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Abstract. We consider the best sparsifying basis (BSB) and the kurtosis
maximizing basis (KMB) of a particularly simple stochastic process called
the “generalized spike process”. The BSB is a basis for which a given set
of realizations of a stochastic process can be represented most sparsely,
whereas the KMB is an approximation to the least statistically-dependent
basis (LSDB) for which the data representation has minimal statistical
dependence. In each realization, the generalized spike process puts a single
spike with amplitude sampled from the standard normal distribution at a
random location in an otherwise zero vector of length n.

We prove that both the BSB and the KMB select the standard basis, if
we restrict our basis search to all possible orthonormal bases in Rn. If we
extend our basis search to all possible volume-preserving invertible linear
transformations, we prove the BSB exists and is again the standard basis,
whereas the KMB does not exist. Thus, the KMB is rather sensitive to
the orthonormality of the transformations, while the BSB seems insensi-
tive. Our results provide new additional support for the preference of the
BSB over the LSDB/KMB for data compression. We include an explicit
computation of the BSB for Meyer’s discretized ramp process.

1. Introduction

This paper is a sequel to our previous paper [3], where we considered the best
sparsifying basis (BSB), and the least statistically-dependent basis (LSDB) for
input data assumed to be realizations of a very simple stochastic process called
the “spike process.” This process, which we will refer to as the “simple” spike
process for convenience, puts a unit impulse (i.e., constant amplitude of 1) at
a random location in a zero vector of length n. Here, the BSB is the basis of
Rn that best sparsifies the given input data, and the LSDB is the basis of Rn

that is the closest to the statistically independent coordinate system (regardless
of whether such a coordinate system exists or not). In particular, we considered
the BSB and LSDB chosen from all possible orthonormal transformations (i.e.,
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O(n)) or all possible volume-preserving linear transformations (i.e., SL±(n,R),
where the determinant of each element is either +1 or −1).

In this paper, we consider the BSB and LSDB for a slightly more compli-
cated process, the “generalized” spike process, and compare them with those of
the simple spike process. The generalized spike process puts an impulse whose
amplitude is sampled from the standard normal distribution N(0, 1).

Our motivation to analyze the BSB and the LSDB for the generalized spike
process stems from the work in computational neuroscience [22; 23; 2; 27] as well
as in computational harmonic analysis [11; 7; 12]. The concept of sparsity and
that of statistical independence are intrinsically different. Sparsity emphasizes
the issue of compression directly, whereas statistical independence concerns the
relationship among the coordinates. Yet, for certain stochastic processes, these
two are intimately related, and often confusing. For example, Olshausen and
Field [22; 23] emphasized the sparsity as the basis selection criterion, but they
also assumed the statistical independence of the coordinates. For a set of nat-
ural scene image patches, their algorithm generated basis functions efficient to
capture and represent edges of various scales, orientations, and positions, which
are similar to the receptive field profiles of the neurons in our primary visual
cortex. (Note the criticism raised by Donoho and Flesia [12] about the trend
of referring to these functions as “Gabor”-like functions; therefore, we just call
them “edge-detecting” basis functions in this paper.) Bell and Sejnowski [2]
used the statistical independence criterion and obtained the basis functions sim-
ilar to those of Olshausen and Field. They claimed that they did not impose
the sparsity explicitly and such sparsity emerged by minimizing the statistical
dependence among the coordinates. These motivated us to study these two cri-
teria. However, the mathematical relationship between these two criteria in the
general case has not been understood completely. Therefore we chose to study
these simplified processes, which are much simpler than the natural scene images
as a high-dimensional stochastic process. It is important to use simple stochastic
processes first since we can gain insights and make precise statements in terms
of theorems. By these theorems, we now understand what are the precise condi-
tions for the sparsity and statistical independence criteria to select the same basis
for the spike processes, and the difference between the simple and generalized
spike processes. Weidmann and Vetterli also used the generalized spike process
to make precise analysis of the rate-distortion behavior of sparse memoryless
sources that serve as models of sparse signal representations [28].

Additionally, a very important by-product of this paper (as well as our pre-
vious paper [3]) is that these simple processes can be used for validating any
independent component analysis (ICA) software that uses mutual information
or kurtosis as a measure of statistical dependence, and any sparse component
analysis (SCA) software that uses `p-norm (0 < p ≤ 1) as a measure of sparsity.
Actual outputs of the software can be compared with the true solutions obtained
by our theorems. For example, the ICA software based on maximization of kur-
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tosis of the inputs should not converge for the generalized spike process unless
there is some constraint on the basis search (e.g., each column vector has a unit
`2-norm). Considering the recent popularity of such software ([17; 5; 21]), it is a
good thing to have such simple examples that can be generated and tested easily
on computers.

The organization of this paper is as follows. The next section specifies no-
tation and terminology. Section 3 defines how to quantitatively measure the
sparsity and statistical dependence of a stochastic process relative to a given
basis. Section 4 reviews the results on the simple spike process obtained in [3].
Section 5 contains our new results for the generalized spike process. In Section 6,
we consider the BSB of Meyer’s ramp process [20, p. 19], as an application of
the results of Section 5. Finally, we conclude in Section 7 with a discussion.

