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The Cooley–Tukey FFT and Group Theory

DAVID K. MASLEN AND DANIEL N. ROCKMORE

Abstract. In 1965 J. Cooley and J. Tukey published an article detailing an
efficient algorithm to compute the Discrete Fourier Transform, necessary
for processing the newly available reams of digital time series produced
by recently invented analog-to-digital converters. Since then, the Cooley–
Tukey Fast Fourier Transform and its variants has been a staple of digital
signal processing.

Among the many casts of the algorithm, a natural one is as an efficient
algorithm for computing the Fourier expansion of a function on a finite
abelian group. In this paper we survey some of our recent work on he
“separation of variables” approach to computing a Fourier transform on an
arbitrary finite group. This is a natural generalization of the Cooley–Tukey
algorithm. In addition we touch on extensions of this idea to compact and
noncompact groups.

Pure and Applied Mathematics: Two Sides of a Coin

The Bulletin of the AMS for November 1979 had a paper by L. Auslander and
R. Tolimieri [3] with the delightful title “Is computing with the Finite Fourier
Transform pure or applied mathematics?” This rhetorical question was answered
by showing that in fact, the finite Fourier transform, and the family of efficient
algorithms used to compute it, the Fast Fourier Transform (FFT), a pillar of
the world of digital signal processing, were of interest to both pure and applied
mathematicians.
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Auslander had come of age as an applied mathematician at a time when pure
and applied mathematicians still received much of the same training. The ends
towards which these skills were then directed became a matter of taste. As
Tolimieri retells it (private communication), Auslander had become distressed
at the development of a separate discipline of applied mathematics which had
grown apart from much of core mathematics. The effect of this development
was detrimental on both sides. On the one hand applied mathematicians had
fewer tools to bring to problems, and conversely, pure mathematicians were often
ignoring the fertile bed of inspiration provided by real world problems. Auslander
hoped their paper would help mend a growing perceived rift in the mathematical
community by showing the ultimate unity of pure and applied mathematics.

We will show that investigation of finite and fast Fourier transforms contin-
ues to be a varied and interesting direction of mathematical research. Whereas
Auslander and Tolimieri concentrated on relations to nilpotent harmonic analy-
sis and theta functions, we emphasize connections between the famous Cooley–
Tukey FFT and group representation theory. In this way we hope to provide
further evidence of the rich interplay of ideas which can be found at the nexus
of pure and applied mathematics.

1. Background

The finite Fourier transform or discrete Fourier transform (DFT) has several
representation theoretic interpretations: either as an exact computation of the
Fourier coefficients of a function on the cyclic group Z/nZ or a function of band-
limit n on the circle S1, or as an approximation to the Fourier transform of a
function on the real line. For each of these points of view there is a natural group-
theoretic generalization, and also a corresponding set of efficient algorithms for
computing the quantities involved. These algorithms collectively make up the
Fast Fourier Transform or FFT.

Formally, the DFT is a linear transformation mapping any complex vector of
length n, f = (f(0) . . . , f(n− 1))t ∈ Cn, to its Fourier transform, f̂ ∈ Cn. The
kth component of f̂ , the DFT of f at frequency k, is

f̂(k) =
n−1∑

j=0

f(j)e2πijk/n (1–1)

where i =
√−1, and the inverse Fourier transform is

f(j) =
1
n

n−1∑

k=0

f̂(k)e−2πijk/n. (1–2)

Thus, with respect to the standard basis, the DFT can be expressed as the
matrix-vector product f̂ = Fn · f where Fn is the Fourier matrix of order n,
whose j, k entry is equal to e2πijk/n. Computing a DFT directly would require n2



THE COOLEY–TUKEY FFT AND GROUP THEORY 283

scalar operations. (For precision’s sake: Our count of operations is the number
of complex additions of the number of complex multiplications, whichever is
greater.) Instead, the FFT is a family of algorithms for computing the DFT of
any f ∈ Cn in O(n log n) operations. Since inversion can be framed as the DFT
of the function f̌(k) = 1

n f̂(−k), the FFT also gives an efficient inverse Fourier
transform.

One of the main practical implications of the FFT is that it allows any cycli-
cally invariant linear operator to be applied to a vector in only O(n log n) scalar
operations. Indeed, the DFT diagonalizes any group invariant operator, making
possible the following algorithm: (1) compute the Fourier transform (DFT). (2)
Multiply the DFT by the eigenvalues of the operator, which are also found using
the Fourier transform. (3) Compute the inverse Fourier transform of the result.
This technique is the basis of digital filtering and is also used for the efficient
numerical solution of partial differential equations.

Some history. Since the Fourier matrix is effectively the character table of
a cyclic group, it is not surprising that some of its earliest appearances are in
number theory, the subject which gave birth to character theory. Consideration
of the Fourier matrix goes back at least as far as to Gauss, who was interested
in its connections to quadratic reciprocity. In particular, Gauss showed that for
odd primes p and q,

(
p

q

)(
q

p

)
=

TraceFpq

TraceFp TraceFq
, (1–3)

where
(

p
q

)
denotes the Legendre symbol. Gauss also established a formula for

the quadratic Gauss sum TraceFn, which is discussed in detail in [3].
Another early appearance of the DFT occurs in the origins of representation

theory in the work of Dedekind and Frobenius on the group determinant. For
a finite group G, the group determinant ΘG is defined as the homogeneous
polynomial in the variables xg (for each g ∈ G) given by the determinant of
the matrix whose rows and columns are indexed by the elements of G with g, h-
entry equal to xgh−1 . Frobenius showed that when G is abelian, ΘG admits the
factorization

ΘG =
∏

χ∈ bG
( ∑

g∈G

χ(g)xg

)
, (1–4)

where Ĝ is the set of characters of G. The linear form defined by the inner sum
in (1–4) is a “generic” DFT at the frequency χ.

