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Signal Processing in Optical Fibers

ULF OSTERBERG

ABSTRACT. This paper addresses some of the fundamental problems which
have to be solved in order for optical networks to utilize the full bandwidth
of optical fibers. It discusses some of the premises for signal processing in
optical fibers. It gives a short historical comparison between the develop-
ment of transmission techniques for radio and microwaves to that of optical
fibers. There is also a discussion of bandwidth with a particular empha-
sis on what physical interactions limit the speed in optical fibers. Finally,
there is a section on line codes and some recent developments in optical
encoding of wavelets.

1. Introduction

When Claude Shannon developed the mathematical theory of communication
[1] he knew nothing about lasers and optical fibers. What he was mostly con-
cerned with were communication channels using radio- and microwaves. Inher-
ently, these channels have a narrower bandwidth than do optical fibers because
of the lower carrier frequency (longer wavelength). More serious than this the-
oretical limitation are the practical bandwidth limitations imposed by weather
and other environmental hazards. In contrast, optical fibers are a marvellously
stable and predictable medium for transporting information and the influence
of noise from the fiber itself can to a large degree be neglected. So, until re-
cently there was no real need for any advanced signal processing in optical fiber
communications systems. This has all changed over the last few years with the
development of the internet.

Optical fiber communication became an economic reality in the early 1970s
when absorption of less than 20 dB/km was achieved in optical fibers and life-
times of more than 1 million hours for semiconductor lasers were accomplished.
Both of these breakthroughs in material science were related to minimizing the
number of defects in the materials used. For optical fiber glass, it is absolutely
necessary to have fewer than 1 parts per billion (ppb) of any defect or transition
metal in the glass in order to obtain necessary performance.
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Figure 1. Electromagnetic spectrum of importance for communication. Fre-
quencies are given in Hertz.

For the last thirty years, optical fibers have in many ways been a system engi-
neer’s dream. They have had, literally, an infinite bandwidth and as mentioned
above, a stable and reproducible noise floor. So no wonder it’s been sufficient
to use intensity pulse-code modulation, also known as on-off keying (OOK), for
transmitting information in optical fibers.

The bit-rate distance product for optical fibers has grown exponentially over
the last 30 years. (Using bandwidth times length as a measurement makes
sense, since any medium can transport a huge bandwidth if the distance is short
enough.) For this growth to occur, several fundamental and technical problems
had to be overcome. In this paper we will limit ourselves to three fundamental
processes; absorption, dispersion and nonlinear optical interactions. Historically,
absorption and dispersion were the first physical limitations that had to be ad-
dressed. As the bit-rate increase shows, great progress has been made in reducing
the effects of absorption and dispersion on the effective bandwidth. As a conse-
quence, nonlinear effects have emerged as a significant obstacle for using the full
bandwidth potential of optical fibers.

These three processes are undoubtedly the most researched physical processes
in optical glass fibers, which is one reason for discussing them. Another rea-
son, of great importance to mathematicians, is that recent developments in
time/frequency and wavelet analysis have introduced novel line coding schemes
which seem to be able to drastically reduce the impact from many of the delete-
rious physical processes occurring in optical fiber communications.

2. Signal Processing in Optical Fibers

The spectrum of electromagnetic waves of interest for different kinds of com-
munication is shown in Figure 1.

A typical communications system for using these waves to convey information
is shown in Figure 2. This system assumes digitized information but is otherwise
completely transparent to any type of physical medium used for the channel.

Any electromagnetic wave is completely characterized by its amplitude and
phase:

E(r,t) = A(r,t) exp(¢(r,t))
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Figure 2. Typical block diagram of a digital communications system.

where A is the amplitude and ¢(r,¢) is the phase. So, amplitude and phase are
the two physical properties that we can vary in order to send information in the
form of a wave. The variations can be in either analog or digital form. Note that
even today, in our digitally swamped society, analog transmission is still used
in some cases. One example is cable-TV (CATV), where the large S/N ratio
(because of the short distances involved) provides a faithful transmission of the
analog signal. The advantage in using analog transmission is that it takes up
less bandwidth than a digital transmission with the same information content.
The first optical fiber systems in the 1970s used time-division multiplex-
ing(TDM), each individual channel was multiplexed onto a trunk line using
protocols called T1-T5, where T1-T5 refers to particular bit rates; see Figure 3.
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Figure 3. Time-division multiplexing.

