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A Mathematical and Deterministic Analysis

of the Time-Reversal Mirror

CLAUDE BARDOS

Abstract. We give a mathematical analysis of the “time-reversal mirror”,

in what concerns phenomena described by the genuine acoustic equation

with Dirichlet or impedance boundary conditions. An ideal situation is

first considered, followed by the boundary-data, impedance and internal

time-reversal methods. We explore the relationship between local decay

of energy and accuracy of the method, and explain the positive effect of

ergodicity.

1. Introduction: Principle of the Method

In all time reversal experiments, a finite time 0 < T < ∞ is chosen. At

time t = 0 waves are emitted from a localized source, recorded in time (for

0 < t < T ) by an array of receivers-transducers, time-reversed and retransmitted

in the media during the time (T < t < 2T ); for instance the first signal to arrive is

reemitted last and the last to arrive is remitted first. In this second step (t > T )

one can introduce amplification. The process is possibly repeated several times,

leading in some cases to an automatic focusing on the most reflective target in

a multiple target media. This has several applications in nondestructive testing,

medical techniques such as lithotripsy and hyperthermia, underwater acoustics,

etc. See [13].

The intuitive reasons why such a process may work are:

(1) The wave equation is invariant with respect to the symmetry t ∈ (0, T ) 7→

2T−t ∈ (T, 2T ).

(2) At high frequencies waves propagate as rays.

(3) Inhomogeneities, randomness and ergodicity contribute to much better refo-

cusing.

Point (1) is really at the origin of the method; the same type of technique in

diffusive media (phenomena governed by the diffusion equation) seems more

difficult to analyse.
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Point (2) gives a good intuitive description of the phenomena. Also it can be

used to understand point (3) through multipathing, observing that the number

of rays which connect the source with the transducers is greatly enhanced by

the complexity of the media. For the case of random or ergodic media, it is

necessary to study and derive some high frequency asymptotics, and this study

is the backbone of the present contribution. Using classical analysis as our

general tool, we start from the basic properties of the wave equation and continue

with a mathematical version of the high frequency asymptotics called microlocal

analysis. We depart from other points of view where randomness is of crucial

importance (see for instance [4] and [1]). We do not assume any randomness

but we consider the effect of ergodicity which is the deterministic counterpart of

randomness.

We will consider three basic examples of time-reversal methods: the boundary-

data time-reversal method, or BDTRM, the impedance time reversal mirror, or

IMTRM, and the internal time-reversal method, or INTRM. In all three cases the

phenomena are described by solutions to the acoustic equation in a homogeneous

medium of dimension d:

∂2
t u− ∆u = 0. (1–1)

In the BDTRM the solution is defined in the complement Ω ⊂ R
d of a bounded

obstacle K ⊂ R
d that forms a cavity C ⊂ Ω with an aperture Γ. The boundary of

C is therefore the union of Γ and Γc = C̄∩∂Ω (Figure 1). Given an arbitrary but

possibly large time T , the solution of (1–1) is assumed to solve a homogeneous

boundary condition on ∂Ω — say, for simplicity, the Dirichlet boundary condition

ui(x, t) = 0 on ∂Ω × (0, T ).

In the mean time the value of ui(x, t) is observed on Γ. For t > T one considers

the reversed solution ur defined for T < t < 2T by the equations

∂2
t ur − ∆ur = 0,

Γ

C

K

Ω

Figure 1. Cavity C with an aperture Γ contained in the complement Ω of a

bounded obstacle K. A broken ray is shown.
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with initial conditions

ur(x, T ) = ui(x, T ), ∂tur(x, T ) = ∂tui(x, T )

and boundary conditions

ur(x, t) =

{

0 on Γc = C̄ ∩ ∂Ω,

u(x, 2T−t) on Γ.

In the impedance time-reversal problem, IMTRM (Figure 2), one considers

the same wave equation

∂2
t ui − ∆ui = 0

in a (closed) bounded cavity C whose boundary has a region Γ thought of as

being covered with transducers (sensors). Away from Γ a homogeneous Dirichlet

boundary condition holds, while on Γ an impedance boundary condition holds:

∂tui + Z(x)∂nui(x, t) = 0 on Γ × (0, T ),

ui(x, t) = 0 on ∂C \ Γ × (0, T ),
(1–2)

where Z(x) is a strictly positive function representing the impedance of the

transducers that cover the region Γ. Here and below ∂n denotes the outward

normal to the boundary. For 0 ≤ t ≤ T , the value of ∂tui on Γ × (0, T ) is

recorded and ∂nui is computed using (1–2). Then for T < t < 2T one considers

the reversed solution ur defined by the equations

∂2
t ur − ∆ur = 0,

with initial conditions

ur(x, T ) = ui(x, T ),

∂tur(x, T ) = ∂tui(x, T ).

and the Neumann–Dirichlet boundary conditions

∂nur(x, t) = ∂nur(x, 2t− T )

ur(x, t) = 0

on Γ × (0, T ),

on ∂C \ Γ × (0, T ).

