of all products
of up to s elements of A1. In particular, As.At = As+t.

2.2.5. Further bounds for M(s, t). We shall now bound M(s, t), as defined in
Section 2.1, where ‖ ‖A = ‖ ‖Am , ‖ ‖B = ‖ ‖Ap . It is clear that the pairing
between A′m and Am allows us to identify FA′s with FAs, and that Am and A′m
are dual norms on this finite dimensional subspace. In the definition of M(s, t) we
shall use ‖ ‖As = ‖ ‖A′m1

, ‖ ‖A′s = ‖ ‖Am1
. The projection, Ps, from FA′ = F(Ĝ)

onto FAs is given by (PsA)λ = 0 when ‖λ‖ > s, and (PsA)λ = Aλ when ‖λ‖ ≤ s.
The quotient norm on Ap(Ĝ)/FAt is clearly given by ‖f‖Ap/FAt

= ‖f −Ptf‖Ap .
Hence

M(s, t) = sup{‖Ps(h.ϕ)‖Am1
: h, ϕ ∈ FA, ‖h‖Ap = 1, ‖ϕ‖A′m = 1, Ps+tϕ = 0},

M(s, t) = sup{‖e.h− Ps+t(e.h)‖Am : ‖h‖Ap = 1, ‖e‖A′m1
= 1, e ∈ FAs, h ∈ FA}.

The bounds for M(s, t) depend on the following lemma.

Lemma 2.10. Assume f, g are in A0(Ĝ). Then f.g is well-defined, and

‖f.g‖A0 ≤ ‖f‖A0‖g‖A0 .

Proof. See [11]. ¤
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Theorem 2.11. Assume the norm on h∗ satisfies property I. Then there is a
K > 0 such that for any non negative integers, p ≥ m ≥ 0, and any s, t > 1, we
have

M(s, t) ≤ KGs2k+2r+l+m1(s + t)mt−p.

Proof. Assume that e ∈ FAs, h ∈ FA are such that ‖h‖Ap = 1, and ‖e‖A′0 = 1.
For any λ in Ĝ, let Pλ denote the projection from F(Ĝ) onto the subspace
corresponding to End Vλ. Let eν = Pνe, hλ = Pλh, and let Π(ν) denote the set
of weights of ∆ν .

Then

‖e.h‖Am/FAs+t
≤

∑

‖µ‖>s+t

dµ‖µ‖m‖Pµ(e.h)‖1,µ,

≤
∑

‖µ‖>s+t

dµ‖µ‖m
∑

‖ν‖≤s,λ−µ∈Π(ν)∣∣‖λ‖−‖µ‖
∣∣≤‖ν‖

‖Pµ(eν .hλ)‖1,µ

≤
∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}

∑

µ,λ

‖µ‖mdλ‖hλ‖1,λ,

where we used the inequality

‖Pµ(eν .hλ)‖1,µ ≤ d−1
µ dλdν‖hλ‖1,λ‖eµ‖1,µ ≤ d−1

µ dλd2
ν‖hλ‖1,λ‖eν‖∞,ν ,

which follows directly from Lemma 2.10. Now sum on µ lemma to see that for
some K > 0, the above quantities are bounded by

∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}

∣∣Π(ν)
∣∣ ∑

‖λ‖>t

dλ(‖λ‖+ s)m‖hλ‖1,λ

≤
∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}∣∣Π(ν)

∣∣(‖ν‖+ t)mt−p
∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ

≤ (s + t)msm1

( ∑

‖ν‖≤s

d2
ν

∣∣Π(ν)
∣∣
) ∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ

≤ Ks2k+2r+l+m1(s + t)mt−p
∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ.

The last inequality holds because there is a constant C > 0 such that
∣∣Π(ν)

∣∣ ≤
C‖ν‖r. This holds for the norm ‖ ‖Ad and hence for any other norm on h∗. ¤

When G is abelian we can get a more explicit bound for even more general norms
on FA. We shall bound M(s, t) for slightly more general choices of ‖ ‖A, ‖ ‖B

and ‖ ‖As than we used above. We have dλ = 1, so each End Vλ is naturally
and uniquely isomorphic to C. Define norms, on FA, for 1 ≤ q < ∞ and
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−∞ ≤ m < ∞, by

‖A‖FqAm =

(
|A0|q +

∑

λ∈Ĝ\{0}

(‖λ‖m |Aλ|
)q

)1/q

‖A‖F∞Am = sup{‖λ‖m |Aλ| : λ ∈ Ĝ, λ 6= 0} ∪ {|A0|}.
If 1/q + 1/q′ = 1, then ‖ ‖Fq′A−m is the dual norm to ‖ ‖FqAm , and when both
norms are restricted to As, this holds for q = ∞ as well. When m = 0 we have
‖ ‖FqA0 = ‖ ‖Fq

, and when q is 1 or ∞, m ≥ 0, , we have ‖ ‖F1Am
= ‖ ‖Am

and
‖ ‖F∞A−m = ‖ ‖A′0 . Now let ‖ ‖A′s be the restriction of ‖ ‖Fq1Am1

to FAs, let
‖ ‖A = ‖ ‖Fq2Am2

and ‖ ‖B = ‖ ‖Fq3Am3
.

Theorem 2.12. Assume G is abelian, 1 ≤ q1, q2, q3 ≤ ∞, and s and t are
positive integers. Then

M(s, t) ≤
(

1 +
∑

‖ν‖≤s

(‖ν‖m1)q1

)1/q1

(s + t)m2t−m3

provided q3 ≤ q2 and m3 ≥ m2.

Proof. Similar to 2.11, except in this case, start with h, ϕ in FA and expand
out the product h.ϕ directly. ¤

2.2.6. Examples: Sampling for S1, SO(3), and the simple classical Lie groups

The Simplest Example: Sampling on S1. Assume m is a nonnegative integer,
f is a Cm complex function on S1, ϕ is a distribution of order at most m

on S1, and f , ϕ and f.ϕ have the Fourier expansions
∑

k ckxk,
∑

k mkxk and∑
k bkxk respectively. Then ‖Ff‖q = (

∑
k |ck|q)1/q, ‖Ff‖Am =

∑
k km |ck| and

‖Fϕ‖A′m = sup{k−m |mk| : k ∈ Z}. Hence

( ∑

|k|≤s

|ck − bk|q
)1/q

≤ (2s + 1)1/q(1 +
s

t
)mN

∑

|k|>t

km |ck|

≤ (2s + 1)1/q(1 +
s

t
)mN

π√
3

( ∑

|k|>t

∣∣km+1ck

∣∣2
)1/2

,

provided mk = 0 for 0 < |k| ≤ s+ t and m0 = 1, and where N = sup{k−m |mk| :
|k| > s + t}. The factor π/

√
3 could be replaced by a factor of the form Cb−ε

for any ε strictly less than 1
2 . When f is Cm+1 we can further bound this sum

by a Sobolev norm, as
( ∑

|k|>b

∣∣km+1ck

∣∣2
)1/2

=

(
1
2π

∫ 2π

0

∣∣∣∣
dm+1

dθm+1
(f − Ptf)(eiθ)

∣∣∣∣
2

dθ

)1/2

.

Setting m = 0 and q = ∞ in the above gives us the results of the introduction.
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Example: Sampling on SO(3). For this example we take G = SO(3). Then the
dual Ĝ can be identified with the set of nonnegative integers. The dimension
function is dλ = 2λ + 1, the rank is r = 1, there is only one positive root, and
the dimension of the center of SO(3) is zero. Then following the proofs above we
find that when the A and B norms are ‖ ‖Am , ‖ ‖Ap , p ≥ m, and ‖ ‖As = ‖ ‖A′0 ,
we have

M(s, t) ≤
( s∑

ν=0

(2ν + 1)3
)(

1 +
s

t

)m

tm−p

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p.