Each individual channel was in turn encoded with the users’ digital informa-
tion.

TDM is still the most common scheme used for sending information down
an optical fiber. Today, we are using a multiplexing protocol called SONET
which uses the acronyms OC48, OC96, etc., where OC48 corresponds to a bit
rate of 565 Mbits/sec and each doubling of the OC-number corresponds to a
doubling of the bit rate. The increase in speed has been made possible by
the dramatic improvement of electronic circuits and the shift from multi-mode
fibers to dispersion-compensated single-mode fibers. Several large national labs
are testing, in the laboratory, time-multiplexed systems up to 100 Gbits/sec,
commercially most systems are still < 2.5 Gbits/sec.

As industry is preparing for an ever growing demand of bandwidth it is clear
that electronics cannot keep up with the optical bandwidth, which is estimated
to be 30 Thits/sec for optical fibers. Because of this wavelength-division multi-
plezing(WDM) has attracted a lot of attention. In a TDM system each bit is an
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optical pulse, for WDM system each bit can either be a pulse or a continuous
wave (CW). WDM systems rely on the fact that light of different wavelengths
do not interfere with each other (in the linear regime); see Figure 4.
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Figure 4. Wavelength-division multiplexing.

Signal processing in optical fibers has, historically, been separated into two
distinct areas: pulse propagation and signal processing. To introduce these areas
we will keep with tradition and describe them separately, however, please bear
in mind that the area in which mathematicians may play the most important
role in future signal processing is to understand the physical limitations imposed
by basic processes that are part of the pulse propagation and invent new signal
processing schemes which oppose these deleterious effects.

A pulse propagating in an optical fiber can be expressed by

E(.’E, yvzat) = iEm(m7y7 th) + gEy(x,ya th) + ﬁEz(x,y,z,tL

where z is the direction of propagation and x, y are in the transversal plane; see
Figure 5. The geometry shown in Figure 5 is for a single-mode fiber.

In such a fiber, the light has been confined to such a small region that only one
type of spatial beam (mode) can propagate over a long distance. Even though
this mode’s spatial dependence is described by a Bessel function it is for most
purposes sufficient to spatially model it as a plane wave. Therefore, the signal

cladding

cure

Figure 5. Optical fiber geometry.
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Figure 6. Gaussian pulse with the carrier frequency illustrated. The optical
equivalent pulse has a 10 times higher carrier frequency than shown here.

pulse representing a bit can mathematically be written as
E(z,t) = £E,(z,1),

where the subscript z is often ignored, tacitly assuming that we only have to
deal with one (arbitrary) scalar component of the full vectorial electromagnetic

field.
In a glass optical fiber the signal has to obey the following wave equation

1 9°B(z,t)

2 —
\Y E(Z,t) = 027,

where ¢ is the speed of light.
A solution to this equation can be written as

E(z,t) = p(z, t)ei(kz_wot),

where p(z,t) is the temporal shape of the pulse (bit) representing a 1 or a 0. For
a Gaussian pulse at z = 0,

p(0,t) = Ae*tg/(ZTQ),
and the electromagnetic field at z =0
E(0,t) = Ae~t"/@T%) giwot (2-1)

where wy is the carrier frequency. This pulse is depicted in Figure 6.
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To describe how this pulse changes as it propagates along the fiber we start
by taking the Fourier transform (FT) of the field in equation (2-1):

E(O,w):\/% / E(0,t)e™" dt. (2-2)

The reason for moving to the frequency domain is because in this domain the
actual propagation step consists of “simply” multiplying the field with the phase
iz where k is the wavenumber. To find out the temporal pulse shape
after a distance z we then transform back to the time domain; that is,

factor e

1 7 ~ . )
B(et) = / B0, w)e™ k= g,

So the principle is quite easy; nevertheless in reality it becomes more compli-

ikz

cated because the phase factor, ¢**#, is different for different frequencies w since

k = k(w). The wavenumber k is related to the refractive index via

wn(w) '

k(w) =

The refractive index can be described for most materials, at optical frequen-
cies, using the Lorentz formula

Cc

b2
_ 2 2 : J
nw) = 1no+ - w27w§j+i25jW’ (2-3)
J

where the different j’s refer to different resonances in the media, b is the strength
of the resonance and ¢ is the damping term (= the width of the resonance).

