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Microlocal Analysis of Seismic Inverse Scattering

MAARTEN V. DE HOOP

Abstract. We review applications of microlocal analysis (MA) to reflec-
tion seismology. In this inverse method one attempts to estimate the index
of refraction of waves in the earth from seismic data measured at the Earth’s
surface. Seismic imaging creates images of the Earth’s upper crust using
seismic waves generated by artificial sources and recorded into extensive ar-
rays of sensors (geophones or hydrophones). The technology is based on a
complex, and rapidly evolving, mathematical theory that employs advanced
solutions to a wave equation as tools to solve approximately the general
seismic inverse problem, with complications introduced by the heterogene-
ity and anisotropy of the Earth’s crust. We describe several important
developments using MA to generate these wave-solutions by manipulating
the wavefields directly on their phase space. We also consider some recent
applications of MA to global seismology.

1. Introduction

Microlocal analysis plays an increasingly important role in seismology, partic-

ularly in the imaging and inversion of seismic data. Here we consider imaging

and inversion via the generalized Radon transform (GRT), concentrating on ad-

vances since the work of Beylkin [9], applying the work of Guillemin [51] and

Taylor [98]. It is the aim of this exposition to connect microlocal analysis with

seismology in the context of inverse scattering. The analysis of a related prob-

lem, the X-ray transform (see Greenleaf and Uhlmann [48; 49]) also contributes

to the further understanding of the GRT in seismology. Microlocal analysis and

the general theory of Fourier integral operators are described in the books by

Hörmander [60; 61; 62], Duistermaat [43], and Treves [101; 102].
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Institute, and in particular Gunther Uhlmann, for providing a very stimulating environment
during the Inverse Problems program in Fall 2001. The author thanks John Stockwell for his
many suggestions to improve this survey.
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Exploration seismology versus global seismology. Exploration seismology con-

cerns the investigation of sedimentary structures in the upper crust of the earth,

whereas global seismology concerns the investigation of the entire earth. In ex-

ploration reflection seismology, the following processes are amenable to the ap-

plication of microlocal analysis: dip and azimuth moveout and seismic wavefield

continuation, (map) migration, imaging, amplitude versus scattering angles anal-

ysis, inversion and resolution analysis, and migration velocity analysis. (Some

of these processes also find application in acoustic emission and sonic borehole

imaging.) In global seismology, the primary phases amenable to the application

of microlocal analysis are earthquake generated body waves, both those that

interact with the main transitions in the deep earth (such as the core mantle

boundary) and those used in transmission wave-equation tomography. Also,

spectral asymptotics applies to the study of free oscillations of the earth; this

subject is beyond the scope of this survey. Here we discuss primarily exploration

seismology, and we provide a brief outlook on global seismology.

Inverse scattering in seismology, in principle, yields an estimate of a distribu-

tion representing the elastic stiffness tensor in the earth. This tensor appears

as coefficients in the elastic wave equation. From a geoscientist’s perspective,

however, stiffness is a manifestion of geodynamical processes such as mantle con-

vection, magneto-hydrodynamics of the outer core, deformation and subduction

of the continental crust, and sedimentary processes, with their own underly-

ing mathematical models. Thus the inverse scattering problem becomes one of

seismic waves coupled to one of these dynamical processes.

Caustics. The importance of microlocal techniques becomes apparent if caustics

are formed in propagating wavefields in the earth. Caustics arise due to the

heterogeneity and anisotropy of the elastic properties of the subsurface. It may

be a matter of scale, though, whether or not some of the anisotropy originates

from heterogeneity. Caustics form progressively in heterogeneous media, but

may be intrinsic to the presence of anisotropy. Caustics due to heterogeneity are

ubiquitous. For example, in models with small, smooth, random fluctuations in

wave speed, which vary on a length scale large compared to a wave length but

small compared with the propagation distance, caustic formation will occur with

probability one; see White et al. [110].

Historical perspective. Some of the notions developed in microlocal analysis

appear to have been independently discovered in seismology. Most notably,

Hagedoorn [53] invented a purely graphical method for seismic imaging that is

recognizable as a Fourier integral operator and its canonical relation. Rieber [85]

and later Riabinkin [84] determined and exploited the “slopes” in addition to

arrival times of the seismic events, which relates directly to the wavefront set

of the data, to unravel complexities in the wavefield. Stolt [93] carefully used

the notion of migration dip in imaging, which aids in the reconstruction of the

wavefront set of the subsurface’s stiffness. In map migration [108; 52; 109] (for
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the state of the art, see [66]) an injectivity condition is assumed that appears

in Guillemin’s [51] Bolker condition in the treatment of the generalized Radon

transform.

1A. Exploration seismology. In a seismic experiment one generates elastic

waves in the earth using active sources at the earth’s surface. The waves that

return to the surface of the earth are observed; see Figure 1 (in fact, sources and

receivers are not always on the surface of the earth; this case is also considered).

The problem is to reconstruct the elastic properties of the subsurface from the

data thus obtained.

source
receiver array

Figure 1. Schematic depth section showing reflection ray paths; a seismic exper-

iment.

Hagedoorn’s early approach to imaging of seismic reflection data can be sum-

marized and illustrated as follows. If we restrict the seismic experiment to the

acquisition of coinciding sources and receivers (zero offset) then the inverse scat-

tering problem is formally determined. Figure 2(b) shows an earth model with

a single reflecting surface; Figure 2(a) is a display of reflection data (seismic

“traces”) that would be produced at 81 locations at zero depth above the reflec-

tor. The source was a regularized delta function generating a pulse. For a pulse

to travel down and up 1 km in upper medium with a speed of 2 km/s takes

one second. The specular reflections occur at those points where the charac-

teristic (ray) from the source/receiver location is normal to the reflector. The

reflection can be mapped into the reflector as follows. On Figure 2(a) choose

a source/receiver location (at the surface) and draw an isochrone curve (a cir-

cle for constant velocity) through any event on the corresponding seismic trace.

This is illustrated in Figure 2 (bottom) for all seismic traces in Figure 2(a). The

envelope of the isochrones delineates the reflector surface.

The Hagedoorn-derived methods being based totally on geometrical optics

did not explicitly consider amplitudes. Amplitudes were considered by the in-

verse scattering based methods that followed. The approach presented in this
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survey originates with the work of Beylkin [9; 10; 11] and other authors (see the

references below), applying microlocal analysis to the seismic inverse problem.

Beylkin [10] considered the seismic inverse scattering problem in acoustic me-

dia with constant density. He modeled the data using the Born approximation,

wherein the scattering is linearized in the medium coefficients. The medium

perturbation δc(x) acts as a distribution of scatterers superimposed on a smooth

background medium c(x). Given the background medium c(x) an operator was

given to reconstruct δc(x) microlocally from an n-dimensional subset of the data

(from data that constitute a function of n variables). Beylkin-derived methods

excluded caustics, assumed scalar wave propagation, and isotropy.
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Present perspective on modeling and inversion. Data that are redundant in the

sense that they are a function of more than n variables (multiple offset data) can

be seen as a family of n-dimensional datasets, where each n-dimensional subset

in the family has a fixed value of some coordinate, which we refer to as e. The

result of the inversion, some manifestation of a reflectivity r(x, e), should not

depend on e. This is the criterion that must be used to estimate the background

medium from the data; see for instance Symes [95]. Under the assumptions

made by Beylkin [10], there exists microlocally an invertible map, transforming

seismic data to a reflectivity function r(x, e), of which the singular part should

not depend on e. We consider such a transformation in a general framework that

allows the presence of caustics and in anisotropic elastic rather than isotropic

acoustic media. The treatment of elastic waves is based upon the decoupling of

the hyperbolic system into n scalar equations (see Taylor [98], Ivrii [67], Dencker

[39]) after which Fourier integral operator techniques are invoked. Each scalar

equation governs the propagation of a particular mode, such as qP and S1,...,n−1.

It is common to distinguish two ways of modeling reflection data. In the first

way, we assume the Born approximation. This approximation is essentially a

linearization, wherein the medium parameters are written as the sum of a back-

ground medium and a perturbation that is assumed to be small and localized.

It is assumed that the background is smooth and that the perturbation contains

the singularities of the medium. In the second, it is assumed that the medium

consists of different regions separated by smooth interfaces. The medium param-

eters are assumed to be smooth on each region, and smoothly extendible across

each interface, but they vary discontinuously at an interface. Such interfaces

are the seismic reflectors. We discuss how to model the high-frequency part of

the data using Fourier integral operators, following the approach of Taylor [98],

obtaining a generalization of the Kirchhoff approximation.

Subject to certain geometrical assumptions, including the Bolker condition

[51], the multi-modal data can be written as an invertible Fourier integral opera-

tor, HMN say, acting on a reflectivity distribution, rMN (x, e), that is a function

of subsurface position x and the additional variable e, essentially parametrizing

the scattering angle and scattering azimuths between an incoming and outgoing

characteristic. The position of the singularities of rMN (x, e) does not depend

on e. In the Kirchhoff approximation for elastic media, the function rMN (x, e)

equals to highest order RMN (x, e) ‖∂zn/∂x‖ δ(zn(x)), where RMN (x, e) is the ap-

propriately normalized reflection coefficient for the pair of elastic modes (M,N),

and ‖∂zn/∂x‖ δ(zn(x)) is the singular function of the interface given as a level set.

For the Born approximation rMN (x, e) is given by pseudodifferential operators

that take into account the radiation patterns acting on the medium perturba-

tion. The coordinate e is a priori defined only on the coisotropic submanifold

L ⊂ T ∗Y \ 0 — where Y represents the acquisition manifold to which the scat-

tered wavefield (δG) is restricted via an operator R— that contains the wavefront

set of the data. To construct an invertible Fourier integral operator from data
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to the function rMN (x, e), the coordinate e has to be defined on an open part of

T ∗Y \0; in Stolk and De Hoop [91] an extension is constructed of the coordinate

function e from L to an open neighborhood of L in T ∗Y \0 (which is not unique).

For the Born approximation, an inverse is also obtained in the least-squares

sense via the parametrix of a normal operator, NMN . The normal operator

and its regularized inverse, 〈N−1
MN 〉 render a coupled spatial-parameter resolution

analysis of the seismic experiment. The normal operator also provides a means to

analyze nonmicrolocal contributions occurring if the Bolker condition is violated

and replaced by a weaker condition leading to a characterization of artifacts.

When the data are redundant there is in addition a criterion to determine if the

medium above the interface (the background medium in the Born approximation)

is correctly chosen. The position of the singularities of the function rMN (x, e),

obtained by acting with H−1
MN on the data, should not depend on e. There exist

pseudodifferential operators, WMN , that, if the medium above the interface is

correctly chosen, annihilate the data. This allows one to carry out an extension

of differential semblance optimization in elastic media with caustics.

As mentioned, the wavefront set of the data is contained, under certain con-

ditions, in a coisotropic submanifold of the acquisition cotangent bundle. It

reveals a structure of characteristic strips. Restricting in the imaging operator

the seismic data to a common coordinate value on these strips, yields a gener-

alized Radon transform [10; 34; 38] that maps the reflection data into a seismic

image. (Under certain conditions this generalized Radon transform is a Fourier

integral operator.) Collecting these seismic images from the points on the char-

acteristic strips corresponding to available data results in the set of so-called

common-image-point gathers. In the presence of caustics, a filter needs to be

designed and applied prior to extracting a trace from each of the common-image-

point gathers in the set, to form a model image of the singular component of the

medium.

From this image, we model seismic data that correspond to a different coordi-

nate value on the characteristic strips. The result of this procedure is a compo-

sition of Fourier integral operators yielding seismic wavefield continuation, be it

in the single scattering approximation. Relevant examples of seismic wavefield

continuation are the transformation to zero offset [1] and the transformation to

common (prescribed) azimuth [13]. The distribution kernel of transformation to

zero offset is called dip moveout; the distribution kernel of transformation to

common azimuth is called azimuth moveout.

Table 1 summarizes the operators that will be introduced in this survey.