C

Γ

Figure 2. Cavity C with an impedance time-reversal mirror on a subset Γ of the

boundary (in black).



384 CLAUDE BARDOS

In the internal time-reversal problem, INTRM, one considers for 0 < t < T

the solution of a homogeneous boundary value problem (for instance with the

Dirichlet boundary condition) in a bounded set C,

∂2
t ui − ∆ui = 0 in C,

ui(x, t) = 0 on ∂C × (0, T ),

with initial conditions

u( · , 0) ≡ 0, ∂tu(x, 0) = φ(x),

and one introduces a bounded function Ξ(x) with support in a subset σ of C.

The support of Ξ(x) represents the domain of action of the transducer. This is

where the signal is recorded and reemitted. For 0 < t < T , record the value of

∂tui(x, t) on σ and for T < t < 2T consider the solution of the problem

∂2
t ur − ∆ur = Ξ(x)∂tu(x, 2T−t)

u(x, t) = 0

in Ω,

on ∂C × (0, T ),
(1–3)

with initial conditions as above:

ur(x, T ) = ui(x, T ),

∂tur(x, T ) = ∂tui(x, T ).
(1–4)

It is mainly the IMTRM and the INTRM that correspond to real physical

experiments. In the laboratory the impedance time-reversal mirror is usually

performed by using a setup that measures and records the field on Γ, and after a

time T transmits the time-reversed field in C. Such a time-reversal mirror setup

is made of an array of reversible piezoelectric transducers on Γ, which can be

used now as microphones to record the field, now as loudspeakers to retransmit

the time-reversed field ([11], [12] and [13]). When the transducers are used as

microphones, due to their elastic properties, the boundary condition is usually

an absorbing condition relating the normal derivative of the field to its time

derivative through a local impedance condition of type

∂tui + Z(x)∂nui = 0.

In the first step, for t < T , the microphones measure the incident acoustic

pressure field which is directly proportional to the time derivative of the acoustic

potential ∂tu.

In the second step, for T < t < 2T , the loudspeakers impose on Γ the normal

velocity field which results from the time reversal of the component measured in

the first step according to the formula:

∂nur(x, t) = ∂nui(x, 2T−t) = −
1

Z(x)
∂tui(x, 2T−t).

The INTRM has been the object of several practical and numerical experi-

ments trying to evaluate how the ergodicity of the cavity would contribute to
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the refocusing of the wave. An experiment due to C. Draeger is shown in Figure

5; other experimental or numerical results can be found in [9] and [10].

Even if it is not so close to applications, the BDTRM is studied because in very

special cases an exact reversal is obtained. This elucidates how the difference

between real and ideal time reversal method is related to the question of local

decay of energy.

Therefore this chapter is organized as follows.

(i) Section 2 gives an ideal example of exact time reversal, based only on the

strong form of Huygens’ principle.

(ii) Section 3 analyzes the BDTRM, mainly in relation with the problem of the

local decay, well known in the mathematical community.

(iii) Section 4 is devoted to the IMTRM, which appears closely related to the

question of stabilization.

(iv) Section 5 concerns the refocusing by the INTRM in an ergodic cavity. It

is shown how such phenomena can be explained in term of recent theorems

about quantum mixing.

The present chapter follows with some improvements the ideas of an earlier

article [2], which included a comparison with the classical theory of control. The

experimental and numerical results were performed by Casten Draeger, who

pionnered the study of the ergodic cavity.

2. Example of an Exact Time-Reversal Method

One can fully understand why the method works and what its limitations are

by starting with an “academic case” as described below. Consider in R
3 the

acoustic equation

∂2
t ui − ∆ui = 0, (2–1)

with prescribed initial conditions ui(x, 0) and ∂tui(x, 0) having their support in

a ball Bρ1
= {x : |x| < ρ1} of radius 0 < ρ1 <∞.

Assume that the observation region Γ is the boundary of a bounded open set

C containing the ball Bρ1
and contained in a bigger ball Bρ2

= {x : |x| < ρ2}:

supp ui(x, 0) ∪ supp ∂tui(x, 0) ⊂ Bρ1
⊂ C ⊂ Bρ2

(see Figure 3). Observe this solution (defined in R
3×(0, T )) on (∂C = Γ)×(0, T ).