For picosecond pulses (10712 sec) or longer the pulse spectrum is concentrated
around the carrier frequency wy and we may therefore Taylor expand k(w) around
k(wo):

k(w) =Y %kn(wo)(w —wo)",
n=0 "

where ky,(wo) = %Lv:wo-
Typically, it is sufficient to carry this expansion to the w?-term. Using this

expansion we can now rewrite (2-2) as

ei(k027u)0t)

Ver

— 00

E(Z, t) = E‘(O, w)ei[k(wo)+k1 (wo)(w—wp)+k2 (wo)(w7w0)2]6fiwt dw,

which can be further rewritten as

B(z,t) = p(z, 1)l Flwo)zmwot)
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where, for a gaussian input pulse, p(z,t) is

p(z, t) _ A (kl ((.«JO)Z — t) )

(1 + ko(wo)z?/T4) 1/4 exp<— 212 (1 + ko(wo)2?/T*)

Hence, the envelope remains Gaussian as the pulse is propagating along the
optical fiber, however its width is increased and the amplitude is reduced (con-
servation of energy). From this type of analysis one may determine the optimum
bit-rate (necessary temporal guard bands) for avoiding cross talk.

Line coding. In addition to using both time and wavelength multiplexing to
increase the speed of optical fiber networks it is also necessary to use signal
processing to maintain bit-error rates (BER) of < 10~ for voice and < 10712
for data. (BER is defined as the probability that the received bit differs from
the transmitted bit, on average.) A ubiquitous signal processing method is line
coding in which binary symbols are mapped onto specific waveforms; see Fig-
ure 7. In this way, pulses can be preconditioned to make them more robust
to transmission impairments. Specific line codes are chosen which are adjusted
differently for various physical communications media by arranging the mapping
accordingly.

Line codes (three different types are shown in Figure 7) are all examples of
pulse-code modulation or on-off keying. In this case it is only the amplitude
which is varied; this is done by simply sending more or less light down the fiber.
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Figure 7. Three types of line codes for optical fiber communications.

The choice of line codes depends on the specific features of the communication
channel that needs to be opposed [5]. Common properties among all line codes
include:
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(i) the coded spectrum goes to zero as the frequency approaches zero (DC energy
cannot be transmitted).

(ii) the clock can be recovered from the coded data stream (necessary for detec-
tion).

(iii) they can detect errors (if not correct).

Another consideration in choosing a line code is that different coding formats will
use more or less bandwidth. It is known that for a given bit-rate per bandwidth
(bits/s/Hz), an ideal Nyquist channel uses the narrowest bandwidth [7]. Typi-
cally, adopting a line code will increase the needed transmission bandwidth, since
redundancy is built into the system (table 1) where everything is normalized to
the Nyquist bandwidth B.

Li des Transmission Bandwidth

e codes bandwidth efficiency

RZ + 2B 1 bit/s/Hz

NRZ +B L bit/s/Hz

Duobinary + 1B 1 bit/s/Hz

Single Sideband +1B 1 bit/s/Hz
M-ary ASK (M = 2V) +B/N log, N

Table 1. Bandwidth characteristics for different types of line codes.

Even though in the past, binary line codes were preferred to multilevel codes
due to optical nonlinearities, it is now firmly established that multilevel line codes
can be, spectrally, as efficient as a Nyquist channel. In particular, duobinary line
coding (which uses three levels) have recently been shown to be very successful
in reducing ISI due to dispersion [6].

Closely related to line coding is pulse or waveform generation. The waveform
associated with a Nyquist channel is a sinc-pulse (giving rise to the “minimum”
rect-shaped spectrum). The main problem with this waveform is that it requires
perfect timing (no jitter) to avoid large ISI. The reason for this intolerance to
timing jitter is found in the (infinitely) sharp fall-off of the spectrum. To address
this problem, pulses are generated using a “raised-cosine” spectrum [1; 7] which
removes the “sharp zeroes”. Unfortunately, it makes the transmission bandwidth
twice as large as the Nyquist channel. Lately, it has been suggested that wavelet
like pulses (local trigonometric bases) are a good choice for achieving efficient
time/frequency localization [8] (see section on novel line coding schemes).
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Different Bandwidth Limited Channels