Synopsis of publications. Many publications exist about high-frequency methods

to invert seismic data in acoustic media. These methods date back to Hage-

doorn [53]; from a seismic perspective, it has taken twenty years and more to

develop the basic analysis of them [87; 31; 94; 75; 86]. From a mathematical

perspective, the analysis started with the reconstruction of the singular compo-
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Section

[2,3] modeling (FIO) [δG]

[3] acquisition (FIO) [F = RδG]

imaging (FIO) [F ∗]

[4,5] normal (Ψdo + nonmicrolocal operator) [N = F ∗F ]

resolution (Ψdo) [〈N−1〉N ]

inversion (Least Squares, FIO) [〈N−1〉F ∗]

[6,7] extended modeling (invertible FIO) [H,H−1]

[8] annihilator (Ψdo) [W ]

[9] generalized Radon transform (FIO) [L]

[10] “continuation” (FIO) [RcF 〈N−1〉L]

Table 1. Operators we will discuss. FIO stands for Fourier integral operator and

Ψdo for pseudodifferential operator.

nent of the medium coefficients in the Born approximation, without caustics, by

Beylkin [10]. Bleistein [17] discussed the case of a smooth jump using Beylkin’s

results. Rakesh [82] showed that the modeling operator in the Born approxi-

mation is a Fourier integral operator in the presence of caustics. Hansen [56]

analyzed the inversion in an acoustic medium with multipathing for both the

Born approximation and the case of a smooth jump. Ten Kroode et al. [99] ex-

tended the work of Hansen. Guillemin [51] discussed the Bolker condition in the

context of generalized Radon transforms, that ensures invertibility of the model-

ing operator in the least-squares sense (see, e.g., De Hoop and Brandsberg–Dahl

[33] and Stolk and De Hoop [91]). Stolk [89] simplified the analysis considering

a case when the Bolker condition is violated. Nolan and Symes [80] discussed

the imaging and inversion of seismic data with different (restricted) acquisition

geometries.

The mathematical treatment of systems of equations, such as the elastic equa-

tions, in the high-frequency approximation has been given by Taylor [98]. This

fundamental paper also discusses the interface problem. Beylkin and Burridge

[12] discussed the imaging of seismic data in the Born approximation in isotropic

elastic media, under a no-caustics assumption. De Hoop and Bleistein [32] dis-

cussed the imaging and inversion in general anisotropic elastic media, using a

Kirchhoff-type approximation. In the presence of caustics, the foundations of this

approximation were given by Stolk and De Hoop [91]. The generalized Radon

transform in elastic media was developed in De Hoop et al. [34; 38]. The Born

approximation for seismic data with maximal acquisition geometry in anisotropic

elastic media allowing for multipathing was discussed and analyzed by De Hoop

and Brandsberg–Dahl [33] and Stolk and De Hoop [91].

We mention two alternative (finite-frequency) but related approaches to in-

verse scattering of seismic data: The optimization approach (e.g., Tarantola [96;

97], De Hoop and De Hoop [35]), which falls into the category of reverse time mi-

gration, and the wavefield decomposition/double-square-root equation approach



226 MAARTEN V. DE HOOP

(Claerbout [30], De Hoop et al. [36] and Stolk and De Hoop [92]), which falls

into the category of downward continuation migration.

1B. Sedimentary environment. The medium parameters, stiffness cijkl and

density ρ appear as the coefficients in the hyperbolic system of partial differential

equations. Their properties, such as symmetry, are constrained by the types of

rocks occurring in the subsurface and their microstructure as well as the ambient

state of stress. Sedimentary rocks of interest include shales, sandstones, and

carbonates (limestone, chalk, marlstone and dolomite).

Microscopically shales have anisotropic properties owing to the orientation of

mineral grains; see Figure 3. Macroscopically, shales exhibit anisotropy due to

the orientation of laminations owing to bedding or crossbedding. Their char-

acteristic properties have been measured ultrasonically in the laboratory [68].

Their typical symmetry is hexagonal, with the restriction that triplication of the

shear wave does not occur on the symmetry axis. Starting from their microstruc-

ture, shales were modeled mathematically by Hornby [63; 64] using contact the-

ory [106; 107] on the one hand, and a combination of self consistent [58; 24]

and differential effective medium approximations on the other. In view of their

strongly anisotropic permeability, shales can be effective as seals over hydrocar-

bon reservoirs.

Reservoir rocks must be porous and permeable. These often consist of sand-

stones or carbonates. The porosity and permeability may result from intergrain

voids or from fractures or from a combination of the two; see Figure 4. A

sandstone is porous, and presumably filled with a fluid-gas mixture. Though

sandstone by itself often may be assumed to be isotropic, fracturing breaks this

symmetry typically to orthotropic. A commonly applied mathematical model for

crack-induced anisotropy can be found in Hudson [65]. Even though the scat-

tering theory presented here is valid in the “high-frequency” regime, the length

Figure 3. SEM picture of a typical shale (from Hornby et al. [64]).
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scale of the microstructure of rocks is vastly smaller than the dominant seis-

mic wavelengths. Effectively, the fluid-filled poro-elastic medium behaves like

an (an)elastic solid. Some of the most established linear mathematical models

for poro-elasticity, in particular those concerning a porous rock saturated with

a fluid, were developed by Gassmann [47], Biot [14; 15; 16], Brown and Kor-

ringa [23], and Berryman and Milton [8]. Biot’s equations were derived from

microstructure using a homogenization approach by Burridge and Keller [26]. A

theory that replaces the fluid in the pores by a gas-fluid mixture was developed

by Batzle and Wang [7].

Figure 4. SEM picture of a sandstone (top) with a crack (light against darker

background, running across the bottom image).

Seismic waves scatter at singularities in the elastic properties of the subsurface.

These singularities are typically attributable to geological transitions (interfaces),

unconformities, faults, as well as the interior structure of a formation such as

one consisting of sand channels.

1C. Notation. Propagation of seismic waves occurs in the Earth’s interior.

The aim of seismic inverse scattering is to obtain information about selected

target regions within the interior. The target is contained within an open set
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X ⊂ R
n. In practice n = 2 or 3, but we leave it unspecified. In exploration

geophysics the subsurface refers to the shallow interior of the Earth. Subsurface

position is denoted by x. Sources and receivers will be contained in open subsets

Os, Or respectively, of the boundary ∂X of X. Their position is denoted by

x̃, x̂, respectively. Measurement of data takes place during a time interval (0, T ).

The set of (x̂, x̃, t) for which data are taken is called the acquisition manifold

Y ; we assume that coordinates y′ on Y are given. We assume that the particle

displacement of the waves is measured for point sources at x̃, t = 0 with all its

components, both at the source and at the receiver. Thus we assume that (after

preprocessing) the data match the Green’s function Gil(x̂, x̃, t), for (x̂, x̃, t) ∈ Y .

We refer to the codimension of the set of Y ⊂ ∂X × ∂X × (0, T ) as the

codimension of the acquisition manifold, and we denote it by c. Owing to the

practicalities of data acquisition limits exist on the dimension of the set Y , which

is expressed by c. For example, in marine data acquisition the receivers may lie

along a line behind the source, in which case we have n = 3, c = 1, ∂X = {x ∈
R

n : x3 = 0}, Y = {(x̂, x̃, t) ∈ R
3 × R

3 × (0, T ) | x̂3 = x̃3 = x̂2 − x̃2 = 0}. We

call such acquisition geometries common azimuth. Thus the data are a function

of 2n− 1− c variables. However, from such data we aim to determine a function

of n variables; hence the data have redundancy with dimension n − 1 − c. The

inverse problem is thus formally overdetermined.

The material presented in this survey has been published in the following

papers: De Hoop et al. [34], De Hoop and Bleistein [32], Burridge et al. [25], De

Hoop et al. [38], De Hoop and Brandsberg–Dahl [33], Stolk [89], Stolk and De

Hoop [91], and Stolk [90].

2. Propagation of Elastic Waves in Smoothly Varying Media

Seismic wave amplitudes are sufficiently small such that the linearized the-

ory of infinitesimal deformation applies. When combined with the equation of

motion, this yields the elastic wave equation

(

ρ δil
∂2

∂t2
− ∂

∂xj
cijkl

∂

∂xk

)

(displacement)l = (volume force density)i. (2–1)

Here ρ(x) is the volume density of mass and cijkl(x) is the elastic stiffness tensor,

with i, j, k, l = 1, . . . , n.

2A. Decoupling the modes. In general, the elastic wave equation supports

different wave types (modes). Seismologists easily identify the individual modes

on seismograms. It is advantageous in the formulation of inverse scattering to

trace the individual modes. Decoupling of the modes is accomplished by the

diagonalization of system (2–1). To diagonalize this system, it is convenient to

remove the x-dependent coefficient ρ multiplying the time derivative. Thus we



MICROLOCAL ANALYSIS OF SEISMIC INVERSE SCATTERING 229

introduce the equivalent system

Pilul = fi, (2–2)

where

ul =
√
ρ(displacement)l, fi =

1√
ρ
(volume force density)i, (2–3)

and

Pil = δil
∂2

∂t2
− ∂

∂xj

cijkl

ρ

∂

∂xk
+ l.o.t. (2–4)

is the partial differential operator. Here we use the assumption that ρ is smooth

and bounded away from zero. Both systems (2–1) and (2–2) are real, time

reversal invariant, and their solutions satisfy reciprocity.

We describe how the system (2–2) can be decoupled by transforming it with

appropriate pseudodifferential operators; see Taylor [98], Ivrii [67] and Dencker

[39]. The goal is to transform the operator Pil by conjugation with a matrix-

valued pseudodifferential operator Q(x,D)iM , D = Dx = − i ∂
∂x , to an operator

that is of diagonal form, modulo a regularizing part,

Q(x,D)−1
Mi Pil(x,D,Dt)Q(x,D)lN = diag(PM (x,D,Dt) ; M = 1, . . . , n)MN ,

(2–5)

where Dt = − i ∂
∂t . The indices M,N denote the mode of propagation, and refer

to qP and S1,...,n−1 wave propagation. In fact, for the construction of Fourier

integral operator solutions developed in the scalar wave case, it is sufficient to

transform the partial differential operator to block-diagonal form, where each of

the blocks PM (x,D,Dt)has scalar principal part (proportional to the identity

matrix). In this case we will use the indices M,N to denote the block, and we

will omit indices for the components within each block. Let

uM = Q(x,D)−1
Miui, fM = Q(x,D)−1

Mifi. (2–6)

The system (2–2) is then equivalent to the uncoupled equations

PM (x,D,Dt)uM = fM . (2–7)

Since the time derivative in Pil is already in diagonal form, it remains only to

diagonalize its spatial part,

Ail(x,D) = − ∂

∂xj

cijkl

ρ

∂

∂xk
+ l.o.t.

The goal becomes finding QiM and AM such that (2–5) is valid with Pil, PM

replaced by Ail, AM . The operator PM is now

PM (x,D,Dt) =
∂2

∂t2
+AM (x,D).

Because of the properties of stiffness related to (i) the conservation of an-

gular momentum, (ii) the properties of the strain-energy function, and (iii) the
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positivity of strain energy, subject to the adiabatic and isothermal conditions,

the principal symbol Aprin
il (x, ξ) of Ail(x,D) is a positive symmetric matrix.

Hence, it can be diagonalized by an orthogonal matrix. On the level of principal

symbols, composition of pseudodifferential operators reduces to multiplication.

Therefore, we let Qprin
iM (x, ξ) be this orthogonal matrix, and we let Aprin

M (x, ξ) be

the eigenvalues of Aprin
il (x, ξ), so that

Qprin
Mi (x, ξ)−1Aprin

il (x, ξ)Qprin
lN (x, ξ) = diag(Aprin

M (x, ξ))MN . (2–8)

(The eigenvalue-eigenvector system is sometimes referred to as the system of

Christoffel equations.) The principal symbol Qprin
iM (x, ξ) is the matrix that has as

its columns the orthonormalized polarization vectors associated with the modes

of propagation.

If the multiplicities of the eigenvalues Aprin
M (x, ξ) are constant, then the prin-

cipal symbol Qprin
iM (x, ξ) depends smoothly on (x, ξ) and microlocally equation

(2–8) carries over to an operator equation. Taylor [98] has shown that if this

condition is satisfied, then decoupling can be accomplished to all orders, where

each block corresponds to a different eigenvalue. In fact, he proved the following

slightly more general result.

Lemma 2.1 (Taylor). Suppose the pseudodifferential operator QiM (x,D) of

order 0 is such that

Q(x,D)−1
MiA(x,D)ilQ(x,D)lN =

(
A(1)(x,D) 0

0 A(2)(x,D)

)

MN

+ a(x,D)MN ,

where the symbols A(1)(x, ξ) and A(2)(x, ξ) are homogeneous of order two and

a(x, ξ)MN is polyhomogeneous of order one. Suppose the spectra of A(1)(x, ξ)

and A(2)(x, ξ) are disjoint on a conic neighborhood of some (x0, ξ0) ∈ T ∗X \ 0.