For 0 < T < t ≤ 2T introduce the solution of the reversed problem:

∂2
t ur − ∆ur = 0 in C × {T < t < 2T} (2–2)

with initial conditions

ur(x, T ) = ui(x, T ),

∂tur(x, T ) = ∂tui(x, T )
(2–3)
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u=0

u=0

u=0

t

RRR3

T

2T

support of initial
data

u(x,t)=u(x,2T-t)
u(x,t)=u(x,2T-t)

Figure 3. Finite speed of propagation and Huygens’ principle in three space

variables.

and boundary conditions

ur(x, t) = ui(x, 2T−t) on Γ × (T, 2T ), (2–4)

where as usual Γ = ∂C. Then the following easy theorem, a direct consequence

of Huygens’ principle, precisely indicates the validity of the method:

Theorem 2.1. Consider the solution ur defined in C × (T, 2T ) ⊂ R
3 × (T, 2T )

by equations (2–1), (2–2), (2–3) and (2–4). Then, under the hypothesis

T > ρ1 + ρ2

one has in C

ur(x, 2T ) = ui(x, 0), ∂tur(x, 2T ) = −∂tui(x, 0).

Proof. Consider U(x, t) defined in C × (0, 2T ) by the formulas

U(x, t) =

{

ui(x, t) for 0 < t < T ,

ur(x, t) for T < t < 2T .

Such a function is a solution of a mixed time-dependent boundary value problem.

As a consequence of the strong form of Huygens’ principle ([17, Theorem 1.3,

p. 96 and figure 3]) the initial solution ui(x, t) is zero in the cone

{(x, t) : |x| ≤ t− ρ1}



ANALYSIS OF THE TIME-REVERSAL MIRROR 387

and one has, for t = T :

U(x, T ) ≡ ∂tU(x, T ) ≡ 0 in Ω.

Furthermore for the boundary condition one has, for T < t < 2T , by con-

struction:

U(x, t) = U(x, 2T−t) on ∂C × (T, 2T ). (2–5)

The function obtained by time symmetry around T is a solution of the same

problem. Both the data and the equation are therefore invariant with respect to

the time symmetry around t = T . the uniqueness of the mixed boundary-value

problem for the wave equation [6] on C × (0, 2T ) implies the relation

U(x, t) = U(x, 2T−t) on Ω × (T, 2T ), (2–6)

and the result follows. ˜

3. The Boundary-Data Time-Reversal Method (BDTRM)

The preceding example, together with recent results on the decay of the solu-

tion of the exterior problem, leads to an understanding of the possibilities and

limitations of the method in a cavity. Once again for simplicity the problem is

considered in R
3 or R

d with d odd. (The case d even introduces some algebraic

decay of the local energy.) As mentioned in the introduction for the exterior

problem, the solution is defined in the complement Ω of a bounded obstacle

K ⊂ R
d which forms a cavity C ⊂ Ω with an aperture Γ and the boundary of C

is therefore the union of Γ and Γc = C̄ ∩ ∂Ω (Figure 2).

Given an arbitrary but possibly large time T , the solution ui(x, t) of (1–1) is

assumed to evolve with homogeneous Dirichlet boundary condition on ∂Ω. In

the mean time the value of ui(x, t) is observed on Γ and for T < t < 2T one

considers the reversed solution ur defined for T < t < 2T by the equations

∂2
t ur − ∆ur = 0, (3–1)

with initial conditions

ur(x, T ) = ui(x, T ),

∂tur(x, T ) = ∂tui(x, T ),
(3–2)

and boundary conditions

ur(x, t) =

{

0 on Γc = C̄ ∩ ∂Ω,

ui(x, 2T−t) on Γ.
(3–3)

Observe that ur(x, t) decomposes in C × (T, 2T ) into the sum of two functions

ur(x, t) = uD(x, t) + uR(x, t),
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which are solutions of

∂2
t uD − ∆uD = 0 in C × (0, 2T ),

uD(x, t) = 0 on
(

∂C = (C ∩ ∂Ω) ∪ Γ
)

× (0, 2T ),

uD(x, T ) = 0, ∂tuD(x, T ) = ∂tu(x, T )

and
∂2

t uR − ∆uR = 0 in C × (0, 2T ),

uR(x, t) = 0 on (C ∩ ∂Ω) × (T, 2T ),

uR(x, t) = ui(x, t) on Γ × (0, T ),

uR(x, t) = ui(x, 2T−t) on Γ × (T, 2T ),

uR(x, T ) = ui(x, T ), ∂tuR(x, T ) = 0 on C.