T T T T T
Rectangular
1t - - i
! ' . \\
! Local Trigonometric
) ‘\
08t | | g
!
| ‘\
© ! \
= /
E ; *
Z 06 1 | i
I3 |
<
! I
0.4+ ! \ 4
! \
!
|
[
\
! |
0.2t ! | i
Raised Cosine [’ i
|
!
|
! \
0 1 1 ! | | | 1 1
1 15 2 25 3 3.5 4 45 5

Normalized Frequencies

Figure 8. Examples of different bandwidth limited channels.
3. Physical Processes in Optical Fibers

Absorption. It may seem strange that the small absorption in optical fibers,
which in the late 1960s was less than 20dB/km (that is, over a distance of
L km we have P, /Py > 10720 L/lo), still was not sufficient to make optical

communications viable (in an economical sense).
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Figure 9. Absorption in optical fibers.
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From 1970 to 1972 scientists managed to make fibers of even greater purity
which reduced the absorption to no more than 3dB/km at 800nm (Figure 9).
Using more or less the same type of fibers the absorption could be reduced to
no more than 0.15dB/km by going to longer wavelengths, such as 1.3 um and
1.55 pm. This was possible through the invention of new semiconductor lasers
using InGaAsP material. Despite this very low absorption, again, seen from an
economical perspective, absorption was still the limiting factor. This changed
with the invention of the erbium-doped fiber amplifier (EDFA). A short piece of
fiber (only a few meters long) doped with Erbium and spliced to the system’s fiber
could now amplify the propagating pulses (bits) to “arbitrary” levels, thereby
removing absorption as a system’s physical limitation.

Dispersion. The next attribute which required attention was dispersion. Signal
dispersion (mathematically described via the w?-term in equation (2-3)) a source
of intersymbol interference (ISI) in which consecutive pulses blend into each
other. Again, it turns out that optical glass fibers have inherently outstanding
dispersion properties. As a matter of fact, any particular fiber has a characteristic
wavelength for which the dispersion is zero. This is typically between 1.27-
1.39 um. However, as is the case for absorption, long distance transmission can
cause dispersion.

DISPERSION

ps/(nm km)

20 -

-
10— - -
material ~

Figure 10. Dispersion in optical fibers.

There are two major contributiors to dispersion: material and waveguide
structure. (A waveguide is a device, such as a duct, coaxial cable, or glass
fiber, designed to confine and direct the propagation of electromagnetic waves.
In optical fibers the confinement is achieved by having a region with a larger
refractive index.)
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Material dispersion, which comes from electronic transitions in the solid, is
determined as soon as the chemical constituents of the glass have been fixed.
Waveguide dispersion is a function of the geometry of the core or, more pre-
cisely, how the refractive index in the core and cladding vary in space. This is
important because it means that fiber manufacturers have a fair amount of flex-
ibility in modifying the total dispersion of the fiber. Today, there is a plethora
of fibers with different dispersion characteristics. However, it is not yet possible
to reliably manufacture fibers with zero dispersion for all wavelengths between,
say, 1400-1550 nm. Thus, even though the dispersion can be made as small as 2—
4 ps/nm-km over this wavelength region, we still need to worry about dispersion
for long-distance networks. Two methods used to combat dispersion are fiber
Bragg gratings and line coding and combinations of the two. We now describe
each of these in turn.

Optical fiber Bragg gratings are short pieces of fiber (< 10cm) in which the
refractive index in the core has been altered to modify the dispersion properties.
Mathematically, the fiber Bragg grating is a filter whose properties can be de-
scribed using a transfer function. Similarly, we can describe pulse propagation
over a distance z in an optical fiber using a transfer function. If linear effects
up to the quadratic frequency term (group-velocity dispersion) in the Taylor
expansion of k in (2-3) are included, the transfer function is

H(w) = Hy exp(—a z/2) exp(—jknz) exp(—jDw?z/(47)),

amplitude phase

where k is the propagation constant, w is the angular frequency, n is the refractive
index, « is the absorption coefficient, and D is the dispersion coefficient. So for
a known distance L, an EDFA can be used to amplify the amplitude and the
Bragg grating (with a transfer function H~!) can mostly remove the influence
of the dispersion (the dispersion is primarily modeled by the exp(—jDw?z) term
in the phase). The severest limitation to this scheme are nonlinear effects which
can change both absorption and dispersion in a dramatic fashion.