In the nonabelian case, ΘG admits an analogous factorization in terms of
irreducible polynomials of the form

ΘD(G) = det

( ∑

g∈G

D(g)xg

)
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where D is an irreducible matrix representation of G. The inner sum here is a
generic Fourier transform over G. See [12] for a beautiful historical exposition
of these ideas.

Gauss’s interests ranged over all areas of mathematics and its applications, so
it is perhaps not surprising that the first appearance of an FFT can also be traced
back to him [10]. Gauss was interested in certain astronomical calculations, a
recurrent area of application of the FFT, necessary for interpolation of asteroidal
orbits from a finite set of equally-spaced observations. Surely the prospect of a
huge laborious hand calculation was good motivation for the development of a
fast algorithm. Making fewer hand calculations also implies less opportunity for
error and hence increased numerical stability!

Gauss wanted to compute the Fourier coefficients, ak, bk of a function repre-
sented by a Fourier series of bandwidth n,

f(x) =
m∑

k=0

ak cos 2πkx +
m∑

k=1

bk sin 2πkx, (1–5)

where m = (n− 1)/2 for n odd and m = n/2 for n even. He first observed
that the Fourier coefficients can be computed by a DFT of length n using the
values of f at equispaced sample points. Gauss then went on to show that if
n = n1n2, this DFT can in turn be reduced to first computing n1 DFTs of length
n2, using equispaced subsets of the sample points, i.e., a subsampled DFT, and
then combining these shorter DFTs using various trigonometric identities. This
is the basic idea underlying the Cooley–Tukey FFT.

Unfortunately, this reduction never appeared outside of Gauss’s collected
works. Similar ideas, usually for the case n1 = 2 were rediscovered intermit-
tently over the succeeding years. Notable among these is the doubling trick of
Danielson and Lanczos (1942), performed in the service of x-ray crystallography,
another frequent employer of FFT technology. Nevertheless, it was not until the
publication of Cooley and Tukey’s famous paper [7] that the algorithm gained
any notice. The story of Cooley and Tukey’s collaboration is an interesting one.
Tukey arrived at the basic reduction while in a meeting of President Kennedy’s
Science Advisory Committee where among the topics of discussions were tech-
niques for off-shore detection of nuclear tests in the Soviet Union. Ratification
of a proposed United States/Soviet Union nuclear test ban depended upon the
development of a method for detecting the tests without actually visiting the
Soviet nuclear facilities. One idea required the analysis of seismological time
series obtained from off-shore seismometers, the length and number of which
would require fast algorithms for computing the DFT. Other possible applica-
tions to national security included the long-range acoustic detection of nuclear
submarines.

R. Garwin of IBM was another of the participants at this meeting and when
Tukey showed him this idea Garwin immediately saw a wide range of potential
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applicability and quickly set to getting this algorithm implemented. Garwin was
directed to Cooley, and, needing to hide the national security issues, told Cooley
that he wanted the code for another problem of interest: the determination
of the periodicities of the spin orientations in a 3-D crystal of He3. Cooley
had other projects going on, and only after quite a lot of prodding did he sit
down to program the “Cooley–Tukey” FFT. In short order, Cooley and Tukey
prepared their paper, which, for a mathematics/computer science paper, was
published almost instantaneously—in six months!. This publication, Garwin’s
fervent proselytizing, as well as the new flood of data available from recently
developed fast analog-to-digital converters, did much to help call attention to
the existence of this apparently new fast and useful algorithm. In fact, the
significance of and interest in the FFT was such that it is sometimes thought
of as having given birth to the modern field of analysis of algorithms. See also
[6] and the 1967 and 1969 special issues of the IEEE Transactions in Audio
Electronics for more historical details.

The Fourier transform and finite groups. One natural group-theoretic
interpretation of the Fourier transform is as a change of basis in the space of
complex functions on Z/nZ. Given a complex function f on Z/nZ, we may
expand f , in the basis of irreducible characters {χk}, defined by χk(j) = e2πijk/n.
By (1–2) the coefficient of χk in the expansion is equal to the scaled Fourier
coefficient 1

n f̂(−k), whereas the Fourier coefficient f̂(k) is the inner product of
the vector of function values of f with those of the character χk.