Then by modifying Q with lower order terms the system can be transformed such

that

a(x,D)MN =

(
a(1)(x,D) 0

0 a(2)(x,D)

)

MN

+ smoothing remainder,

microlocally around (x0, ξ0).

This implies that if the multiplicity of a particular eigenvalue Aprin
M (x, ξ) is con-

stant, then the system can be transformed such that the part related to this

eigenvalue decouples from the rest of the system, modulo a smoothing remain-

der. In this survey we will assume that at least some of the modes decouple

(microlocally). This is stated as Assumption 1 below.

We now give an alternative characterization of the quantities Aprin
M (x, ξ) and

Qprin
iM (x, ξ). The values τ = ±

√

Aprin
M (x, ξ) are precisely the solutions to the

equation

detP prin
il (x, ξ, τ) = 0. (2–9)
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The multiplicity of Aprin
M (x, ξ) is equal to the multiplicity of the corresponding

root of (2–9). The columns of Qprin
iM (x, ξ) satisfy

Qprin
iM ∈ kerP prin

il

(
x, ξ,

√

Aprin
M (x, ξ)

)
.

Because P prin
il (x, ξ, τ) is homogeneous in (ξ, τ), one may choose to use the slow-

ness vector −τ−1ξ instead of the cotangent or wave vector ξ in the calculations.

The set of −τ−1ξ such that (2–9) holds is called the slowness surface, which

can be easily visualized. A (section of the) slowness surface for the case of a

transversely isotropic medium in n = 3 dimensions is given in Figure 5(a).

The slowness surface consists of n sheets each corresponding to a mode of

propagation. The innermost sheet is convex and is associated with the qP wave.

The other sheets need not be convex. The multiplicity of the eigenvalues changes

at the points (directions) where the different sheets intersect. In seismology it is

quite common to use a parametrization of the slowness surface that differs from

the stiffness tensor that directly controls the geometry (shape) of the different

sheets. Examples are the Lamé parameters for isotropic media and the Thomsen

parameters [100] for transversely isotropic media. For a general insight into such

parametrizations; see Tsvankin [103].

The second-order equations (2–7) clearly describe the decoupling of the orig-

inal system into different elastic modes. These equations inherit the symmetries

of the original system, such as time-reversal invariance and reciprocity. Time-

reversal invariance follows because the operators QiM (x,D), AM (x,D) can be

chosen in such a way that QiM (x, ξ) = −QiM (x,−ξ), AM (x, ξ) = AM (x, ξ).

Then QiM , AM are real-valued. Reciprocity for the causal Green’s function

Gij(x, x0, t − t0) means that Gij(x, x0, t − t0) = Gji(x0, x, t − t0). Such a re-

lationship also holds (modulo smoothing operators) for the Green’s function

GM (x, x0, t − t0) associated with (2–7). This follows because the transpose op-

erator Q(x,D)t
Mi (obtained by interchanging x, x0 and i,M in the distribution

kernel QiM (x, x0) of QiM (x,D)) is also a pseudodifferential operator, with prin-

cipal symbol Qprin(x, ξ)t
Mi. As noted before for the principal symbol, it follows

from the fact that At
ij = Aij that we can choose Q orthogonal, which is to say,

such that Q(x,D)iMQ(x,D)t
Mj = δij . From the fact that

GM (x, x0, t− t0) = Q(x,D)−1
MiGij(x, x0, t− t0)Q(x0,Dx0

)jM

it then follows that microlocally GM is reciprocal, i.e.,

GM (x, x0, t− t0) = GM (x0, x, t− t0) modulo smoothing operators.

Up to principal symbols, the equation above represents rotations at the re-

ceiver (i) and the source (j) side. In seismology this is referred to as the Alford

rotation [3].

Remark 2.2. We already observed that if an eigenvalue Aprin
M (x, ξ) has constant

multiplicity mM > 1 say, then uM is an mM -dimensional vector and (2–7) is a
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mM ×mM system, with scalar principal symbol. For such a system a microlocal

solution can be constructed in the same way as for scalar systems. In this case

all kinematic quantities, such as bicharacteristics, phase functions, and canonical

relations depend only on M . Other quantities such as uM and QiM (x,D) will

have multiple components. The Green’s function GM and its amplitude AM ,

to be introduced just before (2–20), are then mM ×mM matrices. To simplify

notation we do not take this into account explicitly.

2B. The Green’s function. To evaluate the Green’s function we use the

first-order system for uM that is equivalent to (2–7),

∂

∂t

(
uM

∂uM/∂t

)

=

(
0 1

−AM (x,D) 0

)(
uM

∂uM/∂t

)

+

(
0

fM

)

. (2–10)

This system can be decoupled also. Let BM (x,D) =
√

AM (x,D), which is

a pseudodifferential operator of order 1 that exists because AM (x,D) is pos-

itive definite. The principal symbol of BM (x,D) is given by Bprin
M (x, ξ) =

√

Aprin
M (x, ξ). We find then that (2–10) is equivalent to the two first-order equa-

tions (
∂

∂t
± iBM (x,D)

)

uM,± = fM,± (2–11)

under the transformations

uM,± = 1
2uM ± 1

2 iBM (x,D)−1 ∂uM

∂t
,

fM,± = ± 1
2 iBM (x,D)−1fM .

(2–12)

We construct operators GM,± with Lagrangian distribution kernel GM,±(x, x0, t)

that solve the initial value problem for (2–11). Then using Duhamel’s principle

we find that

uM,±(x, t) =

∫ t

0

∫

X

GM,±(x, x0, t− t0)fM,±(x0, t0) dx0 dt0

solves (2–11). It follows from (2–12) that the Green’s function for the second-

order decoupled equation is given by

GM (x, x0, t)

= 1
2 iGM,+(x, x0, t)BM (x0,Dx0

)−1 − 1
2 iGM,−(x, x0, t)BM (x0,Dx0

)−1. (2–13)

The operators GM,± are Fourier integral operators. Their construction is well

known; see for example Duistermaat [43], Chapter 5. Singularities are propa-

gated along the bicharacteristics, that are determined by Hamilton’s equations

generated by the principal symbol (factor i divided out) τ±Bprin
M (x, ξ) of (2–11),

∂x

∂λ
= ± ∂

∂ξ
Bprin

M (x, ξ),

∂ξ

∂λ
= ∓ ∂

∂x
Bprin

M (x, ξ),

∂t

∂λ
= 1,

∂τ

∂λ
= 0.

(2–14)
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Figure 5. (a) Section of a slowness surface (the characteristic surface) for a

transversely isotropic medium in n=3 dimensions. (b) Set of velocities associated

to the slowness surface in a). Note the caustics that occur due to the fact that

one of the (shear wave) sheets is not convex.

Solving these equations is what seismologists call ray tracing [27]. The solution

may be parametrized by t. We denote the solution of (2–14) with the + sign

and initial values x0, ξ0 by (xM (x0, ξ0, t), ξM (x0, ξ0, t)). The solution with the

− sign is found upon reversing the time direction; in other words, it is given

by (xM (x0, ξ0,−t), ξM (x0, ξ0,−t)). For the later analysis we also use the di-

rection α = ‖ξ0‖−1ξ0 and τ combined to replace ξ0 in the initial values of the

bicharacteristic solution: ξ0 = ξ0(x0, α, τ).

The first equality in (2–14) represents the velocity ∂x/∂t of the bicharacter-

istic identified as the group velocity. Because Bprin
M is homogeneous in ξ and

Euler’s relation, 〈ξ, ∂ξB
prin
M 〉 = Bprin

M = ∓τ it follows directly that the group ve-

locity is orthogonal to the slowness surface. Solving (2–14) reveals the formation

of caustics. Caustics may form progressively in the presence of heterogeneities,

or instantaneously in the presence of anisotropy even in the absence of hetero-

geneity. An example of the latter is shown in Figure 5(b).

A complete view of the propagation of singularities is provided by the canon-

ical relation of the operator GM,±, given by

CM,± = {(xM (x0, ξ0,±t), t, ξM (x0, ξ0,±t),∓BM,±(x0, ξ0);x0, ξ0)}. (2–15)

A convenient choice of phase function is described in Maslov and Fedoriuk [73].

They state that one can always use a subset of the cotangent vector components

as phase variables. Let us choose coordinates for CM,+ of the form

(xI , x0, ξJ , τ), (2–16)

where I ∪ J is a partition of {1, . . . , n}. It follows from Theorem 4.21 in Maslov

and Fedoriuk [73] that there is a function SM,+(xI , x0, ξJ , τ), such that locally
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CM,+ is given by

xJ = − ∂SM,+

∂ξJ
,

ξI =
∂SM,+

∂xI
,

t = − ∂SM,+

∂τ
,

ξ0 = − ∂SM,+

∂x0
.

(2–17)

Here we take into account the fact that CM,+ is a canonical relation, which

introduces a minus sign for ξ0. A nondegenerate phase function for CM,+ is then

found to be

φM,+(x, x0, t, ξJ , τ) = SM,+(xI , x0, ξJ , τ) + 〈ξJ , xJ 〉 + τt. (2–18)

In case J = ?, the generating function SM,+ reduces to frequency, τ , times the

negative of travel time.

On the other hand, the canonical relation CM,− is given by

CM,− =
{
(x, t,−ξ,−τ ;x0,−ξ0) : (x, t, ξ, τ ;x0, ξ0) ∈ CM,+

}
.

Thus a phase function for CM,− is

φM,−(x, x0, t, ξJ , τ) = −φM,+(x, x0, t,−ξJ ,−τ).

We may define the canonical relation for GM as CM = CM,+∪CM,−and a phase

function φM = φM,−if τ > 0, φM = φM,+ if τ < 0.

We have to assume that the decoupling is valid microlocally around the bi-

characteristic. In that case Theorem 5.1.2 of Duistermaat [43] implies that the

operator GM,± is microlocally a Fourier integral operator of order − 1
4 . Hence,

microlocally we have an expression for GM,± in the form of an oscillatory integral

GM,±(x, x0, t) =

(2π)−(|J|+1)/2−(2n+1)/4

∫

AM,±(xI , x0, ξJ , τ)e
iφM,±(x,x0,t,ξJ ,τ) dξJ dτ. (2–19)

The factors of (2π) in front of the integral are according to the convention of

Treves [102] and Hörmander [62]. In the special case of J = ? and considering

the amplitude AM,± up to leading order, the integral reduces to the leading

order term of the Debye series expansion in geometrical optics.

The amplitude AM,±(xI , x0, ξJ , τ) satisfies a transport equation along the

bicharacteristics (xM (x0, ξ0,±t), ξM (x0, ξ0,±t)). Properties of amplitudes are

described for instance in Treves [102], Section 8.4. The amplitude is an element

of MCM
⊗ Ω1/2(CM ), the tensor product of the Keller–Maslov bundle MCM

and the half-densities on the canonical relation CM . If the subprincipal part

of AM (x,D) is a matrix, then the amplitude is also a matrix; see Remark 2.2.

The Keller–Maslov bundle gives a factor ik, where k is an index, which we will

absorb in the amplitude. The index keeps track of the passage through caustics.

It is possible to choose a Maslov phase function with a different set of phase

variables, for instance ξJ̃ (and not τ), where Ĩ∪ J̃ is a partition of {1, . . . , n} and
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CM,± is parametrized by (xĨ , x0, t, ξJ̃ ). In that case the transformed amplitude

ÃM,±(xĨ , x0, t, ξJ̃ ) contains a Jacobian factor to the power one half, i.e.

∣
∣
∣ÃM,±(xĨ , x0, t, ξJ̃)

∣
∣
∣ = |AM,±(xI , x0, ξJ , τ)|

∣
∣
∣
∣

∂(xI , x0, ξJ , τ)

∂(xĨ , x0, t, ξJ̃ )

∣
∣
∣
∣

1/2

, (2–20)

where in the Jacobian both sets of variables are coordinates on CM,±.

We calculate the left-hand side of (2–20). For this purpose, consider the

Green’s function GM,±(x, x0, t − t0) with t and t0 = 0 fixed. This function can

be be viewed as the kernel of an invertible Fourier integral operator, mapping the

displacement at t = 0, u|t=0 ∈ E ′(X) to the displacement at t, u|t ∈ D′(X), with

phase φ̃M,±(x, x0, t, ξJ̃ ) and amplitude ÃM,±(xĨ , x0, t, ξJ̃ ). To highest order the

energy at time t is given by
∫

|BM (x,D)uM,±(x, t)|2 dx.

