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Introduction to the Mathematics

of Computed Tomography

ADEL FARIDANI

Abstract. Computed tomography (CT) entails the reconstruction of a
function f from line integrals of f . This mathematical problem is encoun-
tered in a growing number of diverse settings in medicine, science, and
technology. This introductory article is divided into three parts. The first
part is concerned with general theory and explores questions of uniqueness,
stability and inversion, as well as detection of singularities. The second
part is devoted to local tomography and is centered around a discussion of
recently developed methods for computing jumps of a function from local
tomographic data. The third part treats optimal sampling and has at its
core a detailed error analysis of the parallel-beam filtered backprojection
algorithm. Matlab source code for the filtered backprojection algorithm
and the Feldkamp–Davis–Kress algorithm is included in an appendix.

1. Introduction

Computed tomography (CT) entails the reconstruction of a function f from

line integrals of f . This mathematical problem is encountered in a growing

number of diverse settings in medicine, science, and technology, ranging from

the famous application in diagnostic radiology to research in quantum optics. As

a consequence, many aspects of CT have been extensively studied and are now

well understood, thus providing an interesting model case for the study of other

inverse problems. Other aspects, notably three-dimensional reconstructions, still

provide numerous open problems.

The purpose of this article is to give an introduction to the topic, treat some

aspects in more detail, and to point out references for further study. The reader

interested in a broader overview of the field, its relation to various branches of

pure and applied mathematics, and its development over the years may wish to

consult the monographs [6; 31; 32; 36; 62; 67; 78], the volumes [21; 22; 28; 33;

34; 76; 77], and review articles [42; 49; 56; 58; 66; 84; 89].
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In practice only integrals over finitely many lines can be measured, and the

distribution of these lines is sometimes restricted. The following presentation is

centered around the question: What features of f can be stably recovered from a

given collection of line integrals of f? For example, we may ask what resolution

can be achieved with the available data. If a full reconstruction of f is not

possible, we may try to detect the location of boundaries (jump discontinuities

of f), or also the sizes of the jumps.

The exposition is divided into three parts. The first part is concerned with

general theory. Its main themes are questions of uniqueness, stability and in-

version for the x-ray transform, as well as detection of singularities. The second

part is devoted to local tomography. The exposition is similar to [17] and is cen-

tered around a discussion of recently developed methods for computing jumps of

a function from local tomographic data. The third part treats optimal sampling

and has at its core a detailed error analysis of the parallel-beam filtered backpro-

jection algorithm. The article conludes with three appendices containing basic

results on wavelets, Matlab source code for the filtered backprojection algorithm

and the Feldkamp–Davis–Kress algorithm, and some exercises.

2. The X-Ray and Radon Transforms

We begin by introducing some notation and background material. R
n consists

of n-tuples of real numbers, usually designated by single letters, x = (x1, . . . , xn),

y = (y1, . . . , yn), etc. The inner product and absolute value are defined by

〈x, y〉 =
∑n

1 xiyi and |x| =
√

〈x, x〉. The unit sphere Sn−1 consists of the

points with absolute value 1. C∞
0 (Rn) denotes the set of infinitely differentiable

functions on R
n with compact support. A continuous linear functional on C∞

0

is called a distribution. If X is a set, X◦ denotes its interior, X its closure, and

Xc its complement. χX and χn denote the characteristic functions (indicator

functions) of X and of the unit ball in R
n, respectively (that is, χX(x) = 1

if x ∈ X and χX(x) = 0 if x 6∈ X). |X| denotes the n-dimensional Lebesgue

measure of X ⊂ R
n. However, when it is clear that X should be treated as a set

of dimension m < n, |X| is the m-dimensional area measure. Thus

|Sk−1| = 2πk/2/Γ(k/2)

is the (k − 1)-dimensional area of the (k − 1)-dimensional sphere.

The convolution of two functions is given by

f ∗ g(x) =

∫

Rn

f(x− y)g(y) dy.

The Fourier transform is defined by

f̂(ξ) = (2π)−n/2

∫

Rn

f(x)e−i〈x,ξ〉 dx
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for integrable functions f , and is extended to larger classes of functions or dis-

tributions by continuity or duality. For square-integrable functions f, g we have

f ∗ g(x) =

∫

Rn

f̂(ξ)ĝ(ξ)ei〈x,ξ〉 dξ. (2–1)

The integral transforms most relevant for tomography are the x-ray transform

and the Radon transform.

Definition 2.1. Let θ ∈ Sn−1 and Θ⊥ the hyperplane through the origin

orthogonal to θ. We parametrize a line l(θ, y) in R
n by specifying its direction

θ ∈ Sn−1 and the point y where the line intersects the hyperplane Θ⊥.

The x-ray transform of a function f ∈ L1(R
n) is given by

Pf(θ, y) = Pθf(y) =

∫

R

f(y + tθ) dt, y ∈ Θ⊥.

The Radon transform of f is defined by

Rf(θ, s) = Rθf(s) =

∫

Θ⊥

f(x+ sθ) dx, s ∈ R. (2–2)

We see that Pf(θ, x) is the integral of f over the line l(θ, y) parallel to θ which

passes through y ∈ Θ⊥, and that Rf(θ, s) is the integral of f over the hyperplane

orthogonal to θ with signed distance s from the origin. In the following we

will be mostly concerned with the x-ray transform. In two dimensions the two

transforms coincide apart from the parameterization: We parametrize θ ∈ S1 by

its polar angle ϕ and define a vector θ⊥ orthogonal to θ such that

θ = (cosϕ, sinϕ), θ⊥ = (− sinϕ, cosϕ). (2–3)

Then the points in the subspace Θ⊥ are given by Θ⊥ = {sθ⊥ : s ∈ R} and

we have the relation Pf(θ, sθ⊥) = Rf(θ⊥, s). Also, when working in two di-

mensions, we will often use the simplified notation Pf(θ, s) or Pθf(s) instead of

Pf(θ, sθ⊥). Occasionally we will also replace θ by the polar angle ϕ according

to (2–3) and write Pf(ϕ, s) .

We consider two examples. Let G be the Gaussian function G(x) = e−〈x,x〉/2.

Then

PG(θ, y) = e−〈y,y〉/2

∫

R

e−〈tθ,tθ〉/2 dt = (2π)1/2e−〈y,y〉/2, y ∈ Θ⊥.

For χn, the characteristic function of the unit ball in R
n, we can use a geometrical

argument. We obtain Pχn(θ, y) = 0 for |y| > 1 since then the line l(θ, y) does

not intersect the unit ball. For |y| ≤ 1 observe that the intersection of the line

l(θ, y) with the unit ball in R
n is a line segment of length 2

√
1 − |y|2 and that

Pχn(θ, y) is equal to this length.

The following relation between the Fourier transforms of Pθf and f will prove

to be useful:
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Theorem 2.2. Under the hypotheses of Definition 2.1,

P̂θf(η) = (2π)1/2f̂(η), η ∈ Θ⊥,

R̂θf(σ) = (2π)(n−1)/2f̂(σθ), σ ∈ R

Proof. This is a straightforward computation. We demonstrate it for the x-ray

transform. Let η ∈ Θ⊥. Then

P̂ f(θ, η) = (2π)(1−n)/2

∫

Θ⊥

Pf(θ, x)e−i〈x,η〉 dx

= (2π)(1−n)/2

∫

Θ⊥

∫

R

f(x+ sθ) ds e−i〈x,η〉dx

= (2π)(1−n)/2

∫

Rn

f(y)e−i〈y,η〉 dy =
√

2π f̂(η). ˜

As we will see below, Theorem 2.2 can be used to explore questions of uniqueness,

nonuniqueness, stability, and inversion.

Current medical scanners employ an x-ray source which moves around the

patient. To describe this type of data collection, the parameterization of lines

by θ ∈ Sn−1 and y ∈ Θ⊥ is less convenient. It is more suitable to introduce the

divergent beam x-ray transform

Df(a, θ) = Daf(θ) =

∫ ∞

0

f(a+ tθ) dt, θ ∈ Sn−1,

which gives the integral of f over the ray with direction θ emanating from the

source point a.

The x-ray and Radon transforms are special cases of the general k-plane

transform, which maps a function into its integrals over k-dimensional affine

subspaces; see [42], for instance.

3. Uniqueness and Nonuniqueness

Theorem 3.1 [89; 42]. Let f ∈ L2(R
n) have compact support , and suppose that

Pf(θ, · ) ≡ 0 for infinitely many θ. Then f ≡ 0.

Proof. The Fourier transform f̂ is analytic and f̂(η) = P̂θf(η) = 0 on the

hyperplanes 〈η, θ〉 = 0. Since no nontrivial entire function can vanish on an

infinite set of hyperplanes through the origin, we must have f̂ ≡ 0. ˜

As an application, consider the so-called limited angle problem. Let Pf(θ, · )
be given for infinitely many θ concentrated in a cone C. Then f is uniquely

determined, even if C is very small. However, if C 6= Sn−1, the reconstruction

is not stable. Indeed, the proof of the above theorem shows that reconstructing

f is equivalent to analytic continuation of f̂ , and analytic continuation is known

to be extremely unstable.

The uniqueness result requires an infinite number of directions, while in prac-

tice only a finite number can be measured. It was already recognized by the
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pioneers of CT that this entails the loss of uniqueness; see the example given

in [3]. The next theorem shows that the nonuniqueness is quite extensive, i.e.,

given Pf(θj , · ) for finitely many directions θj , there are null functions which can

be prescribed arbitrarily on a large portion of their domain.

Theorem 3.2. ([89]) Let θ1, . . . , θp ∈ Sn−1, K ⊂ R
n compact , and f ∈ C∞

0 (K).

Let K0 ⊂ U ⊂ K with U open and K0 compact . Then there is f0 ∈ C∞
0 (K),

f0 = f on K0, and Pf0(θk, · ) ≡ 0, k = 1, . . . , p.

While this result makes it seem difficult to obtain reliable reconstructions in

practice, it is not the end of the story. It turns out that the null functions for

the x-ray transform are high-frequency functions [51; 52; 53; 60] , and that it is

possible to suppress such functions in practical reconstructions.

Theorem 3.3 [51; 52; 53]. Let f0 ∈ L2(R
2) with support contained in the unit

disk . If Pf0(θk, · ) ≡ 0 for k = 1, . . . , p, then

f̂0(σθ) =
∑

m>p

imσ−1Jm+1(σ)qm(θ),

where σ ∈ R, θ ∈ S1, Jm+1 the order m+ 1 Bessel function of the first kind and

qm a polynomial of degree m.

Since Jl(t) is very small for l > t, it follows that if Pθf vanishes for p distinct

directions θj , then f̂(ξ) is almost entirely concentrated in the set {ξ ∈ R
n :

|ξ| > p} [60]. This means that measuring Pθj
f determines f̂(ξ) reliably for

|ξ| < p. However, the reconstruction problem may still be severely unstable,

e.g., when the directions are concentrated in a narrow range. In cases where

sufficient stability is present, a low-pass filtered version of f may be recovered.

A loose application of Shannon’s sampling theorem yields that the reconstruction

will resolve details of size 2π/p or greater.

Remark 3.4. It follows that the influence of nonuniqueness may be avoided in

practice under the following conditions:

(a) A-priori information that |f̂(ξ)| is small for |ξ| > b is available.

(b) Data Pθj
f for p > b directions θj are measured.

(c) The reconstruction method used produces a function fR with |f̂R(ξ)| small

for |ξ| > b.

Nonuniqueness theorems for the divergent beam x-ray transform have been

proved in [48; 93]. A generalization to the general k-plane transform has been

given in [42].

4. Inversion and Ill-Posedness

Calderón’s operator Λ is defined in terms of Fourier transforms by

Λ̂ϕ(ξ) = |ξ|ϕ̂(ξ), ϕ ∈ C∞
0 (Rn).
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It is extended by duality to the class of functions f for which (1 + |x|)−1−nf is

integrable [14]. Note that

Λ2 = −∆, ∆ = Laplacian. (4–1)

For n ≥ 2, the inverse Λ−1 of Λ is given by convolution with the Riesz kernel R1:

Λ−1f = R1 ∗ f, R1(x) = (π|Sn−2|)−1|x|1−n.

In dimension n = 1 we have Λf = H∂f , where ∂f denotes the derivative of f

and H denotes the Hilbert transform

Hf(s) =
1

π

∫

R

f(t)

s− t
dt (4–2)

where the integral is understood as a principal value.