2. Notation and Terminology

We first set our notation and the terminology. Let X ∈ Rn be a random vector
with some unknown probability density function (pdf) fX . Let B ∈ D ⊂ Rn×n,
where D is the so-called basis dictionary. For very high-dimensional data, we
often take D to be the union of the wavelet packets and local Fourier bases (see
[25] and references therein for more about such basis dictionaries). In this pa-
per, however, we use much larger dictionaries: O(n) (the group of orthonormal
transformations in Rn) or SL±(n,R) (the group of invertible volume-preserving
transformations in Rn, i.e., those with determinants equal to ±1). We are inter-
ested in finding a basis within D for which the original stochastic process either
becomes sparsest or least statistically dependent. Let C(B |X) be a numerical
measure of deficiency or cost of the basis B given the input stochastic process
X. Under this setting, the best basis for the stochastic process X among D

relative to the cost C is written as B? = arg minB∈D C(B |X).
We also note that log in this paper implies log2, unless stated otherwise. The

n×n identity matrix is denoted by In, and the n×1 column vector whose entries
are all ones, i.e., (1, 1, . . . , 1)T , is denoted by 1n.

3. Sparsity vs. Statistical Independence

We now define measures of sparsity and statistical independence for the basis
of a given stochastic process.

Sparsity. Sparsity is a key property for compression. The true sparsity measure
for a given vector x ∈ Rn is the so-called `0 quasi-norm which is defined as

‖x‖0 def= #{i ∈ [1, n] : xi 6= 0},

i.e., the number of nonzero components in x. This measure is, however, very
unstable for even small geometric perturbations of the components in a vector.
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Therefore, a better measure is the `p norm:

‖x‖p
def=

( n∑

i=1

|xi|p
)1/p

, 0 < p ≤ 1.

In fact, this is a quasi-norm for 0 < p < 1 since it does not satisfy the triangle
inequality, but only the weaker conditions: ‖x+y‖p ≤ 2−1/p′(‖x‖p+‖y‖p) where
p′ = p/(p − 1) is the conjugate exponent of p; and ‖x + y‖p

p ≤ ‖x‖p
p + ‖y‖p

p. It
is easy to show that limp ↓ 0 ‖x‖p

p = ‖x‖0. See [11] for the details of the `p norm
properties.

Thus, we use the expected `p-norm minimization as a criterion to find the
best basis for a given stochastic process in terms of sparsity:

Cp(B |X) = E‖B−1X‖p
p, (3–1)

We propose to minimize this cost in order to select the best sparsifying basis
(BSB):

Bp = arg min
B∈D

Cp(B |X).

Remark 3.1. It should be noted that minimization of the `p norm can also be
achieved for each realization. Without taking the expectation in (3–1), we can
select the BSB, Bp = Bp(x,D) for each realization x. We can guarantee that

min
B∈D

Cp(B |X = x) ≤ min
B∈D

Cp(B |X) ≤ max
B∈D

Cp(B |X = x).

For highly variable or erratic stochastic processes, Bp(x,D) may change signifi-
cantly for each x. Thus if we adopt this strategy to compress an entire training
dataset consisting of N realizations, we need to store additional information in
order to describe a set of N bases.

Whether we should adapt a basis per realization or on the average is still an
open issue. See [26] for more details.

Statistical independence. The statistical independence of the coordinates of
Y ∈ Rn means fY (y) = fY1(y1)fY2(y2) · · · fYn(yn), where each fYk

is a one-
dimensional marginal pdf of fY . Statistical independence is a key property for
compressing and modeling a stochastic process because: (1) an n-dimensional
stochastic process of interest can be modeled as a set of one-dimensional pro-
cesses; and (2) damage of one coordinate does not propagate to the others. Of
course, in general, it is difficult to find a truly statistically independent coordi-
nate system for a given stochastic process. Such a coordinate system may not
even exist for a given stochastic process. Therefore, the next best thing is to
find the least statistically-dependent coordinate system within a basis dictionary.
Naturally, then, we need to measure the “closeness” of a coordinate system (or
random variables) Y1, . . . , Yn to the statistical independence. This can be mea-
sured by mutual information or relative entropy between the true pdf fY and
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the product of its marginal pdfs:

I(Y ) def=
∫

fY (y) log
fY (y)∏n

i=1 fYi
(yi)

dy

= −H(Y ) +
n∑

i=1

H(Yi),

where H(Y ) and H(Yi) are the differential entropy of Y and Yi respectively:

H(Y ) = −
∫

fY (y) log fY (y) dy,

H(Yi) = −
∫

fYi
(yi) log fYi

(yi) dyi.

We note that I(Y ) ≥ 0, and I(Y ) = 0 if and only if the components of Y are
mutually independent. See [9] for more details of the mutual information.

Suppose Y = B−1X and B ∈ GL(n,R) with det B = ±1. We denote this set
of matrices by SL±(n,R). Note that the usual SL(n,R) is a subset of SL±(n,R).
Then, we have

I(Y ) = −H(Y ) +
n∑

i=1

H(Yi) = −H(X) +
n∑

i=1

H(Yi),

since the differential entropy is invariant under an invertible volume-preserving
linear transformation:

H(B−1X) = H(X) + log |detB−1| = H(X),

because |detB−1| = 1. Based on this fact, we proposed the minimization of the
following cost function as the criterion to select the so-called least statistically-
dependent basis (LSDB) in the basis dictionary context [25]:

CH(B |X) =
n∑

i=1

H
(
(B−1X)i

)
=

n∑

i=1

H(Yi). (3–2)

Now we can define the LSDB as

BLSDB = arg min
B∈D

CH(B |X).