Conservation of this quantity is reflected by the relation

GM,±(t)∗BM (x,D)∗BM (x,D)GM,±(t) = BM,±(x0,Dx0
)∗BM,±(x0,Dx0

),

where the left-hand side denotes a composition of Fourier integral operators and
∗ denotes the adjoint. Since the left-hand side is a product of invertible Fourier

integral operators, we can use the theory of Section 8.6 in Treves [102]. We find

that to highest order

∣
∣(2π)−1/4ÃM,±(xĨ , x0, t, ξJ̃ )

∣
∣
2

=

∣
∣
∣
∣
det

∂ξ0
∂(xĨ , ξJ̃ )

∣
∣
∣
∣

∣
∣
∣
∣

BM (x0, ξ0)

BM (x, ξ)

∣
∣
∣
∣

2

.

The value of BM (x, ξ) equals the frequency τ and is conserved along the bichar-

acteristic. Recall that (x0, ξ0, t) are valid coordinates for CM,± (cf. (2–15)). The

Jacobian |∂(x0, ξ0, t)/∂(xI , x0, t, ξJ )| is equal to the factor |det ∂ξ0/∂(xI , ξJ)|,
the reciprocal of which describes the geometrical spreading. It follows that to

highest order

∣
∣
∣ÃM,±(xĨ , x0, t, ξJ̃)

∣
∣
∣ = (2π)1/4

∣
∣
∣
∣
det

∂(x0, ξ0, t)

∂(xĨ , x0, t, ξJ̃ )

∣
∣
∣
∣

1/2

. (2–21)

From (2–20) it now follows that

|AM,±(xI , x0, ξJ , τ)| = (2π)1/4

∣
∣
∣
∣
det

∂(x0, ξ0, t)

∂(xI , x0, ξJ , τ)

∣
∣
∣
∣

1/2

. (2–22)

We give our result about the Green’s function for (2–7), collecting the results

of this section, and using equations (2–12) and (2–22) to obtain a statement

about the amplitude. We will assume that microlocally around the relevant

bicharacteristics the decoupling is valid. Let Char(PM ) be the characteristic

set of PM (x,D,Dt) given by {(x, t, ξ, τ) : PM (x, ξ, τ) = 0}. The Green’s func-

tion is such that precisely the singularities of fM at Char(PM ) propagate (see

Hörmander [61], Theorem 23.2.9). Thus we have
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Assumption 1. On a neighborhood of the bicharacteristic the multiplicity of the

eigenvalue Aprin
M (x, ξ) in (2–8) is constant .

Lemma 2.3. Suppose that for the bicharacteristics through WF(fM )∩Char(PM )

Assumption 1 is satisfied . Then uM is given microlocally , away from WF(fM ), by

uM (x, t) =

∫

GM (x, x0, t− t0)fM (x0, t0) dx0 dt0, (2–23)

where GM (x, x0, t) is the kernel of a Fourier integral operator with canonical

relation CM and order −1 1
4 , mapping functions of x0 to functions of (x, t). It

can be written as

GM (x, x0, t) = (2π)−(|J|+1)/2−(2n+1)/4

∫

AM (xI , x0, ξJ , τ)e
iφM (x,x0,t,ξJ ,τ) dξJ dτ.

(2–24)

For the amplitude AM (xI , x0, ξJ , τ) we have, to highest order ,

|AM (xI , x0, ξJ , τ)| = (2π)1/4 1
2 |τ |−1

∣
∣
∣
∣
det

∂(x0, ξ0, t)

∂(xI , x0, ξJ , τ)

∣
∣
∣
∣

1/2

. (2–25)

The elastic system for generic elastic media has been investigated by Braam and

Duistermaat [20]. The set of singular points is generically of codimension three

(thus one lower than one would expect naively), and is of conical form in the

neighborhood of the singular point. Braam and Duistermaat give a normal form

for such systems and investigate the behavior of its associated bicharacteristics

and polarization spaces. In this case the system cannot be decoupled. However,

in a generic elastic medium there cannot be an open set of bicharacteristics

that pass through a singular point, because the singular points form a set of

codimension 3. In this sense the set of bicharacteristics that is to be excluded

is small. An analysis of conical refraction has been carried out by Melrose and

Uhlmann [74] and Uhlmann [104].

When the elastic tensor (for n = 3) has symmetries it is determined by less

than 21 coefficients. (The classification and analysis of the characteristic sets

of such media can be found in the book by Musgrave [77].) In this case the

singularities can be of different types. For example, in some classes of media,

such as transversely isotropic media, the determinant decomposes into smooth

factors. Then the multiplicities of the eigenvalues Aprin
M (x, ξ) can vary on a larger

(codimension 2) subset of T ∗X \ 0. Because the bicharacteristics are curves

on a codimension 1 surface, Assumption 1 can be violated on an open set of

bicharacteristics.

In seismology, representations of the type (2–24) have been used by Chapman

and Drummond [29] and Kendall and Thomson [69].

Remark 2.4. In isotropic media, when Assumption 1 is certainly satisfied,

the Hopf–Rinow theorem guarantees that any two points in the domain probed

by the waves can be connected by at least one characteristic in each mode of
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propagation. In anisotropic media, in general, this is no longer true because

there will not be an associated smooth Riemannian metric.

2C. Sources. In exploration seismology, a vibrator source is modeled as a point

body force that is of the form

fi(x0, t0) = diδ(x0 − s)W(t0),

acting at s with signature W; the direction d ∈ Sn−1. Typically, W(t0) is viewed

as a regularization of δ(t0).

An earthquake in global seismology is modeled with a symmetric moment

tensor Mij of rank 2; then

fi(x0, t0) = −Mij∂x0,j
δ(x0 − s)H(t0 − ts),

where s denotes the hypocentral location and ts the origin time. We set ts = 0.

In n = 3 dimensions, depending on the eigenvalues λ1,2,3 of M , pure shear faults

(λ1 = −λ3, λ2 = 0), pure tension cracks (λ1 6= 0, λ2 = λ3 = 0), explosive sources

(λ1 = λ2 = λ3 6= 0), or compensated linear dipoles (λ1 6= 0, λ2 = λ3 = − 1
2λ1)

can be simulated. Substituting the body force representation into (2–23) together

with (2–6) leads to the product of operators GMQ(x0,Dx0
)−1
MiMijτ

−1∂/∂x0,j .

This product is a Fourier integral operator with the same phase as GM , and

amplitude that to highest order (by integrating by parts in x0) equals the product

AM (xI , x0, ξJ , τ)Q(x0, ξ0)
−1
MiMij iτ−1ξ0,j , where ξ0 = ξ0(xI , x0, ξJ , τ).

3. High-Frequency Born Modeling and Imaging

Modeling under the Born approximation can be obtained as the leading term

in a forward scattering series, while inversion in this approximation can be like-

wise obtained from the inverse scattering series; see Moses [76] and Razavy [83].

These series originate from a contrast formulation in the medium coefficients as-

suming a background. This formulation leads to the Lipmann–Schwinger–Dyson

equation for the scattered field. We choose the background to be smooth and

the contrast to be singular, viewing the contrast as a perturbation from the

background. This is important in its own right, and it will also be a motivation

for our approach to the model with smooth jumps introduced in the Kirchhoff

approximation.

Microlocal analysis of the Born approximation has been discussed by a number

of authors. In the absence of caustics, for the acoustic case, see Beylkin [10];

for the isotropic elastic case, see Beylkin and Burridge [12]; for the anisotropic

elastic case, see De Hoop, Spencer and Burridge [38]. In the acoustic case,

allowing for multipathing (caustics), see Rakesh [82] and Hansen [56]. For the

acoustic problem with (non)maximal acquisition geometry, see Nolan and Symes

[80]. For the elastic case with maximal acquisition geometry, see De Hoop and

Brandsberg–Dahl [33] and Stolk and De Hoop [91].
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3A. Scattering: perturbation of the Green’s function. In the contrast

formulation the total value of the medium parameters cijkl, ρ is written as the

sum of a smooth background constituent ρ(x), cijkl(x) plus a singular perturba-

tion δρ, δcijkl, namely

cijkl + δcijkl, ρ+ δρ.

This decomposition induces a perturbation of Pil (cf. (2–4)),

δPil = δil
δρ

ρ

∂2

∂t2
− ∂

∂xj

δcijkl

ρ

∂

∂xk
.

We denote the causal Green’s operator associated with (2–2) by Gil and its

distribution kernel by Gil(x, x0, t − t0). The first-order perturbation δGilof Gil

is derived by demanding that the leading-order term in (Pij + δPij)(Gjk + δGjk)

vanishes. This results in the representation

δGil(x̂, x̃, t) = −
∫ t

0

∫

X

Gij(x̂, x0, t−t0) δPjk(x0,Dx0
,Dt0)Gkl(x0, x̃, t0)

︸ ︷︷ ︸

−linearized contrast source

dx0 dt0,

(3–1)

which is the Born approximation. Here x̃ denotes a source location, x̂ a receiver

location, and x0 a scattering point. Because the background model is smooth

the operator δGil contains only the single scattered field.

We apply the decoupling given by equation (2–6). Omitting the factors

QiM (x̂,Dx̂), Q(x̃,Dx̃)−1
Nl at the beginning and end of the product, we obtain

an expression for the perturbation of the Green’s function δGMN (x̂, x̃, t)for the

pair of modes M (scattered) and N (incident):

δGMN (x̂, x̃, t) = −
∫ t

0

∫

X

GM (x̂, x0, t− t0)Q(x0,Dx0
)−1
Mi

×
(

δil
∂

∂t0

δρ

ρ

∂

∂t0
− ∂

∂x0,j

δcijkl

ρ

∂

∂x0,k

)

Q(x0,Dx0
)lNGN (x0, x̃, t0) dx0 dt0. (3–2)

Microlocally we can write GM as in (2–24), with appropriate substitutions for its

arguments. For GN we use in addition the reciprocity relation GN (x0, x̃, t0) =

GN (x̃, x0, t0). The product of operators

GMQ(x0,Dx0
)−1
Mi

∂

∂x0,j

is a Fourier integral operator with the same phase as GM , and amplitude that to

highest order equals the product AM (x̂Î , x0, ξ̂Ĵ , τ)Q(x0, ξ̂0)
−1
Mi i ξ̂0,j , where ξ̂0 =

ξ0(x̂Î , x0, ξ̂Ĵ , τ).

Assuming that the medium perturbation vanishes around x̂ and x̃ a cut-

off is introduced for t0 near 0 and t. In the resulting expression one of the

two frequency variables τ̂ , τ̃ can now be eliminated using the integral over t0
(see for instance Duistermaat [43], Section 2.3). In this case the result can be

obtained readily by noting that the integral over t0 can be extended to the



MICROLOCAL ANALYSIS OF SEISMIC INVERSE SCATTERING 239

whole of R (the phase is not stationary for t0 outside [0, t]), and then using that
∫∞

−∞
e it0(τ̂−τ̃) dt0 = 2πδ(τ̂ − τ̃). The resulting formula for δGMN is, modulo

lower-order terms in the amplitude,

δGMN (x̂, x̃, t) = (2π)−(3n+1)/4−(|Ĵ|+|J̃|+1)/2

∫

BMN (x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , x0, τ)

×
(

wMN ;ijkl(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ)
δcijkl(x0)

ρ(x0)
+ wMN ;0(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ)

δρ(x0)

ρ(x0)

)

× eiΦMN (x̂,x̃,t,x0,ξ̂Ĵ ,ξ̃J̃ ,τ) dx0 dξ̂Ĵ dξ̃J̃ dτ. (3–3)

Here (see (2–18) for the construction of φM , φN ),

ΦMN (x̂, x̃, t, x0, ξ̂Ĵ , ξ̃J̃ , τ) = φM (x̂, x0, t, ξ̂Ĵ , τ) + φN (x̃, x0, t, ξ̃J̃ , τ) − τt. (3–4)

The amplitude factors BMN are given by

BMN (x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = (2π)−(n−1)/4 AM (x̂Î , x0, ξ̂Ĵ , τ)AN (x̃Ĩ , x0, ξ̃J̃ , τ).