We can formally derive an inversion formula for Pf by combining Theorem 2.2

and the inverse Fourier transform. For simplicity we first consider dimension

n = 2. Using the Fourier inversion formula, Theorem 2.2, the relation (2–3) and

changing to polar coordinates we obtain

f(x) = (2π)−1

∫

R2

f̂(ξ)ei〈x,ξ〉 dξ

= (2π)−1

∫ 2π

0

∫ ∞

0

σf̂(σθ⊥)ei〈x,σθ⊥〉 dσ dϕ

= (4π)−1

∫ 2π

0

∫ ∞

−∞

|σ|f̂(σθ⊥)ei〈x,σθ⊥〉 dσ dϕ

= 1
2 (2π)−3/2

∫ 2π

0

∫ ∞

−∞

|σ|P̂θf(σ)eiσ〈x,θ⊥〉 dσ dϕ

= 1
2 (2π)−3/2

∫ 2π

0

∫

R

\ΛPθf(σ)eiσ〈x,θ⊥〉 dσ dϕ

= (4π)−1

∫ 2π

0

ΛPθf(〈x, θ⊥〉) dϕ

=
1

4π2

∫ 2π

0

∫

R

∂Pθf(s)

〈x, θ⊥〉 − s
ds dϕ.

(4–3)

In the last step we made use of the relation Λg = H∂g mentioned above.

For general dimension n one uses the change of variables [89, Formula (9.2′)]
∫

Rn

g(ξ) dξ = |Sn−2|−1

∫

Sn−1

∫

Θ⊥

|η|g(η) dη dθ (4–4)

and obtains

f(x) =
(
2π|Sn−2|

)−1
∫

Sn−1

ΛPθf(EΘ⊥x) dθ (4–5)

where EΘ⊥x denotes the orthogonal projection of x onto the subspace Θ⊥.
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If we use the backprojection operator P ] defined by

P ]g(x) =

∫

Sn−1

g(θ,EΘ⊥x) dθ,

then (4–5) assumes the compact form

f(x) =
(
2π|Sn−2|

)−1
P ]ΛPf(x).

An inversion formula for the Radon transform can be derived in a similar way.

For other inversion formulas see [62, § II.2].

From the last line of (4–3) we see that computation of f(x) requires integrals

over lines far from x, because the Hilbert transform kernel has unbounded sup-

port. Note that Pθf(〈x, θ⊥〉) is the integral over the line with direction θ which

passes through x. Hence the inversion formula is not “local”. A local inversion

formula would utilize only values Pθf(s) with s close to 〈x, θ⊥〉. We will discuss

what can be done with local formulas in a later section.

Equation (4–3) gives us valuable information about the stability of the in-

version. The factor |σ| in the inverse Fourier integral will become arbitrarily

large. This means that the inversion is unstable. In practice measurement and

discretization errors will prevent accurate computation of P̂θf(σ) for large |σ|,
and these errors are then amplified by multiplication with |σ|. In other words,

due to the integration in P , Pf is smoother than f itself. The inversion has to

reverse this smoothing and this makes it unstable. The extent of this instability

will depend on the amount of smoothing inherent in P . This can be quantified

using Sobolev norms. For functions f with compact support we define

‖f‖Hα
0

=

(∫

Rn

(1 + |ξ|2)α |f̂(ξ)|2 dξ
)1/2

,

‖Pf‖α =

(∫

Sn−1

dθ

∫

Θ⊥

dη (1 + |η|2)α |P̂θf(η)|2
)1/2

.

Theorem 4.1 [62, p. 42]. If f ∈ C∞
0 is supported in the unit ball , then there

are constants c(α, n), C(α, n) such that

c(α, n)‖f‖Hα
0
≤ ‖Pf‖α+ 1

2
≤ C(α, n)‖f‖Hα

0
.

Hence the operator P smoothes by an order 1
2 measured in a Sobolev scale. In

order to see what the instability might mean in practice we assume that we have

measured data gε such that ‖Pf − gε‖L2
≤ ε, and a-priori information about

f of the form ‖f‖Hβ
0

≤ ρ. For β > 0 this excludes highly oscillatory functions,

so this condition corresponds to condition (a) in Remark 3.4. Let f1, f2 be

two candidate functions for reconstruction, i.e., f1, f2 both satisfy the a-priori

condition and ‖Pfi − gε‖L2
≤ ε. We are interested to know by how much f1
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and f2 can differ. Since ‖P (f1 − f2)‖L2
≤ 2ε and ‖f1 − f2‖Hβ

0

≤ 2ρ, we have the

worst case error

‖f1 − f2‖L2 ≤ d(ε, ρ, β), with

d(ε, ρ, β)=sup
{
‖f‖L2

: ‖Pf‖L2
≤ 2ε, ‖f‖Hβ

0

≤ 2ρ
}
.

A natural choice for β is such that functions which are smooth except for jump

discontinuities along smooth boundaries are in Hβ
0 . This leads to the condition

β < 1
2 [62, p. 92]. For the limiting case β = 1

2 the worst case error satisfies

d
(
ε, ρ, 1

2

)
≤ c(n)

√
ερ.

[62, p. 94]. This means that the reconstruction problem is moderately ill-posed.

We expect a gain of 2k digits in data accuracy to yield k additional accurate

digits in the reconstruction. In other words, the instability in the reconstruction

causes a loss of half the number of accurate digits.

Another approach to quantify the degree of ill-posedness is provided by the

singular value decomposition of P [60]. Here one looks at how fast the singu-

lar values converge to zero. Again, the assessment of moderate ill-posedness is

confirmed.

In order to use the inversion formula in practice we have to stabilize it. This

involves a well-known trade-off between stability and accuracy of the recon-

struction. Here we give up the goal of recovering the function f itself, and

aim instead at reconstructing an approximation e ∗ f , where e is an approxi-

mate delta function. As the computation below shows, stabilization requires the

Fourier transform ê(ξ) to decay sufficiently fast for large |ξ|. The price to pay for

the stabilization is limited resolution, so e must be chosen carefully, depending

on the amount and accuracy of the available measurements. Note also that a

proper choice of e helps to satisfy the condition (c) for avoiding the influence of

nonuniqueness given in Remark 3.4.

As we will see later, it is sometimes advantageous to reconstruct Λmf instead

of f , with m > −1 an integer. The case m = 0 of course yields an approximation

to the function f itself. Using the convolution theorem (2–1) for the Fourier

transform we obtain, in a similar way as above,

e ∗ Λmf(x) =

∫

Rn

ê(ξ)|ξ|mf̂(ξ)ei〈x,ξ〉dξ

= |Sn−2|−1

∫

Sn−1

∫

Θ⊥

|η|m+1ê(η)f̂(η)ei〈x,η〉dη dθ

= (2π)−1|Sn−2|−1

∫

Sn−1

∫

Θ⊥

|η|m+1P̂θe(η)P̂θf(η)ei〈E
Θ⊥x,η〉dη dθ

=

∫

Sn−1

(k ∗ Pθf)(EΘ⊥x) dθ, m ≥ −1, (4–6)
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with the convolution kernel

k(y) = (2π|Sn−2|)−1Λm+1Pθe(y), y ∈ Θ⊥. (4–7)

If e is a radial function, Pθe and the convolution kernel k are independent of θ.

A corresponding formula for the Radon transform can be derived by using po-

lar coordinates in R
n instead of (4–4). For rigorous proofs and general conditions

on e and f for which (4–6) is valid see [48], [90] and [59]. Of greatest interest

are the case m = 0, which gives the formulas for reconstructing the function f

itself, and the cases m = ±1. Letting e→ δ yields the exact inversion formula

Λmf(x) = (2π|Sn−2|)−1

∫

Sn−1

Λm+1Pθf(EΘ⊥x) dθ.

A desirable property would be the possibility of local reconstruction, i.e., re-

construction at a point should require only lines passing through a small neigh-

borhood of that point. Since the parameters θ and y ∈ Θ⊥ of a line passing

through a point x must satisfy the equation EΘ⊥x = y, reconstruction according

to (4–6) will be local if the kernel k is supported in a small neighborhood of

the origin. However, for m even and
∫

Rn e(x) dx 6= 0, k̂ is not analytic, so k

cannot have compact support. Hence ordinary tomography is global, not local.

On the other hand, it follows from (4–7) and (4–1) that k has compact support if

m ≥ −1 is odd and e has compact support. This explains the interest in the cases

m = ±1. Computing Λ−1f(x) consists of taking the average of all integrals over

lines passing through x. This was done in early imaging techniques preceding

CT. However, the result is a very blurry image of f which by itself is of limited

usefulness; see the bottom left picture in Figure 1. Current local tomography,

reviewed below, avoids this disadvantage by computing a linear combination of

Λf and Λ−1f .

If f is supported in the unit ball, and the source points a lie on a sphere

A with center in the origin and radius R > 1, then the approximate inversion

formula for the divergent beam x-ray transform reads as follows [90]:

e ∗ Λmf(x) = R−1

∫

A

∫

Sn−1

Daf(θ) |〈a, θ〉| k(EΘ⊥(x− a)) dθ da, (4–8)

with m ≥ −1 and k as in (4–7).

We conclude this section with a few remarks on reconstruction algorithms.

The filtered backprojection algorithm is the most popular reconstruction method.

It is a computer implementation of the approximate reconstruction formulas

(4–6) and (4–8) for parallel-beam and fan-beam sampling, respectively. We will

discuss it in detail in a later section. For references on the filtered backprojection

algorithm see, e.g., [49].

The Fourier reconstruction algorithm uses the Fast Fourier transform to com-

pute

[Pθj
f(η) =

√
2πf̂(η), η ∈ Θ⊥

j , j = 0, . . . , P−1.
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Figure 1. Top left: Global reconstruction of density f(x) of calibration object.

Top right: Reconstruction of Λf . Bottom left: Reconstruction of Λ−1f . Bottom

right: Reconstruction of Lf = Λf + µΛ−1f , with µ = 46.

In 2D this gives values of f̂ on a polar grid. These are now interpolated onto a

rectangular grid and a 2D inverse FFT is used to obtain f . This is much faster

than filtered backprojection, but the interpolation is problematic, i.e., prone to

cause artifacts in the reconstructed image. For further discussion and references

on methods to overcome these drawbacks see [66; 67].

Algebraic methods do not discretize an inversion formula or use the projection

slice theorem, but start from an ansatz f(x) =
∑N

i=1 ci ψi(x) and then solve the

linear system

N∑

i=1

ci Pθj
ψi(yk) = gjk, j, k = 1, 2, . . .

for the unknown coefficients ci. Here gjk = Pθj
f(yk) are the measured data.

Often the basis functions are the characteristic functions of pixels or voxels, but
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this is of course not the only choice. Indeed, the advantage of such methods lies in

their flexibility, e.g., in incorporating irregular sampling geometries or available

a-priori information on f . The resulting linear systems are large and sparse

and require special (usually iterative) algorithms for sufficiently fast solution.

Stabilization can be achieved by limiting resolution or by stopping the iteration

before convergence is achieved (see, e.g., Figure V.12 in [62]).

Numerous other reconstruction algorithms have been developed. For a survey

see, e.g., [62, Chapter V] and [65; 66; 67].

5. Incomplete Data Problems and Detection of Singularities

Incomplete data problems arise when measurements of Pθf(y) are unavailable

for a certain range of arguments (θ, y). In dimension 2 the most common exam-

ples are the limited angle problem, the exterior problem, and the interior prob-

lem. Assume that f has compact support contained in the unit disk. In the lim-

ited angle problem, measurements Pf(ϕ, s) are available only in an angular range

ϕ ∈ [ϕ1, ϕ2] with |ϕ1−ϕ2| < π. Note that because of Pf(ϕ, s) = Pf(ϕ+π,−s),
an angular range of π is sufficient for complete data. It follows from Theorem 3.1

that f is uniquely determined by the limited angle data. The problem is lack of

stability. We see from Theorem 2.2 that the data determine the Fourier transform

f̂(ξ) in the cone {ξ = σ(cosϕ, sinϕ) : ϕ ∈ [ϕ1 + π/2, ϕ2 + π/2], σ ∈ R}. Re-

constructing f is therefore equivalent to accomplishing an analytic continuation

of f̂ , and analytic continuation is severely ill-posed. A more detailed picture

emerges from the singular value decomposition of the limited angle transform

[54]. The severe ill-posedness is reflected in exponentially decaying singular val-

ues. However, the spectrum splits into two parts, one with singular values close

to the singular values in the full-range case, and the other with singular val-

ues close to 0. The components of f corresponding to singular functions in the

first part are therefore recoverable. The characterization of the unrecoverable

singular functions in [54] allows to predict and recognize typical reconstruction

artifacts.