Closely related to the LSDB is the concept of the kurtosis-maximizing basis
(KMB). This is based on the approximation of the marginal differential entropy
H(Yi) in (3–2) by higher order moments/cumulants using the Edgeworth expan-
sion and was derived by Comon [8]:

H(Yi) ≈ − 1
48

κ(Yi) = − 1
48

(µ4(Yi)− 3µ2
2(Yi)) (3–3)
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where µk(Yi) is the k-th central moment of Yi, and κ(Yi) / µ2
2(Yi) is called

the kurtosis of Yi. See also Cardoso [6] for a nice exposition of the various
approximations to the mutual information. Now, the KMB is defined as follows:

Bκ = arg min
B∈D

Cκ(B |X) = arg max
B∈D

n∑

i=1

κ(Yi), (3–4)

where Cκ(B |X) = −∑n
i=1 κ(Yi). (This involves a slight abuse of terminology:

the name is “kurtosis-maximizing basis” although what is maximized is the un-
normalized κ, without the factor 1/µ2

2.) Note that the LSDB and the KMB are
tightly related, yet can be different. After all, (3–3) is simply an approximation
to the entropy up to the fourth order cumulant. We also would like to point
out that Buckheit and Donoho [4] independently proposed the same measure as
a basis selection criterion, whose objective was to find a basis under which an
input stochastic process looks maximally “non-Gaussian.”

Remark 3.2. Earlier work of Pham [24] also proposes minimization of the cost
(3–2). We would like to point out the main difference between our work [25]
and Pham’s. We use the basis libraries such as wavelet packets and local Fourier
bases that allow us to deal with datasets with large dimensions such as face
images whereas Pham used the more general dictionary GL(n,R). In practice,
however, the numerical optimization (3–2) clearly becomes more difficult in his
general case particularly if we want to use this for high dimensional datasets.

4. Review of Previous Results on the Simple Spike Process

In this section, we briefly summarize the results of the simple spike process.
See [3] for the details and proofs.

An n-dimensional simple spike process generates the standard basis vectors
{ej}n

j=1 ⊂ Rn in a random order, where ej has one at the j-th entry and all the
other entries are zero. We can view this process as a unit impulse located at a
random position between 1 and n.

The Karhunen–Loève basis. The Karhunen–Loève basis of this process is
not unique and not useful because of the following proposition.

Proposition 4.1. The Karhunen–Loève basis for the simple spike process is
any orthonormal basis in Rn containing the “DC” vector 1n = (1, 1, . . . , 1)T .

This proposition reflects the non-Gaussian nature of the simple spike process,
i.e., the optimality of the KLB can be claimed only for the Gaussian processes.

The Best Sparsifying Basis. As for the BSB, we have the following result:

Theorem 4.2. The BSB with any p ∈ [0, 1] for the simple spike process is the
standard basis if D = O(n) or SL±(n,R).
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Statistical dependence and entropy of the simple spike process. Before
stating the results on the LSDB of this process, we note a few specifics about
the simple spike process. First, although the standard basis is the BSB for this
process, it clearly does not provide the statistically independent coordinates.
The existence of a single spike at one location prohibits spike generation at other
locations. This implies that these coordinates are highly statistically dependent.

Second, we can compute the true entropy H(X) for this process unlike other
complicated stochastic processes. Since the simple spike process selects one pos-
sible vector from the standard basis vectors of Rn with uniform probability 1/n,
the true entropy H(X) is clearly log n. This is one of the rare cases where we
know the true high-dimensional entropy of the process.

The LSDB among O(n). For D = O(n), we have:

Theorem 4.3. The LSDB among O(n) is:

• for n ≥ 5, either the standard basis or the basis whose matrix representation
is

1
n




n− 2 −2 · · · −2 −2

−2 n− 2
. . . −2

...
. . . . . . . . .

...

−2
. . . n− 2 −2

−2 −2 · · · −2 n− 2




; (4–1)

• for n = 4, the Walsh basis, i .e.,

1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ;

• for n = 3, 


1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0


 ;

• for n = 2, 1√
2

[
1
1

1
−1

]
, and this is the only case where the true independence is

achieved .

Remark 4.4. Note that when we say the basis is a matrix as above, we really
mean that the column vectors of that matrix form the basis. This also means
that any permuted and/or sign-flipped (i.e., multiplied by −1) versions of those
column vectors also form the basis. Therefore, when we say the basis is a matrix
A, we mean not only A but also its permuted and sign-flipped versions of A.
This remark also applies to all the propositions and theorems below, unless
stated otherwise.
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Remark 4.5. There is an important geometric interpretation of (4–1). This
matrix can also be written as:

BHR(n)
def= In − 2

1n√
n

1T
n√
n

.

In other words, this matrix represents the Householder reflection with respect
to the hyperplane {y ∈ Rn | ∑n

i=0 yi = 0} whose unit normal vector is 1n/
√

n.

Below, we use the notation BO(n) for the LSDB among O(n) to distinguish it
from the LSDB among GL(n,R), which is denoted by BGL(n). So, for example,
for n ≥ 5, BO(n) = In or BHR(n).

The LSDB among GL(n,R). As discussed in [3], for the simple spike pro-
cess, there is no important distinction in the LSDB selection from GL(n,R) and
from SL±(n,R). Therefore, we do not have to treat these two cases separately.
On the other hand, the generalized spike process in Section 5 requires us to
treat SL±(n,R) and GL(n,R) differently due to the continuous amplitude of the
generated spikes.

We now have a curious theorem:

Theorem 4.6. The LSDB among GL(n,R) with n > 2 is the following basis
pair (for analysis and synthesis respectively):

B−1
GL(n) =




a a · · · · · · · · · · · · a

b2 c2 b2 · · · · · · · · · b2

b3 b3 c3 b3 · · · · · · b3
...

...
. . .

...
...

...
. . .

...
bn−1 · · · · · · · · · bn−1 cn−1 bn−1

bn · · · · · · · · · · · · bn cn




, (4–2)

BGL(n) =




(1 +
∑n

k=2 bkdk) /a −d2 −d3 · · · −dn

−b2d2/a d2 0 · · · 0

−b3d3/a 0 d3
. . .

...
...