Example: The classical simple Lie groups. Assume G is a classical simple com-
pact Lie group. Let the norm on h∗ be ‖ ‖H , let the A, B, and As norms be
‖ ‖Am

, ‖ ‖Ap
, and ‖ ‖A′0 , where p ≥ m. Let ΛR be the root lattice, and let Bs

denote the closed ball of radius s for ‖ ‖H . Then the proofs above, together with
property II, show that

M(s, t) ≤ (s + t)mt−p
∑

‖ν‖H≤s

d2
ν

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣,

where the sum is over analytically integral dominant weights. We can bound∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ for such ν as follows.

(i) G = SU(r + 1):
∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ (s + r + 1)r.
(ii) G = Sp(r):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ 2r−1(s + 1)r.
(iii) G = SO(2r + 1):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ = (2s + 1)r.
(iv) G = SO(2r):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ 2(s + 1)2(2s + 1)r−2.

We can use these bounds and the Weyl dimension formula to obtain explicit
bounds on M(s, t).

(i) G = SU(r + 1):

M(s, t) ≤ 1
(r + 3).r!

∏r
i=1 i!2

(s + t)mt−p
(
s +

r

3
+

5
2

)r2+3r

.

(ii) G = Sp(r):

M(s, t) ≤ 1
(r + 1)!

∏r
i=1(2i− 1)!2

2r2−2(s + t)mt−p
(
s +

5r

12
+

7
4

)2r2+2r

.

(iii) G = SO(2r + 1):

M(s, t) ≤ 1
(r + 1)!

∏r
i=1(2i− 1)!2

2r2+2r−1(s + t)mt−p
(
s +

5r

12
+

25
24

)2r2+2r

.

(iv) G = SO(2r + 1):

M(s, t) ≤ 1
r.r!

∏r−1
i=1 (2i)!2

2r2+2r−2(s + t)mt−p
(
s +

5r

12
+ 1

)2r2+2r

, for r ≥ 3.
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2.2.7. Differentiability and Sampling. We shall now see how the differentiability
of the function being sampled plays a rôle. Define Am(G) to be the set of all
continuous functions, f , on G, such that Ff is in Am(Ĝ). Define ‖ ‖Am on
Am(G) by ‖f‖Am = ‖Ff‖Am . Then we have the following result.

Lemma 2.13. Assume p is a nonnegative real number and m is a positive integer,
and let X1, . . . , Xn be a basis for the complexified Lie algebra, gC of the connected
simple Lie group G. Then

Ap+m(G) =
{
f ∈ Cp+m(G) : L(Xi1 . . . Xim)f ∈Ap(G) for all 1≤ i1, . . . , il ≤ n

}

and the following norms on Ap+m are equivalent

(i) ‖f‖Ap+m .
(ii) max{‖L(Xi1 . . . Xij

)f‖Ap
: 0 ≤ j ≤ m, and 1 ≤ i1 . . . , ij ≤ n}

(iii) max
{‖L(Y1 . . . Yj)f‖Ap : 0≤ j ≤m, Y1, . . . , Yj ∈ gC , ‖Y1‖= . . . = ‖Yj‖= 1

}
.

In addition, this holds when G is an arbitrary compact connected Lie group and
m is even.

Proof. See [20]. ¤

Lemma 2.14. Assume G is a compact group of dimension n and that m > n/2.
Then Cm(G) ⊆ A0(G), and this inclusion is continuous relative to the Sobolev
norm on Cm(G) given by

‖f‖Wm = sup
{‖L(Y1 . . . Yj)f‖2 : 0 ≤ j ≤ m, Y1, . . . , Yj ∈ gC , ‖Yi‖ = 1

}

and the norm ‖ ‖A0 on A0(G).

Proof. The space Cm(G) is continuously included in the Besov space Λn/2
1,2 (G),

which in turn is continuously included in A0(G). For definitions and proof, see
[27] and [6]. ¤

Now we can use the bounds we have been obtaining to find convergence condi-
tions on a sequence of measures ϕs and differentiability conditions on a function
f , that ensure that ‖FPs(f − f.ϕ)‖Cm1

tends to zero.

Corollary 2.15. Assume that G is a n-dimensional compact connected Lie
group, m, m1, p are nonnegative integers, and ϕs is a sequence of distributions
in Cm(G)′ converging weak-∗ to Haar measure and satisfying P2s(ϕ − 1) = 0.
Assume f is a function on G.

(i) If f is in Cd3n/2e+r+m+m1+p+1, then sp‖FPs(f − f.ϕs)‖Am1
tends to zero as

s tends to infinity.
(ii) If f is in Cd3n/2e+r+m+m1+p and either G is simple or n + m + m1 + r + p

is even, then sp‖FPs(f − f.ϕs)‖Am1
tends to zero as s tends to infinity.
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Proof. For clarity, let’s just prove the case where m1 = p = 0, and G is
simple. Assume that f is in Cd3n/2e+r and ϕs is a sequence of measures in Cm′

converging weak-∗ to Haar measure and satisfying P2s(ϕs − 1) = 0.
Then ‖ϕs‖A′m is bounded by a constant times ‖ϕs‖C′m is bounded, and f is

in An+r+m(G). Hence ‖ϕs‖A′m‖f‖An+r+m/As
converges to zero. However, our

bounds for M(s, s) show that

‖FPs(f − f.ϕs)‖A0 ≤ K2msn+r+ms−(n+r+m)‖ϕs‖A′m‖f‖An+r+m/As
. ¤

3. Sampling of Sections

It is an easy matter to generalize the above results and obtain a sampling
theorem for sections of homogeneous vector bundles. As the theory here fol-
lows directly from the sampling theory for groups, I have not been as complete.
Assume K is a compact subgroup of the compact Lie group G, τ is a finite dimen-
sional unitary representation of K on E0, and E = G×τ E0. Then then we can
multiply a Cm section of E by a distribution on G/K to obtain a “distributional
section” of E, which we will think of as a sampled version of the original section.
If we project a sampling distribution on G to a distribution on G/K, then we
obtain an appropriate sampling distribution on G/K. For harmonic analysis on
homogeneous vector bundles over G/K, where G is compact, see [31].

3.1. Abstract Sampling for Modules. We shall now generalize the situation
of Section 2.1. Let A be a complex algebra. For simplicity we shall assume that
A is commutative. Assume that M, N are A-modules and that we have a A-
bilinear pairing, 〈 , 〉 between them. Then for any h in M, and ϕ in A′, we can
define ϕ.h in N′ = HomC(N′;C), by

(ϕ.h)(e) = ϕ(〈e, h〉).
Let As, {Ms}, {Ns} be sets of subspaces of A, M, and N, such that 〈Ns, Mt〉 ≤
As+t. We set Ps to be the projection from A′ onto A′s or from N′ onto N′s given
by restriction of linear functionals.