Nonlinear optics. A description of electromagnetic waves interacting with
matter ends up dealing with the electric and magnetic susceptibilities x. and
Xm, respectively. In this short exposé of nonlinear optics we will limit ourselves
to non-magnetic materials, such as the glass that optical fibers are made of. The
more common (in a linear description) dielectric constant, e, is related to the
susceptibility Xf}) via g, =1+ X.(gl). The susceptibility, in turn, has complete
information about how the material interacts with electromagnetic waves. The
wave equation for an arbitrary dielectric medium can be written as

_ O*P(r,t)
oo
where E(r,t) is the electric field and P(r,t) is the induced polarization field
(an identical wave equation can be written for the magnetic field H(r,t)). All

V2E(r,t)
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linear interactions can be described by assuming that the polarization field and
the electric field are related via the constitutive relation,

P(r,w,) = eox M (we; —ws) E(r, ws).

Unfortunately, most real phenomena are not linear and this holds for electro-
magnetic interactions with matter. For waves whose wavelengths do not coincide
with specific resonant transitions in the material, we can describe the polariza-
tion using a Taylor series expansion of the field amplitudes,

P(r,w,) = o - (Xg)(ws; —ws)E(r,ws) + Xg) (wss w1, wa) E1(r,wy) - Ba(r,ws)

+ X (wsswi,wa, w3) Eq(r,w1) - Ba(r,ws) - E3(r,w3) +...),
where w; is the frequency of the generated polarization, x(™ is the electric sus-
ceptibility of first, second and third order for n = 1,2, 3, respectively, E(r,w,,)

are the electric field amplitudes at different carrier frequencies, wi, ws, w3, etc.
The susceptibilities have a general form given by

(n) ) B (g]r|f) _ spatial dispersion
L Wi;W1, W, ...) = - = - —. (3-1
Xisjk,... (0501, w2s ) Z (w3 —w? — j2wy)  frequency dispersion )
The subscripts i, j, k, ..., are connected with the structural symmetry of the

material (spatial dispersion) and the particular polarization of the electromag-
netic waves. The denominator describes the frequency dispersion with w being
the frequency of an electromagnetic wave, wy being a resonant frequency in the
material and « being the width of the resonance. The summation is over all
the possible states that can occur in the material while it is interacting with the
electromagnetic waves. As can be seen from (3-1), the electronic susceptibilities
are complex quantities. It is common to separate the susceptibilities into a real
and imaginary part. For the third-order nonlinear susceptibility this could look
like

(3) . _ (3 . (3)
Xijkl(w57 Wi, W2, L(J3) = XReal +- leaginary'

In general, the real part describes light-matter interactions that leave the mate-
rial in the original energy state, while the imaginary part describes interactions
that transfer energy between the electromagnetic wave and the material in such
a way as to leave the material in a different energy state than the original state.
Processes described by the real part are commonly referred to as parametric pro-
cesses and two examples of such a process are four-photon mixing and self-phase
modulation. It is interesting to note that nonlinear processes controlled by the
real part require phase matching while processes due to the imaginary part do
not. Examples of processes described by the imaginary part are Raman and
Brillouin scattering, and two-photon absorption.

For Raman and Brillouin scattering one also needs to distinguish between
spontaneous and stimulated processes. In simple terms, spontaneous Raman
and Brillouin scattering are due to fluctuations in one or more optical properties
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caused by the internal energy of the material. Stimulated scattering is driven by
the light field itself, actively increasing the internal fluctuations of the material.

Nonlinear susceptibilities of importance for tele- and data communication are
all made up of electric-dipole transitions. When these transitions are between
real energy levels of the material we talk about resonant processes. In gen-
eral, resonant processes are strong and slow; strong because the susceptibility
gets large at resonances and slow because the electrons have to be physically
relocated. The nonlinear susceptibilities of importance for us are all due to
non-resonant processes. These nonlinearities are distinguished by their small
susceptibilities but very fast response. This is in part due to the electrons only
making virtual transitions. A virtual energy level only exists for the combined
system, matter and light.