For an arbitrary finite group G there is an analogous definition. The characters
of Z/nZ are the simplest example of a matrix representation, which for any group
G is a matrix-valued function ρ(g) on G such that ρ(ab) = ρ(a)ρ(b), and ρ(e)
is the identity matrix. Given a matrix representation ρ of dimension dρ, and
a complex function f on G, the Fourier transform of f at ρ is defined as the
matrix sum

f̂(ρ) =
∑

x∈G

f(x)ρ(x). (1–6)

Computing f̂(ρ) is equivalent to the computation of the d2
ρ scalar Fourier trans-

forms at each of the individual matrix elements ρij ,

f̂(ρij) =
∑

x∈G

f(x)ρij(x). (1–7)

A set of matrix representations R of G is called a complete set of irreducible
representations if and only if the collection of matrix elements of the represen-
tations, relative to an arbitrary choice of basis for each matrix representation
in the set, forms a basis for the space of complex functions on G. The Fourier
transform of f with respect to R is then defined as the collection of individual
transforms, while the Fourier transform on G means any Fourier transform com-
puted with respect to some complete set of irreducibles. In this case, the inverse
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transform is given explicitly as

f(x) =
1
|G|

∑

ρ∈R
dρ Trace(f̂(ρ)ρ(x−1)). (1–8)

Equation (1–8) shows us a relation between the group Fourier transform and the
expansion of a function in the basis of matrix elements. The coefficient of ρij

in the expansion of f is the Fourier transform of f at the dual representation
[ρji(g−1)] scaled by the factor dρ/ |G|.

Viewing the Fourier transform on G as a simple matrix-vector multiplication
leads to some simple bounds on the number of operations required to compute
the transform. The computation clearly takes no more than the |G|2 scalar
operations required for any matrix-vector multiplication. On the other hand the
column of the Fourier matrix corresponding to the trivial representation is all
ones, so at least |G| − 1 additions are necessary. One main goal of this finite
group FFT research is to discover algorithms which can significantly reduce the
upper bound for various classes of groups, or even all finite groups.

The current state of affairs for finite group FFTs. Analysis of the Fourier
transform shows that for G abelian, the number of operations required is bounded
by O(|G| log |G|). For arbitrary groups G, upper bounds of O(|G| log |G|) remain
the holy grail in group FFT research. In 1978, A. Willsky provided the first non-
abelian example by showing that certain metabelian groups had an O(|G| log |G|)
Fourier transform algorithm [20]. Implicit in the big-O notation is the idea that
a family of groups is under consideration, with the size of the individual groups
going to infinity.

Since Willsky’s initial discovery much progress has been made. U. Baum has
shown that the supersolvable groups admit an O(|G| log |G|) FFT, while others
have shown that symmetric groups admit O(|G| log2 |G|) FFTs (see Section 3).
Other groups for which highly improved (but not O(|G| logc |G|)) algorithms have
been discovered include the matrix groups over finite fields, and more generally,
the Lie groups of finite type. See [15] for pointers to the literature. There is much
work to be done finding new classes of groups which admit fast transforms, and
improving on the above results. The ultimate goal is to settle or make progress
on the following conjecture:

Conjecture 1. There exist constants c1 and c2 such that for any finite group
G, there is a complete set of irreducible matrix representations for which the
Fourier transform of any complex function on the G may be computed in fewer
than c1|G| logc2 |G| scalar operations.

2. The Cooley–Tukey Algorithm

Cooley and Tukey showed [7] how the Fourier transform on the cyclic group
Z/nZ, where n = pq is composite, could be written in terms of Fourier transforms
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on the subgroup qZ/nZ ∼= Z/pZ. The trick is to change variables, so that the one
dimensional formula (1–1) is turned into a two dimensional formula, which can
be computed in two stages. Define variables j1, j2, k1, k2, through the equations

j = j(j1, j2) = j1q + j2, 0 ≤ j1 < p, 0 ≤ j2 < q,

k = k(k1, k2) = k2p + k1, 0 ≤ k1 < p, 0 ≤ k2 < q.
(2–1)

It follows from these equations that (1–1) can be rewritten as

f̂(k1, k2) =
q−1∑

j2=0

e2πij2(k2p+k1)/n

p−1∑

j1=0

e2πij1k1/pf(j1, j2). (2–2)

We now compute f̂ in two stages:

• Stage 1: For each k1 and j2 compute the inner sum

f̃(k1, j2) =
p−1∑

j1=0

e2πij1k1/pf(j1, j2). (2–3)

This requires at most p2q scalar operations.
• Stage 2: For each k1, k2 compute the outer sum

f̂(k1, k2) =
q−1∑

j2=0

e2πij2(k2p+k1)/nf̃(k1, j2). (2–4)

This requires an additional q2p operations.

Thus, instead of (pq)2 operations, the above algorithm uses (pq)(p+q) operations.
Stage 1 has the form of a DFT on the subgroup qZ/nZ ∼= Z/pZ, embedded

as the set of multiples of q,whereas stage 2 has the form of a DFT on a cyclic
group of order q, so if n could be factored further, we could apply the same trick
to these DFTs in turn. Thus, if N has the prime factorization N = p1 · · · pm,
then we recover Cooley and Tukey’s original m-stage algorithm which requires
N

∑
i pi operations [7].

A group-theoretic interpretation. Auslander and Tolmieri’s paper [3] re-
lated the Cooley–Tukey algorithm to the Weil–Brezin map for the finite Heisen-
berg group. Here we present an alternate group-theoretic interpretation, origi-
nally due to Beth [4], that is more amenable to generalization.