We have:

(i) uR(x, t) is time symmetric with respect to T ,

(ii) uD(x, t) + uR(x, t) coincide with ui(x, t) for 0 < t < T and with ur(x, t) for

T < t < 2T .

Thus the difference between
(

ui(x, 0), ∂tui(x, 0)
)

and
(

ur(x, 2T ),−∂tur(x, 2T )
)

is bounded in the energy norm

EC(u) =
1

2

∫

C

(

|∇u|2 + |∂tu|
2
)

dx

by twice the energy norm of uD(x, t), which is time invariant and equal for t = T

to
∫

C

|∂tui(x, T )|2dx.

Using the standard notation concerning the energy norm and the Sobolev

space H1
0 (C) one obtains:

Proposition 3.1. Assume that ur is constructed with the algorithm (3–1), (3–2)

and (3–3). Then

∥

∥(ur(x, 2T ), −∂tur(x, T )) − (u(x, 0), ∂tu(x, 0)
)

‖2
H1

0
(C)×L2(C) ≤

∫

C

|∂tu(x, T )|2dx.

A consequence of this proposition is that the validity of the time-reversal method

can be estimated in terms of the local energy decay of the solution of the wave

equation in an exterior problem. Such problems have been studied in detail; some

historical information can be found in the revised version of Lax and Phillips [17].

Since the first edition of this book it has become known that with initial data

of compact support and finite energy the local energy decays to zero as t→ ∞.

However it is also known that this decay depends on the geometry of the classical

Hamiltonian flow, which describes the evolution of rays of geometrical optics

in Ω̄ × Rt. In the present case, where the coefficients are constant, and with

the canonical identification between tangent and cotangent space, these rays
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are defined as continuous maps t 7→ γ(t) = (x(t), ξ(t)) from R t with values in

Ω × Sd−1, according to the following prescription:

In Ω × Sd−1 rays propagate with constant velocity

ẋ(t) = ξ, ξ̇(t) = 0.

Then the interaction with the boundary is described as follow.

First consider only the rays that, coming from the interior, intersect transver-

sally ∂Ω at a point xb and at a time tb. Extend them for further time by specular

reflection according to the formula

ẋ+
b = ξ+b = ξ−b − 2(ξ−b , nb)nb. (3–4)

With several reflections one obtains broken rays which are continuous maps

from Rt with value in Ω × Sd−1. The compressed broken hamiltonian flow

t 7→ (x(t), ξ(t)) is defined as the closure of these broken rays in Ω × Sd−1, for

the C0 topology (Figure 1). Under very general hypothesis (but not always; see

[14, vol. 3, p. 438]) the curves of the compressed broken hamiltonian flow (which

are called bicharacteristics) realize a “foliation” of Ω×Sd−1 and the singularities

of the solutions propagate along these bicharacteristics. As a consequence, the

following definition and theorem are now classic in microlocal analysis:

Definition 3.1. A bounded obstacle K ⊂ R
n is nontrapping if there exists

a ball Bρ with Ω = R
n \ K, K ⊂ Bρ, and a time T > 0 such that for any

compressed broken ray t 7→ (x(t), ξ(t)) with initial data satisfying

x(0) ∈ Ω ∩ Bρ,

one has

x(t) /∈ Bρ for t > T.

When this is not the case, the obstacle is trapping.

Theorem 3.1. [17] Consider the exterior problem with homogeneous boundary

conditions (say Dirichlet or Neumann boundary conditions) and initial data with

compact support and finite energy the local energy decays always to zero. When

the obstacle is nontrapping this decay is uniform (and exponential when the di-

mension of the space is odd). When the obstacle is trapping this decay may be

arbitrarily slow . More precisely , in odd dimensions, the solutions of

∂2
t u− ∆u = 0 in Ω,

u(x, t) = 0 on ∂Ω
(3–5)

with initial conditions (u(x, 0), ∂tu(x, 0)) of finite energy and compact support

satisfy the following assertions:
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(i) If the obstacle K = R
n \ Ω is not trapping , there exists a constant β such

that

Eρ(u)(t) =
1

2

∫

Ω∩Bρ

(

|∇u(x, t)|2 + |∂tu(x, t)|
2
)

dx

≤ 1
2e

−βt

∫

Ω

(

|∇u(x, 0)|2 + |∂tu(x, 0)|2
)

dx.

(ii) If the obstacle is trapping , for any pair ε, T there exists a solution uε of

(3–5) such that

Eρ(uε)(t) ≥
1
2 (1 − ε)

∫

Ω

(

|∇uε(x, 0)|2 + |∂tuε(x, 0)|2
)

dx. (3–6)

for all t ∈ (0, T ).