...
. . . . . . 0

−bndn/a 0 · · · 0 dn




(4–3)

where a, bk, ck are arbitrary real-valued constants satisfying a 6= 0, bk 6= ck, and
dk = 1/(ck − bk), k = 2, . . . , n.

If we restrict ourselves to D = SL±(n,R), then the parameter a must satisfy :

a = ±
n∏

k=2

(ck − bk)−1.
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Remark 4.7. The LSDB such as (4–1) and the LSDB pair (4–2), (4–3) provide
us with further insight into the difference between sparsity and statistical inde-
pendence. In the case of (4–1), this is the LSDB, yet it does not sparsify the
simple spike process at all. In fact, these coordinates are completely dense, i.e.,
C0 = n. We can also show that the sparsity measure Cp gets worse as n → ∞.
More precisely:
Proposition 4.8.

lim
n→∞

Cp

(
BHR(n) |X

)
=

{∞ if 0 ≤ p < 1,
3 if p = 1.

It is interesting to note that this LSDB approaches the standard basis as n →∞.
This also implies that

lim
n→∞

Cp

(
BHR(n) |X

) 6= Cp

(
lim

n→∞
BHR(n) |X

)
.

As for the analysis LSDB (4–2), the ability to sparsify the simple spike process
depends on the values of bk and ck. Since the parameters a, bk and ck are
arbitrary as long as a 6= 0 and bk 6= ck, we put a = 1, bk = 0, ck = 1, for
k = 2, . . . , n. Then we get the following specific LSDB pair:

B−1
GL(n) =




1 1 · · · 1
0
... In−1

0


 , BGL(n) =




1 −1 · · · −1
0
... In−1

0


 .

This analysis LSDB provides us with a sparse representation for the simple
spike process (though this is clearly not better than the standard basis). For
Y = B−1

GL(n)X,

Cp = E
[‖Y ‖p

p

]
=

1
n
× 1 +

n− 1
n

× 2 = 2− 1
n

, 0 ≤ p ≤ 1.

Now take a = 1, bk = 1, ck = 2 for k = 2, . . . , n in (4–2) and (4–3). Then

B−1
GL(n) =




1 1 · · · 1

1 2
. . .

...
...

. . . . . . 1
1 · · · 1 2


 , BGL(n) =




n −1 · · · −1
−1
... In−1

−1


 .

The sparsity measure of this process is

Cp =
1
n
× n +

n− 1
n

× {(n− 1) + 2p} = n + (2p − 1)
(
1− 1

n

)
, 0 ≤ p ≤ 1.

Therefore, the simple spike process under this analysis basis is completely dense,
i.e., Cp ≥ n for 0 ≤ p ≤ 1 and the equality holds if and only if p = 0. Yet this is
still the LSDB.

Finally, from Theorems 4.3 and 4.6, we have:
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Figure 1. The pdf of the generalized spike process (n = 2).

Corollary 4.9. There is no invertible linear transformation providing the
statistically independent coordinates for the simple spike process for n > 2.

5. The Generalized Spike Process

In [13], Donoho et al. analyze the following generalization of the simple spike
process in terms of the KLB and the rate distortion function, which was recently
followed up in details by Weidmann and Vetterli [28]. This process first picks one
coordinate out of n coordinates randomly as before, but then the amplitude of
this single spike is picked according to the standard normal distribution N(0, 1).
The pdf of this process can be written as

fX(x) =
1
n

n∑

i=1


∏

j 6=i

δ(xj)


 g(xi), (5–1)

where δ(·) is the Dirac delta function, and g(x) = (1/
√

2π) · exp(−x2/2), i.e.,
the pdf of the standard normal distribution. Figure 1 shows this pdf for n =
2. Interestingly enough, this generalized spike process shows rather different
behavior (particularly in the statistical independence) from the simple spike
process in Section 4. We also note that our proofs here are rather analytical
compared to those for the simple spike process presented in [3], which have a
more combinatorial flavor.

The Karhunen–Loève basis. We can easily compute the covariance matrix of
this process, which is proportional to the identity matrix. In fact, it is just In/n.
Therefore, we have the following proposition, which was also stated without
proof by Donoho et al. [13]:
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Proposition 5.1. The Karhunen–Loève basis for the generalized spike process
is any orthonormal basis in Rn.

Proof. We first compute the marginal pdf of (5–1). By integrating out all xi,
i 6= j, we can easily get:

fXj (xj) =
1
n

g(xj) +
n− 1

n
δ(xj).

Therefore, we have E[Xj ] = 0. Since Xi and Xj cannot be simultaneously
nonzero, we have

E[XiXj ] = δijE[X2
j ] =

1
n

δij ,

since the variance of Xj is 1/n, which is easily computed from the marginal pdf
fXj . Therefore, the covariance matrix of this process is, as announced, In/n.
Therefore, any orthonormal basis is the KLB. ¤

In other words, the KLB for this process is less restrictive than that for the
simple spike process (Proposition 4.1), and the KLB is again completely useless
for this process.

5.1. Marginal distributions and moments under SL±(n,R). Before an-
alyzing the BSB and LSDB, we need some background. First, we compute the
pdf of the process relative to a transformation Y = B−1X, B ∈ SL±(n,R). In
general, if Y = B−1X, then

fY (y) =
1

|det B−1|fX(By).

Therefore, from (5–1), and the fact |detB| = 1, we have

fY (y) =
1
n

n∑

i=1


∏

j 6=i

δ(rT
j y)


 g(rT

i y), (5–2)

where rT
j is the j-th row vector of B. As for its marginal pdf, we have:

Lemma 5.2.

fYj (y) =
1
n

n∑

i=1

g(y; |∆ij |), j = 1, . . . , n, (5–3)

where ∆ij is the (i, j)-th cofactor of matrix B, and g(y; σ) = g(y/σ)/σ represents
the pdf of the normal distribution N(0, σ2).