In the exterior problem only line integrals Pθf(s) with |s| > a > 0 are avail-

able. Uniqueness holds in the measured region but stability is missing. The

singular value decomposition was given in [70; 73], and used to develop a recon-

struction algorithm [74; 75].

Finally, the interior problem is characterized by measurements in the range

|s| ≤ a < 1. Uniqueness does not hold, not even inside the disk |x| < a where

for each point x all integrals over lines passing through a small neighborhood

of x are measured. A singular value decomposition has been derived in [61].

Promising new methods for the interior problem also include the wavelet-based

approaches of [2; 80] and pseudolocal tomography [41]. The wavelet localization

method presented in [68] requires additional integrals over a small number of

lines not intersecting the disk |x| < a.
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None of these problems provides both uniqueness and stability. It is now

natural to ask that if the function f itself cannot be recovered stably, what

features of f can? One answer to this question is provided by the singular value

decompositions, which tell us that components of f corresponding to singular

functions with large singular values are recoverable. Another approach is to ask

which singularities of f can be stably recovered. In many applications f can

be considered to be approximately piecewise constant with jump discontinuities

along the boundaries between different features. Identifying the singularities of

f thus allows to determine the shape of such features. A general answer has

been given in [75] based on the correspondence between the wavefront sets of f

and Pf . In the special case of f being smooth except for jump discontinuities

along a smooth curve Γ, a singularity at a point x is detected stably if and

only if integrals over lines in a neighborhood of the tangent line to Γ at x are

available. Applying this rule to the incomplete data problems mentioned above

yields that in the limited angle and exterior problems not all jumps can be stably

detected, since for any point x there are lines passing through x for which the

data are not available. On the other hand, in case of the interior problem one

can stably determine all singularities inside the disk |x| < a. It is thus interesting

to note that the interior problem is the worst behaved of the three with respect

to uniqueness, but is the best behaved with respect to detecting singularities.

For general reconstruction methods where the reconstruction preserves the

stable singularities see [45]. Several methods have been suggested to detect

singularities directly from the line integrals without first performing a recon-

struction [39; 75; 79].

A problem of great practical interest which still poses many open problems is

three-dimensional cone-beam reconstruction with sources on a curve. See, e.g.,

[97] for an inversion formula, [19] for a general stability result, [75] for conditions

to detect singularities, and [8; 18; 23; 57; 64] for reconstruction algorithms and

other developments. The approximate inversion formula (4–6) is very useful in

two dimensions, but not so in three dimensions. It needs integrals over all lines,

but in three dimensions the lines form a four parameter family, so (4–6) requires

far more data than should be needed to determine a function of three variables.

In practical 3D tomography an x-ray source moves on a curve, so only integrals

over lines intersecting the curve are measured. This situation is modelled by

the divergent beam x-ray transform Daf(θ), where a runs through the curve Γ.

The conditions on the source curve Γ for stable inversion are restrictive, so that

in most practical situations one has an incomplete data problem. Based on the

exposition in [75], we now state the precise definitions for the microlocal concepts

mentioned above and apply them to this situation. The reader interested in a

deeper treatment may wish to first read [75] and [27], and then proceed to articles

such as [1; 24; 25; 26; 72].

The following concept of a wavefront set uses the fact that the Fourier trans-

form of a C∞
0 function decays rapidly. A local version of this fact can be obtained
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by first multiplying f with a C∞
0 cut-off function Φ with small support, and see-

ing if the Fourier transform of the product Φf decays rapidly. The wavefront

set gives even more specific, so-called microlocal information, inasmuch as it

identifies the directions in which the Fourier transform of Φf does not decrease

rapidly.

Definition 5.1. Let f be a distribution and take x0, ξ0 ∈ R
n with ξ0 6= 0.

Then (x0, ξ0) is in the wavefront set of f if and only if for each cut-off function

Φ in C∞
0 with Φ(x0) 6= 0, the Fourier transform of Φf does not decrease rapidly

in any conic neighborhood of the ray {tξ0, t > 0}.

Loosely speaking, we say that a singularity of f can be stably detected from

available x-ray data, if there exists a corresponding singularity of comparable

strength in the data. The strength of a singularity can be quantified microlocally

using Sobolev space concepts:

Definition 5.2. A distribution f is in the Sobolev space H s microlocally near

(x0, ξ0) if and only if there is a cut-off function Φ ∈ C∞
0 (Rn) with Φ(x0) 6= 0

and function u(ξ) homogeneous of degree zero and smooth on R
n \ {0} and with

u(ξ0) 6= 0 such that u(ξ)[(Φf)(ξ) ∈ L2(Rn, (1 + |ξ|2)s).

First, one localizes near x0 by multiplying f by Φ, then one microlocalizes near

ξ0 by forming uΦ̂f . and sees how rapidly Φ̂f decays at infinity.

For 3D tomography with sources on a curve we have the following result:

Theorem 5.3 [75, Theorem 4.1], [1], [24]. Let Γ be a smooth curve in R
3 and f a

distribution whose support is compact and disjoint from Γ. Then any wavefront

set of f at (x0, ξ0) is stably detected from divergent beam x-ray data Df with

sources on Γ if and only if the plane P through x0 and orthogonal to ξ0 intersects

Γ transversally .

If data are taken over an open set of rays with sources on Γ, then a ray in P

from Γ to x0 must be in the data set for stable detection to apply . In these cases

f is in Hs microlocally near (x0, ξ0) if and only if the corresponding singularity

of Df is in Hs+1/2.

We see that the corresponding singularities of Df are weaker by 1
2 Sobolev order,

but this is still strong enough to allow stable detection in practice.

Theorem 5.3 allows to analyze singularity detection in 3D tomography in the

same way as described above in the two-dimensional case.

It is now interesting to ask if the available numerical algorithms can actually

reconstruct all the stable singularities. The results for a general class of restricted

x-ray transforms obtained in [24; 25; 26] show that microlocal analysis is also

a powerful tool to answer such a question. For an introduction to these results

see [27]. Explicit calculations analysing an algorithm for contour reconstruction

proposed in [57] and some closely related methods have recently been given in

[38; 47].
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The algorithm of [57] aims to reconstruct the function

fR = −∆D∗Df, (5–1)

with

D∗g(x) =

∫

Γ

‖x− a‖−1g

(
a,

x− a

‖x− a‖

)
da.

The results in [24; 38; 47] show that the wavefront set of fR consists of two

parts. The first part contains those wavefronts (x, ξ) of f for which the plane

through x and normal to ξ intersects Γ. The second part may introduce new

singularities, namely on the line from a source point a ∈ Γ to x, the location of

the original singularity in f . This will happen if the plane through x and normal

to ξ contains a and the tangent vector to Γ at a is orthogonal to ξ, i.e., the plane

touches Γ but does not intersect Γ transversally. In addition, the acceleration

vector of the curve at a should not be orthogonal to ξ. The Sobolev strength of

these additional singularities is the same as the reconstructed part of the original

wavefront set [25; 26; 38], and they appear as artifacts in numerical simulations

[17; 35; 38].

An advantage of the formula (5–1) is that reconstruction of fR is local, i.e.,

reconstruction at a point x requires only integrals over lines close to x. In [57]

it is shown that fR approximates Λf in certain cases. Another, and apparently

the historically first method for 3D local tomography is an adaptation of the

algorithm by Feldkamp et al. [18] developed by P.J. Thomas at the Mayo Clinic.

While the details of this algorithm have not been published, it has been used in

various papers, e.g., [94; 14].

6. Local Tomography

Often only part of an object needs to be imaged. In this case it would be

preferable if only integrals over lines which intersect the region of interest (ROI)

are needed. We know from the discussion of the interior problem above that

we don’t have uniqueness. However, it turns out that the null functions are

nearly constant inside the ROI, and we know already that all singularities inside

the ROI are stably determined. Several approaches have been developed in the

literature. For example, the wavelet based method of [68] exploits the fact that

the error contains mostly low frequencies, and that these can be recovered by

supplementing the data with relatively few measurements outside the ROI. The

method of [80] which will be discussed below, extrapolates the missing data

and aims at reconstruction of f up to a constant error. Another method using

extrapolation of the missing data is described in [62, §VI.4].

Lambda tomography, the main topic of this section, was introduced indepen-

dently in [98] and [90]. It does not attempt to reconstruct the function f itself

but instead produces the related function Lf = Λf + µΛ−1f . This has the ad-

vantage that the reconstruction is strictly local in the sense that computation
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of Lf(x) requires only integrals over lines passing arbitrarily close to x. Local

tomography has found applications in medical imaging [94], nondestructive test-

ing [85; 99], and microtomography [15; 16; 83; 86]. Extensions to more general

settings have been presented in [37; 45]. Other approaches include [2] and [41].

Intelligent use of Lambda tomography requires knowledge of what kind of

useful information about f is retained in Lf . Let us consider an example. The

upper left of Figure 1 shows an ordinary, global reconstruction of the density

function f of a calibration object used by the Siemens company. The data come

from an old generation Siemens hospital scanner. Units are such that the radius

of the global reconstruction circle is one. The figure displays the reconstruction

inside the rectangle [−0.5, 0.5]2. The scanning geometry is a fan-beam geometry

(7–10) with source radius R = 2.868, p = 720 source positions, and 2q = 512

rays per source. The upper right of Figure 1 shows a reconstruction of Λf .

Reconstructions of Λ−1f and Lf = Λf + 46Λ−1f are shown in the lower left

and lower right, respectively. The similarity between the images of f and Λf is

at first glance surprising. We expect that a good local reconstruction method

should detect the singularities of f , since these are stably determined by the

data. Indeed, since Λ is an invertible elliptic pseudo-differential operator, f and

Λf have precisely the same singular set. However, we see that Λf is cupped

where f is constant, and that the singularities are amplified in Λf . The image of

Λ−1f by itself seems less useful, but it provides a countercup for the cup in Λf .

Thus, the image of Lf shows less cupping and looks even more similar to f than

the image of Λf . For example, the image of Lf indicates that the density just

inside the boundary of the object is larger than the density outside the object,

while this can not be clearly seen from the image of Λf . To achieve this effect,

a good selection of µ is necessary. A prescription for selecting µ can be found in

[15].

A more detailed understanding of images of Λf or Lf is obtained from study-

ing quantitative relations between Λf , Λ−1f and f [14; 15]. Some of the results

for Λf are as follows. For corresponding results on Λ−1 see [14].

Theorem 6.1. ([14]) Let X and Y be measurable sets, n ≥ 2, and let (1 +

|x|)−1−nf be integrable.

(a) If fr(x) = f(x/r), then Λfr(x) = r−1Λf(x/r).

(b) ΛχX(x) > 0 on X◦, and < 0 on Xc◦; ΛχXc = −ΛχX .

(c) ΛχX is subharmonic (Laplacian ≥ 0) on X◦, and superharmonic on Xc◦.

This implies that ΛχX cannot have a local maximum in X◦, nor a local min-

imum in Xc◦.

(d) If x is outside the support of f , then

Λf(x) =
1 − n

π|Sn−2|

∫

Rn

|x− y|−1−nf(y) dy.
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(e) Near ∂X we have |ΛχX(y)| ∼ 1/d(y, ∂X), where d(x, ∂X) is the distance of

x to ∂X.

Remark 6.2. The results for ΛχX are of practical interest, since in many appli-

cations the function f can be modeled as a linear combination of characteristic

functions.

• As a consequence of (a), small features are amplified in images of Λf . This

is beneficial for the detection of small, low contrast details. For example, in

Figure 1 the small holes in the rectangular pieces are more clearly visible in

the image of Λf than in the image of f .

• Part (b) indicates that the jumps of Λf at discontinuities of f have the same

direction as those of f .

• Part (c) explains why there are no oscillations which could be mistaken for

actual details in images of Λf .

• Part (d) shows that if f has compact support, then Λf cannot. This means

that there are global effects in images of Λf in the sense that the value of

Λf(x0) depends on the values of f everywhere. However, Part d) implies that

Λf(x) will decay at least as O(|x|−1−n) for |x| → ∞. More refined estimates

are derived in [15].

• Part (e) shows that a finite jump in f causes an infinite jump in Λf . In a

neighborhood of ∂X, Λf is not a function but a principal value distribution

[14].