(3–5)

We will refer to the factors wMN ;ijkl, wMN ;0 as the radiation patterns. These

are given by

wMN ;ijkl(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = QiM (x0, ξ̂0)QlN (x0, ξ̃0) ξ̂0,j ξ̃0,k,

wMN ;0(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = −QiM (x0, ξ̂0)QiN (x0, ξ̃0) τ
2,

where ξ̂0 = ξ0(x̂Î , x0, ξ̂Ĵ , τ), ξ̃0 = ξ0(x̃Ĩ , x0, ξ̃J̃ , τ). The scattering is depicted in

Figure 6. We illustrate a couple of radiation patterns in Figure 7.

We investigate the map

(
δcijkl

ρ
,
δρ

ρ

)

7→ δGMN (x̂, x̃, t)

induced by (3–3). We use the notation CφM
to indicate the subset of the global

canonical relation CM that is associated with a phase function φM ; cf. (2–15).

x0

ξ̂0
ξ̃0

ξ̂0 + ξ̃0 x̃x̂

ξ̂ ξ̃

Figure 6. The scattering cotangent vectors (Λ0,MN , left) and parametrization

of ΛMN (right).
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Figure 7. Radiation patterns (n = 3) for δc1313 (left) and δc1112 (right) for qP-qP

scattering in an isotropic background. Magnitude is given as as a function of

scattering angle and azimuth; cf. (4–4).

Lemma 3.1. Assume that if (x̂, t̂, ξ̂, τ ;x0, ξ̂0) ∈ CφM
, (x̃, t̃, ξ̃, τ ;x0, ξ̃0) ∈ CφN

then ξ̂0 + ξ̃0 6= 0. Then the map
(
δcijkl

ρ
,
δρ

ρ

)

7→ δGMN (x̂, x̃, t)

of (3–3) is a Fourier integral operator E ′(X) → D′(X×X×(0, T )). Its canonical

relation is

Λ0,MN =
{
(x̂, x̃, t̂+ t̃, ξ̂, ξ̃, τ ;x0, ξ̂0 + ξ̃0) :

(x̂, t̂, ξ̂, τ ;x0, ξ̂0) ∈ CφM
, (x̃, t̃, ξ̃, τ ;x0, ξ̃0) ∈ CφN

}
. (3–6)

Proof. We show that ΦMN (x̂Î , x̃Ĩ , t, x0, ξ̂Ĵ , ξ̃J̃ , τ) is a nondegenerate phase

function. The derivatives with respect to the phase variables are

∂ΦMN

∂τ
= −t̂(x̂Î , x0, ξ̂Ĵ , τ) − t̃(x̃Ĩ , x0, ξ̃J̃ , τ) + t,

∂ΦMN

∂ξ̂Ĵ
= −x̂Ĵ(x̂Î , x0, ξ̂Ĵ , τ) + x̂Ĵ ,

∂ΦMN

∂ξ̃J̃
= −x̃J̃(x̃Ĩ , x0, ξ̃J̃ , τ) + x̃J̃ ,

where x̂Ĵ (x̂Î , x0, ξ̂Ĵ , τ), x̃J̃ (x̃Ĩ , x0, ξ̃J̃ , τ) are as defined in (2–17), for the receiver

side and the source side respectively. The derivatives of these expressions with

respect to the variables (x̂Ĵ , x̃J̃ , t) are linearly independent, so ΦMN is nondegen-

erate. From expression (3–4) it follows that the canonical relation of this operator

is given by (3–6). By the hypothesis the canonical relation contains no elements

with ξ̂0+ ξ̃0 = 0, hence it is continuous as a map E ′(X) → D′(X×X×(0, T )). ˜

The condition in Lemma 3.1 is violated if and only if M = N and there

exists a “direct” bicharacteristic from x̃, ξ̃ to x̂,−ξ̂. From the symmetry of
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the bicharacteristic under the transformation ξ → −ξ, t → −t it follows that

indeed in this case the condition is violated. On the other hand, we have

BM (x0, ξ̂0) = BN (x0, ξ̃0) = ±τ . If ξ̂0 = −ξ̃0, then we must have M = N ,

because BM (x0, ξ̂0) = BM (x0,−ξ̂0) and the condition that the eigenvalues in

(2–8) are different for different modes. If M = N and ξ̂0 = −ξ̃0 then we have

the mentioned direct bicharacteristic.

3B. Restriction: acquisition. Data are measurements of the scattered wave

field which we relate here to the Green’s function perturbation in (3–2). These

data are assumed to be representable by δGMN (x̂, x̃, t) for (x̂, x̃, t) in some ac-

quisition manifold, which contains the source and receiver points and time. To

make this explicit, let y 7→ (x̂(y), x̃(y), t(y)) be a coordinate transformation, such

that y = (y′, y′′) and the acquisition manifold Y is given by y′′ = 0. Assume

that the dimension of y′′ is 2 + c, where c is the codimension of the geometry

(the 2 enforces “remote sensing”). Then the data are modeled by

δGMN (x̂(y′, 0), x̃(y′, 0), t(y′, 0)). (3–7)

It follows that the map (
δcijkl

ρ , δρ
ρ ) to the data may be seen as the compose of

the map of Lemma 3.1 with the restriction operator to y′′ = 0. The restriction

operator that maps a function f(y) to f(y′, 0) is a Fourier integral operator with

canonical relation Λr = {(y′, η′; (y′, y′′), (η′, η′′)) ∈ T ∗Y × T ∗Y̌ : y′′ = 0}, where

Y̌ = X×X×(0, T ). The composition of the canonical relations Λ0,MN and Λr is

well defined if the intersection of Λr×Λ0,MN with T ∗Y \0×diag(T ∗Y̌ \0)×T ∗X\0
is transversal [43]. In this case we must have that the intersection of Λ0,MN with

the manifold y′′ = 0 is transversal. For the later analysis, the source and receiver

points s, r are defined through (s, r, t) = (x̂(y′, 0), x̃(y′, 0), t(y′, 0)); instead, we

will shortcut the coordinate transformation and identify

y′ = (s, r, t) and η′ = (σ, ρ, τ),

see Figure 6. The tangential slownesses then follow as

ps = τ−1σ, pr = τ−1ρ. (3–8)

Let’s repeat our assumptions:

Assumption 2. There are no elements (y′, 0, η′, η′′) ∈ T ∗Y \0 such that there is

a direct bicharacteristic from (x̂(y′, 0), ξ̂(y′, 0, η′, η′′)) to (x̃(y′, 0),−ξ̃(y′, 0, η′, η′′))
with arrival time t(y′, 0).

Assumption 3. The intersection of Λ0,MN with the manifold y′′ = 0 is transver-

sal , that is,

∂y′′

∂(x0, ξ̂0, ξ̃0, t̂, t̃)
has maximal rank. (3–9)
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In the following theorem we parametrize (3–6) by (x0, ξ̂0, ξ̃0, t̂, t̃) using the param-

etrization of CφM
given by (2–15). Thus we let τ = ∓BM (x0, ξ̂0) and

x̂ = xM (x0, ξ̂0,±t̂),
ξ̂ = ξM (x0, ξ̂0,±t̂),

x̃ = xN (x0, ξ̃0,±t̃),
ξ̃ = ξN (x0, ξ̃0,±t̃).

We suppose that
(
y′(x0, ξ̂0, ξ̃0, t̂, t̃), η

′(x0, ξ̂0, ξ̃0, t̂, t̃)
)

is obtained by transforming

(x̂, x̃, t̂+ t̃, ξ̂, ξ̃, τ) to (y, η) coordinates.

Theorem 3.2. [91] If Assumptions 2 and 3 are satisfied , the operator FMN ;ijkl

(resp. FMN ;0) that maps the medium perturbation δcijkl/ρ (resp. δρ/ρ) to the

data as a function of y′ (3–7) is microlocally a Fourier integral operator with

canonical relation

ΛMN =
{
(y′(x0, ξ̂0, ξ̃0, t̂, t̃), η

′(x0, ξ̂0, ξ̃0, t̂, t̃);x0, ξ̂0 + ξ̃0) :

BM (x0, ξ̂0) = BN (x0, ξ̃0) = ±τ, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0
}
. (3–10)

The order is (n−1+c)/4. The amplitude is given to highest order (in coordinates

(y′I , η
′
J , x0) for ΛMN , where I, J is a partition of {1, . . . , 2n−1−c}) by the prod-

ucts BMN (y′I , η
′
J , x0)wMN ;ijkl(y

′
I , η

′
J , x0) and BMN (y′I , η

′
J , x0)wMN ;0(y

′
I , η

′
J , x0)

respectively , where

∣
∣BMN (y′I , η

′
J , x0)

∣
∣ = 1

4τ
−2(2π)−(n+1+c)/4

×
∣
∣
∣
∣
det

∂(x̂, x̃, t)

∂y

∣
∣
∣
∣

−1/2
∣
∣
∣
∣
∣
det

∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x0, y′I , y
′′, η′J ,∆τ)

∣
∣
∣
∣
∣

1/2

∆τ=0,y′′=0

. (3–11)

Here we define ∆τ = τ̂ − τ̃ , so that the first constraint in (3–10) reads ∆τ = 0.

The map (x0, ξ̂0, ξ̃0, t̂, t̃) 7→ (x0, y
′
I , y

′′, η′J ,∆τ) is bijective.

Proof. The first statement has been argued above. The order of the operator

is given by

χ+
K

2
− dimX + dimY ′

4
,

where χ is the degree of homogeneity of the amplitude and K is the number of

phase variables. The factors {wMN ;ijkl, wMN ;0} are homogeneous of order 2 in

the ξ and τ variables; the degree of homogeneity of the factor BMN follows from

(2–22). We find

orderFMN ;ijkl = 2+
(
−2− 1

2 (|Ĵ |+|J̃ |+2)+n
)
+ 1

2

(
|Ĵ |+|J̃ |+1

)
− 1

4 (3n−1−c)
= 1

4 (n−1+c).

We calculate now the amplitude of the Fourier integral operator in Lemma 3.1.

The factor wMN ;ijkl is simply multiplicative. Suppose we choose coordinates

on Λ0,MN to be (x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ̂ , τ̃ , x0), with ultimately τ̂ = τ̃ and define τ =
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(τ̂ + τ̃)/2, ∆τ = τ̂ − τ̃ . Using (2–25) and (3–5) we find that the amplitude

BMN (x0, x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ) is given by

∣
∣BMN (x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ,x0)

∣
∣ = 1

4τ
−2(2π)−(n−1)/4

∣
∣
∣
∣
∣
det

∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ,x0,∆τ)

∣
∣
∣
∣
∣

1/2

.

The transformation from (x̂, x̃, t) to y coordinates in Fourier integral (3–7)

induces an additional factor
∣
∣det ∂(x̂, x̃, t)/∂y

∣
∣
−1/2

(note that for the Fourier

integral operators it would be more natural to transform as a half-density). The

amplitude transforms as a half-density on the canonical relation, and we obtain

the factor
∣
∣
∣
∣
∣
det

∂(y′I , y
′′, η′J )

∂(x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ)

∣
∣
∣
∣
∣

1/2

.

The additional factor (2π)−(2+c)/4 arises from the normalization. We find (3–11).

˜

Natural coordinates for the canonical relation are given by (x0, ξ̂0, ξ̃0, t̂, t̃) such

that BM (x0, ξ̂0) − BN (x0, ξ̃0) = 0, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0. There is a natural

density directly associated with this set, the quotient density. The Jacobian in

(3–11) reveals that the amplitude factor |BMN (y′I , η
′
J , x0)| is in fact given by the

associated half-density times 1
4τ

−2(2π)−(n+1+c)/4
∣
∣∂(x̂, x̃, t)/∂y

∣
∣
−1/2

.

Remark 3.3. If c = 0 and there are no rays tangent to the acquisition manifold,

that is, if

rank
∂y′′

∂(t̂, t̃)
= 2, (3–12)

then a convenient way to parametrize the canonical relation is found using the

phase directions α̂ = ξ̂0/‖ξ̂0‖, α̃ = ξ̃0/‖ξ̃0‖ ∈ Sn−1 and the frequency τ . See also

Figure 6 (right).

3C. Imaging. We collect the medium perturbations into the column matrix

gα =

(
δcijkl

ρ
,
δρ

ρ

)

.

The Born approximate forward operator (FMN ;ijkl, FMN ;0) (cf. Theorem 3.2) is

then represented by FMN ;α.