Lemma 3.1. Assume ϕ, µ are linear functionals in A′ such that Ps+t(ϕ−µ) = 0.
Then

Ps(ϕ.h) = Ps(µ.h)

for any h in Mt

Example. Assume M is a finitely generated A-module, X is a finite dimensional
generating set for M, and As.At ⊆ As+t. Let N = HomA(M; A), and define

Ms = As.X,

Ns = {f ∈ N : f(X) ⊆ As}.
Then 〈Ns, Mt〉 ⊆ As+t.
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We now return to the general situation. Let ‖ ‖A , ‖ ‖B , ‖ ‖Ns
, and ‖ ‖N′s

be norms on N, M, Ns and N′s respectively, and denote their dual norms with a
prime. Then we can define

N(s, t) = sup{‖Ps(h.ϕ)‖N′s : ‖h‖B = 1, ‖ϕ‖′A = 1, h ∈ M, ϕ ∈ A′, Ps+tϕ = 0}

When there is a possibility of confusion, we shall write N
N′s,A
B .

Let MB ′ denote that continuous dual of M with respect to ‖ ‖B , and NB be
the completion of ‖ ‖B with respect to ‖ ‖B .

Lemma 3.2. Assume ϕ, µ are linear functionals in AA′ such that Ps+t(ϕ−µ) = 0
and h ∈ MB. Then

‖Ps(f.ϕ)− Ps(f.µ)‖N′s ≤ N(s, t)‖ϕ− µ‖′A‖f‖B/Mt
,

where ‖ ‖B/Mt
denotes the quotient seminorm on MB/Mt.

3.2. Harmonic Analysis of Vector-Valued Functions. Assume E0 is a
finite dimensional complex vector space with norm ‖ ‖E0 . Let Cm(G; E0) be
the space of Cm functions on G with values in E0, and when m is a nonneg-
ative integer, define ‖f‖Cm;E0 = sup{‖L(X1 . . . Xp)f(x)‖E0 : x ∈ G, 0 ≤ p ≤
m, X1 . . . Xp ∈ g, ‖X1‖ = . . . = ‖Xp‖ = 1}. All norms, ‖ ‖E0 , on E0 will
give an equivalent norms ‖ ‖Cm;E0 on Cm(G; E0). Let ‖ ‖(Cm;E0)′ be the dual
norm to ‖ ‖Cm;E0 , and ‖ ‖(Cm;E∗0 )′ be the norm on Cm(G;E∗

0 )′, when E∗
0 is

given the norm dual to that on E0. The space C∞(G;E∗
0 )′ is the space of all

distributions on G with values in E0, and Cm(G; E∗
0 )′ is the space of all such

distributions of order at most m. We can embed C0(G; E0) continuously into
C0(G;E∗

0 )′ by means of the map f 7→ µG.f , where for any h in C0(G;E∗
0 ), we

have 〈µG.f, h〉 = 〈µG, (x 7→ 〈h(x), f(x)〉)〉 =
∫

G
〈h(x), f(x)〉dµG(x), and µG is

Haar measure on G.
Let F(Ĝ; E0) =

∏
γ∈Ĝ (End(Vγ)⊗ E0), and define the Fourier transform, F,

from C∞(G; E∗
0 )′ into F(Ĝ;E0), by

〈X ⊗ e∗, (Fs)γ〉 = 〈s, (x 7→ 〈X, ∆γ(x)〉 e∗)〉
for any γ in Ĝ, X in End(Vγ)∗, e∗ in E∗

0 , and s in C∞(G; E∗
0 )′. For a contin-

uous function, f , on G with values in E0, this becomes (Ff)γ =
∫

G
∆γ(x) ⊗

f(x)dµG(x).
We shall define norms on F(Ĝ; E0) which generalize the norms ‖ ‖Am we had

when E0 was C. Given two finite dimensional complex vector spaces, V and W ,
and norms ‖ ‖V on V and ‖ ‖W on W , define the tensor product of these norms,
‖ ‖V⊗W , to be the operator norm on V ⊗ W = HomC(V ∗; W ) relative to the
dual norm ‖ ‖V ∗ on V ∗, and the norm ‖ ‖W on W . For any γ in Ĝ let ‖ ‖1,γ;E0

denote the norm on End(Vγ) ⊗ E0, which is the tensor product of the norms
‖ ‖1,γ and ‖ ‖E0 . Define a norm ‖ ‖Am;E0 , which is possibly infinite on F(Ĝ; E0),
by ‖A‖Am;E0 = ‖A0‖1,0;E0 +

∑
λ∈Ĝ,λ 6=0 dλ‖λ‖m‖Aλ‖1,λ;E0 . Let Am(Ĝ;E0) be
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the subspace of F(Ĝ; E0) on which this norm is finite. This space is the space
of absolutely summable Fourier transforms of distributions on G with values in
E0 whose first m derivatives also have absolutely summable transforms. The
map, F is one to one, and it’s inverse gives a continuous from Am(Ĝ; E0) into
Cm(G; E0).

Now, let M = A⊗E0, N = A⊗E∗
0 . These naturally embed in C∞(G;E0) and

C∞(G;E∗
0 ), and the spaces FM, FN are the subspaces of F(Ĝ; E0) and F(Ĝ; E∗

0 )
of elements with only finitely many components. Hence we can use F to shift
any norm on FM over to M. Let Ms = As ⊗ E0, and Ns = As ⊗ E∗

0 . There is
a natural A-bilinear pairing between M and N. Composing this form with Haar
measure gives a C-bilinear pairing between Ms and Ns, which we shall use to
identify N′s with Ms.

For calculation of N(s, t), it is more convenient to use the norm ‖ ‖Am⊗E0

defined on Am(Ĝ)⊗ E0, by

‖A‖Am⊗E0 = sup{‖ 〈e∗0, A〉Am(Ĝ) ‖Am
: ‖e∗0‖E∗0 = 0},

where 〈 , 〉Am(Ĝ) is the natural Am(Ĝ)-bilinear pairing between E∗
0 and ‖ ‖Am⊗E0 .

It is easy to show that Am(Ĝ) ⊗ E0 naturally embeds in Am(Ĝ; E0). In fact,
these two spaces are equal, as the following lemma will show. First, some termi-
nology. We say that E0 has dual bases of unit vectors if there is a basis {vi} of
unit vectors in E0, with a dual basis {v∗i } of E∗

0 consisting of unit vectors. This
happens, for example, when ‖ ‖E0 is a Hilbert space norm, or a p-norm in some
basis.

Lemma 3.3. (i) ‖ ‖Am⊗E0 ≤ ‖ ‖Am;E0 .
(ii) If E0 has dual bases of unit vectors, then ‖ ‖Am;E0 ≤ (dimE0)‖ ‖Am⊗E0 .
(iii) ‖ ‖Am;E0 and ‖ ‖Am⊗E0 are equivalent norms.

Define M(s, t) using the Am1 , Am, Ap norms, as we did in Section 2.2.5. We
shall now relate this function to the function N(s, t) for various choices of the
norms on N′s = Ms, A, and M.

Theorem 3.4. (i) If N(s, t) is defined using the Am1⊗E0, Am, Ap⊗E0 norms
on N′s, A and M, then

N
Am1⊗E0,Am

Ap⊗E0
(s, t) ≤ M

Am1 ,Am

Ap
(s, t).

(ii) If N(s, t) is defined using the (Am1 ; E0), Am, (Ap; E0) norms on N′s, A and
M, then for some C > 0,

N
(Am1 ;E0),Am

(Ap;E0)
(s, t) ≤ C.(dimE0)M

Am1 ,Am

Ap
(s, t).

When E0 has dual bases of unit vectors, we may take C = 1 in the above
inequality.
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Proof. Assume that ϕ is in A, h is in M, and e∗0 is in E∗
0 .