In other words, we can interpret the j-th marginal pdf as a mixture of Gaussians
with the standard deviations |∆ij |, i = 1, . . . , n. Figure 2 shows several marginal
pdfs for n = 2. As we can see from this figure, it can vary from a very spiky
distribution to a usual normal distribution depending on the rotation angle of
the coordinate.
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Figure 2. The marginal pdfs of the generalized spike process (n = 2). All the

pdfs shown here are projections of the 2D pdf in Figure 1 onto the rotated 1D

axis. The axis angle in the top row is 0.088 rad., which is close to the the first

axis of the standard basis. The axis angle in the bottom row is π/4 rad., i.e.,

45 degree rotation, which gives rise to the exact normal distribution. The other

axis angles are equispaced between these two.

Proof. Rewrite (5–2) as

fY (y) =
1
n

n∑

i=1

δ(rT
1 y) · · · δ(rT

i−1y)δ(rT
i+1y) · · · δ(rT

ny)g(rT
i y). (5–4)

The j-th marginal pdf can be written as

fYj
(yj) =

∫
fY (y1, · · · , yn) dy1 · · · dyj−1 dyj+1 · · · dyn.

Consider the i-th term in the summation of (5–4) and integrate it out with
respect to y1, . . . , yj−1, yj+1, . . . , yn:

∫
δ(rT

1 y) · · · δ(rT
i−1y)δ(rT

i+1y) · · · δ(rT
ny)g(rT

i y) dy1 · · · dyj−1 dyj+1 · · · dyn.

(5–5)
We use the change of variable formula to integrate this. Let rT

k y = xk, k =
1, . . . , n, and let b` be the `-th column vector of B. The relationship By = x

can be rewritten as
B(i,j)y(j) + yjb

(i)
j = x(i),

where B(i,j) is the (n−1)×(n−1) matrix by removing i-th row and j-th column,
and the vectors with superscripts indicate the length n − 1 column vectors by
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removing the elements whose indices are specified in the parentheses. The above
equation can be rewritten as

y(j) =
(
B(i,j)

)−1 (
x(i) − yjb

(i)
j

)
.

Thus,
dy(j) = dy1 · · · dyj−1 dyj+1 · · · dyn

=
1

|det B(i,j)| dx(i)

=
1

|∆ij | dx1 · · · dxi−1 dxi+1 · · · dxn.

We now express rT
i y = xi in terms of yj and x.

rT
i y=

(
r

(j)
i

)T
y(j) + bijyj (5–6)

=
(
r

(j)
i

)T (
B(i,j)

)−1(
x(i) − yjb

(i)
j

)
+ bijyj

=
(
r

(j)
i

)T (
B(i,j)

)−1
x(i) + yj

(
bij −

(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j

)

(∗)
=

(
r

(j)
i

)T (
B(i,j)

)−1
x(i) +

yj

∆ij
det B

=
(
r

(j)
i

)T (
B(i,j)

)−1
x(i) ± yj

∆ij
,

where (∗) follows from a lemma proved in Appendix A:

Lemma 5.3. For any B = (bij) ∈ GL(n,R),

bij −
(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j =

1
∆ij

det B, 1 ≤ i, j ≤ n.

Now let’s go back to the integration (5–5). Thanks to the property of the delta
function with Equation (5–6), we have
∫
· · ·

∫
δ(x1) · · · δ(xi−1)δ(xi+1) · · · δ(xn)g(rT

i y)
1

|∆ij | dx1 · · · dxi−1 dxi+1 · · · dxn

=
1

|∆ij |g(±yj/∆ij)

= g(yj ; |∆ij |),
where we used the fact that g(·) is an even function. Therefore, we can write
the j-th marginal distribution as announced in (5–3). ¤

We now compute the moments of Yi, which will be used later. We use the fact
that this is a mixture of n Gaussians each of which has mean 0 and variance
|∆ij |2. The following lemma computes the higher order moments.

Lemma 5.4.

E[|Yj |p] =
Γ(p)

n 2p/2−1Γ(p/2)

n∑

i=1

|∆ij |p, for all p > 0. (5–7)
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Proof. We have:

E[|Yj |p] =
1
n

n∑

i=1

∫ ∞

−∞
|y|pg(y; |∆ij |) dy

=
1
n

n∑

i=1

√
2
π
|∆ij |pΓ(1 + p)D−1−p(0)

by Gradshteyn and Ryzhik [14, Formula 3.462.1], where D−1−p(·) is Whittaker’s
function as defined by Abramowitz and Stegun [1, pp.687]:

D−a−1/2(0) = U(a, 0) =
√

π

2a/2+1/4 Γ(a/2 + 3/4)
.

Thus, putting a = p + 1/2 to the above equation yields:

D−1−p(0) =
√

π

21/2+p/2 Γ(1 + p/2)
.

Therefore,

E[|Yj |p] =
1
n

n∑

i=1

|∆ij |p Γ(1 + p)
2p/2 Γ(1 + p/2)

=
1
n

n∑

i=1

|∆ij |p Γ(p)
2p/2−1 Γ(p/2)

=
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

|∆ij |p,

as we desired. ¤

The Best Sparsifying Basis. As for the BSB, there is no difference after all
between the generalized spike process and the simple spike process.

Theorem 5.5. The BSB with any p ∈ [0, 1] for the generalized spike process is
the standard basis if D = O(n) or SL±(n,R).

Proof. We first consider the case p ∈ (0, 1]. Using Lemma 5.4, the cost function
(3–1) can be rewritten as

Cp(B |X) =
n∑

j=1

E[|Yj |p] =
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

n∑

j=1

|∆ij |p.