The change of variables on the first line of (2–1) may be interpreted as the
factorization of the group element j as the (group) product of j1q ∈ qZ/nZ,
with the coset representative j2. Thus, if we write G = Z/nZ, H = qZ/nZ,
and let Y denote our set of coset representatives, the change of variables can be
rewritten as

g = y · h, y ∈ Y, h ∈ H (2–5)

The second change of variables in (2–1) can be interpreted using the notion of
restriction of representations. It is easy to see that restricting a representation
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on a group G to a subgroup H yields a representation of that subgroup. In the
case of qZ/nZ this amounts to the observation that

e2πij1q(k2p+k1)/n = e2πij1k1/p,

which is used to prove (2–2).
The restriction relations between representations may be represented diagra-

matically using a directed graded graph with three levels. At level zero there is
a single vertex labeled 1, called the root vertex. The vertices at level one are
labeled by the irreducible representations of Z/pZ, and the vertices at level two
are labeled by the irreducible representations of Z/nZ. Edges are drawn from
the root vertex to each of the vertices at level one, and from a vertex at level one
to a vertex at level two if and only if the representation at the tip restricts to the
representation at the tail. The directed graph obtained is the Bratteli diagram
for the chain of subgroups Z/nZ > Zp/Z > 1. Figure 1 shows the situation for
the chain Z/6Z > 2Z/6Z ∼= Z/3Z > 1.

•
•
•
•

•
•
•

•
•
•
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xxqqqqq
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χ1

χ2
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χ1
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χ3

χ4

χ5

Z/6Z 2Z/6Z 1

Figure 1. The Bratteli diagram for Z/6Z > 2Z/6Z > 1. The representation χk

of Z/mZ is defined by χk(l) = e2πikl/m.

In this way the irreducible representations of Z/nZ are indexed by paths
(k1, k2) in the Bratteli diagram for Z/nZ > Z/pZ > 1. The DFT factorization
(2–2) now becomes

f̂(k1, k2) =
∑

y∈Y

χk1,k2(y)
∑

h∈H

f(y · h)χk1(h). (2–6)

The two-stage algorithm is now restated as first computing a set of sums that
depend on only the first leg of the paths, and then combining these to compute
the final sums that depend on the full paths.

In summary, the group elements have been indexed according to a particular
factorization scheme, while the irreducible representations (the dual group) are
now indexed by paths in a Bratteli diagram, describing the restriction of repre-
sentations. This allows us to compute the Fourier transform in stages, using one
fewer group element factor at each stage, but using paths of increasing length in
the Bratteli diagram.
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3. Fast Fourier Transforms on Symmetric Groups

A fair amount of attention has been devoted to developing efficient Fourier
transform algorithms for the symmetric group. One motivation for developing
these algorithms is the goal of analyzing data on the symmetric group using a
spectral approach. In the simpler case of time series data on the cyclic group,
this approach amounts to projecting the data vector onto the basis of complex
exponentials.

The spectral approach to data analysis makes sense for a function defined
on any kind of group, and such a general formulation is due to Diaconis (see
[8], for example). The case of the symmetric group corresponds to considering
ranked data. For instance, a group of people might be asked to rank a list of 4
restaurants in order of preference. Thus, each respondent chooses a permutation
of the original ordered list of 4 objects, and counting the number of respon-
dents choosing each permutation yields a function on S4. It turns out that the
corresponding Fourier decomposition of this function naturally describes various
coalition effects that may be useful in describing the data.

To get some feel for this notice that the Fourier transform at the matrix
elements ρij(π) of the (reducible) defining representation count the number of
people ranking restaurant i in position j. If instead ρ is the (reducible) permuta-
tion representation of Sn on unordered pairs {i, j}, then for each choice of {i, j}
and {k, l} the individual Fourier transforms count the number of respondents
ranking restaurants i and j in positions k and l. See [8] for a more thorough
explanation.

The first FFT for symmetric groups (an O(|G| log3 |G|) algorithm) was due
M. Clausen. In what follows we summarize recent improvements on Clausen’s
result.

Example: Computing the Fourier transform on S4. The fast Fourier
transform for S4 is obtained by mimicking the group-theoretic approach to the
Cooley–Tukey algorithm. More precisely, we shall rewrite the formula for the
Fourier transform using two changes of variables: one using factorizations of
group elements, and the other using paths in a Bratteli diagram. The former
comes from the reduced word decomposition of g ∈ S4, by which g may be
uniquely expressed as

g = s4
2 · s4

3 · s4
4 · s3

2 · s3
3 · s2

2, (3–1)

where sj
i is either e or the transposition (i i−1), and sj

i1
= e implies that sj

i2
= e

for i2 ≤ i1. Thus any function on the group S4 may be thought of as a function
of the 6 variables s4

2, s
4
3, s

4
4, s

3
2, s

3
3, s

2
2.

To index the matrix elements of S4 paths in a Bratteli diagram are used, this
time relative to the chain of subgroups S4 ≥ S3 ≥ S2 ≥ S1 ≥ 1. The irreducible
representations of Sn are in one-to-one correspondence with partitions of the
integer n, with restriction of representations corresponding to deleting a box in
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the Young diagram. The corresponding Bratteli diagram is called Young’s lattice,
and is shown in Figure 2. Paths in Young’s lattice from the empty partition φ

••
•

•

•

•

•

•
•
•
•
•

LLLLL

UUUUU
UUUUU

rrrrr

iiiii
iiiii

rrrrrLLLLL
LLLLLrrrrr

iiiii

UUUUU

φ
(1)

(2)

(1,1)

(3)

(2,1)

(1,1,1)

(4)

(3,1)

(2,2)

(2,1,1)

(1,1,1,1)

Figure 2. Young’s lattice up to level 4.

to β4, a partition of 4, index the basis vectors of the irreducible representation
corresponding to β4. Matrix elements, however, are determined by specifying a
pair of basis vectors, so to index the matrix elements, we must use pairs of paths
in Young’s lattice, starting at φ and ending in the same partition of 4. Since
there are no multiple edges in Young’s lattice, each path may be described by
the sequence of partitions φ, β1, β2, β3, β4, through which it passes.