While Lf retains the signs of jumps in density, it does not give direct informa-

tion about the size of these jumps. However, such information about density

differences may be extracted in certain cases. In the following we will describe

several methods. We assume that f is a linear combination of a smooth function

and of characteristic functions of sets:

f = f0 +
∑

ciχXi
, (6–1)

with f0 ∈ C∞
0 , |∂Xi| = 0, Xi = X◦

i , and X◦
i ∩X◦

j = ? if i 6= j.

We are interested in estimating cj −ci when Xj , Xi have a common nontrivial

boundary Γ,

Γ = ∂Xi ∩ ∂Xj ∩W 6= ?, W = (Xi ∪Xj)
◦.

We first discuss the method developed in [15]. It is based on Theorem 6.3

below. The theorem expresses the fact that for x sufficiently close to Γ, we have

cj − ci =
Λf(x)

ΛχXj
(x)

+O(d), |cj − ci| =
|∇Λf(x)|

|∇ΛχXj
(x)| +O(d2),

where d is the distance from x to Γ.

Recall that a set Y has curvature ≤ 1/r along a subset Y0 of ∂Y if for each

point ȳ ∈ Y0 there are open balls B ⊂ Y and B′ ⊂ Y c of radius r with ȳ ∈ B̄∩B′.

The distance of a point x to a set Y is denoted by d(x, Y ).
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Theorem 6.3 [15]. Let f be as in (6–1). Fix i, j, let W = (Xi ∪ Xj)
◦ and

assume that

Γ = ∂Xi ∩ ∂Xj ∩W 6= ?.

Let Xj have curvature ≤ 1/r, r > 0, along a closed subset Γ0 of Γ. Let x ∈W \Γ

be such that d(x, ∂Xj) = d(x,Γ0) = d. Then
∣∣∣∣

Λf(x)

ΛχXj
(x)

− (cj − ci)

∣∣∣∣ ≤ F1(d/r)

(
max |Λf0| + C1

maxk 6=j |ck|
d(x, ∂W )

)
d, (6–2)

∣∣∣∣
|∇Λf(x)|

|∇ΛχXj
(x)| − |cj − ci|

∣∣∣∣ ≤ F2(d/r)

(
max |∇Λf0| + C2

maxk 6=j |ck|
d(x, ∂W )2

)
d2. (6–3)

The constants C1 and C2 and the functions F1, F2 can be given explicitly . For

example, for n = 2, we have C1 = 2 and C2 = 3. Furthermore,

lim
t→0+

F1(t) = lim
t→0+

F2(t) = π.

The error terms on the right-hand sides of (6–2) and (6–3) indicate that in general

the estimate (6–3) should be more accurate than (6–2) when d is small. The

terms involving d(x, ∂W ) come from the influence of other boundaries than Γ.

Numerical implementation of (6–2) or (6–3) requires computation of recon-

structions of Λf and ΛχXj
inside a region of interest R. In the following let

Λ̄f and Λ̄χXj
denote these reconstructions, rather than the functions Λf and

ΛχXj
themselves. It is also assumed that f has the form (6–1) with sets Xi such

that Xi ⊂ R or Xi ∩ R = ?. This entails no loss of generality since any set Xi

violating this condition can be replaced by the two sets Xi ∩ R and Xi ∩ Rc.

Λ̄χXj
is computed using simulated x-ray data, after ∂Xj has been found from

Λ̄f . In principle, either (6–2) or (6–3) can be used, but as discussed above the

method based on (6–3) is likely to be more accurate. This gives only |cj − ci|,
but since the sign of cj − ci is preserved in Λf , this is all that is needed.

The method consists of the following steps:

(i) Compute Λ̄f from local data inside a region of interest R.

(ii) Determine Xj by finding ∂Xj from Λ̄f .

(iii) Compute Λ̄χXj
inside the region of interest from simulated x-ray data, using

the same sampling geometry as for the original data.

(iv) If x ∈ ∂Xj , take the ratio |∇Λ̄f(x)|/|∇Λ̄χXj
(x)| as an estimate for the

magnitude of the density jump. It is advisable to use suitable averages of the

gradients over points near the boundary of Xj instead of the gradient at a

single point x. This reduces effects due to measurement noise.

Following [12], we demonstrate the method with x-ray data from a medical scan-

ner. Additional applications of this method are reported in [15; 12; 83].

The top panel of Figure 2 shows again the global reconstruction of the cali-

bration object. The region of interest R is indicated by the box. The picture

in the lower left shows the local reconstruction Λ̄f inside the region of interest.
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Figure 2. Top: Global reconstruction of density f(x) of calibration object. Box

indicates region of interest R. Bottom left: Local reconstruction Λ̄f inside

region R = [−0.14,−0.08] × [0.008, 0.058] (contained in the small box in the

top panel). Bottom right: Result of automatic edge detector applied to the

image of Λ̄f shown in top right. Pixels where an edge is detected are white.

The goal is to determine the density difference between the small hole and its

surroundings. Let Xj be the characteristic function of the hole.

Finding ∂Xj involves edge detection. This is currently done by the user of the

method, who specifies the vertices of a polygon approximating ∂Xj . Matlab’s

image processing toolbox allows to do this selection conveniently. Our software

gives the user the option to use either the reconstruction Λ̄f itself, an image of

|∇Λ̄f |, or the result of a standard automatic edge detector, for specifying the

polygon. Which image is most convenient differs from application to applica-

tion. In [15], where the method was applied to projection data from a human

pelvis, the gradient image was most convenient. Here the result of the auto-

matic edge detector (Matlab’s edge command) applied to the reconstruction Λ̄f

is satisfactory, as can be seen from the lower right of Figure 2.
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Figure 3. Top left: Image of |∇Λ̄f | inside R, f being the density function of the

calibration object. Box indicates region R′. Top right: Image of |∇Λ̄χ
Xj

| inside

R. Box indicates region R′. Bottom left: Graph of estimated density difference

d(t) for 0.5 ≤ d(t) ≤ 0.95. Bottom right: Number N(t) of points contributing

to the averages of |∇Λ̄f | (solid line), and of |∇Λ̄χ
Xj

| (dotted line).

The top left of Figure 3 shows an image of |∇Λ̄f | inside the region of in-

terest. The box indicates the subregion R′ containing the part of the boundary

which will be used to estimate the density jump. Here we average over the whole

boundary of the small hole. Matlab’s imcrop command allows convenient selec-

tion of R′ by the user. The corresponding image for |∇Λ̄χXj
| is shown in the

top right part of the figure. This reconstruction was computed from simulated

x-ray data using the same scanning geometry as in the reconstruction from real

data. Having no specific information on the detectors, the effect of the positive

detector width was modeled by averaging line integrals over the angular distance

between two adjacent detectors.

The following averaging procedure was used to estimate the density difference.

Let M be the maximum of |∇Λ̄f | in R′. Take the average of |∇Λ̄f(x)| over

all points x in R′ such that |∇Λ̄f(x)| > tM for some t ∈ (0, 1). The same

averaging procedure is applied to |∇Λ̄χXj
(x)|, with M replaced by the maximum
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Figure 4. Two left panels: White points are those where |∇Λ̄f(x)| exceeds

t maxy∈R′ |∇Λ̄f(y)| for t = 0.6 (leftmost) and t = 0.9 (middle left). Two right

panels: White points indicate where |∇Λ̄χ
Xj

(x)| > t maxy∈R′ |∇Λ̄χ
Xj

(y)| for

t = 0.6 (middle right) and t = 0.9 (rightmost).

of |∇Λ̄χXj
| in R′. The ratio of the two averages is the estimate d(t) for the

density difference. This estimate depends on the choice of t. If t is too close to 1,

the average is taken over very few points, while a small t will include points too

far from the boundary. So t should be chosen small enough to have sufficiently

many points for averaging, but large enough so that only points close to the

boundary contribute to the averages. The graph in the bottom left of Figure 3

displays the estimated density differences d(t) for 0.5 ≤ t ≤ 0.96. The bottom

right shows the numbers N(t) of points contributing to the averages of |∇Λ̄f |
(solid line), and of |∇Λ̄χXj

| (dotted line). If t ≥ 0.9 very few points contribute

to the average of |∇Λ̄f(x)|. The corresponding estimates are therefore likely to

be unreliable. On the other hand, for t < 0.6 points away from the boundary

begin to contribute to the average. The binary images in Figure 4 show the

location of the points considered for the averages in the case of t = 0.6, and

t = 0.9, respectively. Hence reasonable estimates for the density difference are

the values of d(t) for 0.6 ≤ t ≤ 0.9. These values lie between 1782 and 1898. The

global reconstruction indicates that the true density difference is approximately

1854. Hence all of the acceptable estimates lie between 96 and 102 per cent of

the true value. Since the x-ray data have been scaled by an unknown factor, the

reconstructed values do not correspond to Hounsfield numbers.

When implementing the method described above a few parameters have to

be chosen judiciously and a few comments on how to do this are in order. If

the filtered backprojection algorithm is used the reconstruction Λ̄f will, apart

from discretization errors, be equal to e ∗ Λf . The point-spread function e is

assumed to be of the form e = er defined in (7–5) and (7–8) below, usually with

α = 11.4174; compare the appendix of [14]. Choosing the point spread radius r

entails the usual tradeoff between stability (larger r) and high resolution (smaller

r) and will depend on the number of measured line integrals as well as on the

accuracy of these measurements. In the example above r = 0.0225, which means

that the minimum of the convolution kernel falls on the second detector; see [14,

§ 9].
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The other important parameter is the spacing h of the grid of points where

|∇Λ̄f | ' |∇(e ∗ Λf)| is computed. |∇(e ∗ Λf)| varies rapidly near a boundary

and h has to be sufficiently small so that the maximum of the gradient at the

gridpoints is close to the overall maximum. The special case with f the char-

acteristic function of a halfspace seems to give sufficient guidance for practical

purposes. If f is the characteristic function χH of a halfspace H then both Λf

and e ∗Λf can be computed as follows. For x 6∈ ∂H one has ([14, Theorem 4.5])

ΛχH(x) = (πd̃(x))−1,

where d̃(x) is the signed distance of x from ∂H, i.e., d̃(x) = d(x, ∂H) for x ∈ H,

and d̃(x) = −d(x, ∂H) for x 6∈ H. Computing e ∗ ΛχH involves the Radon

transform (2–2) of e. Since e is radial, Rθe does not depend on θ. Therefore the

subscript θ will be suppressed and Re(s) viewed as a function of the one variable

s. It now follows that

e ∗ ΛχH(x) = HRe(d̃(x)), (6–4)

where H denotes the Hilbert transform as defined in (4–2). Observing that for

functions f of one variable Λf(t) = d
dtHf(t) gives

|∇(e ∗ ΛχH(x))| = |ΛRe(d̃(x))|. (6–5)

Inspection of the graph of ΛRe for e as in (7–8) and α = 11.4174 now yields

that the width of the interval where |ΛRe(t)| > 0.98(maxs∈R |ΛRe(s)|) is approx-

imately r/20. Hence a rule of thumb for choosing h would be to set h = r/20.

The method described above can be simplified by making a priori assumptions

about the unknown boundary ∂Xj , so that the polygonal approximations and

the reconstruction from simulated data are avoided. For example, Xj could be

assumed to be a halfspace H. Replacing Λf and ΛχXj
in (6–2) and (6–3) by

e ∗ Λf and e ∗ ΛχH , and using (6–4) and (6–5) gives the approximate formulas

cj − ci '
e ∗ Λf(x)

HRe(d̃(x))
, |cj − ci| '

|∇(e ∗ Λf(x))|
|ΛRe(d̃(x))|

. (6–6)

These two formulas are the basis of two of the algorithms proposed in [40; 78]

for dimension n = 2; see formulas (2.17) and (2.21) in [40]. The derivation in

[40; 78] is different and employs an asymptotic expansion for Λf , where f is

smooth except for jumps across smooth boundaries.

Another method to compute jumps of a function from essentially local data

is pseudolocal tomography [41; 78]. We follow the presentation given in [4] which

allows to understand the numerical implementation of this method in the frame-

work of equations (6–6).

The starting point for pseudolocal tomography is the two-dimensional inver-

sion formula from (4–3), which we repeat here:

f(x) =
1

4π

∫

S1

H∂Pθf(〈x, θ⊥〉) dθ =
1

4π2

∫ 2π

0

∫

R

d
dsPθf(s)

〈x, θ⊥〉 − s
ds dϕ.
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Now truncate the Hilbert transform integral and define

fd(x) =
1

4π2

∫ 2π

0

∫ 〈x,θ⊥〉+d

〈x,θ⊥〉−d

d
dsPθf(s)

〈x, θ⊥〉 − s
ds dϕ.