The imaging operator is the adjoint F ∗
MN ;α of FMN ;α. If FMN ;α is a Fourier

integral operator then the imaging operator is a Fourier integral operator also.

In a geometrical context, seismologists view imaging as “moving” the singular

support of the data restricted to a given offset (offset is the difference between

the source s and receiver r points) to the singular support of the medium per-

turbation. Seismologists refer to this process as migration.
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4. Linearized (Born) Inversion

4A. Imaging-inversion: the least-squares approach. The standard pro-

cedure to deal with the fact that the seismic inverse problem is overdetermined

is to use the method of least squares. Let us consider data from a single pair

of modes (M,N). The normal operator NMN ;αβ is defined as the compose of

FMN ;β and its adjoint F ∗
MN ;α,

NMN ;αβ = F ∗
MN ;αFMN ;β (4–1)

(no summation over M,N). If NMN ;αβ is invertible (as a matrix-valued operator

with indices αβ), then

F−1
MN ;α = (NMN )−1

αβF
∗
MN ;β (4–2)

(no summation over M,N) is a left inverse of FMN ;α that is optimal in the sense

of least squares1.

The properties of the composition in (4–1) depend on those of ΛMN . Let

πY , πXbe the projection mappings of ΛMN to T ∗Y \ 0, T ∗X \ 0 respectively.

We show that under the following assumption NMN ;αβ is a pseudodifferential

operator, so that the problem of invertingNMN ;αβ reduces to a finite-dimensional

problem for each (x, ξ) ∈ πX(ΛMN ).

Assumption 4. (Guillemin [51]) The projection πY of ΛMN on T ∗Y \ 0 is an

embedding .

This assumption is also known as the Bolker condition. Because ΛMN is a canon-

ical relation that projects submersively (under Assumption 1) on the subsurface

variables (x, ξ), the projection of (3–10) on T ∗Y \ 0 is immersive [62, Lemma

25.3.6 and (25.3.4)]. Therefore only the injectivity in the assumption need be

verified [99]. In fact, it is precisely the injectivity condition that has been tacitly

assumed in what seismologists call map migration.

Note that the “proper” part of Assumption 4 is always satisfied: The definition

of proper is that the pre-image of a compact set is a compact set. Let us assume

we have a compact subset of T ∗Y \0. The pre-image consists of elements of ΛMN

corresponding to those “points” where the source and receiver rays intersect. The

set of these points can be written as a set on which some continuous function

vanishes. Therefore this set is closed. It is also bounded, and hence it is compact.

Assumption 4 implies that the image of πY is a submanifold, L say, of T ∗Y \0.

Using that ΛMN is a canonical relation we have

1Equation (4–1) is for the case where one minimizes the difference with the data δGMN in
L2 norm ‖δGMN − FMN;αgα‖. It can easily be adapted to the case where one minimizes a

Sobolev norm of different order, or a weighted L2 norm. This would introduce extra factors in
the amplitude.
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Lemma 4.1. [91] The projection πY of ΛMN on T ∗Y \ 0 is an immersion if and

only if the projection πX of ΛMN on T ∗X \ 0 is a submersion. In this case the

image of πY is locally a coisotropic submanifold of T ∗Y \ 0.

As a consequence of immersivity implied by the embedding in Assumption 4,

we can use (x, ξ) ∈ T ∗X \ 0 as the first 2n (local) coordinates on ΛMN . In

addition, we need to parametrize the subsets of the canonical relation given by

(x, ξ) = constant; we denote such parameters by e. The new parametrization of

ΛMN is (identifying x0 in (3–10) with x)

ΛMN = {(y′(x, ξ, e), η′(x, ξ, e); (x, ξ))}. (4–3)

The results do not depend on the precise definition of e. As noted before, if the

variables (t̂, t̃) can be solved from the second constraint in (3–10) (cf. equation

(3–12)), then ΛMN can be parametrized using (x, α̂, α̃, τ), where (α̂, α̃) are phase

directions. In that case (x, ξ, e) should be related by a coordinate transformation

to (x, α̂, α̃, τ). In isotropic media with M = n (where ‖ξ̂0‖ = ‖ξ̃0‖) a suitable

choice is the pair scattering angle/azimuth, given by [38]

e(x, α̂, α̃) =
(

arccos(α̂ · α̃)
︸ ︷︷ ︸

θ

,
−α̂+ α̃

2 sin(arccos(α̂ · α̃)/2)

)

∈ (0, π) × Sn−2. (4–4)

The azimuth, the second component, defines together with ξ the plane spanned

by (α̂, α̃). It is not very difficult to show that in elastic media the scattering angle

(the first component) can be used as a coordinate when the slowness sheets are

convex, but not always when one of the slowness sheets fails to be convex. In

the canonical relation ΛMN the range of ξ values at x such that y′ yields a data

point (after the application of mentioned pseudodifferential cutoff) controls the

spatial resolution of the reconstruction of gα(x) (we refer to this as illumination

or insonification). The construction of this range is illustrated in Figure 8 and

dates back to Ewald [45]; see also Devaney [40].
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Figure 8. Generalization of the Ewald sphere. Here M = qSV, N = qP in a

hexagonal medium; e (here θ) and τ are fixed.
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Remark 4.2. We show that the first part of Assumption 4 implies that

∂BM

∂ξ
(x, ξ̂0) +

∂BN

∂ξ
(x, ξ̃0) 6= 0;

in other words, the group velocities at the scattering point do not add up to 0.

We have seen in Theorem 3.2 that ΛMN may be parametrized by (x, ξ̂0, ξ̃0, t̂, t̃),

where (ξ̂0, ξ̃0) are such that

BM (x0, ξ̂0) = BN (x0, ξ̃0) = ±τ

(and we have the additional constraint y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0). The projection

πX is given by (x, ξ̂0 + ξ̃0). Consider tangent vectors to ΛMN given by vectors

vξ̂0
, vξ̃0

. These must satisfy

vξ̂0
· ∂BM

∂ξ
(x, ξ̂0) = vξ̃0

· ∂BN

∂ξ
(x, ξ̃0) = ±vτ . (4–5)

Thus, if
∂BM

∂ξ
(x, ξ̂0) = −∂BN

∂ξ
(x, ξ̃0), (4–5) implies that (vξ̂0

+vξ̃0
) · ∂BM

∂ξ
(x, ξ̂0)

vanishes, implying that the projection of ΛMN on T ∗X \ 0 is not submersive.

If c = 0, and rank ∂y′′/∂(t̂, t̃) = 2 (no tangent rays), then the constraint y′′ = 0

may be used to solve for the parameters t̂, t̃ and (4–5) is the only condition on

(ξ̂0, ξ̃0). In that case (∂BM/∂ξ)(x, ξ̂0) 6= −(∂BN/∂ξ)(x, ξ̃0) implies that the

projection is submersive. The solutions to y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0 in (3–10) are

then denoted as

t̃ = TN (x0, α̃), t̂ = TM (x0, α̂), while t̃+ t̂ = TMN (x0, α̂, α̃).

For later notational convenience, we write the associated solutions for source

and receiver points in y′ as (sN , rM , TMN ) and their cotangent vectors in η′ as

(σN , ρM , τ) with

sN (x0, α̃), σN (x0, α̃, τ) = τps
N , rM (x0, α̂), ρM (x0, α̂, τ) = τpr

M ,

where ps and pr are defined in (3–8). In other cases, the set of (ξ̂0, ξ̃0) is in

general a smaller subset of T ∗
xX \ 0 × T ∗

xX \ 0.

When constructing the compose (4–1) there is a subtlety that we have to take

into account, namely that the linearized forward operator is only microlocally

a Fourier integral operator. To make it globally a Fourier integral operator,

we apply a pseudodifferential cutoff ψ(y′,Dy′) (which seismologists would call

a tapered mute) with compact support. Due to the fact that an embedding

is proper, the forward operator is then a finite sum of local Fourier integral

operators.

Theorem 4.3. [91] Let ψ(y′,Dy′) be a pseudodifferential cutoff with conically

compact support in T ∗Y \ 0, such that for the set
{
(y′, η′;x0, ξ0) ∈ ΛMN : (y′, η′) ∈ suppψ

}
(4–6)
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Assumptions 2, 3, and 4 are satisfied . Then

F ∗
MN ;βψ(y′,Dy′)∗ψ(y′,Dy′)FMN ;α (4–7)

is a pseudodifferential operator of order n− 1, with principal symbol

NMN ;βα(x, ξ) = 1
16 (2π)−n

×
∫

|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4wMN ;β(x, ξ, e)wMN ;α(x, ξ, e)

×
∣
∣
∣
∣
det

∂(x̂, x̃, t)

∂y

∣
∣
∣
∣

−1
∣
∣
∣
∣
det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′,∆τ)

∣
∣
∣
∣∆τ=0

y′′=0

de, (4–8)

where τ = τ(x, ξ, e).

Proof. We use the clean intersection calculus for Fourier integral operators

(see Treves [102], for example) to show that (4–7) is a Fourier integral operator.

The canonical relation of F ∗
MN ;α is given by

Λ∗
MN =

{
(x, ξ; y′, η′) : (y′, η′;x, ξ) ∈ ΛMN

}
.

Let L = Λ∗
MN × ΛMN and M = T ∗X \ 0 × diag(T ∗Y \ 0) × T ∗X \ 0. We have

to show that the intersection L ∩M is clean, that is,

L ∩M is a manifold, (4–9)

TL ∩ TM = T (L ∩M). (4–10)

It follows from Assumption 4 (injectivity) that L ∩M must be given by

L ∩M = {(x, ξ, y′, η′, y′, η′, x, ξ) : (y′, η′;x, ξ) ∈ ΛMN}. (4–11)

Because ΛMN is a manifold this set satisfies (4–9). The property (4–10) follows

from the assumption that the map πY is immersive. The excess is given by

e = dim(L∩M)−(dimL+dimM−dimT ∗X \0×T ∗Y \0×T ∗Y \0×T ∗X \0)

= n−1−c.

Taking into account the pseudodifferential cutoff ψ(y′,Dy′), it follows that

(4–7) is a Fourier integral operator. The canonical relation Λ∗
MN ◦ ΛMN of

F ∗
MN ;βψ

∗ψFMN ;α is contained in the diagonal of T ∗X \ 0 × T ∗X \ 0, so it is a

pseudodifferential operator. The order is given by 2 orderFMN ;α + e/2 = n − 1

(note that the codimension c drops out).

We write

ψ(y′,Dy′)∗ψ(y′,Dy′) =
∑

i

χ(i)(y′,Dy′),
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where the symbols χ(i)(y′, η′) have small enough support, so that the distribution

kernel of χ(i)(y′,Dy′)FMN ;α can be written as the oscillatory integral

χ(i)(y′,Dy′)FMN ;α(y′, x) = (2π)−(3n−1−c)/4−|J|/2

∫

χ(i)(y′I , η
′
J , x)

× BMN (y′I , η
′
J , x)wMN ;α(y′I , η

′
J , x)e

i(S
(i)
MN (y′

I ,x,η′
J)+〈η′

J ,y′
J 〉) dη′J ,

where ψ(i)(y′I , η
′
J , x) = ψ(i)(y′I , y

′
J(y′I , η

′
J , x), η

′
I(y

′
I , η

′
J , x), η

′
J ). We have written

Φ
(i)
MN (y′, x, η′J ) = S

(i)
MN (y′I , x, η

′
J ) + 〈η′J , y′J〉, (cf. (2–18) and (3–4)). We do not

indicate the dependence of J on i explicitly. The distribution kernel of the

normal operator is then given by a sum of terms
∫

(ψ(y′,Dy′)FMN ;β(y′, x))(ψ(y′,Dy′)FMN ;α(y′, x0)) dy′

= (2π)−(3n−1−c)/2−|J|
∑

i

∫

χ(i)(y′I , η
′
0,J , x0)

× BMN (y′I , η
′
J , x)BMN (y′I , η

′
0,J , x0)wMN ;β(y′I , η

′
J , x)wMN ;α(y′I , η

′
0,J , x0)

× e i(S
(i)
MN (y′

I ,x0,η′
0,J )−S

(i)
MN (y′

I ,x,η′
J )+〈η′

0,J ,y′
J〉−〈η′

J ,y′
J〉) dη′0,J dη′J dy′.