The proof of (3–6) is constructed with the concentration of high frequency solu-

tions along a trapped ray for which higher norms would blow up with ε.

On the other hand, if the solution is uniformly bounded for all time in a

subspace of higher regularity, the Rellich and Banach Steinhaus theorems imply

the existence of a uniform rate of decay.

For a precise statement it is convenient to write the wave equation as a group

of transformations in the energy space E introduced by Lax and Phillips [17].

This space is the closure for the norm

‖(u, v)‖2 =
1

2

∫

Ω

(

|∇u|2 + |v|2
)

dx (3–7)

of the set of smooth functions (u, v) with compact support in Ω. The generator

A of this wave group and its domain D(A) are defined by the formulas

A =

(

0 I

∆ 0

)

and

D(A) = {U = (u, v) ∈ E : AU ∈ E}. (3–8)

The quantity ‖AsU‖E + ‖U‖E = ‖U‖D(As) is invariant under the action of the

wave group and the conjunction of the Rellich and Banach–Steinhaus Theorems

implies, for s > 0, the existence of a positive continuous function φ(t, s) going

to zero with t→ ∞ such that, for any solution with initial data having support

in Bρ,

Eρ(u)(t) =
1

2

∫

Ω∩Bρ

(

|∇u(x, t)|2 + |∂tu(x, t)|
2
)

dx

≤ φ(t, s)‖(u(x, 0), ∂tu(x, 0))‖2
D(As).

The optimal result (involving no hypotheses on the geometry) on the decay

of φ(t, s) has been obtained by Burq, using Carleman estimates:
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Proposition 3.2. [5] For any solution of the wave equation with Dirichlet

boundary data (3–5) and initial data supported in Bρ ∩ Ω one has:

Eρ(u)(t) =
1

2

∫

Ω∩Bρ

(

|∇u(x, t)|2 + |∂tu(x, t)|
2
)

dx

≤
C

log(2 + t)2s
‖(u(x, 0), ∂tu(x, 0))‖2

D(As),

where the constant C depends only on the domain Ω and the number ρ.

Proposition 3.1, Theorem 3.1 and Proposition 3.2 together have the following

consequence for the analysis of the boundary time-reversal method in a cavity:

Theorem 3.2. Assume that ur is constructed with the algorithm (3–1), (3–2),

(3–3), with Γ, where the time symmetry is done, being the aperture of the cavity .

Then:

(i) For a nontrapping obstacle in odd dimensions, there is a constant β for which

∥

∥(ur(x, 2T ), −∂tur(x, T )) − (u(x, 0), ∂tu(x, 0))
∥

∥

H1

0
(C)×L2(C)

≤ Ce−βT

∫

Ω

(

|∇u(x, 0)|2 + |∂tu(x, 0)|2
)

dx

(ii) For either trapping or nontrapping obstacles, the following estimate holds if

the initial data are smooth:

∥

∥(ur(x, 2T ),−∂tur(x, T )) − (u(x, 0), ∂tu(x, 0))
∥

∥

H1

0
(C)×L2(C)

≤ C
C

log(2 + T )2s

∥

∥(u(x, 0), ∂tu(x, 0))
∥

∥

2

D(As)
,

and this estimate is optimal . It is saturated when a stable periodic orbit is

contained in C and does not meet Γ [5].

Remark 3.1. This theorem gives qualitative results on intuitive facts. It shows

that the BDTRM always works at least for smooth solutions and large time T .

The larger T and the bigger Γ, the better the reconstruction. The reconstruction

is obtained with an accuracy e−βT when the dimension is odd and the aperture is

large enough to capture all the rays of geometric optic. In the worst case when an

essential part of the initial signal propagates near a closed stable geodesic which

does not meet the aperture the accuracy of the reconstruction is in O((log T )k)

with k depending on the smoothness of the initial data. In some situations where

the set of geodesics which do not meet the aperture in a finite time is “unstable

and small”, the reconstruction of a smooth signal is obtained with an error of

the order of T−k; see [15].
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4. The Impedance Time-Reversal Mirror (IMTRM)

In the IMTRM the initial wave ui evolves for 0 ≤ t ≤ T in a bounded cavity C:

∂2
t ui − ∆ui = 0 in C, (4–1)

with boundary conditions

ui(x, t) = 0 on (∂C \ Γ),

∂tui(x, t) + Z(x)∂nui(x, t) = 0 on Γ.
(4–2)

Then, for T ≤ t ≤ 2T , one considers the solution ur of the reversed problem:

∂2
t ur − ∆ur = 0 in C, (4–3)

with boundary conditions

∂nuR(x, t) = ∂nuR(x, 2t− T )

uR(x, t) = 0

on Γ × (0, T ),

on ∂C \ Γ × (0, T ).
(4–4)

and initial data

ur(x, T ) = ui(x, T ), ∂tur(x, T ) = ∂tui(x, T ). (4–5)

Proposition 4.1. Assume that ur is constructed with the algorithm (4–3), (4–4)

and (4–5). Then

∥

∥(ur(x, 2T ),−∂tur(x, T )) − (u(x, 0), ∂tu(x, 0))
∥

∥

2

H1(C)×L2(C)
≤

∫

C

|∂tu(x, T )|2dx.