‖ 〈e∗0, Ps(ϕ.h)〉A ‖Am1
= ‖Ps(ϕ. 〈e∗0, h〉A)‖Am1

≤ M(s, t)‖ϕ‖A′m‖ 〈e∗0, h〉A ‖Ap

≤ M(s, t)‖ϕ‖A′m‖e∗0‖E∗0 ‖h‖Ap⊗E0 .

This proves (i). The second part is an easy corollary of the first. ¤

The proof of the first part of this theorem did not involve many special properties
of the norms Am; the basic properties used are that FM is dense in the Ap(Ĝ)⊗E0

and FA is dense in Am(Ĝ)′.
Another approach to bounding N(s, t) uses an analog of Lemma 2.10 to cal-

culate the bound directly. In some circumstances (e.g. when G is abelian), this
gives better results than the combination of the previous theorem and the bounds
for M(s, t). In particular, we do not use the assumption that E0 has dual bases
of unit vectors.

Lemma 3.5. Assume f is a continuous complex function on G, g is in C0(G; E0),
and Ff ∈ A0(Ĝ), and Fg ∈ A0(Ĝ; E0). Then

‖F(f.g)‖A0;E0 ≤ (dimE0)‖Ff‖A0‖Fg‖A0;E0 .

Proof. This has essentially the same proof as for the case when E0 is simply
the complex numbers, as given in [11]. ¤

Lemma 3.5 implies that if fλ is in the λ-isotypic subspace of C∞(G), gµ is in
the µ-isotypic subspace of C∞(G;E0), under the left regular actions, and ν is in
Ĝ, then

‖F(fλ.gµ)‖1,ν;E0 ≤ (dimE0) d−1
ν dλdµ‖Ffλ‖1,λ‖Fgµ‖1,µ;E0 .

When E0 = C, this inequality our main ingredient in the bound on M(s, t).
The generalization gives us bounds on N(s, t). The second half of the following
theorem concerns the case when G is abelian. When G is abelian, define norms
on FM for 1 ≤ q < ∞ and −∞ ≤ m < ∞ by

‖A‖FqAm =

(
|A0|q +

∑

λ∈Ĝ\{0}

(‖λ‖m‖Aλ‖E0

)q

)1/q

,

‖A‖F∞Am = sup
{‖λ‖m‖Aλ‖E0 : λ ∈ Ĝ, λ 6= 0

} ∪ {|A0|}.

Theorem 3.6. (i) Assume G is nonabelian, the norm on h∗ has property I, and
N(s, t) is defined using the (Am1 ;E0), Am, (Ap;E0) norms on N′s, A and M.
Then for some KG depending only on G and the norm on h∗,

N
(Am1 ;E0),Am

(Ap;E0)
(s, t) ≤ (dim E0)sr+l+m1+1(s + t)2k+r+m−1t−p.
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(ii) Assume G is abelian, 1 ≤ q1, q2, q3 ≤ ∞, and s and t are positive integers.
Then we have

N
(Fq1Am1 ),(Fq2Am2 )

Fq3Am3
(s, t) ≤

(
1 +

∑

‖ν‖≤s

(‖ν‖m1)q1

)1/q1

(s + t)m2t−m3 ,

provided q3 ≤ q2 and m3 ≥ m2.

Proof. The key observation in the proof of (i) is that

‖Ps(h.ϕ)‖Am1 ;E0

≤
∑

‖ν‖≤s

dν(1 + ‖ν‖m1)
∑

‖µ‖>s+t, ‖λ‖>t,
|‖µ‖−‖λ‖|≤‖ν‖, πµ=πν−πλ

d−1
ν dλd2

µ‖µ‖m‖(Fh)λ‖1,λ;E0‖ϕ‖A′m ,

where π is the natural projection from h∗ onto the dual of the center of g. Now
sum over µ and then ν.

The proof of (ii) is essentially the same as for Theorem 2.12. ¤

3.3. Homogeneous Vector Bundles. Assume E = G×τ E0 is a homogeneous
vector bundle, where τ is a unitary representation of K. E has a G-invariant
unitary structure determined by the inner product on E0. Let Γm(E) denote the
space of Cm sections of E with the norm ‖s‖Γm = sup{‖L(X1 . . . Xp)s(x)‖x :
x ∈ G/K, 0 ≤ p ≤ m, X1 . . . Xp ∈ g}, where ‖ ‖x denotes the norm on the
fiber, Ex, determined by the unitary structure of E. If δ(G/K) is the density
bundle and µG/K is the invariant density of unit mass on G/K, we obtain a
map Γ0(E) → Γ0(E ⊗ δ(G/K)) ↪→ Γ0(E∗)′; f 7→ f.µG/K , allowing us to identify
Γ(E) with a subspace of Γ0(E∗)′. Thus we think of Γ∞(E∗)′ as the space of all
distributions, or generalized sections, of E.

There is a representation ψτ of K by isometries on each of the spaces Cm(G; E0)
and Cm(G; E∗

0 )′, defined by ψτ (k)f(x) = τ(k)f(x.k), on elements of C(G; E0),
and which commutes with the left regular action of G on these spaces. The corre-
sponding spaces of invariant functions or distributions are denoted, Cm(G; τ) and
Cm′(G; τ). We then have an isometry1 jτ : Cm′(G; τ) → Γm(E∗)′ which restricts
to an isometry between Cm(G; τ) and Γm(E). Thus questions about spaces of
sections of E can be simply reduced to ones concerning ψτ -invariant vector val-
ued functions on G. In particular, the multiplication map Cm(G/K)′×Γm(E) →
Γ(E∗)′ corresponds to the map Cm(G)′K ×Cm(G; τ) → Cm′(G; τ) which is the
restriction of the scalar multiplication map for distributions on G with functions
in Cm(G; E0).

1The space Cm′(G; τ) of invariant vectors in Cm(G; E∗0 )′ is isometric, via the restriction
map, to the space Cm(G; τ∨)′. This is because the canonical projection from Cm(G; E∗0 )′ onto
Cm′(G; τ) is the transpose of the projection from Cm(G; E∗0 ) onto Cm(G; τ∨), and this last

projection is also a contraction.
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As in Section 3.2 we set M = A⊗E0 and N = A⊗E∗
0 . Let M̂, N̂ and Â be the

subspaces of ψτ -, ψτ∨ -, and K-invariant vectors in M, N, and A. Let M̂s, N̂s,
Âs, be the intersections of the spaces above with Ms, Ns and As respectively.
Finally, we can use jτ and jτ∨ to obtain corresponding subspaces, M̃, Ñ, Ã, M̃s,
Ñs, Ãs in Γ∞(E), Γ∞(E∗) and C∞(G/K).

Choosing norms on N′s = Ms, A, and M, allows us to define a function N(s, t)
as in Section 3.1. If we assume that Ns is invariant under the projection from N

onto Ñ, then the dual of this projection is an injection from Ñ′s into N′s, and we
may restrict the norm on N′s to Ñ′s; in fact, the C-bilinear pairing between Ñs

and M̃s is nondegenerate in this case. If we also restrict the norms on A and M

to Ã, and M̃, then we can define another function Ñ(s, t) using these restricted
norms.