It was shown in [41] that f − fd is continuous, hence fd has the same jumps

as f . Recalling that Pθf(〈x, θ⊥〉) is the integral over the line in direction θ

which passes through x, we see that computation of fd(x) requires only integrals

over lines with distance at most d from x (“pseudo-local” reconstruction.)

In practice one has to use an approximate inversion formula and computes

fd,r(x) = er ∗ fd(x) =

∫ 2π

0

∫

R

k̃d,r(〈x, θ⊥〉 − s)Pθf(s) ds dϕ,

k̃d,r(t) =
1

4π2

∫ t+d

t−d

d
dsPθer(s)

t− s
ds,

where er is a radial function satisfying

er(x) = r−2e1(x/r), e1(x) = 0 for |x| > 1,

∫

R2

e1 dx = 1.

Note that k̃d,r(t) = 0 for |t| > d+ r, i.e., computation of fd,r(x) requires inte-

grals over lines with distance at most d+r from x. Furthermore, limd→∞ k̃d,r(t) =

(4π)−1H∂Pθer(t). Hence (4–6) gives that limd→∞ fd,r(x) = er ∗ f(x). Indeed,

the convolution kernel kd,r can be obtained from the kernel k in (4–7) by letting

m = 0 and truncating the Hilbert transform integral. The relation fd,r = er ∗ fd

was shown in [41].

It turns out that for small d (i.e., local data), fd is significantly different

from zero only in a narrow region near a boundary [41, Figure 3], and that the

convolution with the point spread function er alters these values so much that the

jumps cannot just be simply read off the reconstructed image fd,r. We need an

algorithm to obtain information about the jumps of f . The methods developed

by Katsevich and Ramm [41; 78] can be understood in the framework developed

for Lambda tomography. According to equations (6–6) we have, for x close to Γ,

cj − ci '
E ∗ Λf(x)

HRE(d̃(x))
, |cj − ci| '

|∇E ∗ Λf(x)|
|ΛRE(d̃(x))|

. (6–7)

The task now is to find Ed,r such that Ed,r ∗ Λf = fd,r = er ∗ fd.

Proposition 6.4 [78; 4]. Define Ed,r by

PθEd,r = (Pθer) ∗Md

with

Md(s) = − 1

π
ln(|s/d|)χ[−d,d](s).

Then

fd,r(x) = Ed,r ∗ Λf(x).
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With this result, equations (6–7) give

cj − ci '
fd,r(x)

HREd,r(d̃(x))
, |cj − ci| '

|∇fd,r(x)|
|ΛREd,r(d̃(x))|

, (6–8)

and we can apply the same algorithms for recovering the jumps as in Lambda

tomography.

Some remarks are in order.

1. Because Ed,r is radial, we have HREd,r(0) = 0, so fd,r(x) ' 0 for x ∈ Γ. This

makes it difficult to use the first relation (6–8) in practice, since finding d̃(x)

is not easy. See the algorithm given [41] and further discussed in [4]; see also

[17]. But since |∇fd,r| is maximal for x ∈ Γ, one can find the points x ∈ Γ by

looking for the local maxima of |∇fd,r| and then estimate the jump by

|cj − ci| '
|∇fd,r(x)|
|ΛREd,r(0)| , x ∈ Γ.

This approach has essentially been used in [78] for pseudolocal tomography

and in [40] for Lambda tomography.

2. The property that fd has the same jumps as f is not used in the algorithm.

3. Ed,r(x) = 0 for |x| > d + r. Hence our derivation of the algorithm is only

justified for d + r sufficiently small. In practice the method seems to work

also for much larger values of d+ r.

Another method which can be used for region of interest tomography is the

wavelet-based multiresolution local tomography of [80]. It illustrates the possible

uses of wavelets to “localize” the x-ray transform, or, more precisely, to sepa-

rate the features which are well determined by local data from those who are

not. For readers unfamiliar with wavelets we have collected some basic facts in

Appendix A.

Consider a (two-dimensional) multiresolution analysis of nested subspaces Vj ,

j ∈ Z of L2(R
2). We assume a dilation matrix M = 2I (see Definition A.2

below), where I is the identity matrix, and use the notation

fj,k(x) = 2f(2jx− k) for j ∈ Z, k ∈ Γ = Z
2, x ∈ R

2

(compare (A–1) in the Appendix). Let Φ be the scaling function and Ψµ, µ =

1, 2, 3 the associated wavelets. Since the Φj+1,k, k ∈ Z
2 are a Riesz basis of the

subspace Vj+1, a function f ∈ Vj+1 can be written as

f(x) =
∑

k∈Z2

Ãj+1,kΦj+1,k(x).

The so-called approximation coefficients Ãj,k are given by

Ãj,k = 〈f, Φ̃j,k〉
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where 〈, 〉 denotes the inner product in L2 and Φ̃ is the biorthogonal scaling

function (Definition A.4). Alternatively we can use the relation Vj+1 = Vj +Wj

and obtain the expansion

f(x) =
∑

k∈Z2

Ãj,kΦj,k(x) +

3∑

µ=1

∑

k∈Z2

D̃µ
j,kΨµ

j,k(x).

We can interpret the first sum as an approximation to f in Vj ⊂ Vj+1, i.e.,

at a lower resolution. The second sum supplies the missing detail information.

Therefore the coefficients

D̃µ
j,k = 〈f, Ψ̃µ

j,k〉
are called detail coefficients. The Fast Wavelet Transform and its inverse (see

Theorem A.6) allow efficient computation of the Ãj,k and D̃µ
j,k, k ∈ Z

2 from the

Ãj+1,k, k ∈ Z
2, and vice versa.

We now observe that the approximation and detail coefficients can be com-

puted directly from the x-ray data. Let f∨(x) = f(−x). Then

Ãj,k = 〈f, Φ̃j,k〉 = (f ∗ (Φ̃j,0)
∨)(2−jk),

and Similarly

D̃µ
j,k = 〈f, ψ̃µ

j,k〉 = (f ∗ (Ψ̃µ
j,0)

∨)(2−jk).

Hence we can use the approximate inversion formula (4–6) with e(x) = (φ̃j,0)
∨(x)

and reconstruction on the grid x = 2−jk, k ∈ Z
2, to obtain the approxima-

tion coefficients directly from the x-ray data. For the detail coefficients we let

e = (Ψ̃µ
j,0)

∨. Alternatively one could first compute the approximation coefficients

Ãj+1,k by letting e(x) = (φ̃j+1,0)
∨(x) and choosing the finer grid x = 2−j−1k,

k ∈ Z
2, and then use the Fast Wavelet Transform to obtain the approximation

and detail coefficients at level j. Since the additional computational burden of

applying the Fast Wavelet Transform is negligible compared to the effort re-

quired for the reconstruction from the x-ray data, this alternative method seems

preferable, since only one point-spread function and corresponding convolution

kernel need to be used. However, if not all coefficients on level j are needed, the

first method will be more efficient.

The next question is how this approach allows to ‘localize’ the x-ray transform,

i.e., to separate features which are determined by local data from those which

are not. It was observed in [68] that the detail coefficients for sufficiently large

j should be well determined by local data, if the wavelets Ψµ have vanishing

moments. Let’s see why.

Definition 6.5. A function f of n variables has vanishing moments of order

up to N , if ∫

Rn

xαf(x) dx = 0
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for all multiindices α = (α1, . . . , αn) with |α| =
∑
αi ≤ N . Recall that the αi

are non-negative integers and that xα = xα1

1 xα2

2 . . . xαn
n .

The nonlocality in the approximate inversion formula comes from the convolution

kernel k in (4–7) in case of m = 0. In two dimensions this is caused by the pres-

ence of the Hilbert transform in the formula k = (4π)−1ΛPθe = (4π)−1H∂Pθe.

The key observation now is that the Hilbert transform of a function with van-

ishing moments decays fast.

Lemma 6.6. ([80, p. 1418])Let f(t) ∈ L2(R) vanish for |t| > A and have

vanishing moments of order up to N . Then, for |s| > A,

|Hf(s)| ≤ 1

π|s−A|N+2

∫ A

−A

|f(t)tN+1| dt

The construction of wavelets with vanishing moments is well known, and it turns

out that the functions ∂Pθ(Ψ̃
µ
j,0)

∨ inherit the vanishing moments from the Ψ̃µ.

Therefore the convolution kernels k = (4π)−1H∂Pθ(Ψ̃
µ
j,0)

∨ will decay rapidly

outside the support of Pθ(Ψ̃
µ
j,0)

∨.

So we see that the detail coefficients for large j, when Ψ̃µ
j,0 has small support,

are well determined by local data. This is intuitively plausible since these coef-

ficients contain high-frequency information, and we know already from Lambda

tomography that high-frequency information is well-determined. So the non-

locality shows its greatest impact in the approximation coefficients. Since the

scaling function satisfies
∫

Φ̃(x) dx = 1, its zero order moment does not vanish.

One could still choose Φ̃ so that the moments of order 1 through N vanish. It

is shown in [80, p. 1419] that in such a case the resulting convolution kernel k

satisfies

|k(s)| = O(s−2) +O(s−N−3).

It seems that this does not achieve much, since we cannot remove the leading

O(s−2) term. Nevertheless, the authors of [80] found that some scaling func-

tions having vanishing moments lead to convolution kernels with sufficiently

rapid decay for practical purposes. These scaling functions where found from

one-dimensional scaling functions by the method of Definition A.8. In their re-

constructions the authors of [80] also extrapolated the missing data by constant

values, thus reducing cupping artifacts. While it is suggested in [80] to first com-

pute the approximation and detail coefficients at level j and then use an inverse

fast wavelet transform to obtain the approximation coefficients at level j + 1,

numerical tests in [87] indicated that the simpler approach of directly computing

the approximation coefficients at level j+1 yields equivalent results. We observe

that this can be done without using wavelet theory, namely just by specifying

the particular point spread function e = (Φ̃j+1,0)
∨ in (4–6).
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7. Sampling the 2D X-Ray Transform

We first consider the parallel-beam geometry in two dimensions. Our analysis

of sampling and resolution will use techniques from Fourier analysis. These

require both the domain of Pf as well as the sampling sets to have a group

structure. In 2D we parameterize θ ∈ S1 by θ = (cosϕ, sinϕ), and let θ⊥ =

(− sinϕ, cosϕ). We write Pf(ϕ, s) for Pf(θ, sθ⊥) and consider Pf to be a

function on the group T × R, where T denotes the circle group. We take the

interval [0, 2π) with addition modulo 2π as a model for T.

Recall that for fixed ϕ, the values of Pf(ϕ, s) for different s correspond to

integrals over a collection of parallel lines. We first consider the case where Pf

is measured at points

(ϕj , sjl), j = 0, . . . , P−1, l ∈ Z.

Since for each angle ϕj we measure integrals over a collection of parallel lines

l(ϕj , sjl), such an arrangement is called a parallel-beam geometry. We would like

the set of points (ϕj , sjl) to be a discrete subgroup of T × R, and for practical

reasons we require that more than one measurement is taken for each occurring

angle ϕj . We call a sampling set which satisfies these requirements an admissible

sampling lattice (ASL). There are several ways to parameterize such lattices

[11; 13; 16]. Here we use the parametrization given in [16]. If L is an ASL, then

there are d > 0 and integers N,P , such that 0 ≤ N < P and

L = L(d,N, P ) =

{(ϕj , sjl) : ϕj = 2πj/P, sjl = d(l + jN/P ), j = 0, . . . , P−1; l ∈ Z} . (7–1)

We see that P is the number of angles (views). For each view angle ϕj the

values sjl, l ∈ Z, are equispaced with spacing d, hence d is the detector spacing.

The parameter N characterizes an angle dependent shift of the detector array.

We also see that there are P different lattices for given parameters d and P .

The most important lattices are the standard lattice

LS = {(ϕj , sl) : ϕj = 2πj/P, sl = d l, j = 0, . . . , P−1, l ∈ Z} ,

which is obtained by letting N = 0, and the interlaced lattice

LI = {(ϕj , sjl) : ϕj = 2πj/P, sjl = d(l + j/2), j = 0, . . . , P−1, l ∈ Z} ,

where P is even and N = P/2. We see that for the standard lattice the detector

positions sl do not change with the angle of view. For the interlaced lattice the

detector array is shifted by one-half of a detector spacing when going from one

angle of view to the next.

In practice one chooses P = 2p for both lattices, and for the interlaced lattice

one lets p be even. Then, because of the symmetry relation

Pf(ϕ, s) = Pf(ϕ+ π,−s), (7–2)
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only the angles ϕj ∈ [0, π) need to be measured. It can be shown that among all

admissible lattices the standard and interlaced lattices are the only ones which

fully exploit this symmetry [16].