We now apply the method of stationary phase to integrate out the variables

(y′J , η
′
0,J ). For the remaining variables we use the Taylor expansion,

S
(i)
MN (y′I , x0, η

′
J ) − S

(i)
MN (y′I , x, η

′
J ) = 〈x− x0, ξ(y

′
I , η

′
J , x0)〉 +O(|x− x0|2).

Thus we find (to highest order)

(2π)−(3n−1−c)/2
∑

i

∫

χ(i)(y′I , η
′
J , x)

2|BMN (y′I , η
′
J , x)|2

× wMN ;β(y′I , η
′
J , x)wMN ;α(y′I , η

′
J , x)e

i〈x−x0,ξ(y′
I ,η′

J ,x0)〉 dη′J dy′I .

We now change variables (x, y′I , η
′
J) → (x, ξ, e), and use (3–11). We sum over i

and arrive at

NMN ;βα(x, x0) = 1
16 (2π)−2n

×
∫

|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4wMN ;β(x, ξ, e)wMN ;α(x, ξ, e)

×
∣
∣
∣
∣
det

∂(x̂, x̃, t)

∂y

∣
∣
∣
∣

−1 ∣
∣
∣det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′,∆τ)

∣
∣
∣
∆τ=0
y′′=0

e i〈x−x0,ξ〉 dξ de.

It follows that the principal symbol of NMN ;βα is given by (4–8). ˜

In the inverse, (NMN )−1
αβF

∗
MN ;β , seismologists distinguish the action of the para-

metrix of the normal operator from the imaging operator: They refer to the first

action as amplitude versus angles (AVA) inversion, when e is given by (4–4).
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Remark 4.4. So far, we have discussed the inversion of data from one pair of

modes (M,N). Often data will be available for some subset S of all possible

pairs of modes. Define the normal operator for this case as

Nαβ =
∑

(M,N)∈S

F ∗
MN ;αFMN ;β =

∑

(M,N)∈S

NMN ;αβ .

If all the NMN ;αβ are pseudodifferential operators, so is Nαβ . A left inverse

is now given by N−1
αβ F

∗
β , where F ∗

β is the vector of Fourier integral operators

containing the F ∗
MN ;β , (M,N) ∈ S.

4B. Parameter resolution. In practice, the parametrix (NMN )−1
αβ is replaced

by a regularized inverse, 〈(NMN )−1〉αβ say. Following the Backus–Gilbert ap-

proach [4], we subject the symbol matrix NMN ;αβ(x, ξ) for given (x, ξ) and mode

pair MN to a singular value decomposition and invoke thresholding. The thresh-

olding yields the regularization and limits the set of parameters that can be

resolved. This is apparent in the symbol resolution matrix,

〈(NMN )−1〉(x, ξ)NMN (x, ξ),

namely through its deviation from the identity matrix: One can read off the

linear combinations of parameters that can be resolved. An example is shown

in Figure 9, where the background was assumed to be isotropic and M = N =

P. (There we employ the Voigt notation, CIJ , that replaces the tensor notation

cijkl.)

Seismologists rarely attempt to reconstruct the stiffness tensor components

directly. The resolution analysis defines a hierarchy of linear combinations of

stiffness tensor components that can actually be extracted from the data.

5. Phantom Images, Artifacts of Type I

We investigate some of the consequences of a violation of the Bolker con-

dition. To this end, we reconsider the composition F ∗
MN ;βFMN ;α defining the

normal operator for a mode pair MN . The canonical relation associated with

the imaging operator F ∗
MN ;β is given by (cf. (3–10))

Λ∗
MN = {(x, ξ; y′, η′) : (y′, η′;x, ξ) ∈ ΛMN}.

Let L = Λ∗
MN × ΛMN and M = T ∗X \ 0 × diag(T ∗Y \ 0) × T ∗X \ 0 as before.

The compose Λ∗
MN ◦ΛMN is given by the projection L∩M on T ∗X \0×T ∗X \0,

namely

Λ∗
MN ◦ ΛMN = {(z, ζ;x, ξ) : (y′, η′; z, ζ) ∈ ΛMN , (y′, η′;x, ξ) ∈ ΛMN}.

If the intersection L∩M is clean (cf. (4–9)-(4–10)) the compose Λ∗
MN ◦ΛMN is

again a canonical relation [62, Theorem 21.2.14]. (Such result was obtained for

transversal intersection by Hörmander [59] and refined to clean intersection by

Duistermaat and Guillemin [42].) The intersection L ∩M is clean precisely if L
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Figure 9. Normal operator symbol resolution matrix; n = 3, ξ points in the

3 direction, eigenvalues with a magnitude of less than 0.1 times the primary

eigenvalue are zeroed (the matrix has rank 4).

and M intersect transversally in a submanifold of T ∗X\0 × T ∗Y \0 × T ∗Y \0 ×
T ∗X\0.

5A. The composition. Employing the parametrization of ΛMN given in Re-

mark 3.3 and below (4–3), the intersection solves the equation

y′(x, α̂, α̃, τ) = y′(z, β̂, β̃, τ), η′(x, α̂, α̃, τ) = η′(z, β̂, β̃, τ). (5–1)

(Here we have already substituted the immediate equality of frequencies, τ .)

These equations describe the following geometry:

(i) x and z lie on the ray in mode M determined by (r, ρ); at x this ray has phase

or cotangent direction α̂ and at z this ray has phase or cotangent direction β̂;

(ii) x and z lie on the ray in mode N determined by (s, σ); at x this ray has

(phase) cotangent direction α̃ and at z this ray has (phase) cotangent direc-

tion β̃;

(iii) since

TM (x, α̂) + TN (x, α̃)
︸ ︷︷ ︸

TMN (x,α̂,α̃)

= TM (z, β̂) + TN (z, β̃),
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if z 6= x, TM (z, β̂) > TM (x, α̂) implies TN (x, α̃) > TN (z, β̃) and vice versa, in

which case the ray originating at r reaches x prior to reaching z while the ray

originating at s reaches z prior to reaching x. Because TM (z, β̂)−TM (x, α̂) =

TN (x, α̃) − TN (z, β̃), the rays originating at z with initial phase directions β̂

and −β̃ intersect in x at the same time.

From these geometrical observations, it follows that (5–1) can be recast in the

form, for some tMN :

xM (z, β̂, τ, tMN ) − xN (z, β̃, τ,−tMN ) = 0, (5–2)

and

x = xM (z, β̂, τ, tMN ), (5–3)

α̂ = αM (z, β̂, τ, tMN ) :=
ξM (z, β̂, τ, tMN )
∥
∥ξM (z, β̂, τ, tMN )

∥
∥
, (5–4)

α̃ = αN (z, β̃, τ,−tMN ) :=
ξN (z, β̃, τ,−tMN )
∥
∥ξN (z, β̃, τ,−tMN )

∥
∥
, (5–5)

so that the compose Λ∗
MN ◦ ΛMN is given by the set

{
(z, ζ;x, ξ) : (5–2)–(5–3) are satisfied, with

ξ = ξ̂0(x, α̂, τ) + ξ̃0(x, α̃, τ), ζ = ξ̂0(z, β̂, τ) + ξ̃0(z, β̃, τ)
}
. (5–6)

Compare (3–10). In these equations we used the solution representation of the

Hamilton system in (2–14). So far, the composition has not been subjected to

any assumptions.

5B. Transversal intersection (c = 0). In case tMN = 0 then the solution to

equations (5–3)-(5–3) is found to be (z, β̂, β̃) = (x, α̂, α̃). In the context of the

discussion in the previous subsection, we call these solutions the reciprocal-ray

solutions: the ray originating at s and terminating at r coincides with the ray

originating at r and terminating at s. These are the only solutions under the

Bolker condition as discussed in Theorem 4.3. It was noted that then L and M

intersect cleanly with excess e = n− 1 − c.

In the more general situation when there are solutions with tMN 6= 0 (that

correspond with the violation of travel time injectivity [99]) the normal opera-

tor will attain a contribution that is in general not microlocal (corresponding to

nonreciprocal-ray solutions). To ensure that this contribution can be represented

by a Fourier integral operator, we invoke the condition that L and M still inter-

sect transversally (cleanly with excess 0). This typically occurs in configurations

with waveguiding behavior. In seismological terms, then the diffraction surfaces

associated with x and z have higher-order contact simultaneously in “common

shot” and in “common receiver” data gathers.



252 MAARTEN V. DE HOOP

Upon linearizing (5–1) the transversal intersection condition can be formu-

lated as the condition that (for the notation, see Remark 4.2)

M =





















∂rM
∂x

∂rM
∂α̂

0
∂rM
∂z

∂rM

∂β̂
0

∂pr
M

∂x

∂pr
M

∂α̂
0

∂pr
M

∂z

∂pr
M

∂β̂
0

∂sN

∂x
0

∂sN

∂α̃

∂sN

∂z
0

∂sN

∂β̃

∂ps
N

∂x
0

∂ps
N

∂α̃

∂ps
N

∂z
0

∂ps
N

∂β̃

∂TMN

∂x

∂TM

∂α̂

∂TN

∂α̃

∂TMN

∂z

∂TM

∂β̂

∂TN

∂β̃





















has maximal rank.

Following the simplification of (5–1) to (5–2), in [89] it is shown that this rank

is maximal if and only if the matrix C defined by

„

∂xM

∂z

˛

˛

˛

˛

(z,β̂,t)

−
∂xN

∂z

˛

˛

˛

˛

(z,β̃,−t)

∂xM

∂β̂

˛

˛

˛

˛

(z,β̂,t)

−
∂xN

∂β̃

˛

˛

˛

˛

(z,β̃,−t)

∂xM

∂t

˛

˛

˛

˛

(z,β̂,t)

+
∂xN

∂t

˛

˛

˛

˛

(z,β̃,−t)

«

has maximal rank.

The derivation follows. In view of observation (iii) below (5–1), the map

(z, β̂) → (rM (z, β̂), pr
M (z, β̂), TM (z, β̂))

is equal to the composition of maps

(z, β̂)→(xM (z, β̂, τ, t), αM (z, β̂, τ, t))

(x, α̂)→(rM (x, α̂), pr
M (x, α̂), TM (x, α̂) + t).

Using the chain rule, it follows that

∂(rM , pr
M , TM )

∂(z, β̂)

∣
∣
∣
∣
∣
(z,β̂)

=
∂(rM , pr

M , TM )

∂(x, α̂)

∣
∣
∣
∣
(x,α̂)

∂(xM , αM )

∂(z, β̂)

∣
∣
∣
∣
∣
(z,β̂,t)

. (5–7)

In a similar fashion, we obtain

∂(sN , p
s
N , TN )

∂(z, β̃)

∣
∣
∣
∣
(z,β̃)

=
∂(sN , p

s
N , TN )

∂(x, α̃)

∣
∣
∣
∣
(x,α̃)

∂(xN , αN )

∂(z, β̃)

∣
∣
∣
∣
(z,β̃,−t)

. (5–8)

Using these relations, the matrix M can then be factorized as

M = AS,



MICROLOCAL ANALYSIS OF SEISMIC INVERSE SCATTERING 253

in which

A =











∂(rM , pr
M )

∂(x, α̂)
0

0
∂(sN , p

s
N )

∂(x, α̃)

∂TM

∂(x, α̂)

∂TN

∂(x, α̃)











is a (4n − 3) × (4n − 2) matrix, contains derivatives of the mappings from the

subsurface to the acquisition manifold, and has full rank since

∂(rM , pr
M , TM )

∂(x, α̂)

∣
∣
∣
∣
(x,α̂)

and
∂(sN , p

s
N , TN )

∂(x, α̃)

∣
∣
∣
∣
(x,α̃)

are invertible in view of Liouville’s theorem, while

S =


















In 0 0
∂xM

∂z

∣
∣
∣
∣
(z,β̂,t)

∂xM

∂β̂

∣
∣
∣
∣
(z,β̂,t)

0

0 In−1 0
∂αM

∂z

∣
∣
∣
∣
(z,β̂,t)

∂αM

∂β̂

∣
∣
∣
∣
(z,β̂,t)

0

In 0 0
∂xN

∂z

∣
∣
∣
∣
(z,β̃,−t)

0
∂xN

∂β̃

∣
∣
∣
∣
(z,β̃,−t)

0 0 In−1
∂αN

∂z

∣
∣
∣
∣
(z,β̃,−t)

0
∂αN

∂β̃

∣
∣
∣
∣
(z,β̃,−t)


















.