Theorem 3.7. Assume that all the subspaces As and the norm on A are all
invariant under the right regular action of K. Then Ñ(s, t) ≤ N(s, t)

Proof. First note that under these hypotheses, the subspaces Ms, Ns are
invariant under the representations ψτ , and ψτ∨ , and so the projections onto
these spaces commute with the projections from M, and N onto M̃ and Ñ.
Hence the definition of Ñ makes sense. The projection from A onto Ã, PK , is a
contraction with respect to ‖ ‖A, and its dual, PK∗, is an isometric embedding of
the continuous dual of Ã with respect to the restricted norm into the continuous
dual of A with its norm. PK , which is given by integration over K, commutes
with the projections, from A onto As, and hence for any ϕ in the continuous
dual of Ã such that Psϕ = 0, we also have Ps(PK∗ϕ) = 0. This allows us to
imbed the calculation of Ñ(s, t) into a calculation involving only the spaces N,
M, A and the subspaces Ns, Ms, and As, where it is obvious that Ñ ≤ N . ¤

We shall now define the Fourier transform map for spaces of sections of E. The
representation, ψτ , of K on the γ-isotypic subspace of C∞(G;E0) corresponds,
under the Fourier transform F, to the representation Id⊗∆∨

γ ⊗ τ , on End(Vγ)⊗
E0 = Vγ ⊗ V ∗

γ ⊗E0. The subspace of invariant vectors of this space is naturally
isomorphic to Vγ ⊗ HomK(Vγ ; E0). So the natural space in which to define
the Fourier transform of a section of E is F(Ê) =

∏
γ∈Ĝ Vγ ⊗ HomK(Vγ ; E0).

Define norms ‖ ‖Am on F(Ê) by restricting the norms ‖ ‖Am;E0 on F(Ĝ; E0),
and let Am(Ê) denote the subspace of F(Ê) on which the corresponding norm is
finite. Let P τ denote both the projection from C∞(G; E∗

0 )′ onto the ψτ -invariant
subspace, C∞′(G; τ) and also the projection from F(Ĝ;E0) onto F(Ê). Define
the Fourier Transform map F : Γ∞(E∗) → F(E) so that P τF = FP τ , then F

maps Γm(E) into Am(Ê). When τ is the trivial representation, the dual space
to Am(E) corresponds to the space of invariant distributions on G for which A′m,
the dual norm previously, is finite. We then have that ‖Fϕ‖A′m ≤ ‖ϕ‖(Cm)′ for
any complex distribution, ϕ, on G/K. Also note that if ϕ is a distribution on G

satisfying Psϕ = 0, then PKϕ satisfies the same equation in C∞(G/K)′.
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Example: Functions on S2. Consider the case where G = SO(3), K = SO(2),
and τ is the trivial representation of SO(2). Then E = S2 × C is the trivial
bundle over S2, and sections of E may be identified with complex functions on
S2. Identify the dual of SO(3) with the set of nonnegative integers. For any l ≥ 0
we have dim HomSO(2)(Vl;C) = 1. Choose a ∆∨

l (SO(2))-invariant unit vector, u∗l
in V ∗

l for each l. Then the map v 7→ v⊗u∗l gives an isomorphism between Vl and
Vl⊗HomSO(2)(Vl;C). The space Vl⊗HomSO(2)(Vl;C) is naturally isomorphic to
the subspace of End Vl = Vl ⊗ V ∗

l invariant under Id⊗∆∨
l . The composition of

these two isomorphisms is map, v 7→ Av, from Vl into End(Vl) which is defined
by Avw = u∗l (w)v for any w ∈ Vl. Assume v is any vector in Vl. We shall now
find ‖Av‖q,l. Let Prv be the self-adjoint projection onto the linear span of v,
then AvA∗v = ‖v‖2 Prv, where ‖v‖ is the Hilbert space norm, so

‖Av‖q,l = (Tr (AvA∗v)q/2)1/q = (Tr(‖v‖q Prv))1/q = ‖v‖

Using the isomorphisms above, we can identify F(Ê) with
∏

l≥0 Vl, and if y ∈
F(Ê), then ‖y‖Am =

∑
l≥0(2l +1)max{1, lm}‖yl‖. One can now use the bounds

as follows. Assume f is a Cm function on S2 with Ff = y, and ϕ is a distribution
of order at most m on S2 satisfying Ps+t(ϕ − 1) = 0. Let F(ϕ.f) = z, then for
any positive integers s, t, and any p ≥ m,

s∑

l=0

(2l + 1)‖yl − zl‖

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p‖F(ϕ− 1)‖A′m

∑

l>t

(2l + 1)lp‖yl‖

and ‖F(ϕ− 1)‖A′m = sup{l−m‖(Fs)l‖ : l > s + t}.
Example: Line bundles over S2. For this example take G = SO(3), K = SO(2),
and let τ = ρn be the representation of SO(2) with weight n, where n is a
nonzero integer. Then E is a line bundle over S2. The space HomSO(2)(Vl; ρn)
has dimension 1 for l ≥ |n| and is zero-dimensional when 0 ≤ l < |n|. When
l ≥ |n| we may choose a unit vector, w∗l , in the ρn-isotypic space of Vl and
obtain an isomorphism, v 7→ v ⊗ wl, between Vl and HomSO(2)(Vl; ρn). As
before, this allows us to identify F(E) with

∏
l≥|n| Vl, and for any y ∈ F(Ê) we

have ‖y‖Am =
∑

l≥|n|(2l + 1)lm‖yl‖. To state the sampling theorem for this
situation, assume f is a Cm section of E with Ff = y, and ϕ is a distribution of
order at most m on S2 satisfying P2b(s − 1) = 0. Let F(ϕ.f) = z, and assume
s, t are positive integers, and p ≥ m, then

s∑

l=|n|
(2l + 1)‖yl − zl‖

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p‖F(ϕ− 1)‖A′m

∑

l≥t+1,|n|
(2l + 1)lp‖yl‖.
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4. Construction of Sampling Distributions

4.1. The General Construction. Now we will outline a method for con-
structing distributions whose Fourier transform vanishes at a given finite set of
irreducible representations. These distributions will be finitely supported, have
any specified order, and will be of the form χ = ψ1 ∗ · · · ∗ ψn, where n = dim G

and each of the ψi are supported on a finite subset of a 1-parameter subgroup
of G. In addition ψ1, . . . , ψn may be chosen so that χ has bounded Am norm as
the set of irreducible representations at which its Fourier transform must van-
ish increases. These properties have been chosen as they are required for the
development of efficient algorithms for the computation of the Fourier trans-
form of functions sampled on the support of these distributions, as in [21]. The
thesis [20] contains a description of these algorithms for functions sampled on
the support of the projection of these distributions to the homogeneous spaces
SO(n)/ SO(n − 1) and SU(n)/ SU(n − 1); they are generalizations of the algo-
rithm for computing expansions in spherical harmonics developed by Driscoll
and Healy in [4]. Here is the general construction.

Assume G is a connected compact Lie group, and K is a connected compact
subgroup of G. The Fourier transforms of a distribution, ψ ∈ C∞(K)′, and its
image iψ in C∞(G)′ are simply related; if ρ is a representation of G, then ρ(iψ) =
(ρ

∣∣K)(ψ). So the relation between the two Fourier transforms is determined by
the way that representations of G split on restriction to K.

For any set, Ω0 of irreducible representations of G, define a two-sided ideal in
C∞(G)′ by

TΩ0 = {f ∈ C∞(G)′ : ∀ψ ∈ Ω0 ψ(f) = 0}.
We wish to show how for any finite set of representations, Ω0, we can construct
a finitely supported distribution, χ, on G, such that χ − 1 ∈ TΩ0 . It obviously
suffices to consider the case when G is simple and simply connected, the abelian
case being trivial. Let us also restrict ourselves to the case when G has a rank
one homogeneous space, G/K; this only leaves a few exceptional groups out of
our reach.

By induction we can assume that the problem has been solved for K; this is
because K is a quotient of a product of abelian groups and semisimple groups
which themselves have rank 1 homogeneous spaces. Now let Ω1 be the set of
all irreducible representations of K that are contained in the restriction of some
representation in Ω0 to K. This set is finite, and TΩ0 ⊆ i(TΩ1).