We now describe the implementation of the filtered backprojection algorithm,

which is based on discretizing the approximate inversion formula (4–6) with the

trapezoidal rule. In two dimensions (4–6) reads

e ∗ Λmf(x) = (Λme) ∗ f(x) =

∫ 2π

0

∫

R

k(〈x, θ⊥〉 − s)Pf(ϕ, s) ds dϕ,

k(s) =
1

4π
Λm+1Pθe(s).

(7–3)

We assume that we have sampled Pf on an admissible lattice. Discretizing (7–3)

with the trapezoidal rule gives

e ∗ f(x) ' 2π

P

P−1∑

j=0

Qj(〈x, θ⊥j 〉), Qj(t) = d
∑

l

k(t− sjl)Pf(ϕj , sjl),

with ϕj , sjl as in (7–1), and θ⊥j = (− sinϕj , cosϕj). We assume that f is sup-

ported in the unit disk. Hence the sum in the discrete convolution is finite.

The reconstruction is usually computed for values of x on a rectangular grid

xm1m2
= (m1/M1,m2/M2), |mi| ≤ Mi. Since computing the discrete convolu-

tion Qj(〈x, θ⊥j 〉) for each occurring value of 〈x, θ⊥j 〉 would take too long, one first

computes Qj(iH), |i| ≤ 1/H, and then obtains an approximation IHQj(〈x, θ⊥j 〉)
for Qj(〈x, θ⊥j 〉) by linear interpolation with stepsize H. We assume that

H = d/(N ′m) with 0 < m,N ′ ∈ Z and N ′N/P ∈ Z.

This gives H = d/m for the standard lattice (N ′ = 1) and H = d/(2m) for the

interlaced lattice (N ′ = 2). Then the effect of interpolating the convolution is

the same as replacing the kernel k with the piecewise linear function IHk which

interpolates k at the points Hl, l ∈ Z; see, e.g., [11, p. 84]. Hence the algorithm

computes the function

fR(x) =
2π

P

P−1∑

j=0

IHQj(〈x, θ⊥j 〉)

=
2πd

P

P−1∑

j=0

∑

l∈Z

IHk
(
〈x, θ⊥j 〉 − sjl

)
Pf (ϕj , sjl) . (7–4)

If e is not radial, k and IHk will depend on θ, which is not explicitly reflected in

our notation. Matlab source code implementing (7–4) for the standard lattice is

provided for illustrative purposes (see Appendix B).

In practice one chooses a basic point spread function e1 and then controls the

resolution by using a scaled version

e(x) = er(x) = r−2e1(x/r). (7–5)
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The corresponding kernels scale as

kr(s) = r−2−mk1(s/r). (7–6)

Examples for point spread functions and kernels are as follows. A popular choice

for global tomography (m = 0) is the Shepp–Logan kernel [62, p. 111]:

k1(s) =
1

2π3

(π/2) − s sin s

(π/2)2 − s2
. (7–7)

This kernel is bandlimited with bandwidth 1, i.e., the Fourier transform

k̂1(σ) =
1

2
(2π)−3/2|σ| sin(πσ)

πσ
χ

[−1,1](σ)

vanishes for |σ| > 1. It follows that the scaled kernel kr(s) = r−2k1(s/r) is

bandlimited with bandwidth b = 1/r, and the same is true for the corresponding

point-spread function er and hence for er ∗ f(x).

Since the kernel (7–7) does not have compact support, it is not useful for local

tomography. There we start with a point spread function

e1(x) =

{
C(1 − |x|2)α+1/2 for |x| < 1,

0 for |x| ≥ 1,

C = Γ(α+ 5/2)/(πΓ(α+ 3/2));

(7–8)

see [14, p. 482]. The corresponding kernel for computing Λf (i.e., m = 1) is

K1(s) =





−1

4π

d2

ds2
Pθe1(s) =

2Γ(α+5/2)√
πΓ(α+1)

(1−s2)α−1(1−(2α+1)s2) for |s| < 1,

0 for |s| ≥ 1.

Here we used the fact that Λ2 = −d2/ds2 in one dimension. Now the kernel is

no longer bandlimited, but has compact support. The scaled kernels Kr(s) =

r−3K1(s/r) vanish for |s| > r. The kernel for global tomography generated

by the point spread function (7–8) has a complicated analytic expression but a

quickly convergent series expansion [88].

Discretization of (4–8) yields the filtered backprojection algorithm for the

fan-beam sampling geometry. Recall that f is supported in the unit disk. Let

R > 1, a = R(cosα, sinα), θ = −(cos(α−β), sin(α−β)), and x−a = −|x−a| ×(
cos(α−γ), sin(α−γ)

)
. Writing Df(α, β) for Daf(θ), (4–8) becomes

er ∗ Λmf(x) = R

∫ 2π

0

∫ π/2

−π/2

Df(α, β) cos(β)kr(|x− a| sin(γ−β)) dβ dα. (7–9)

In order to evaluate the inner integral efficiently, a “homogeneous approximation”

[46] is needed. It follows from (4–7) and (7–6) that

kr(|x− a| sin(γ−β)) = |x− a|−2−mkc(sin(γ−β)), c = r/|x− a|.
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The approximation consists in replacing c = r/|x−a| by a constant independent

of x and a. This gives

er ∗ Λmf(x) ' R

∫ 2π

0

|x− a|−2−m

∫ π/2

−π/2

Df(α, β) cos(β)kc(sin(γ−β)) dβ dα.

From here we can proceed as before by discretizing with the trapezoidal rule and

inserting an interpolation step. The standard sampling lattice for the fan-beam

geometry has the form

LSF =
{
(αj , βl) : αj = 2πj/p for j = 0, . . . , p− 1,

βl = l arcsin(1/R)/q for l = −q, . . . , q − 1
}
. (7–10)

The reconstruction of Λ−1f is not unstable, so convolution with er is not needed.

One can directly discretize the formula

Λ−1f(x) = (R/4π)

∫ 2π

0

|x− a|−1Df(α, γ) cos γ dα,

which comes from letting eb → δ in (7–9).

In order to further analyze the parallel-beam algorithm we use Shannon sam-

pling theory. We begin with some definitions. We define the Fourier transform

of a function g with domain T × R by

ĝ(k, σ) =
1

2π

∫ 2π

0

∫

R

g(ϕ, s)e−i(kϕ+σs) ds dϕ, (k, σ) ∈ Z × R.

The corresponding inverse Fourier transform is given by

G̃(ϕ, s) =
1

2π

∫

Z×R

G(ζ)ei〈z,ζ〉 dζ (where z = (ϕ, s))

=
1

2π

∑

k∈Z

∫

R

G(k, σ)e−i(kϕ+σs) dσ. (7–11)

The reciprocal lattice L
⊥ ⊂ Z × R is defined as

L
⊥(d,N, P ) =

(
P −N
0 2π/d

)
Z

2.

For g ∈ C∞
0 (T × R), L = L(d,N, P ) an ASL, K ⊂ Z × R compact define

Sg(z) =
d

P

∑

y∈L

g(y)χ̃K(z − y), z ∈ T × R,

where χ̃K is the inverse Fourier transform of the characteristic function of K.

We may view Sg as an approximation of g computed from sampled values of g on

the lattice L. The following classical sampling theorem gives an error estimate

for this approximation:
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Theorem 7.1. Let g ∈ C∞
0 (T × R), L an ASL and K be a compact subset of

Z × R such that the translates K + η, η ∈ L
⊥ are disjoint . Then

|g(z) − Sg(z)| ≤ π−1

∫

(Z×R)\K

|ĝ(ζ)| dζ.

This result is an adapted version of the multidimensional sampling theorem of

Petersen and Middleton [69]. For a proof see, for example, [62, p. 62] or [11,

Theorem 2.2].

If supp(ĝ) ⊆ K, then g = Sg, i.e., g can be recovered exactly from its samples

on the lattice L.

In order for Sg to be close to g, the set K should be such that ĝ is concentrated

in K. The “sampling condition” that the translates K + η, η ∈ L
⊥ be disjoint

requires the reciprocal lattice L
⊥ to be sufficiently sparse, and therefore the

sampling lattice L to be sufficiently dense.

A suitable set K for sampling the 2D x-ray transform was given by Natterer

[62] based on results by Lindgren and Rattey [81]:

Theorem 7.2. [62, p. 71] For b > 0 and 0 < ϑ < 1 let

K0(ϑ, b) =
{
(k, σ) ∈ Z × R : |σ| < b, |k| < ϑ−1 max(|σ|, (1 − ϑ)b)

}
. (7–12)

Let f ∈ C∞
0 (Ω). Then

∫

(Z×R)\K0

|P̂ f(ζ)| dζ ≤ 8

π2ϑ

∫

|ξ|>b

|f̂(ξ)| dξ + ‖f‖L1
η(ϑ, b), (7–13)

where η(ϑ, b) decreases exponentially with b, satisfying an estimate

0 ≤ η(ϑ, b) ≤ C(ϑ)e−λ(ϑ)b

with constants C(ϑ), λ(ϑ) > 0.

Usually the parameter ϑ is chosen close to 1. The parameter b plays the role of

a cut-off frequency. If |f̂(ξ)| is sufficiently small for |ξ| > b then the right-hand

side of (7–13) will be small. In this case Theorem 7.1 imposes the condition that

the sampling lattice L be such that the translated sets K0(ϑ, b) + η, η ∈ L
⊥ are

disjoint. In terms of the lattice parameters d,N and P these conditions are as

follows:

For the standard lattice N = 0, and the reciprocal lattice L
⊥ equals

L
⊥ = {(Pk1, 2πk2/d) : k1, k2 ∈ Z}.

For reasons of efficiency as discussed above we let P = 2p be even. The translated

sets K0(ϑ, b) + η, η ∈ L
⊥ are disjoint if and only if

d < π/b and p > b/ϑ, P = 2p. (7–14)

For the interlaced lattice we again let K = K0(ϑ, b) as in (7–12). For this

lattice P = 2p and N = P/2 = p. We always let p be even, so that because of

the symmetry relation (7–2) only the angles ϕj ∈ [0, π) need to be measured.
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The reciprocal lattice is L
⊥ = {(p(2k1−k2), 2πk2/d) : k1, k2 ∈ Z}. It turns out

[62; 11] that the sets K0(ϑ, b) + η, η ∈ L
⊥ are disjoint if either the conditions

(7–14) are satisfied, or if

π

b
< d ≤ 2π

b
and p > max

(
2π

ϑd
,

(2 − ϑ)b

ϑ

)
, p even , P = 2p. (7–15)

We see that the interlaced lattice allows for a maximal detector spacing of

d = 2π/b which is twice as large as the maximum allowed for standard lattice,

with only a moderate increase in p. Sampling conditions for a general admissible

sampling lattice have been given in [13]. We see that both (7–14) and (7–15) re-

quire p to be greater than the cut-off frequency b, which corresponds to condition

(b) in Remark 3.4 on avoiding the effects of nonuniqueness.

It remains to investigate if the theoretically superior resolution of the in-

terlaced lattice can be realized in practice. In principle there are two obvious

approaches: One could first interpolate the missing data to a denser lattice and

then use any reconstruction algorithm. This approach has been successfully tried

in [10], but we will not discuss it here. The second approach would be to recon-

struct directly from interlaced data. It turns out that the filtered backprojection

algorithm is very suitable for this purpose [44; 11; 16]. We have the following

error estimate, which extends the results of [44] and [11].

Theorem 7.3 [16]. Let e be radial and sufficiently smooth, let f ∈ C∞
0 (R2) be

supported in the unit disk and let the sets K0(ϑ, b) + η, for η ∈ L
⊥, be disjoint .

Then

fR(x) = GH ∗ e ∗ Λmf(x) +
4∑

i=1

Ei(x),

ĜH(ξ) = (2π)−1 sinc2(H|ξ|/2)χ1(|ξ|/b),

|E1(x)| ≤ c ‖k̂‖∞
∫

|ξ|>b

|f̂(ξ)| dξ,

|E2(x)| ≤ c‖f‖∞
∫

|σ|>b

|k̂(σ)| dσ,

|E3(x)| ≤ (2π)3/2 sup
θ

∫ b

−b

(
1 − sinc2(Hσ/2)

)
|k̂(σ)|

∑

l∈Z

∣∣∣∣f̂
((

σ +
2πl

d

)
θ

)∣∣∣∣ dσ,

|E4(x)| ≤ c‖f‖∞‖k̂‖∞ η(ϑ, b).