Proof. One introduces the T -symmetric solution uR of of the Neumann–

Dirichlet boundary-value problem:

∂2
t uR − ∆uR = 0 in C × (0, 2T )

with boundary conditions

uR(x, t) = 0

∂nuR(x, t) = ∂nui(x, t)

∂nuR(x, t) = ∂nui(x, 2T−t)

on (∂C \ Γ) × (0, 2T ),

on Γ × (0, T ),

on Γ × (T, 2T )

and initial data (at time t = T ):

uR(x, T ) = ui(x, T ), ∂tuR(x, T ) = 0. (4–6)

With this symmetric function the proof is completed along the lines of the Propo-

sition 3.1. ˜
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Proposition 4.1 implies that the accuracy of the method relies on the decay of

the energy norm
1

2

∫

C

(

|∇ui(x, t)|
2 + |∂tui(x, t)|

2
)

dx.

This decay has been extensively studied in connection with the problem of the

stabilization by boundary feedback ([3], [5], [18]) and it appears that the proper-

ties are exactly of the same nature as for the local decay of the exterior problem.

It is convenient to introduce a function space E and an unbounded operator A

adapted as above to the introduction of the variable v = ∂tu and U = (u, v),

according to the formulas

E =
{

U = (u, v) ∈ H1(C) × L2(C) : u = 0 on ∂C \ Γ
}

,

‖U‖2
E = ‖(u, v)‖2

E =
1

2

∫

C

{

|∇u(x, t)|2 + |v(x, t)|2
}

dx,

D(A) = {U = (u, v) ∈ E : ∆u ∈ L2(C), v ∈ H1(C), v + ∂nu = 0 on Γ
}

.

Multiplication of the equation

∂2
t u− ∆u = 0

by ∂tu and integration over C gives, with the boundary condition (4–2), the

energy identity

d

dt

(

1

2

∫

C

(

|∇ui(x, t)|
2 + |∂tui(x, t)|

2
)

dx

)

+

∫

Γ

Z(x)|∂nu|
2 dσx = 0,

which leads through classical functional analysis to the following statement.

The operator A is, in E, the generator of a strongly continuous contraction

semigroup, and

lim
t→∞

etAU0 = 0

for any initial data U0 = (u(x, 0), ∂tu(x, 0) = v(x, 0)).

Once again the rate of decay depends on the geometry. Following [3] one says

that Γ geometrically stabilizes the cavity C, if there exists a time T such that any

generalized ray t ∈ [0, T ] 7→ x(t) ∈ C intersects Γ at least once in a nondiffractive

point. The following results are now well known; see [3], [18], [5].

Theorem 4.1. (i) If Γ geometrically stabilizes C, there exists a constant β > 0

such that

1

2

∫

C

(

|∇u(x, t)|2 + |∂tu(x, t)|
2
)

dx = ‖U(t)‖2
E ≤ e−βt‖U(0)‖2

E

=
1

2

∫

C

(

|∇u(x, 0)|2 + |∂tu(x, 0)|2
)

dx.

(ii) If Γ does not geometrically stabilize C, the decay may be arbitrary slow in

the sense of Theorem 3.1(ii).



394 CLAUDE BARDOS

(iii) However , for any sufficiently smooth initial data the following estimate is

always valid (and optimal in the absence of hypotheses on the geometry)

1

2

∫

Ω∩Bρ

(

|∇u(x, t)|2 + |∂tu(x, t)|
2
)

dx ≤
C

log(2+t)2s

∥

∥(u(x, 0), ∂tu(x, 0))
∥

∥

2

D(As)
.

With Proposition 4.1 and Theorem 4.1 one concludes as in the previous section

how the accuracy of the method depends on the size of Γ and on the time of

observation.