Before we can state a formula for the Fourier transform, analogous to (2–2)
and (2–6), we must choose bases for the irreducible representations of S4 in
order to define our matrix elements. Efficient algorithms are known only for
special choices of bases, and our algorithm uses the representations in Young’s
orthogonal form, which is equivalent to the following equation (3–2) for the
Fourier transform in the new sets of variables.

f̂

(
β4 β3 β2 β1

γ3 γ2 γ1

)

=
∑

g=s4
2s4

3s4
4s3

2s3
3s2

2

∑
ϕ2,ϕ1,η1

(
P 4

s4
4

(
β4 β3

γ3 ϕ2

)
P 3

s4
3

(
β3 β2

ϕ2 ϕ1

)
P 2

s4
2

(
β2 β1

ϕ1

)

×P 3
s3
3

(
γ3 ϕ2

γ2 η1

)
P 2

s3
2

(
ϕ2 ϕ1

η1

)
P 2

s2
2

(
γ2 η1

γ1

)
f(g)

)
. (3–2)

The functions P i
sj

i

in equation (3–2) are defined below, and for each i, the vari-
ables βi, γi, ϕi, ηi are partitions of i, satisfying the restriction relations described
by Figure 3. A solid line between partitions means that the right partition is
obtained from the left partition by removing a box.

The relationship between (3–2) and Figure 3 is extremely close—we derived
the diagram from the reduced word decomposition first, and then read the equa-
tion off the diagram. Each 2-cell in Figure 3 corresponds to a factor in the
product of P functions in (3–2), and the labels on the boundary of each cell
give the arguments of P i

sj
i

. The sum in (3–2) is over those variables occurring in
the interior of Figure 3. Thus, the variables describing the Fourier transformed
function are exactly those appearing on the boundary of the figure.
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Figure 3. Restriction relations for (3–2).

Equation (3–2) can be summarized by saying that we take the product over
2-cells, and sum on interior indices, in Figure 3. This suggests a generalization of
the Cooley–Tukey algorithm, that corresponds to building up the diagram one
cell at a time. At each stage multiply by the factor corresponding to a 2-cell,
and form the diagram consisting of those 2-cells that have been considered so far.
Then sum over any indices that are in the interior of the diagram for this stage,
but were not in the interior for previous stages. At the end of this algorithm we
have multiplied by the factors for each 2-cell, and summed over all the interior
indices, and have therefore computed the Fourier transform.

The order in which the cells are added matters, of course. The order s2
2, s3

2,
s3
3, s4

2, s4
3, s4

4 is known to be most efficient. Here is the algorithm in detail.

• Stage 0: Start with f(s4
2s

4
3s

4
4s

3
2s

3
3s

2
2), for all reduced words.

• Stage 1: Multiply by P 2
s2
2
. Sum on s2

2.

• Stage 2: Multiply by P 2
s3
2
. Sum on s3

2.

• Stage 3: Multiply by P 3
s3
3
. Sum on η1, s

3
3.

• Stage 4: Multiply by P 2
s4
2
. Sum on s4

2.

• Stage 5: Multiply by P 2
s4
3
. Sum on ϕ1, s

4
3.

• Stage 6: Multiply by P 3
s4
4
. Sum on ϕ2, s

4
4.

The indices occurring in each stage of the algorithm are shown in Figure 4.

To count the number of additions and multiplications used by the algorithm,
we must count the number of configurations in Young’s lattice corresponding to
each of the diagrams in Figure 4. This yields a grand total of 130 additions and
130 multiplications for the Fourier transform on S4.

The generalization to higher order symmetric groups is straightforward. The
reduced word decomposition gives the group element factorization and Young’s
orthogonal form allows us to change variables, and the formula and algorithm
for the Fourier transform can be read off a diagram generalizing Figure 3. The
diagram for S5 is shown, for example, in Figure 5.