We now define a matrix B̃
def= (∆ij). Then B̃ ∈ SL±(n,R) since

B−1 =
1

detB
(∆ji) = ±(∆ji),

and B−1 ∈ SL±(n,R). Therefore, this reduces to

Cp(B |X) =
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

n∑

j=1

|b̃ij |p = K(p, n) · Cp(B̃ | X̃),



GENERALIZED SPIKE PROCESS, SPARSITY, AND INDEPENDENCE 331

where X̃ represents the simple spike process, and K(p, n) is the constant before
the double summations above, which is dependent only on p and n. This means
that for fixed p and n, searching for the B that minimizes the sparsity cost for
the generalized spike process is equivalent to searching for the B̃ that minimizes
the sparsity cost for the simple spike process. Thus, Theorem 9.5.1 in [3] (or
Theorem 4.2 in this paper) asserts that the B̃ must be the identity matrix In or
its permuted or sign flipped versions. Suppose ∆ij = δij . Then, B−1 = ±(∆ji) =
±In, which implies that B = ±In. If (∆ji) is any permutation matrix, then B−1

is just that permutation matrix or its sign flipped version. Therefore, B is also
a permutation matrix or its sign flipped version.

Finally, consider the case p = 0. Then, any linear invertible transformation
except the identity matrix or its permuted or sign-flipped versions clearly in-
creases the number of nonzero elements after the transformation. Therefore, the
BSB with p = 0 is also a permutation matrix or its sign flipped version.

This completes the proof of Theorem 5.5. ¤

The LSDB/KMB among O(n). As for the LSDB/KMB, we can see some
differences from the simple spike process.

We first consider the case of D = O(n). So far, we have been unable to prove
the following conjecture.

Conjecture 5.6. The LSDB among O(n) is the standard basis.

The difficulty is the evaluation of the sum of the marginal entropies (3–2) for
the pdfs of the form (5–3). However, a major simplification occurs if we consider
the KMB instead of the LSDB, and we can prove:

Theorem 5.7. The KMB among O(n) is the standard basis.

Proof. Because E[Yj ] = 0, E[Y 2
j ] = 1

n

∑n
i=1 ∆2

ij , and µ4(Yj) = 3
n

∑n
i=1 ∆4

ij by
(5–7), the cost function in (3–4) becomes

Cκ(B |X) =
3
n

n∑

j=1

( n∑

i=1

∆4
ij −

1
n

( n∑

i=1

∆2
ij

)2 )
. (5–8)

Note that this is true for any B ∈ SL±(n,R). If we restrict our basis search
to the set O(n), another major simplification occurs because we have a special
relationship between ∆ij and the matrix element bji of B ∈ O(n):

B−1 =
1

detB
(∆ji) = BT .

In other words,
∆ij = (det B)bij = ±bij .

Therefore,
n∑

i=1

∆2
ij =

n∑

i=1

b2
ij = 1.
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Inserting this into (5–8), we get a simplified cost for D = O(n):

Cκ(B |X) = − 3
n

(
1−

n∑

i=1

n∑

j=1

∆4
ij

)
.

This means that the KMB can be rewritten as

Bκ = arg max
B∈O(n)

∑

i,j

b4
ij . (5–9)

Note that the existence of the maximum is guaranteed because the set O(n) is
compact and the cost function

∑
i,j b4

ij is continuous.
Now consider a matrix P = (pij) = (b2

ij). Then, from the orthonormality of
columns and rows of B, this matrix P belongs to a set of doubly stochastic ma-
trices S(n). Since doubly stochastic matrices obtained by squaring the elements
of O(n) consist of a proper subset of S(n), we have

max
B∈O(n)

∑

i,j

b4
ij ≤ max

P∈S(n)

∑

i,j

p2
ij .

Now we prove that such P must be an identity matrix or its permuted version.

max
P∈S(n)

n∑

j=1

n∑

i=1

p2
ij ≤

n∑

j=1

(
maxPn

i=1 pij=1

n∑

i=1

p2
ij

)
=

n∑

j=1

1 = n,

where the first equality follows from the fact that maxima of the radius of the
sphere

∑
i p2

ij subject to
∑

i pij = 1, pij ≥ 0 occur only at the vertices of that
simplex, i.e., pj = eσ(j), j = 1, . . . , n where σ(·) is a permutation of n items.
That is, the column vectors of P must be the standard basis vectors. This
implies that the matrix B corresponding to P = In or its permuted version must
be either In or its permuted and/or sign-flipped version. ¤

The LSDB/KMB among SL±(n,R). If we extend our search to this more
general case, we have:

Theorem 5.8. The KMB among SL±(n,R) does not exist .

Proof. The set SL±(n,R) is not compact. Therefore, there is no guarantee
that the cost function Cκ(B |X) has a minimum value on this set. In fact, there
is a simple counterexample: let B = diag(a, a−1, 1, · · · , 1), where a is any nonzero
real scalar. Then Cκ(B |X) = −(a4 + a−4 + n− 2) tends to −∞ as a increases
to ∞. ¤

As for the LSDB, we do not know whether the LSDB exists among SL±(n,R)
at this point, although we believe that the LSDB is the standard basis. The
negative result in the KMB does not necessarily imply the negative result in the
LSDB.
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6. An Application to the Ramp Process

Although the generalized spike process is a simple stochastic process, we have
the following important interpretation. Consider a stochastic process generat-
ing a basis vector randomly selected from some fixed orthonormal basis and
multiplied by a scalar varying as the standard normal distribution at a time.
Then, that basis itself is simultaneously the BSB and the KMB among O(n).
Theorems 5.5 and 5.7 claim that once we transform the data to the generalized
spike process, we cannot do any better than that, both in terms of sparsity and
independence within O(n).