5. Internal Time-Reversal Method in an Ergodic Cavity

(INTRM)

Intuition suggests that the domain where the time-reversal process occurs can

be much smaller if the compressed hamiltonian flow is ergodic and if the time of

“action” is large enough. This has been corroborated by numerical simulation and

ultrasonic experiments made on a silicium wafer by C. Draeger and M. Fink ([9],

[10]). What is observed with a time-reversal experiment conducted on one single

point is a very good refocusing of a localized initial signal. The mathematical

explanation, as described below, relies on (1) an asymptotic formula which in [9]

is called the “cavity formula”, and (2) the notion of quantum ergodicity, which

is closely related to classical ergodicity ([21], [8], [23], [24]).

As in the previous section, C denotes a bounded open set and ∆ is the Laplace

operator with Dirichlet boundary condition on ∂C. It is convenient to introduce

the operators

exp
(

it(−∆)1/2
)

, sin
(

t(−∆)1/2
)

, cos
(

t(−∆)1/2
)

.

The solution of the initial value problem

∂2
t u− ∆u = 0 in C,

u(x, t) ≡ 0 on ∂C
(5–1)

with the initial condition

u(x, 0) = 0 ∂tu(x, 0) = ψ(x) (5–2)

is given by

u(x, t) = (−∆)−1/2 sin(t(−∆)1/2)ψ. (5–3)

The solution of the problem

∂2
t u− ∆u = f(x, t)

u(x, t) ≡ 0

in C,

on ∂C

with initial conditions

u(x, 0) = 0, ∂tu(x, 0) = 0,
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is given by

u(x, t) =

∫ t

0

(−∆)−1/2 sin
(

(t−s)(−∆)1/2
)

f(s) ds. (5–4)

Observe that (5–3) and (5–4) are well defined (this can be done by duality)

not only for L2 functions but also for distributions in D′(C) and that, with the

introduction of the eigenvalues and eigenvectors of −∆, namely

−∆φk = ω2
kφk, φk(x) = 0 on ∂C, 1 ≤ k ≤ ∞

the kernel of the operator

(−∆)−1/2 sin(t(−∆)1/2)

is the distribution

k(x, y, t) =
∑

1≤k≤∞

sin tωk

ωk
φk(x) ⊗ φk(y),

which turns out to be the (fundamental) solution of the problem

∂2
t k(x, y, t) − ∆xk(x, y, t) = δt ⊗ δy.

For the INTRM one observes the solution ui of (5–1) and (5–2) on a subset

σ ⊂ C (which may be arbitrary small), introduces an L∞ function Ξ(x) with

support contained in σ and eventually introduces for T < t < 2T the solution of

the problem

∂2
t ur − ∆ui = KΞ(x)∂tui(x, 2T−t)

ui(x, t) = 0

in C,

on ∂C,
(5–5)

with initial conditions

ur(x, T ) = ur(x, T ), ∂tur(x, T ) = ∂turk(x, T ).

In (5–5) K represents an amplification factor which may be large. Therefore

∂tur(x, 2T ) = cos
(

2T (−∆)1/2
)

ψ

+K

∫ 2T

T

cos
(

(2T−t)(−∆)1/2
)

Ξcos
(

(2T−t)(−∆)1/2
)

ψ dt.

To use the ergodicity property T will be taken large enough. This also reinforces

the influence of the reemitted signal which is also amplified by the factor Ampl.

Accordingly one writes

∂tur(x, 2T ) = T

(

1

T
cos

(

2T (−∆)1/2
)

ψ

+
Ampl

T

∫ 2T

T

cos
(

(2T−t)(−∆)1/2
)

Ξcos
(

(2T−t)(−∆)1/2
)

ψdt

)

.
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In any convenient sense, and in particular for the energy norm (with initial data

of finite energy), one has

lim
T→∞

1

T
cos(2T (−∆)1/2)ψ = 0.

Therefore

ur(x, 2T ) '
Ampl T

T

∫ 2T

T

cos((2T−t)(−∆)1/2))Ξ cos
(

(2T−t)(−∆)1/2
)

ψ dt

whenever this limit exists.

This result follows from the cavity equation and the quantum chaos principle.

One has

1

T

∫ 2T

T

cos
(

(2T−t)(−∆)1/2
)

Ξcos((2T−t)(−∆)1/2)ψ dt

=
1

4T

∫ T

0

(eit(−∆)1/2

+ e−it(−∆)1/2

)Ξ(eit(−∆)1/2

+ eit(−∆)1/2

)dtψ.

which is written as the sum of two terms:

M(T )ψ =
1

4T

∫ T

−T

eit(−∆)1/2

Ξeit(−∆)1/2

ψ dt,

N(T )ψ =
1

4T

∫ T

−T

eit(−∆)1/2

Ξe−it(−∆)1/2

ψ dt.