Here sinc x = (sinx)/x. The proof ([16]) is somewhat technical and will not be

given here. However, it is worthwhile to note that apart from the interpolation

step this is an estimate for the error of numerical integration by the trapezoidal

rule. The estimate for this error is based on the Poisson summation formula for

T × R. This approach was first applied in the present context by Kruse [44].

We will discuss the origin and importance of the four error terms. The error E1

is the so-called aliasing error stemming from the fact that f is not bandlimited,
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since it has compact support. If the cut-off frequency b is chosen sufficiently

large, E1 will be small. The sampling conditions then require that the number

of data available is commensurate with b. The error E2 is present when k is not

bandlimited with bandwidth b. In global tomography, i.e., when m = 0, one can

chose e and k to be b-bandlimited, so that E2 vanishes. In local tomography

one wishes k to have compact support, so k cannot be bandlimited.

The error E3 is caused by the interpolation step and usually not a concern

when using the standard lattice. This can be explained as follows ([11]): Consider

the common parameter choice d = H = π/b. Since f̂(ξ) is assumed to be small

for |ξ| > b, only the term with l = 0 in the sum will be significant, i.e., we have

for |σ| ≤ b
∑

l∈Z

∣∣∣f̂((σ + 2πl/d)θ)
∣∣∣ =

∑

l∈Z

∣∣∣f̂((σ + 2bl)θ)
∣∣∣ ' |f̂(σθ)|.

Usually the density function f is non-negative so that |f̂(σθ)| has a sharply

peaked maximum at σ = 0 and is very small for |σ| close to b. In such a case the

error E2 will be small since the factor 1 − sinc2(Hσ/2) is small exactly where

|f̂(σθ)| is large.

The error E3 is of much greater concern when the interlaced lattice is used.

Consider the choice of parameters d = 2π/b, H = π/b. Now the sum over l in

the estimate for E3 may have three significant terms for |σ| < b:
∑

l∈Z

∣∣f̂((σ+2πl/d)θ)
∣∣ =

∑

l∈Z

|f̂((σ+bl)θ)| '
∣∣f̂((σ−b)θ)

∣∣+
∣∣f̂(σθ)

∣∣+
∣∣f̂((σ+b)θ)

∣∣.

As discussed before the contribution of the term f̂(σθ) is largely cancelled by the

factor (1 − sinc2(Hσ/2)). However, this is not the case for the other two terms.

E.g., let σ be close to b. Then, assuming again that f̂ is large near the origin,

|f̂((σ− b)θ)| will be large and is not attenuated by the factor (1− sinc2(Hσ/2))

which will be close to 1. Therefore we expect considerable reconstruction errors

for this choice of parameters. That this is indeed the case has been demonstrated

for global tomography in [44; 11]. Hence when using the interlaced lattice one

should choose H � b, so that (1 − sinc2(Hσ/2)) is small for |σ| < b. Typical

choices in practice are H = π/(16b) or smaller. Choosing H < π/b has also a

cosmetic side effect. If a b-bandlimited convolution kernel is used whose Fourier

transform has a jump discontinuity at |σ| = b (e.g., a scaled version of the Shepp–

Logan kernel (7–7)), then ringing artifacts are caused by this discontinuity. In

case of the standard lattice with the parameter choice d = H = π/b these arti-

facts are practically removed by the additional smoothing from the interpolation.

For smaller H this effect is lost. In this case the Fourier transform of k should

taper off continuously to zero if smooth images are desired [11].

Another effect of the interpolation is the additional filtering with GH . Since

this alters only the higher frequencies, it is usually not a concern. In any case,

the effect can be eliminated by choosing very small H.
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The last error E4 decreases exponentially with b, as indicated by the notation

η(ϑ, b). Explicit estimates are as follows [16]. Let

β =
(
1 − ϑ2|x|2

)3/2
.

For the standard lattice we have

|E4(x)| ≤ c‖f‖∞‖k̂‖∞b
e−βb/ϑ

1 − e−β
.

For the interlaced lattice we let b′ = (1 − ϑ)b/ϑ, and obtain with β as above

|E4(x)| ≤ c‖f‖∞‖k̂‖∞bϑe−βb′
(

1 + b′

1 − e−β
+

e−β

(1 − e−β)2

)
.

In both cases the error decays exponetially with b, but in case of ϑ|x| close to

1, when β is close to zero, the above estimates indicate that the error should

be larger in case of the interlaced lattice due to the term involving (1− e−β)−2.

This effect has been observed in [11]. It causes a thin ring artifact in the region

|x| ' 1, i.e., at the boundary of the reconstruction region. It can be eliminated

by choosing a smaller value for ϑ, i.e., by increasing the number of views p;

compare equations (7–14), (7–15).

Numerical experiments for both global and local tomography, with simulated

as well as real data [44; 11; 10; 12; 16] show that the higher efficiency of the

interlaced lattice can at least be partly realized in practice. However, there

are also some drawbacks. There is a somewhat reduced stability because of

inaccurate convolutions. In case of the interlaced lattice the stepsize d = 2π/b

is not small enough to allow accurate computation of the convolutions. Because

of the truly two-dimensional nature of the numerical integration, these errors

cancel out during the discrete backprojection step. The sensitivity with regard

to the interpolation stepsize H can be understood as coming from a disturbance

of these cancellations by the additional interpolation. A second drawback is a

requirement that the sampling condition with respect to the number of views

P has to be strictly observed. The aliasing caused by violating this condition

is usually quite moderate in case of the standard lattice but much more severe

for the interlaced lattice. This can be easily seen from the pattern in which the

translated sets K0 + η begin to overlap when the sampling condition for p is

violated. Hence the interlaced lattice seems to be most useful when the detector

spacing is the main factor limiting resolution.

Good reconstructions from the interlaced lattice can also be obtained by using

the direct algebraic reconstruction algorithm [43], or by increasing the amount

of data through interpolation according to the sampling theorem [10]. Results

for the fan beam geometry can be found in [63; 64; 67]. As we have seen, the

interpolation step can introduce significant errors in certain cases. It has also

been shown [64] that the interpolation can be avoided by chosing the points x

where the reconstruction is computed on a polar grid rather than on a rectangular
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grid, and interchanging the order of the two summations. This algorithm should

work well for the interlaced lattice [100] and is particularly beneficial in case of the

fan-beam sampling geometry [64], since the method also avoids the homogeneous

approximation, whose influence on the reconstruction is difficult to estimate.

Appendix A. Basic Facts about Wavelets

We give a brief introduction to multidimensional biorthogonal wavelets. The

discussion follows [87] and is based on the presentation in [96] for multidimen-

sional orthonormal wavelets. For more details on wavelets and filter banks, see

[7] or [95], for example.

Definition A.1. A lattice Γ is a discrete subgroup of R
n given by integral

linear combinations of a vector space basis {v1, . . . , vn} of R
n.

Definition A.2. Let Γ be a lattice and M be an n × n matrix such that

MΓ ⊂ Γ and that all eigenvalues λ of M satisfy |λ| > 1. M is called the dilation

matrix. Let m = |detM |. A multiresolution analysis with scaling function φ,∫
φ(t) dt = 1, is a sequence of subspaces Vj of L2(R

n), j ∈ Z, satisfying the

following conditions:

1. Vj ⊂ Vj+1,
⋂
Vj = {0} and

⋃
Vj = L2(Rn).

2. f(t) ∈ Vj if and only if f(Mt) ∈ Vj+1.

3. f(t) ∈ V0 if and only if f(t− k) ∈ V0 for k ∈ Γ.

4. {φ(t− k), k ∈ Γ} is a Riesz basis of V0.

Convention. For notational convenience we set

fj,k(t) := mj/2f(M jt− k), for k ∈ Γ, j ∈ Z. (A–1)

It follows from the definition of a multiresolution analysis that {φj,k(t), k ∈ Γ}
is a Riesz basis of Vj .

Definition A.3. Consider a multiresolution analysis with lattice Γ and dilation

matrix M . For j ∈ Z, let W0 be such that V1 is the direct sum of V0 and W0.

Assume there are ψ1, . . . , ψm−1 ∈W0 such that {ψµ
0,k : µ = 1, . . . ,m−1, k ∈ Γ}

is a Riesz basis of W0. The ψµ are called wavelets.

For j ∈ Z, let Wj be the subspace with Riesz basis {Ψµ
j,k, k ∈ Γ, µ = 1, . . . ,m−1}.

It follows that Vj+1 = Vj ⊕Wj , a direct sum but not necessarily orthogonal.

Definition A.4. Let Vj , Ṽj be two multiresolution analyses corresponding to

the same lattice Γ and dilation matrix M . Let φ and ψµ, for µ = 1, . . . ,m−1,

be the scaling function and wavelets corresponding to Vj . Let φ̃ and ψ̃µ, for

µ = 1, . . . ,m−1, be the scaling function and wavelets corresponding to Ṽj . The

multiresolution analyses are called biorthogonal if the following conditions hold

for j, j′ ∈ Z, µ, µ′ = 1, . . . ,m− 1, and k, k′ ∈ Γ:
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(i) 〈ψµ
j,k, ψ̃

µ′

j′,k′〉 = δ(j, j′)δ(µ, µ′)δ(k, k′).

(ii) 〈ψ̃µ
j,k, φj,k′〉 = 〈φ̃j,k, ψ

µ
j,k′〉 = 0.

(iii) 〈φj,k, φ̃j,k′〉 = δ(k, k′).

For n = 1, M = 2, Γ = Z and φ = φ̃, multiresolution analysis becomes the

familiar one-dimensional, orthonormal case.

Since φ ∈ V0 ⊂ V1, and {φ1,k, k ∈ Γ} is a basis for V1, there are coefficients

F0(k), k ∈ Γ such that

φ(t) = m1/2
∑

k∈Γ

F0(k)φ1,k(t)

From condition (iii) above, it follows that F0(k) = m−1/2〈φ, φ̃1,k〉. Similarly, since

φ̃ ∈ Ṽ0 ⊂ Ṽ1, and {φ̃1,k, k ∈ Γ} is a basis for Ṽ1,

φ̃(t) = m1/2
∑

k∈Γ

H0(k)φ̃1,k(t)

where H0(k) = m−1/2〈φ̃, φ1,k〉. The above equations are called dilation equa-

tions. Similarly, the wavelets ψµ, ψ̃µ must satisfy so-called wavelet equations:

ψµ(t) = m1/2
∑

k∈Γ

Fµ(k)φ1,k(t), ψ̃µ(t) = m1/2
∑

k∈Γ

Hµ(k)φ̃1,k(t),

where µ = 1, . . . ,m−1, Fµ(k) = m−1/2〈ψµ, φ̃1,k〉, and Hµ(k) = m−1/2〈ψ̃µ, φ1,k〉.
The following lemma and theorems show how to decompose a function f into

its wavelet coefficients and how to reconstruct f if its wavelet coefficients are

known.

Lemma A.5. For j ∈ Z and µ = 1, . . . ,m− 1, we have:

φj,l(t) = m1/2
∑

k∈Γ

F0(k)φj+1,Ml+k(t), (A–2)

φ̃j,l(t) = m1/2
∑

k∈Γ

H0(k)φ̃j+1,Ml+k(t), (A–3)

ψµ
j,l(t) = m1/2

∑

k∈Γ

Fµ(k)φj+1,Ml+k(t), (A–4)

ψ̃µ
j,l(t) = m1/2

∑

k∈Γ

Hµ(k)φ̃j+1,Ml+k(t). (A–5)

Proof. This follows directly from the dilation and wavelet equations. ˜

Theorem A.6 (Fast Wavelet Transform). Let j ∈ Z and f ∈ Vj+1. For

k ∈ Γ and µ = 1, . . . ,m− 1 define the approximation coefficients as

Ãj,k = 〈f, φ̃j,k〉 = (f ∗ (φ̃j,0)
∨)(M−jk)

and the detail coefficients as

D̃µ
j,k = 〈f, ψ̃µ

j,k〉 = (f ∗ (ψ̃µ
j,0)

∨)(M−jk).
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Then

Ãj,k = m1/2
∑

l∈Γ

H0(l−Mk)Ãj+1,l (A–6)

and

D̃µ
j,k = m1/2

∑

l∈Γ

Hµ(l−Mk)Ãj+1,l. (A–7)

Proof. Consider the following expansion of f :

f(t) =
∑

l∈Γ

Ãj+1,lφj+1,l(t) (A–8)

For Ãj,k, take an inner product of (A–8) with φ̃j,k. Use (A–3) and biorthogo-

nality to get (A–6).