In optical glass fibers, for symmetry reasons, the third-order nonlinearity, x(*),
is the dominant nonlinear susceptibility. For pulse modulated systems the three
most important nonlinearities are self-phase modulation, four-photon mixing and
stimulated Raman scattering. The pros and cons of these nonlinearities can be
summarized as follows (see [2; 3; 4]):

Self-phase modulation. Positive effects: solitons, temporal compression. Neg-
ative effects: spectral broadening, hence enhanced GVD.

Four-photon mixing. Positive effects: generation of new wavelengths. Nega-
tive effects: crosstalk between different wavelength channels.

Stimulated Raman Scattering. Positive effects: amplification (broadband
and wavelength independent). Negative effects: crosstalk between different
wavelength channels.

4. Novel Line Coding Schemes

With the introduction of communication channels in both time and wave-
length (frequency) the challenge of fitting as much information as possible into a
given time-frequency space, has become more similar to the problem that Shan-
non and, to some extent, Gabor were addressing in the 1940s. This is a fun-
damental problem —one which appears in many different fields such as; signal
processing, image processing, quantum mechanics etc. Common to all of these
different fields is the relation of two physical variables via a Fourier transform,
which therefore, are subject to an “uncertainty relationship”, which ultimately
determines the information capacity; see Figure 11.

To build robust pulse forms which have good time-frequency localization prop-
erties recent research in applied mathematics has shown that shaping optical
pulses as wavelets can dramatically improve the spectral efficiency and robust-
ness of an optical fiber network [8]. In table 2 we note that present systems
(2.5 Gbs) only have a 5% spectral efficiency (that is, only 5% of the available
bandwidth is used for sending information). It is hoped that in five to ten years
we will have 40 Gbs systems utilizing 40% of the available spectral bandwidth.



314 ULF OSTERBERG
frequency ;Edi\t/_idue/afl channels ir|1
I /N
L A ]
< I T R
=

time

Figure 11. Time/frequency representation of the available bandwidth for any
communication channel.

Bit rate Channel Spectral
(Gbs)  spacing(GHz) efficiency(%)
2.5 100/50 2.5/5.0
10 200/100/50  5/10/20
40 100 40

Table 2. Spectral efficiency for present (2.5 Gbs) and future high-speed systems.

To achieve this spectral efficiency we can use an element of an orthonormal
bases p(t) as our input pulse. Our total digital signal, with 1s and Os can be
described as a pulse train

2BT,

s(t) = > a;p(t — kT),

J=1

where B is the bandwidth of our channel, T} is the time between pulses (Figure 7)
and p(t) is the temporal shape of the bits. One possible choice for p(t) could be
the local trigonometric bases,

Prk(t) = w(t —n) x cos((k + 3)m(t

—n)),

where w(t —n) is a window function; see Figures 8 and 12. The window function
has very smooth edges, which partly explains the good time-frequency localiza-
tion of these bases (Figure 12). Compared to other waveforms—sinc pulses,
for instance —the local trigonometric bases have much better systems perfor-
mance, they are particularly resistant to timing jitter. So, despite the fact that
sinc pulses are theoretically the best pulses they are not the best choice for an
imperfect communications system.

One possible way to use these special wavelets in a network could be to par-
tition the fiber bandwidth into many frequency channels, each defined by a par-
ticular basis function. These channels are orthogonal with out the use of guard
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bands. Detection is performed by matched filters. Both the frequency parti-
tioning and the matched filter detection can be performed all-optically, radically
increasing the network’s capacity.

Modulated One band of the Linecoded
Bit stream optical filterbank Waveforms

User 1 /\ /\ AN %
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Figure 12. Encoding of orthogonal waveforms onto individual channels.Different
spectral windows, if shaped properly, can be made to overlap, making it possible
to use the full spectral bandwidth.

Conclusion. Even though dramatic improvements have been made during the
last 10 years to combat absorption, dispersion and nonlinear effects in optical
fibers it is also apparent that we need to do more if we are going to realize
the ultimate bandwidths which are possible in glass optical fibers. One very
powerful way to make a system transparent to fiber impairments is to encode
amplitude and phase information which will be immune to the negative effects
of, for example, dispersion and nonlinear interactions.
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