292 DAVID K. MASLEN AND DANIEL N. ROCKMORE

•

•

•

•

•

•

•

•

•

•
•

s4
2

s3
2

s2
2

s4
3

s3
3

s4
4

Stage 1

mmmmm

§§
§§

§§
§§

mmmmm
QQQQQ

φ
η1

γ1

γ2

•

•

•

•

•

•

•

•

•

•
•

s4
2

s3
2

s4
3

s3
3

s4
4

Stage 2

QQQQQ
mmmmm

§§
§§

§§
§§

mmmmm
QQQQQ
mmmmm
QQQQQ

φ

ϕ1

η1

γ1

ϕ2

γ2

•

•

•

•

•

•

•

•

•

•
•

s4
2

s4
3

s3
3

s4
4

Stage 3

QQQQQ

§§
§§

§§
§§

mmmmm
QQQQQ
mmmmm
QQQQQ

mmmmm
QQQQQ

φ

ϕ1

η1

γ1

ϕ2

γ2

γ3

•

•

•

•

•

•

•

•

•
•

s4
2

s4
3

s4
4

Stage 4 88888888QQQQQ

§§
§§

§§
§§

mmmmm
QQQQQ
mmmmm

QQQQQ

mmmmm
QQQQQ

φ

β1

ϕ1

γ1

β2

ϕ2

γ2

γ3

•

•

•

•

•

•

•

•

•
•

s4
3

s4
4

Stage 5 88888888

§§
§§

§§
§§

mmmmm
QQQQQ
mmmmm

QQQQQ

mmmmm
QQQQQ
mmmmm
QQQQQ

φ

β1

ϕ1

γ1

β2

ϕ2

γ2

β3

γ3

•

•

•

•

•

•

•

•
• s4

4

Stage 6 88888888

§§
§§

§§
§§

mmmmm

QQQQQ

mmmmm
QQQQQ
mmmmm
QQQQQ

mmmmm
QQQQQ φ

β1

γ1

β2

ϕ2

γ2

β3

γ3

β4

Figure 4. Variables occurring at each stage of the fast Fourier transform for S4
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Figure 5. Restriction relations in the Fourier transform formula for S5.

We have computed the exact operation counts for symmetric groups Sn with
n ≤ 50, and a general formula seems hard to come by. (Presumably n ≤ 50 would
cover all cases where the algorithm might ever be implemented, but the same
numbers arise in FFTs on homogeneous spaces, which have far fewer elements.)

However, bounds are easier to obtain:

Theorem 3.1 ([13]). The number of additions (or multiplications) required by
the above algorithm (as generalized to Sn > Sn−1 > · · · > S1) is exactly

n! ·
n∑

k=2

1
k

k∑

i=2

1
(i− 1)!

Fi

where Fi is the number of configurations in Young’s lattice of the form
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Furthermore, Fi ≤ 3(1 − 1
i )i!, so the number of additions (multiplications) is

bounded by 3
4n(n− 1) · n!.

Why stop at Sn? The algorithm for the FFT on Sn generalizes to any wreath
product Sn[G] with the symmetric group. The subgroup chain is replaced by
the chain

Sn[G] > Sn−1[G]×G > Sn−1[G] > · · · > S2[G] > G×G > G, (3–4)

and the reduced word decomposition is replaced by the factorization

x = sn
2 · · · sn

ngnsn−1
2 · · · sn−1

n−1g
n−1 · · · s2

sg
2g1. (3–5)

Adapting the Sn argument along these lines gives the following new result.

Theorem 3.2. The number of operations needed to compute a Fourier transform
on Sn[G] is at most

(
3n(n− 1)

4
|G|d2

G + n
(
tG + 1

4 |G|(hGd2
G − |G|)

)) |Sn[G]|

where hG is the number of conjugacy classes in G, dG is the maximal degree of
an irreducible representation of G, and tG is the number of operations required
to compute a Fourier transform on G. If G is abelian, then the inner term
hGd2

G − |G| = 0.

The functions P i
sj

i

defining Young’s orthogonal form are defined as follows: For
any two boxes b1 and b2 in a Young diagram, we define the axial distance from
b1 to b2 to be d(b1, b2), where d(b1, b2) = row(b1) − row(b2) + column(b1) −
column(b2). Now suppose βi, βi−1, αi−1, αi−2 are partitions and that αi−1, βi−1

are obtained from βi by removing a box, and are obtained from αi−2 by adding
a box. Then the skew diagrams of βi − βi−1 and βi−1 − αi−2 each consist of a
single box, and P i is given by

P i
e

(
βi βi−1

αi−1 αi−2

)
=

{
1 if αi−1 = βi−1,
0 if αi−1 6= βi−1.

P i
(i i−1)

(
βi βi−1

αi−1 αi−2

)
=

{
d(βi − βi−1, βi−1 − αi−2)−1 if αi−1 = βi−1,√

1− d(βi − βi−1, βi−1 − αi−2)−2 if αi−1 6= βi−1.
(3–6)

For a proof of this formula, in slightly different notation, see [11], Chapter 3.

4. Generalization to Other Groups

The FFT described for symmetric groups suggests a general approach to com-
puting Fourier transforms on finite groups. Here is the recipe.

(i) Choose a chain of subgroups

G = Gm ≥ Gm−1 ≥ · · · ≥ G1 ≥ G0 = 1 (4–1)
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for the group. This determines the Bratteli diagram that we will use to index
the matrix elements of G. In the general case, this Bratteli diagram may have
multiple edges, so a path is no longer determined by the nodes it visits.

(ii) Choose a factorization g = gn · gn−1 · · · g1 of each group element g. Choose
the gi so that they lie in as small a subgroup Gk as possible, and commute
with as large a subgroup Gl as possible.

(iii) Choose a system of Gel’fand–Tsetlin bases [9] for the irreducible represen-
tations of G relative to the chain (4–1). These are bases that are indexed
by paths in the Bratteli diagram, that behave well under restriction of rep-
resentations. Relative to such a basis, the representation matrices of gi will
be block diagonal whenever gi lies in a subgroup from the chain, and block
scalar whenever gi commutes with all elements of a subgroup from the chain.

(iv) Now write the Fourier transform in coordinates, as a function of the pairs of
paths in the Bratteli diagram with a common endpoint, and with the original
function written as a function of g1, . . . , gn. This will be a sum of products
indexed by edges in the Bratteli diagram which lie in some configuration
generalizing (3). This configuration of edges specifies the way in which the
nonzero elements of the representation matrices appear in the formula for the
Fourier transform in coordinates.

(v) The algorithm proceeds by building up the product piece by piece, and
summing on as many partially indexed variables as possible.