Along this line of thought, we now consider the following stochastic process
as an application of the theorems in this paper:

X(t) = ν · (t−H(t− τ)), t ∈ [0, 1), ν ∼ N(0, 1), τ ∼ unif[0, 1), (6–1)

where H(·) is the Heaviside step function, i.e., H(t) = 1 if t ≥ 0 and 0 otherwise.
This is a generalized version of the ramp process of Yves Meyer [20, p. 19]. Some
realizations of the simple ramp process are shown in Figure 3.

We now consider the discrete version of (6–1). Let our sampling points be
tk = 2k+1

2n , k = 0, . . . , n−1. Suppose the discontinuity (at t = τ) does not happen
at the exact sampling points. Then all the realizations whose discontinuities are
located anywhere in the open interval ( 2k−1

2n , 2k+1
2n ) have the same discretized

0.0 0.2 0.4 0.6 0.8 1.0

8
6

4
2

0

10 realizations of the ramp process

Figure 3. Ten realizations of the simple ramp process. The position of the

discontinuity is picked uniformly randomly from the interval [0, 1). A realization

of the generalized ramp process can be obtained by multiplying a scalar picked

from the standard normal distribution to a realization of the simple ramp process.
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version. Therefore, any realization now has the form

x̃j = νxj = ν(x0j , . . . , xn−1,j)T , xkj =

{
2k+1
2n for k = 0, . . . , j − 1,

2k+1
2n − 1 for k = j, . . . , n− 1,

where j is picked uniformly randomly from the set {0, 1, · · · , n− 1}. (Note that
the index of the vector components starts with 0 for convenience). Then:

Theorem 6.1. The BSB pair of the discretized version of the generalized ramp
process (6–1), selected from SL±(n,R), are:

B−1
ramp = (2n)−1/n




−1 0 · · · · · · 0 −1
1 −1 0 · · · 0 −2

0
. . . . . . . . .

...
...

...
. . . 1 −1 0 −2

...
. . . 1 −1 −2

0 · · · · · · 0 1 −3




, (6–2)

Bramp = (2n)1/n


x0

∣∣∣∣∣x1

∣∣∣∣∣ · · ·
∣∣∣∣∣xn−1


 . (6–3)

Proof. It is straightforward to show that the matrix without the factor (2n)−1/n

in (6–2) is the inverse of the matrix [x0|x1| · · · |xn−1]. Then, the factors (2n)−1/n

and (2n)1/n in (6–2) and (6–3), which are easily obtained, are necessary for these
matrices to be in SL±(n,R). It is now clear that the analysis basis B−1

ramp trans-
forms the discretized version of the generalized ramp process to the generalized
spike process whose amplitudes obey N(0, (2n)−2/n) instead of N(0, 1). Once
converted to the generalized spike process, then from Theorem 5.5, we know
that we cannot do any better than the standard basis in terms of the sparsity
cost (3–1). This implies that the BSB among SL±(n,R) is the basis pair (6–2)
and (6–3). ¤

In fact, this matrix is a difference operator (with DC measurement) so that it
detects the location of the discontinuity in each realization, while the synthesis
basis vectors (6–3) are the realizations of this process themselves modulo scalar
multiplications. Clearly, this matrix also transforms the discretized version of
the simple ramp process (i.e., with ν ≡ 1 in (6–1)) to the simple spike process
whose nonzero amplitude is (2n)−1/n. Therefore, if the realizations of the simple
or generalized ramp process is fed to any software that is supposed to find a spar-
sifying basis among SL±(n,R), then that software should be able to find (6–2)
and (6–3). As a demonstration, we conducted a simple experiment using Car-
doso’s JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm
[6] applied to the discretized version of the simple ramp process.

The JADE algorithm was designed to find a basis minimizing the sum of
the squared fourth order cross-cumulants of the input data (i.e., essentially the
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Figure 4. The analysis BSB vs. the analysis basis obtained by JADE algorithm

(n = 32). A row permutation and a global amplitude normalization were applied

to the JADE analysis basis to have a better correspondence with the BSB.

KMB) under the whitening condition, EY Y T = In. In fact, the best basis is
searched for within a subset of GL(n,R), which has a very special structure:
every element in this set is of the form B = W−1U where W is the whitening
matrix of the inputs X and U ∈ O(n). Note that this subset is neither O(n)
nor SL±(n,R). For our numerical experiment with JADE, we modified the code
available from [5] so that it does not remove the mean of the input dataset.
(Otherwise, we could only extract n− 1 basis vectors.) In Figure 4, we compare
the theoretical optimum, i.e., the analysis BSB (6–2), and the analysis basis
obtained by JADE, which is almost identical to the BSB (modulo permutations
and sign flips).

Now, what happens if we restrict the basis search to the set O(n)? The ba-
sis pair (6–2) and (6–3) are not orthogonal matrices. Therefore, we will never
be able to find the basis pair (6–2), (6–3) within O(n). Consequently, even if
we found the BSB among O(n), the ramp process would be less sparsified by
that orthonormal BSB than by (6–2). Yet, it is of interest to determine the
BSB within O(n) due to the numerical experiments of Cardoso and Donoho
[7]. They apply the JADE algorithm without imposing the whitening condition
to the discretized version of the simple ramp process. This strategy is essen-
tially equivalent to searching the KMB within O(n). The resulting KMB, which
they call “jadelets” [7], is very similar to Daubechies’s almost symmetric wavelet
basis called “symmlets” [10, Sec. 6.4]. For the generalized ramp process, the
KMB among SL±(n,R) may not exist as Theorem 5.8 shows, because within
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SL±(n,R), the generalized ramp process is equivalent to the generalized spike
process via (6–2) and (6–3). On the other hand, we cannot convert the gener-
alized ramp process to the generalized spike process within O(n), although the
KMB among O(n) exists for the generalized spike process. These observations
indicate that the orthonormality may be a key to generate the wavelet-like mul-
tiscale basis for the generalized ramp process. At this point, however, we do
not fully understand why orthonormality has to be a key for generating such a
wavelet-like multiscale basis. The mystery of the orthonormality was intensified
after we failed to reproduce their results using the modified JADE algorithm.
This issue needs to be investigated in the near future.