By induction, we can find a finitely supported distribution, χ̂, on K such that
χ̂ − 1K ∈ TΩ1 . Let χK = i(χ̂), then χK = cK (mod TΩ0), where cK is the
characteristic distribution of the submanifold, K, of G. By polar decomposition,
G = KAK, where A is a 1 parameter subgroup of G. The idea is to choose a
finitely supported distribution, ψ, with support in A, and then let χ = χK ∗ ψ ∗
χK . Then, χ = cK ∗ψ ∗ cK = KPKψ (mod TΩ0), where KPK is the projection
onto bi-invariant distributions. KPKψ has an expansion in terms of spherical
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functions. The polar decomposition allows us to establish an isomorphism of
[−1, 1] with K\G/K via the obvious composition of maps [−1, 1] → A → G →
K\G/K. So we can lift KPKψ up to a finitely supported distribution on [−1, 1],
where its spherical function expansion corresponds to an expansion in Jacobi
polynomials of some sort. By the Chebyshev property of orthogonal polynomials
[20, Lemma 3.2], we can choose ψ so that the expansion of KPKψ−1 in spherical
functions only contains spherical functions corresponding to representations that
are not in Ω0. That is, choose ψ so that KPKc = 1 (mod TΩ0). Then χ − 1 ∈
TΩ0 .

An apparent problem with this method, is that the number of distributions
in the convolution product for χ is too large. We desire exactly dimG of these
factors, but the method above yields 1 factor for S1, 3 for SU(2), 4 for S(U2×U1),
9 for SU(3), and 2k+2k−1−3 for SU(k), and dimSU(k) = k2−1. In the examples
that follow, we use relations between the ψi modulo TΩ0 to reduce the number
of factors to dim G, when G is one of the classical groups.

4.1.1. Quadrature Rules. Assume that 〈ϕm〉 is a sequence of orthonormal poly-
nomials relative to the positive measure w(x) dx on [a, c]. Then a finitely sup-
ported distribution satisfying 〈ψ, ϕm〉 = δ0m for 0 ≤ m ≤ n is equivalent to a
quadrature formula that exactly integrates polynomials of degree at most n with
respect to w(x)dx. In the case where ψ is a measure supported at the roots
of ϕn, this determines the usual Gaussian integration formula, which has the
advantages that ψ is positive and 〈ψ, ϕm〉 δ0m for 0 ≤ m ≤ 2n + 1. Similarly, by
choosing the support of ψ to be the roots of the n-th l-orthogonal polynomial
we may find a distribution of order 2l, supported on these points, such that
〈ψ, ϕm〉 = δ0m for 0 ≤ m < (2l + 2)n. For more on this, see [7].

When ψ is a positive measure, satisfying the above conditions, the total vari-
ation norm of ψ must be 1. If this measure is pushed onto a Lie group, then
the resulting positive measure also has total variation norm 1, and a convolution
of such measures has total variation norm 1. The construction above (and in
the following examples) can therefore be required to produce measures of total
variation 1 on the classical groups. When ψ is supported at the points cos(πl/n),
0 ≤ l < n, the total variation norm of ψ tends to 1 as n tends to infinity, provided
that w is a nonnegative L1 function on [−1, 1], and 0 <

∫ π

0
w(cos θ)dθ < ∞ (See

[20]).
Together with Lemma 2.4 this shows that the distribution χ of the subsection

above can be constructed so it is bounded in the Am norm as the set Ω0 varies
over finite subsets of Ĝ. To get an explicit formula for χ we need to know how
to convolve point distributions on G; this is explained in [20].

4.2. Example: Sampling on SO(n). The arguments of Section 4.1, when
applied to the chain of groups

SO(n) ⊇ SO(n− 1) ⊇ · · · ⊇ SO(2),
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lead to a sampling distribution on SO(n) that is closely related to the param-
etrization of that group, by means of Euler angles. Let

rm(θ) =




1
. . .

cos θ sin θ

− sin θ cos θ
. . .

1




,

where the “rotation block” appears in columns and rows m − 1 and m. Note
that rm ^ rn for |n−m| > 1 and SO(n) = SO(n− 1).rn([0, π]). SO(n− 1). The
highest weight of a representation of SO(2r +1) is determined by its coordinates
m1,2r+1, . . . , mr,2r+1 relative to the basis {ei} described in Section 2.2.4. These
numbers range over all sets of integers satisfying

m1,2r+1 ≥ · · · ≥ mr,2r+1 ≥ 0.

The highest weight of a representation of SO(2r), may also be expressed in the
coordinates of Section 2.2.4, and these coordinates are integers, m1,2r, . . . , mr,2r,
satisfying

m1,2r ≥ · · · ≥ |mr,2r| .
The “betweenness” relations for the restriction of representations of SO(2r + 1)
to SO(2r) and SO(2r) to SO(2r − 1) are then

m1,2r+1 ≥ m1,2r ≥ m2,2r+1 ≥ . . . ≥ mr,2r+1 ≥ |mr,2r|

and

m1,2r ≥ m1,2r−1 ≥ m2,2r ≥ . . . ≥ mr−1,2r−1 ≥ |mr,2r| ,
where the mi,j are either all integral or all half integral. For convenience, we’ll
assume that n is either 2k + 1 or 2k, that the numbers m1,k, . . .mk,n satisfy the
appropriate restrictions, and that n > 2 in what follows.

Choose a positive integer, s. We shall construct a distribution, cn on SO(n),
such that cn− 1 vanishes on representations ∆λ with ‖λ‖H ≤ s. In terms of the
coordinates mi,j , this is the same as requiring that m1,n ≤ s.

The map [0, π] ←→ SO(n−1)\SO(n)/ SO(n−1) : θ 7→ SO(n−1)rn(θ) SO(n−1)
is a homeomorphism, and its restriction to (0, π) is a diffeomorphism. We may
therefore identify this double coset space with [0, π]. The class one represen-
tations for SO(n)/ SO(n − 1) have highest weights, (m, 0, . . . , 0), where m is a
nonnegative integer, and the corresponding spherical functions are Gegenbauer
polynomials in cos(θ), where θ ∈ [0, π], namely

ϕn
m =

Γ(n− 2)m!
Γ(n + m− 2)

.C(n−2)/2
m (cos θ).
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See [30] for a proof of this. For fixed n, the sequence of functions C
(n−2)/2
m is a

sequence of real orthogonal polynomials, so the sequence of functions ϕn
m is an

extended Chebyshev system.
Choose real finitely supported distributions, ψ̃i,k, on [0, π], for 2 < i ≤ k ≤ n

which each satisfy 〈
ψ̃i,k, ϕi

m

〉
= δ0m for 0 ≤ m ≤ s.

A lot of choices are involved here. In particular, the support, F , of ψ̃i,k may be
any nonempty finite subset of [0, π], and the order, p, of ψ̃i,k is likewise arbitrary
provided that (p + 1) |F | ≥ s + 1.

For the case n = 2, choose ψ̃2,k to be a real distribution supported on a finite
subset of [0, 2π) such that

〈
ψ̃2,k, eim.( )

〉
= δ0m for |m| ≤ s.

Define ψi,k = (ri)∗(ψ̃i,k) for 2 ≤ i ≤ k ≤ n, i.e. 〈ψi,k, f〉 = 〈ψ̃i,k, f ◦ rk〉, for any
C∞ function, f , on G. Finally we can define our sampling distributions:

c2 = ψ2,2,

cn = ψ2,n ∗ · · · ∗ ψn,n ∗ cn−1.