Further considerations and generalizations. The efficiency of the above
approach, both in theory, in terms of algorithmic complexity, and practice, in
terms of execution time, depends on both the choice of factorization and the
Gel’fand–Tsetlin bases. In particular, very interesting work of L. Auslander, R.
Johnson and J. Johnson [2] shows how in the abelian case, different factorizations
correspond to different well-known FFTs, each well suited for execution on a
different computer architecture. This work shows how to relate the 2-cocycle of
a group extension to construction of the important “twiddle factor” matrix in
the factorization of the Fourier matrix. It marks the first appearances of group
cohomology in signal processing and derives an interesting connection between
group theory and the design of retargetable software.

The analogous questions for nonabelian groups and other important signal
processing transform algorithms, that is, the problem of finding architecture-
optimized factorizations, is currently being investigated by the SPIRAL project
at Carnegie Mellon [19].

Another abelian idea: the “chirp-z” FFT. The use of subgroups depends
upon the existence of a nontrivial subgroup. Thus, for a reduction in the case of
a cyclic group of prime order, a new idea is necessary. In this case, C. Rader’s
“chirp-z transform” (the “chirp” here refers to radar chirp—the generation of
an extremely short electromagnetic pulse, i.e., something approaching the ideal
delta function) may be used [16].
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The chirp-z transform proceeds by turning computation of the DFT into com-
putation of convolution on a different, albeit related, group. Let p be a prime.
Since Z/pZ is also a finite field, there exists a generator g of Z/pZ×, a cyclic
group (under multiplication) of order p − 1. Thus, for any f : Z/pZ → C and
nonzero frequency index g−b, we can write f̂(g−b) as

f̂(g−b) = f(0) +
p−2∑
a=0

f(ga)e2πiga−b/p. (4–2)

The summation in (4–2) has the form of a convolution on Z/(p − 1)Z, of the
sequence f ′(a) = f(ga), with the function z(a) = exp2πiga/p, so that f̂ may
be almost entirely computed using Fourier transforms of length p− 1 for which
Cooley–Tukey-like ideas may be used. It is an interesting open question to
discover if the chirp-z transform has a nonabelian generalization.

Modular FFTs. A significant application of the abelian FFT is in the efficient
computation of Fourier transforms for functions on cyclic groups defined over
finite fields. These are necessary for the efficient encoding and decoding of various
polynomial error correcting codes. Many abelian codes, e.g., the Golay codes
used in deep-space communication, are defined as Fp-valued functions on a group
Z/mZ with the property that f̂(k) = 0 for k ∈ S some specified set of indices
S, where now the Fourier transform is defined in terms of a primitive (p − 1)st

root of unity.
These sorts of spectral constraints define cyclic codes, and they may imme-

diately be generalized to any finite group. Recently, this has been done in the
construction of codes over SL2(Fp), using connections between expander graphs
and linear codes discovered by M. Sipser and D. Spielman. For further discussion
of this and other applications see [17].

5. FFTs for Compact Groups

The DFT and FFT also have a natural extension to continuous compact
groups. The terminology “discrete Fourier transform” derives from the algorithm
having been originally designed to compute the (possibly approximate) Fourier
transform of a continuous signal from a discrete collection of sample values.

Under the simplifying assumption of periodicity a continuous function may
be interpreted as a function on the unit circle, and compact abelian group, S1.
Any such function f has a Fourier expansion defined as

f(e2πit) =
∑

l∈Z

f̂(l)e−2πilt (5–1)

where

f̂(l) =
∫ 1

0

f(e2πit)e2πiltdt. (5–2)
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If f̂(l) = 0 for |l| ≥ N , then f is band-limited with band-limit N and the DFT
(1–1) is in fact a a quadrature rule or sampling theorem for f . In other words,
the DFT of the function

1
2N − 1

f(e2πit)

on the group of (2N−1)-st roots of unity computes exactly the Fourier coefficients
of the band-limited function. The FFT then efficiently computes these Fourier
coefficients.

The first nonabelian FFT for a compact group was a fast spherical harmonic
expansion algorithm discovered by J. Driscoll and D. Healy. Several ingredients
were required: (1) A notion of “band-limit” for functions on S2; (2) A sampling
theory for such functions; and (3) A fast algorithm for the computation.

The spherical harmonics are naturally indexed according to their order (the
common degree of a set of homogeneous polynomials on S2). With respect to
the usual coordinates of latitude and longitude, the spherical harmonics separate
as a product of exponentials and associated Legendre functions, each of which
separately has a sampling theory. Finally, by using the usual FFT for the expo-
nential part, and a new fast algorithm (based on three-term recurrences) for the
Legendre part, an FFT for S2 is formed.

These ideas generalize nicely. Keep in mind that the representation theory
of compact groups is much like that of finite groups: there is a countable com-
plete set of irreducible representations and any square-integrable function (with
respect to Haar measure) has an expansion in terms of the corresponding ma-
trix elements. There is a natural definition of band-limited in the compact case,
encompassing those functions whose Fourier expansion has only a finite number
of terms. The simplest version of the theory is as follows:

Definition 5.1. Let R denote a complete set of irreducible representations
of a compact group G. A system of band-limits on G is a decomposition of
R =

⋃
b≥0Rb such that

(i) Rb is finite for all b ≥ 0;
(ii) b1 ≤ b2 implies that Rb1 ⊆ Rb2 ;
(iii) Rb1 ⊗Rb2 ⊆ spanZRb1+b2 .