7. Discussion

Unlike the simple spike process, the BSB and the KMB (an alternative to the
LSDB) selects the standard basis if we restrict our basis search to the set O(n).
If we extend our basis search to SL±(n,R), then the BSB exists and is again
the standard basis whereas the KMB does not exist. Of course, if we extend the
search to nonlinear transformations, then it becomes a different story. We refer
the reader to our recent articles [18; 19], for the details of a nonlinear algorithm.

The results of this paper further support the conclusion of the previous work
[3]: dealing with the BSB is much simpler than the LSDB. To deal with statistical
dependency, we need to consider the probability law of the underlying process
(e.g., entropy or the marginal pdfs) explicitly. That is why we need to consider
the KMB instead of the LSDB to prove the theorems. Also in practice, given a
finite set of training data, it is a nontrivial task to reliably estimate the marginal
pdfs. Moreover, the LSDB unfortunately cannot tell how close it is to the true
statistical independence; it can only tell that it is the best one (i.e., the closest one
to the statistical independence) among the given set of possible bases. In order
to quantify the absolute statistical dependence, we need to estimate the true
high-dimensional entropy of the original process, H(X), which is an extremely
difficult task in general. We would like to note, however, a recent attempt to
estimate the high-dimensional entropy of the process by Hero and Michel [15],
which uses the minimum spanning trees of the input data and does not require
us to estimate the pdf of the process. We feel that this type of techniques will
help assessing the absolute statistical dependence of the process under the LSDB
coordinates. Another interesting observation is that the KMB is rather sensitive
to the orthonormality of the basis dictionary whereas the BSB is insensitive to
that. Our previous results on the simple spike process (e.g., Theorems 4.3 and
4.6) also suggest the sensitivity of the LSDB to the orthonormality of the basis
dictionary.

On the other hand, the sparsity criterion neither requires estimation of the
marginal pdfs nor reveals the sensitivity to the orthonormality. Simply comput-
ing the expected `p norms suffices. Moreover, we can even adapt the BSB for
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each realization rather than for the whole realizations, which is impossible for
the LSDB, as we discussed in [3; 26]. These observations, therefore, suggest that
the pursuit of sparse representations should be encouraged rather than that of
statistically independent representations. This is also the viewpoint indicated
by Donoho [11].

Finally, there are a few interesting generalizations of the spike processes, which
need to be addressed in the near future. We need to consider a stochastic process
that randomly throws in multiple spikes to a single realization. If we throw in
more and more spikes to one realization, the standard basis is getting worse
in terms of sparsity. Also, we can consider various rules to throw in multiple
spikes. For example, for each realization, we can select the locations of the
spikes statistically independently. This is the simplest multiple spike process.
Alternatively, we can consider a certain dependence in choosing the locations
of the spikes. The ramp process of Yves Meyer ((6–1) with ν ≡ 1) represented
in the wavelet basis is such an example; each realization of the ramp process
generates a small number of nonzero wavelet coefficients around the location of
the discontinuity of that realization and across the scales. See [4; 13; 20; 26] for
more about the ramp process.

Except in very special circumstances, it would be extremely difficult to find
the BSB of a complicated stochastic process (e.g., natural scene images) that
truly converts its realizations to the spike process. More likely, a theoretically
and computationally feasible basis that sparsifies the realizations of a compli-
cated process well (e.g., curvelets for the natural scene images [12]) may gener-
ate expansion coefficients that may be viewed as an amplitude-varying multiple
spike process. In order to tackle this scenario, we certainly need to identify
interesting, useful, and simple enough specific stochastic processes, develop the
BSB adapted to such specific processes, and deepen our understanding of the
amplitude-varying multiple spike process.
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Appendix A. Proof of Lemma 5.3

Proof. Consider the system of linear equations

B(i,j)z(j) = b
(i)
j ,
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where z(j) = (z1, · · · , zj−1, zj+1, · · · , zn)T ∈ Rn−1, j = 1, . . . , n. Using Cramer’s
rule (e.g., [16, pp.21]), we have, for k = 1, . . . , j − 1, j + 1, . . . , n,

z
(j)
k =

1
det B(i,j)

det


b

(i)
1

∣∣∣∣∣ · · ·
∣∣∣∣∣ b

(i)
k−1

∣∣∣∣∣ b
(i)
j

∣∣∣∣∣ b
(i)
k+1

∣∣∣∣∣ · · ·
∣∣∣∣∣ b(i)

n




(a)
= (−1)|k−j|−1 B(i,k)

B(i,j)

(b)
= (−1)|k−j|−1 ∆ik/(−1)i+k

∆ij/(−1)i+j
= −∆ik

∆ij
,

where (a) follows from the (|k−j|−1) column permutations to move b
(i)
j located

at the k-th column to the j-th column of B(i,j), and (b) follows from the definition
of the cofactor. Hence,

bij −
(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j = bij −

(
r

(j)
i

)T
z(j) = bij +

1
∆ij

∑

k 6=j

bik∆ik

=
1

∆ij

n∑

k=1

bik∆ik =
1

∆ij
detB.

This completes the proof of Lemma 5.3. ¤
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