The convolution product for cn has dim SO(n) = n(n−1)
2 factors. It is clear that

we can choose the si,k so that the order of cn is 0 and cn has support of size at
most (2s + 1)n−1s(n−1)(n−2)/2. If we allow cn to have a higher order, then we
can decrease the size of its support.

Theorem 4.1. If ‖λ‖H ≤ s, then ∆λ(cn − 1) = 0.

Proof. Let

Ωn
s = {λ ∈ ŜO(n) : ‖λ‖H ≤ s}

= {∆(m1,n,...,mk,n) : |m1,n| ≤ s}.
Using the embeddings C∞(SO(2))′ ↪→ · · · ↪→ C∞(SO(n))′ and the betweenness
relations for the restriction of representations of SO(n) to SO(n − 1), it is ob-
vious that TΩ2

s
⊆ · · · ⊆ TΩn

s
We shall show, using induction, that cn = cSO(n)

(mod TΩn
s
), for all n. Now, from the general arguments given previously, we

know that if we define ĉk by

ĉ2 = ψ2,2,

ĉk = ĉk−1 ∗ ψk,k ∗ ĉk−1,

then ĉs = cSO(k) (mod TΩk
s
), for all k. We need to show that ĉn = cn. To prove

this, it suffices to show that if ψ2, . . . ψn are distributions with the support of ψk

contained in rk(R), and satisfying cSO(k−1) ∗ ψk ∗ cSO(k−1) = cSO(k) (mod TΩk
s
),
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then ĉn = ψ2 ∗ · · ·ψn ∗ cn−1 (mod TΩn
s
). By induction, we assume that this is

true for numbers less than n. Then for any ψ2, . . . , ψn as above, we have

ĉn = cn−1 ∗ ψn ∗ cSO(n−1) (mod TΩn
s
)

= (ψ2 ∗ · · · ∗ ψn−1 ∗ cn−2) ∗ ψn ∗ cSO(n−1) (mod TΩn
s
)

= ψ2 ∗ · · · ∗ ψn−1 ∗ ψn ∗ cSO(n−2) ∗ cSO(n−1) (mod TΩn
s
)

= ψ2 ∗ · · · ∗ ψn ∗ cn−1 (mod TΩn
s
),

where we have used the facts that cSO(n−2)∗cSO(n−1) = cSO(n−1), and cn−2 ^ ψn.
¤

The distribution P SO(n−1)(ψ2,n ∗ · · · ∗ ψn,n) on Sn−1 = SO(n)/ SO(n − 1) is
zero on the associated spherical functions coming from representations of SO(n)
satisfying |m1,n| ≤ s. In [20], it is shown that a fast transform is possible for
functions sampled on the support of this distribution.

A similar argument leads to the parametrization of SO(n) by Euler angles.

4.3. Example: Sampling on SU(n). In this case, the appropriate chain of
subgroups to use is,

SU(n) ⊆ S(Un−1 × U1) ⊆ SU(n− 1) ⊆ · · · ⊆ S(U1 × U1).

Let rk(θ) be the same matrix as was used in the case of SO(n), but also define
qk(θ) = Diag(e−iθ, . . . , e−iθ, eikθ, 1, . . . , 1). where there are exactly k entries of
the form e−iθ. Note that qk(θ) ^ SU(k), that the qk generate the usual choice
of maximal torus in SU(n), and that

S(Un−1 × U1) = qn−1([0, 2π]).SU(n− 1),

SU(n) = S(Un−1 × U1).rn([0, π/2]).S(Un−1 × U1).

In fact, the map

[0, π/2] → S(Un−1 × U1)\SU(n)/S(Un−1 × U1) :

θ 7→ S(Un−1 × U1)rn(θ)S(Un−1 × U1)

is a homeomorphism, and its restriction to (0, π/2) is a diffeomorphism.
Let λ1,n, . . . λn−1,n be the coordinates of the highest weight of a representation

of SU(n) relative to the basis, {ei} of the dual of the usual Cartan subalgebra,
as given in Section 2.2.4. Then

λ1,n ≥ · · · ≥ λn−1,n ≥ 0.

Representations of the group S(Un−1 × U1), are determined by a collection
of numbers (λ1,n−1, . . . λn−2,n−1; λn−1,n−1), where (λ1,n−1, . . . λn−2,n−1) is the
highest weight of the restriction to SU(n− 1), and λn−1,n−1 is the weight of the
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restriction to the subgroup qn−1(R). The relations giving the representations of
S(Un−1 × U1) arising are

λ1,n−1 = µ1 − µn−1,

. . .

λn−2,n−1 = µn−2 − µn−1,

λn−1,n−1 = (n− 1)
n−1∑

j=1

λj,n − n

n−1∑

j=1

µj ,

where the µj are integers satisfying

λ1,n ≥ µ1 ≥ λ2,n ≥ . . . λn−1,n ≥ µn−1 ≥ 0.

In the case n = 2 the appropriate relation is λ1,2 ≥ |λ1,1| , where λ1,2 − λ1,1

must be even. To restrict to SU(n − 1) from S(Un−1 × U1) simply throw away
λn−1,n−1. If we now define for m ≥ 2

Ωm
s = {∆λ : ‖λ‖H ≤ s} = {∆(λ1,m,...,λm−1,m) : λ1,m ≤ s}

Ω̆m−1
s = {∆(λ;λm−1,m−1) : ‖λ‖H ≤ s, |λm−1,m−1| ≤ (m− 1)s}

= {∆(λ1,m−1,...,λm−2,m−1;λm−1,m−1) : λ1,m−1 ≤ s, |λm−1,m−1| ≤ (m− 1)s}
Ω̆1

s = {∆(λ1,1) : |λ1,1| ≤ s},
then using the embeddings

C∞(S(U1 × U1))′ ↪→ C∞(SU(2))′ ↪→ . . . ↪→ C∞(S(Un−1 × U1))′ ↪→ C∞(SU(n))′

and the restriction relations given above, we see that

TΩ̆1
s
⊆ TΩ2

s
⊆ · · ·TΩn−1

s
⊆ TΩ̆n−1

s
⊆ TΩn

s
.

The class 1 representations of SU(n) relative to S(Un−1 × U1) have highest
weights of the form (2m, m, . . .), where m ≥ 0, and using the map [0, π/2] ←→
S(Un−1×U1)\SU(n)/S(Un−1×U1) specified above, have corresponding spherical
functions which are Jacobi polynomials in cos 2θ,

ϕn
m =

(n− 2)!m!
(n + m− 2)!

.Pn−2,0
m (cos 2θ).

For a proof of this, see [20].
For 2 ≤ i ≤ k ≤ n choose be a real finitely supported distribution, ψ̃i,k,

on [0, π/2], that satisfies 〈ψ̃i,k, ϕi
m〉 = δ0,m for 0 ≤ m ≤ b s

2c. For 1 ≤ j ≤
k < n, choose a real finitely supported distribution, ζ̃j,k, on [0, 2π) that satisfies
〈ζ̃j,k, eim( )〉 = δ0,m for |m| ≤ jb. Define ζ̃ ′n−1,n in the same way, with j = n−1.
Then set ψi,k = (ri)∗(ψ̃i,k), ζj,k = (qj)∗(ζ̃j,k), and define ζ ′n−1,n similarly. Finally
define

c2 = ζ1,2 ∗ ψ2,2 ∗ ζ ′1,2,

cn = (ζ1,n ∗ ψ2,n) ∗ · · · ∗ (ζn−1,n ∗ ψn,n) ∗ ζ ′n−1,n ∗ cn−1.
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Theorem 4.2. cn = cSU(n) (mod TΩn
s
) and cn∗ζ ′n−1,n = cS(Un×U1) (mod TΩ̆n

s
).