Let {Rb}b≥0 be a system of band-limits on G and f ∈ L2(G). Then, f is band-
limited with band-limit b if the Fourier coefficients are zero for all matrix elements
in ρ for all ρ /∈ Rb.

The case of G = S1 provides the classical example. If Rb = {χj : |j| ≤ b} where
χj(z) = zj , then χj ⊗ χk = χj+k and the corresponding notion of band-limited
(as per Definition 1) coincides with the usual notion.

For a nonabelian example, consider G = SO(3). In this case the irreducible
representations of G are indexed by the nonnegative integers with Vλ the unique
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irreducible of dimension 2λ + 1. Let Rb = {Vλ : λ ≤ b}. The Clebsch-Gordan
relations

Vλ1 ⊗ Vλ2 =
λ1+λ2∑

j=|λ1−λ2|
Vj (5–3)

imply that this is a system of band-limits for SO(3). When restricted to the
quotient S2 ∼= SO(3)/ SO(2), band-limits are described in terms of the highest
order spherical harmonics that appear in a given expansion.

This notion of band-limit permits the construction of a sampling theory [14].
For example, in the case of the classical groups, a system of band-limits Rn

b is
chosen with respect to a particular norm on the dual of the associated Cartan
subalgebra. Such a norm ‖ · ‖ (assuming that it is invariant under taking duals,
and ‖α‖ ≤ ‖β‖ + ‖γ‖, for α occurring in β ⊗ γ) defines a notion of band-limit
given by all α with norm less than a fixed b. This generalizes the definition
above. The associated sampling sets Xn

b are contained in certain one-parameter
subgroups. These sampling sets permit a separation of variables analogous to
that used in the Driscoll–Healy FFT. Once again, the special functions satisfy
certain three-term recurrences which admit a similar efficient divide-and-conquer
computational approach (see [15] and references therein.) one may derive efficient
algorithms for all the classical groups, U(n),SU(n), Sp(n).

Theorem 5.2. Assume n ≥ 2.

(i) For U(n), TXn
b
(Rn

b ) ≤ O(bdim U(n)+3n−3).
(ii) For SU(n), TXn

b
(Rn

b ) ≤ O(bdim SU(n)+3n−2).
(iii) For Sp(n), TXn

b
(Rn

b ) ≤ O(bdim Sp(n)+6n−6).

Here TXn
b
(Rn

b ) denotes the number of operations needed for the particular sample
set Xn

b and representations Rn
b for the associated group.

6. Further and Related Work

Noncompact groups. Much of modern signal processing relies on the under-
standing and implementation of Fourier analysis for L2(R), i.e., the noncompact
abelian group R. Nonabelian, noncompact examples have begun to attract much
attention.

In this area some of the most exciting work is being done by G. Chirikjian
and his collaborators. They have been exploring applications of convolution on
the group of rigid motions of Euclidean space to such diverse areas as robotics,
polymer modeling and pattern matching. See [5] for details and pointers to the
literature.

To date, the techniques used here are approximate in nature and interesting
open problems abound. Possibilities include the formulation of natural sampling,
band-limiting and time-frequency theories. The exploration of other special cases
such as semisimple Lie groups (see [1], for a beautifully written succinct survey
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of the Harish-Chandra theory) would be one natural place to start. A sampling
and band-limiting theory would be the first step towards developing a a compu-
tational theory, i.e., FFT. “Fast Fourier transforms on semisimple Lie groups”
has a nice ring to it!

Approximate techniques. The techniques in this paper are all exact, in the
sense that if computed in exact arithmetic, they yield exactly correct answers.
Of course, in any actual implementation, errors are introduced and the utility of
an algorithm will depend highly on its numerical stability.

There are also “approximate methods”, approximate in the sense that they
guarantee a certain specified approximation to the exact answer that depends
on the running time of the algorithm. For computing Fourier transforms at
nonequispaced frequencies, as well as spherical harmonic expansions, the fast
multipole method due to V. Rokhlin and L. Greengard is a recent and very im-
portant approximate technique. Multipole-based approaches efficiently compute
these quantities approximately, in such a way that the running time increases
by a factor of log(1/ε), where ε denotes the precision of the approximation. M.
Mohlenkamp has applied quasi-classical frequency estimates to the approximate
computation of various special function transforms.

Quantum computing. Another related and active area of research involves
connections with quantum computing. One of the first great triumphs of the
quantum computing model is P. Shor’s fast algorithm for integer factorization on
a quantum computer [18]. At the heart of Shor’s algorithm is a subroutine which
computes (on a quantum computer) the DFT of a binary vector representing an
integer. The implementation of this transform as a sequence of one- and two-
bit quantum gates, is the quantum FFT, is effectively the Cooley–Tukey FFT
realized as a particular factorization of the Fourier matrix into a product of
matrices composed as tensor products of certain two by two unitary matrices,
each of which is a “local unitary transform”. Extensions of these ideas to the
more general group transforms mentioned above are a current important area of
research of great interest in computer science.

So, these are some of the things that go into the computation of the finite
Fourier transform. It is a tapestry of mathematics both pure and applied, woven
from algebra and analysis, complexity theory and scientific computing. It is on
the one hand a focused problem, but like any good problem, its “solution” does
not end a story, but rather initiates an exploration of unexpected connections
and new challenges.
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