For M(T ) we have:

Proposition 5.1 (Cavity formula). The family of operators T 7→ M(T ) is

uniformly equibounded in L2(Ω) and for T → ∞ it converges weakly to 0.

Proof. Observe that one has

‖M(T )‖ ≤ 1
2 |Ξ‖L∞(C). (5–6)

Then for any pair of eigenvectors (φk(x), φl(x)),

lim
T→0

(M(T )φk, φl) = lim
T→0

1

4T

∫ T

−T

(Ξeit(−∆)1/2

φk, e
−it(−∆)1/2

φl) dt

= lim
T→0

sin
(

T (ωk + ωl)
)

2T (ωk + ωl)
(Ξφk, φl) = 0,

and the result follows by density. ˜

Remark 5.1. By Rellich’s theorem, it follows from the above proposition that

lim ‖M(T )ψ‖L2(C) = 0.

for any ψ ∈ Hs(C) with s > 0.
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From the cavity formula one deduces the relation

uR(x, 2T ) ' TN(T ) ' 1
2Ampl

(

K

2T

∫ T

−T

eit(−∆)1/2

Ξ(e−it(−∆)1/2

)dt

)

ψ.

Start from the Hamiltonian system

ẋ(t) = ξ, ξ̇(t) = 0.

For any function f write, whenever that makes sense (i.e., when the trajectory

x(s) for s ∈ [0, t] remains in C)

V (t)f = f
(

x(t), ξ(t)
)

.

With the introduction of the broken hamiltonian flow, extend this operator on

the functions defined on S∗(C̄) =
{

(x, ξ) : x ∈ C, |ξ| = 1
}

and denote by

|S∗(C̄)| =

∫ ∫

C×{|ξ|=1}

dx dξ

the volume of this cosphere bundle. Further, denote by σP the principal symbol

of any zero order pseudodifferential operator P .

Definition 5.1. (i) The flow is classically ergodic if

lim
t→∞

V (t)f = f̄ =
1

|S∗(C̄)|

∫

C×{|ξ|=1}

f(x, ξ) dx dξ.

in the weak L∗ topology, for any continuous function f ∈ C0(S∗(C̄)).

(ii) Let Πl =
∑

1≤k≤l φk ⊗φ∗k be the projection onto the space spanned by the l

first eigenvectors of −∆. An operator K ∈ L(L2(C)) is spectrally regularizing

if it satisfies the bound

‖ΠlKΠl‖
2
HS = o(l).

(iii) The flow is quantum ergodic if, for any zero-order pseudodifferential operator

P and in the weak operator limit, one has

lim
T→∞

1

2T

∫ T

−T

eit(−∆)1/2

Pe−it(−∆)1/2

dt = 〈P 〉I +K

with K spectrally regularizing and

〈P 〉 =
1

|S∗(C̄)|

∫

C×{|ξ|=1}

σP (x, ξ) dx dξ = lim
l→∞

∑

1≤k≤l

1

l
(Pφk, φk).

It has been proved that classical ergodicity implies quantum ergodicity. See [8],

[21], [23], [24].

Therefore it follows from Proposition 5.1 that:
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Theorem 5.1. The INTRM solution constructed (see (5–5) and (1–3)) satisfies,

as T → ∞:

uR(x, 2T ) ' 1
2T Ampl

(

〈Ξ〉ψ +Kψ
)

with K spectrally regularizing and

〈Ξ〉 = lim
l→∞

∑

1≤k≤l

1

l
(Ξφk, φk) =

∑

1≤k≤l

1

l

∫

C

(

Ξ(x)φk(x), φk(x)
)

dx.

Remark 5.2. The notion of spectrally regularizing is not very explicit in its

present form. However, for any pseudodifferential operator P of zero order,

lim
l→∞

1

l
‖ΠlPΠl‖

2
HS = 〈P 〉 =

1

|S∗(C̄)|

∫

C×{|ξ|=1}

|σP (x, ξ)|2 dx dξ;

see [25, Prop. 1.1(ii)]. Therefore any spectrally regularizing pseudodifferential

operator P has its principal symbol equal to zero and has a regularizing effect.

Similarly one shows [23, p. 921] that in general (at least when the spectra of

∆ has bounded multiplicity) K is compact. This is why the preceding theorem

carries pertinent information when the initial data ψ is a distribution with a

single singularity located at one point, say A, then the reversed solution is a sum

of a more regular term 1
2TKψ and of a leading term proportional to

1
2T Ampl 〈Ξ〉ψ,

which also has a singularity at the point A. In this sense for large time the

refocusing is perfect and this is in agreement with the experiment of C. Draeger

(see Figure 5) and the numerical simulations of [9] and [10].
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