For D̃µ
j,k, take an inner product of (A–8) with ψ̃µ

j,k. Use (A–5) and biorthogo-

nality to get (A–7). ˜

Theorem A.7 (Inverse Fast Wavelet Transform). Under the hypothesis

of Theorem A.6

Ãj+1,l = m1/2
∑

k∈Γ

(
F0(l −Mk)Ãj,k +

m−1∑

µ=1

Fµ(l −Mk)D̃µ
j,k

)
(A–9)

Proof. Consider the following expansions of f :

f(t) =
∑

k∈Γ

Ãj+1,kφj+1,k(t)

=
∑

k∈Γ

Ãj,kφj,k(t) +

m−1∑

µ=1

∑

k∈Γ

D̃µ
j,kψ

µ
j,k(t). (A–10)

The second expansion comes from writing f ∈ Vj+1 = Vj ⊕ Wj as a sum of

elements of Vj and Wj . To get Ãj+1,l, take an inner product of (A–10) with

φ̃j+1,l. Use (A–2), (A–4) and biorthogonality to get (A–9). ˜

An easy way to obtain wavelets in R
n is to use a tensor product construction with

the wavelets in R. We will look specifically at the two-dimensional case. Define

the lattice as Γ = Z
2, and the dilation matrix M = 2I, where I denotes the

identity matrix. Since |detM | = 4 = m, one can expect 3 wavelets and 1 scaling

function. Let the spaces Vj , Wj be the chosen one-dimensional multiresolution

analysis with scaling function φ, and wavelet ψ. The coefficients for the dilation

and wavelet equation are Fµ(k), µ = 0, 1. Constructing the two-dimensional

scaling function and wavelets by taking products of the one-dimensional functions

leads to the following definition.
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Definition A.8. From a one-dimensional scaling function φ(x) and its cor-

responding wavelet ψ(x), two-dimensional separable wavelets are defined for

(x, y) ∈ R
2:

Φ(x, y) = φ(x)φ(y),

Ψ1(x, y) = φ(x)ψ(y), Ψ2(x, y) = ψ(x)φ(y), Ψ3(x, y) = ψ(x)ψ(y).

Consider a biorthogonal pair of one-dimensional multiresolution analyses. Recall

for separable, two-dimensional wavelets, M = 2I, m = 4 and Γ = Z
2. Let Vj

and Wj be the multiresolution analysis with scaling function φ, wavelet ψ, and

coefficients F0, F1 for the dilation and wavelet equations. Let Ṽj and W̃j be the

multiresolution analysis with scaling function φ̃ wavelet ψ̃ and coefficients H0,

H1 for the dilation and wavelet equations.

We want to rewrite the fast wavelet transform and inverse fast wavelet trans-

form for the case of two-dimensional separable wavelets. Let Fµ(k), µ = 0, 1, 2, 3

be the coefficients in the dilation and wavelet equations for the separable wave-

lets. It is easy to verify that

F0(k) = F0(k1)F0(k2), F1(k) = F0(k1)F1(k2),

F2(k) = F1(k1)F0(k2), F3(k) = F1(k1)F1(k2),

where k = (k1, k2). Similarly for the Hµ(k), µ = 0, 1, 2, 3. Thus, equation (A–6)

becomes:

Ãj,k = 2
∑

l∈Γ

H0(l − 2k)Ãj+1,l

and equation (A–7) becomes

D̃µ
j,k = 2

∑

l∈Γ

Hµ(l − 2k)Ãj+1,l for µ = 1, 2, 3.

The inverse wavelet transform, equation (A–9), becomes

Ãj+1,n = m1/2
∑

k∈Γ

(
F0(n−Mk)Ãj,k+

3∑

µ=1

Fµ(n−Mk)D̃µ
j,k

)

= 2
∑

k1,k2∈Z

(
F0(n1−2k1)F0(n2−2k2)Ãj,k+F0(n1−2k1)F1(n2−2k2)D̃

1
j,k

+F1(n1−2k1)F0(n2−2k2)D̃
2
j,k+F1(n1−2k1)F1(n2−2k2)D̃

3
j,k

)
.

Recall that the approximation coefficients are a convolution of f with φ̃j,0: Ãj,k =

(f ∗ (φ̃j,0)
∨)(M−jk). We would like to consider, for sufficiently large j, the

approximation coefficients as an approximation for f at a particular point. Notice

that for M = 2I, M jx = 2jx, and m = 2n. From Real Analysis, the following

lemma holds.
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Lemma A.9. Let f be continuous, g ∈ L1(Rn) with
∫
g dx = 1, g is bounded

and has compact support . Then for all x ∈ R
n

f(x) = lim
j→∞

2jn

∫
f(x+ y)g(2jy) dy = lim

j→∞
2j/2f ∗ (gj,0)

∨(x)

Proof. Let t = 2−j . Then we have a special case of [20, Theorem 8.15, p. 235].

˜

Thus, for j sufficiently large, we get an approximation for f :

2j/2f ∗ (φ̃j,0)
∨(2−jk) ≈ f(2−jk)

or, with n = 2,

2j/2Ãj,k ≈ f(2−jk).

Appendix B. Matlab Source Code

We have made available online at http://www.msri.org/publications/books/

Book47/faridani a number of Matlab M-files related to the algorithms described

here. This source code is provided for illustrative purposes only and comes with-

out warranties of any kind.

First there is an implementation of the parallel-beam filtered backprojection

algorithm for the standard lattice. The main file for this is fbp.m, and it is sup-

plemented by three function M-files: Rad.m computes line integrals for a mathe-

matical phantom consisting of ellipses, slkernel.m computes the discrete Shepp–

Logan convolution kernel (7–7), and window3.m allows one to view the recon-

structed image. It is automatically called at the end of the reconstruction. (How-

ever, with the example phantom — the well-known Shepp–Logan phantom —

given in fbp.m the picture shown does not display the most interesting details. It

is better to call window3 again with the parameters window3(−0.07,0.07,roi,P ).

Also included at the same address are the files fdk.m (a simple implementation

of the Feldkamp–Davis–Kress algorithm) and Divray.m (an implementation of

the transform discussed in Problem 9 below).

Appendix C. Some Exercises

Problem 1: Let f(x) be the characteristic function of an ellipse with center

(x0, y0), half-axes of length a and b, respectively, such that the axis of length 2a

makes an angle ψ with the x-axis when measured counterclockwise starting from

the x-axis. Compute the x-ray transform Pf(θ, s). Parameterize the unit vector

θ with its polar angle ϕ, i.e., θ = (cosϕ, sinϕ).

Problem 2: Compute the Fourier transform of the characteristic function of the

unit disk in R
2. Hint: Use polar coordinates and formula (3.16) in [62, p. 197].
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Problem 3: Using the Matlab code described in Appendix B for the filtered

backprojection algorithm (with the Shepp Logan phantom), perform the follow-

ing experiments.

(a) Run the program for the following values of p and q, leaving the other

parameters unchanged: q = 16, p = 50; q = 32, p = 100; q = 64, p = 200;

q = 128, p = 400. For each case plot a crossection along the horizontal line of

pixels closest to the line y = −0.605 which passes through the centers of the

three small ellipses. Compare the resolution for the various parameter choices.

(b) Fix the parameter b in the program at the value 64π. Theory suggests that

the choice q = 64, p = 200 is a good one. Compare the images for the following

choices of p and q, again leaving the other parameters unchanged. q = 128, p =

200; q = 64, p = 200; q = 32, p = 200; q = 16, p = 200; q = 64, p = 400;

q = 64, p = 100; q = 64, p = 50; q = 64, p = 20; q = 64, p = 10. Summarize

your findings about the influence of chosing larger or smaller values of p or q

than the ones suggested by theory.

Problem 4: Modify the filtered backprojection program so that it reconstructs

the function P#Pf . Compute an image of P#Pf for the Shepp–Logan phantom

with p = 200, q = 64.

Problem 5: A fundamental question for image reconstruction is if the data

uniquely determine the original image.

(a) Convince yourself that the x-ray transform is a linear operator, i.e., P (αf) =

αPf and P (f + g) = Pf + Pg. Show that for linear operators the question of

uniqueness is equivalent to the question if there are nontrivial null-functions.

I.e., Pf = Pg implies f = g, if and only if Pf ≡ 0 implies f ≡ 0.

(b) While the data Pf(θ, s) for all s and infinitely many directions θ uniquely

determine the function f , it was already known to the pioneers of tomogra-

phy that this is not the case if Pf(θ, s) is known for all s but for only finitely

many directions θ. For example, in his 1963 paper “Representation of a function

by its line integrals, with some radiological applications” (Journal of Applied

Physics, 34 (1963), 2722–2727), A. M. Cormack, who later shared the Nobel

prize in medicine for his contributions to tomography, claims that if the func-

tion f(x) vanishes outside the unit disk and inside the unit disk is given by

f(x) = A cos(nψ), n > 0, where ψ is the polar angle of x, then the line integrals

of f are zero along all lines perpendicular to the directions with polar angle

ϕ = (2m+ 1)π/(2n), m = 0, . . . , 2n− 1. Show that Cormack’s claim is correct.

(c) What do you think may be the implications of the existence of such null

functions (or “ghosts”) for medical imaging?

Problem 6: (a) Modify the filtered backprojection program so that it recon-

structs from fan-beam data. Test it for the Shepp–Logan phantom with p = 200,

q = 64, MX = MY = 128, R = 2.868 and c = π ∗ q/ arcsin(1/R).
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(b) Modify the program so that it can read the projection data from a file, using

the fread command. Request from the author the data file pelvis.ctd. It contains

real data from a hospital scanner. The data are stored in integer*2 format and

correspond to a fan-beam geometry with p = 360, q = 256, and R = 2.868.

The angle β in the data is incremented in reverse order compared to the lecture.

Reconstruct an image (the best you can get) from these data.

Problem 7: Modify the filtered backprojection program so that it reconstructs

from fan-beam data with detectors on a line as described in [67, pp. 93–95]. Test

it for the Shepp–Logan phantom with p = 200, q = 64, MX = MY = 128,

R = 2.868 and b = π ∗ q.

Problem 8: Consider a crude method for so-called region-of-interest tomogra-

phy, as follows.

(a) Modify the parallel-beam reconstruction program so that the data outside

the circle inscribed in a square given by the parameter roi are set to zero. Test

your program with the Shepp–Logan phantom and roi = [−0.2,0.2,−0.8,−0.4].

(Set the parameter circle equal to 1.) Discuss the quality of the resulting image

and compare with the reconstruction from complete data.

(b) Perform the same experiment as in part (a), only do not set the data to

zero outside the region of interest (ROI) but set them to a constant equal to the

nearest line integral intersecting the circle inscribed in the ROI.

Problem 9: (a) Consider the family of functions

f(x) =
(
1 − ‖x‖2

)m

+
, x ∈ R

3, m > −1.

(The case m = 0 gives the characteristic function of the unit ball. The larger m

is, the smoother the function becomes.) Compute the transform

Df(z, θ) =

∫
f(z + tθ) dt, z ∈ R

3, θ ∈ S2

for these functions. The following formula may be helpful:

∫ 1

−1

(1 − u2)m du = 22m+1 (Γ(m+ 1))2

Γ(2m+ 2)

(Gradshteyn and Ryzhik, p. 949, section 8.380, Formula 9).

(b) Show that for g(x) = f(x− x0), we have Dg(z, θ) = Df(z − x0, θ), and for

h(x) = f(Ax) with A a non-singular matrix,

Dh(z, θ) = ‖Aθ‖−1Df(Az, ω), ω =
Aθ

‖Aθ‖ .

The M-file Divray.m provided in Appendix B implements this transform for the

functions of part (a).
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Problem 10: Use the source code for the FDK algorithm [18] provided in

Appendix B and familiarize yourself with its use. Input the parameters for a

phantom consisting of one ellipsoid with center at (0.2, 0.3, 0.1) and half-axes

of lengths 0.4, 0.2, 0.3 along the directions (1, 1, 0)/
√

(2), (−1, 1, 0)/
√

(2) and

(0, 0, 1), respectively. In the code the rows of the orthonormal matrix OV in-

dicate the directions of the principal axes. Produce reconstructions along the

planes y = 0.3, z = 0.1, and x + y + z = 0.6, respectively. Use values p = 20

and q = 64 and indicate for each case the orthonormal vectors n,w1, w2 which

you are using. Observe which boundaries are well reconstructed and which are

blurred.
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