Proof. We use induction on n. It suffices to show that if the ψk are distributions
supported on rk(R), and ζk, ζ ′k satisfy cS(Uk−1×U1) ∗ ψk ∗ cS(Uk−1×U1) = cSU(k),
and ζ ′k = ζk = cqk(R) modulo TΩn

s
, then

cSU(n) = (ζ1 ∗ ψ2) ∗ · · · ∗ (ζn−2 ∗ ψn−1) ∗ ζ ′n−2 ∗ cSU(n−1) (mod TΩn
s
).

By induction, we can assume this holds for numbers less than n. Let Qn be the
subgroup of SU(n) given by Qn = {Diag(ei(n−1)θ, e−iθ, . . . e−iθ) : θ ∈ R}, and
note that ζn−2 ∗ cSU(n−2) ∗ ζn−1 = ζn−1 ∗ cSU(n−2) ∗ cQn

(mod TΩn
s
). Therefore,

working modulo TΩn
s
, we have

cSU(n) = cSU(n−1) ∗ ζn−1 ∗ ψn,n ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ ψ2 ∗ · · · ∗ ψn−1 ∗ (ζ ′n−2 ∗ cSU(n−2) ∗ ζn−1) ∗ ψn ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ · · · ∗ ψn−1 ∗ (ζn−1 ∗ cSU(n−2) ∗ cQn
) ∗ ψn ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ · · · ∗ ψn−1 ∗ ζn−1 ∗ ψn ∗ cSU(n−2) ∗ cQn
∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ ψ2 ∗ · · · ∗ ψn−1 ∗ ζn−1 ∗ ψn,n ∗ ζ ′n−1,n ∗ cSU(n−1),

where we used the fact that Qn ⊆ S(Un−1 × U1). ¤

The distribution, P SU(n−1)(ζ1,n ∗ ψ2,n ∗ · · · ∗ ζn−1,n ∗ ψn,n ∗ ζ ′n−1,n), on S2n−1 =
SU(n − 1)/ SU(n − 1), is zero on associated spherical functions coming from
representations whose highest weight, (λ1,n, . . . , λn−1,n), satisfies λ1,n ≤ b. In
[20] is is shown how to perform fast transforms for functions sampled on the
support of this distribution. By commutativity, (ζ1,n∗ψ2,n)∗· · ·∗(ζn−1,n∗ψn,n) =
(ζ1,n ∗ · · · ∗ ζn−1,n) ∗ ψ2,n ∗ · · ·ψn,n), so by replacing ζ1,n ∗ · · · ∗ ζn−1,n by an
appropriate distribution on the maximal torus of SU(n), we can obtain yet more
distributions on SU(n), which satisfy the above theorem.

The same commutativity relations can applied to the subgroups qi and rj of
SU(n). This yields a parametrization of SU(n), which is analogous to the Euler
angles for SO(n).

4.4. Example: Sampling on Sp(n). Sp(n) = {A ∈ Mn(H) : A∗A = Id},
where H denotes the division ring of quaternions. By elementary geometry, one
can see that Sp(n)/(Sp(n − 1) × Sp(1)) is isomorphic to the right quaternionic
projective space, Pn−1H and that the map

[0, π/2] → (Sp(n− 1)× Sp(1))\ Sp(n)/(Sp(n− 1)× Sp(1))

: θ 7→ (Sp(n− 1)× Sp(1)).rn(θ).(Sp(n− 1)× Sp(1))

is a homeomorphism, and its restriction to (0, π/2) is a diffeomorphism. Note
that Sp(1) ↔ SU(2).

Let

Rn =

{(
1 . . .

a

)
: a ∈ Sp(1)

}
,
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so that Sp(n− 1)× Sp(1) = Sp(n− 1).Rn.
Working in the basis {ei} of Section 2.2.4, the highest weights of representa-

tions of Sp(n) are determined by integers m1,n, . . . , mn,n, where

m1,n ≥ · · · ≥ mn,n ≥ 0.

The highest weights, ν = (m1,n−1, . . . , mn−1,n−1), of those representations occur-
ring in the restriction of the representation, ∆(m1,n,...,mn,n), of Sp(n) to Sp(n−1)
satisfy

p1 ≥ m1,n−1 ≥ p2 ≥ · · · ≥ mn−1,n−1 ≥ pn,

where
m1,n ≥ p1 ≥ · · · ≥ mn,n ≥ pn ≥ 0,

but the corresponding multiplicities may be greater than one. The restriction of
∆(m1,n,...,mn,n) to Sp(n− 1)× Sp(1) is precisely

∑
ν

(
∆ν ⊗

( n⊗

i=1

∆(min{mi−1,n−1,mi,n}−max{mi,n−1,mi+1,n})

))
,

where mn+1,n = mn,n−1 = 0, m0,n−1 = +∞, and ν ranges over the highest
weights of irreducible representations of Sp(n) appearing in the restriction of
∆(m1,n,...,mn,n) to Sp(n−1); see [33]. Hence, highest weights, m, of the represen-
tations occurring in the restriction from Sp(n) to Rn satisfy m1n ≥ m. It should
be clear then, that if we define, for any positive integer s,

Ωn
s = {∆λ : ‖λ‖H ≤ s} = {∆(m1,n,...,mn,n) : m1,n ≤ s},

then TΩ1
s
⊆ · · · ⊆ TΩn

s
. Also, let ΩSU(2)

s be the set of all irreducible representa-
tions, ∆m, of SU(2) such that 0 ≤ m ≤ b, and denote the corresponding set of
representations of Rn by ΩRn

s . Using the embedding C∞(Rn)′ ↪→ C∞(Sp(n))′,
we see that TΩRn

s
⊆ TΩn

s
.

For any 1 ≤ k ≤ n, we can construct, using previous techniques, a finitely
supported measure, υk,n, on Rn ↔ SU(2), such that υk,n = cRk

(mod T
Ω

Rk
s

).
Now assume that n ≥ 2. The class one representations of Sp(n) relative to
Sp(n − 1) × Sp(1) have highest weights of the form (m,m, 0, . . .), where m is a
nonnegative integer, and the corresponding spherical functions can be written
using the map [0, π/2] → (Sp(n− 1)× Sp(1))\ Sp(n)/(Sp(n− 1)× Sp(1)), in the
form

ϕn
m =

(2n− 3)!m!
(m + 2n− 3)!

.P 2n−3,1
m (cos 2θ).

For a proof of this, see [15]. Let ψ̃k,n be a real finitely supported distribution
on [0, π/2] that satisfies 〈ψ̃k,n, ϕk

m〉 = δ0,m for 0 ≤ m ≤ s, and set ψk,n =
(rk)∗(ψ̃k,n). Then define cn inductively by

c1 = υ1,1,

cn = υ1,n ∗ (ψ2,n ∗ υ2,n) ∗ · · · ∗ (ψn,n ∗ υn,n) ∗ cn−1.
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This finitely supported measure is the convolution product of dimSp(n) = 2n2 +
n factors each supported on a 1-parameter subgroup of Sp(n), and it is easy to
prove the following theorem.

Theorem 4.3. cn = cSp(n) (mod TΩn
s
).

Proof. Similar to the SO(n) and SU(n) cases. ¤
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