Following the factorization, we have

rankM = rankS − dim(rangeS ∩ kerA). (5–9)

The kernel of A follows from the observation (see [33, Appendix A]) that

∂(rM , pM )

∂(x, α̂)

∣
∣
∣
∣
(x,α̂)

(
vM (x, α̂)

0

)

= 0,
∂TM

∂(x, α̂)

∣
∣
∣
∣
(x,α̂)

(
vM (x, α̂)

0

)

= −1;

compare Figure 5, where vM (x, α̂) := vM (x, τ−1ξM (x, α̂)). A similar observation

holds for (sN , pN , TN ) with −vN (x, α̃) replacing vM (x, α̂). We conclude that

kerA = span{vM (x, α̂), 0,−vN (x, α̃), 0}.

To the range of S the following reasoning applies. Writing V = [Vx,ˆ, Vα̂, Vx,˜, Vα̃]

for an element of rangeS we find, upon subtracting rows, from the structure of

the matrix S that

Vx,ˆ − Vx,˜ ∈ rangeC
′

where

C
′ =

(
∂xM

∂z

∣
∣
∣
∣
(z,β̂,t)

− ∂xN

∂z

∣
∣
∣
∣
(z,β̃,−t)

∂xM

∂β̂

∣
∣
∣
∣
(z,β̂,t)

− ∂xN

∂β̃

∣
∣
∣
∣
(z,β̃,−t)

)

.
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Accounting for the identity submatrices in S, it then follows that rankS = 3n−
2 + rankC′. Following the subtraction of rows, we find that

dim(rangeS ∩ ker A) = dim(rangeC
′ ∩ span{vM (x, α̂) + vN (x, α̃)}
︸ ︷︷ ︸

one-dimensional

). (5–10)

If span{vM (x, α̂) + vN (x, α̃)} ⊂ rangeC′, rankC = rankC′; otherwise rankC =

rankC′ + 1, i.e.

rankC = rankC
′ + 1 − dim(rangeC

′ ∩ span{vM (x, α̂) + vN (x, α̃)}). (5–11)

Combining (5–10), (5–11) with (5–9) yields

rankM = rankC + 3n− 3.

Hence, rankM is maximal if and only if rankC is maximal.

5C. Nonmicrolocal contribution to the normal operator (c = 0). The

projection πY of ΛMN on T ∗Y \ 0 is immersive. (This follows from Lemma 4.1

and the fact that the projection πX of ΛMN on T ∗X \ 0 is submersive under

Assumption 1.) Hence, for any (y′, η′;x, ξ) ∈ ΛMN there is a small neighborhood

Λ0 ⊂ ΛMN such that πY : Λ0 → T ∗Y \ 0 is an embedding. Then

(Λ∗
0 × Λ0) ∩M = {(x, ξ, y′, η′; y′, η′, x, ξ) : (x, ξ, y′, η′) ∈ Λ0}.

Applying this argument for arbitrary (y′, η′;x, ξ) in the canonical relation, we

can find subsets Λk ⊂ ΛMN , k ∈ K for some set K, such that πY : Λk → T ∗Y \0

is an embedding. Let

Lmloc :=
⋃

k∈K

Λ∗
k × Λk,

then Lmloc ∩M consists of points corresponding with the reciprocal intersection

solutions. For each k ∈ K the intersection

(Λ∗
k × Λk) ∩M

is transversal in the submanifold T ∗X \ 0 × diag(πY (Λk)) × T ∗X \ 0.

Complementary to the microlocal part, Lnmloc = L \ Lmloc, Lnmloc ∩M con-

sists of points corresponding with the nonreciprocal intersection solutions. This

intersection is transversal if and only if the following assumption is satisfied:

Assumption 5 (Stolk). The matrix C given by

„

∂xM

∂z

˛

˛

˛

˛

(z,β̂,t)

−
∂xN

∂z

˛

˛

˛

˛

(z,β̃,−t)

∂xM

∂β̂

˛

˛

˛

˛

(z,β̂,t)

−
∂xN

∂β̃

˛

˛

˛

˛

(z,β̃,−t)

∂xM

∂t

˛

˛

˛

˛

(z,β̂,t)

+
∂xN

∂t

˛

˛

˛

˛

(z,β̃,−t)

«

has maximal rank .
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If ΛMN ;c ⊂ ΛMN is a conically compact subset of ΛMN , and we replace L by

Lc = Λ∗
MN ;c × ΛMN ;c, the microlocal and the nonmicrolocal parts of Lc ∩M

are both conically compact. It follows that in the parameters (x, α̂, α̃, τ) the

microlocal and nonmicrolocal parts are separated.

If ΛMN ;c is a compact subset of ΛMN , there is a finite collection {Λk}k∈Ǩ such

that ΛMN ;c ⊂ ⋃

k∈Ǩ Λk and Λ∗
k ◦ Λl is either diagonal, empty, or accounts for

a nonmicrolocal contributrion. Upon applying appropriate pseudodifferential

cutoffs, we obtain ψ(y′,Dy′)FMN ;α = FMN ;α;k where FMN ;α;k has canonical

relation Λk; in view of the previous observation, we can then write FMN ;α as a

finite sum of FMN ;α;k.

To each of the compositions, F ∗
MN ;α;kFMN ;α;l, the calculus of Fourier integral

operators applies. Their orders follow to be (n−1)/2+ e/2. With Assumption 5,

the excess of the nonmicrolocal contributions is zero whence their contributions

to the normal operator have order n−1
2 (while for the microlocal part the excess

was found to be e = n− 1).

The nonmicrolocal contribution to the normal operator is at most as singular

as its pseudodifferential contribution:

Theorem 5.1 (Stolk). The operator FMN ;α : Hs → Hs−(n−1)/2 is continuous,

and hence NMN ;αβ : Hs → Hs−n+1 is continuous.

Proof. The modeling operator FMN ;α can be written as the finite sum

∑

k∈Ǩ

FMN ;α;k

by “partitioning” its canonical relation: Λk ⊂ ΛMN is sufficiently small such that

it satisfies the Bolker condition. Then (FMN ;α;k)∗FMN ;β;k is pseudodifferential

of order n−1 and hence continuous as a mapping Hs → Hs−(n−1). We find that

FMN ;α;k is continuous as a mapping Hs → Hs−(n−1)/2.

The nonmicrolocal contribution to the normal operator is thus associated

with off-diagonal terms of the form (FMN ;α;k)∗FMN ;β;l. These can be simply

estimated from the fact that ‖FMN ;α;ku− FMN ;β;lu‖2 ≥ 0, namely,

2〈FMN ;α;ku, FMN ;β;lu〉 ≤ ‖FMN ;α;ku‖2 + ‖FMN ;β;lu‖2.

Since FMN ;α;k is continuous as a mapping Hs → Hs−(n−1)/2, it follows that

(FMN ;α;k)∗FMN ;β;l is continuous as a mapping Hs → Hs−(n−1). ˜

As a consequence, this theorem implies that the normal operator may not be in-

vertible in the sense that (NMN ;mloc)
−1
αβF

∗
MN ;β FMN ;γ (cf. equation (4–2)) attains

a nonmicrolocal contribution as singular as the identity. The nonmicrolocal con-

tribution, in this case, generates a phantom image, which we also call an artifact

of type I; see Figure 10.

The transversal intersection condition for nonreciprocal ray pairs was investi-

gated in [99; 33]; the simplified analysis presented here can be found in [89].
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s r

x y

s r

x

Figure 10. Nonmicrolocal contribution - z 6= x (phantom separated in position;

left) and ζ 6= ξ (phantom separated in orientation; right).

5D. The case c ≥ 1. Artifacts of type I occur, subject to Assumption 5, in ac-

quisition geometries with c = 0 though not generically. Two cases are illustrated

in Figure 10. The situation c ≥ 1 is more of a concern. In principle, neither

Assumption 4 nor Assumption 5 are necessarily satisfied. In particular, if the

acquisition geometry renders a codimension c ≥ 1, assumptions of this type may

be violated. The precise characterization of the Lagrangian of the normal oper-

ator, other than the diagonal, will then yield the artifacts (or phantom images).

It is expected that then the calculus of singular Fourier integral operators due

to Greenleaf and Uhlmann [48; 50; 49] still applies.

6. Symplectic Geometry of Seismic Data

The wavefront set of the modeled data is not arbitrary. This is a consequence

of the fact that data consist of multiple experiments designed to provide a degree

of redundancy, which we explain here. Under the Born approximation, subject

to the restriction to the acquisition manifold, the singular part of the medium

parameters is a function of n variables, while the data are a function of 2n−1−c
variables. This redundancy is exploited in the parameter reconstruction, and is

important in the reconstruction of the background medium (or the medium above

the interface in the case of a smooth jump) as well.

We consider again the canonical relation ΛMN . Suppose Assumption 4 is

satisfied. In this section, denote by Ω the map

Ω : (x, ξ, e) 7→ (y′(x, ξ, e), η′(x, ξ, e)) : T ∗X \ 0 × E → T ∗Y \ 0

introduced above (4–3); seismologists refer to it as map demigration. This map

conserves the symplectic form of T ∗X \ 0. That is, if wxi
= ∂(y′, η′)/∂xi and

similarly for wξi
, wei

, we have

σY (wxi
, wxj

) = σY (wξi
, wξj

) = 0,

σY (wξi
, wxj

) = δij ,

σY (wei
, wxj

) = σY (wei
, wξj

) = σY (wei
, wej

) = 0. (6–1)
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The (x, ξ, e) are symplectic coordinates on the projection of ΛMN on T ∗Y \ 0,

which is a subset L of T ∗Y \ 0.

The image L of the map Ω is coisotropic, as noted in Lemma 4.1. The sets

(x, ξ) = const. are the isotropic fibers of the fibration of Hörmander [61], Theo-

rem 21.2.6; see also Theorem 21.2.4. Duistermaat [43] calls them characteristic

strips (see Theorem 3.6.2). We have sketched the situation in Figure 11. The

wavefront set of the data is contained in L and is a union of fibers.

Using the following result we can extend the coordinates (x, ξ, e) to symplectic

coordinates on an open neighborhood of L.

Lemma 6.1. [91] Let L be an embedded coisotropic submanifold of T ∗Y \ 0, with

coordinates (x, ξ, e) such that (6–1) holds. Denote L 3 (y′, η′) = Ω(x, ξ, e). We

can find a homogeneous canonical map G from an open part of T ∗(X ×E) \ 0 to

an open neighborhood of L in T ∗Y \ 0, such that G(x, e, ξ, ε = 0) = Ω(x, ξ, e).

Proof. The ei can be viewed as (coordinate) functions on L. We first extend

them to functions on the whole T ∗Y \ 0 such that the Poisson brackets {ei, ej}
satisfy

{ei, ej} = 0, 1 ≤ i, j ≤ m− n, (6–2)

where m = dimY = 2n− c− 1. This can be done successively for e1, . . . , em−n

by the method that we describe in the sequel, see Treves [102, Chapter 7, proof

of Theorem 3.3] or Duistermaat [43, proof of Theorem 3.5.6]. Suppose we have

extended e1, . . . , el, we extend el+1. In order to satisfy (6–2) el+1 has to be a

solution u of

Hei
u = 0, 1 ≤ i ≤ l,

where Hei
is the Hamilton field associated with the function ei, with initial

condition on some manifold transversal to the Hei
. For any (y′, η′) ∈ L the

covectors dei, 1 ≤ i ≤ l restricted to T(y′,η′)L are linearly independent, so the

Hei
are transversal to L and they are linearly independent modulo L. So we can

give the initial condition u|L = el+1 and even prescribe u on a larger manifold,

which leads to nonuniqueness of the extensions ei.

We now have m−n commuting vectorfields Hei
that are transversal to L and

linearly independent on some open neighborhood of L. The Hamilton systems

with parameters εi read

∂y′j
∂εi

=
∂ei

∂η′j
(y′, η′),

∂η′j
∂εi

= − ∂ei

∂y′j
(y′, η′), 1 ≤ i, j ≤ m− n.

Let G(x, e, ξ, ε) be the solution for (y′, η′) of the Hamilton systems combined

with initial value (y′, η′) = Ω(x, ξ, e) with flowout parameters ε. This gives a

diffeomorphic map from a neigborhood of the set ε = 0 in T ∗(X × E) \ 0 to a

neighborhood of L in T ∗Y \ 0. One can check from the Hamilton systems that

this map is homogeneous.
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ΛMN

πX (submersion) πY (immersion)

T ∗X \ 0
ε

T ∗Y \ 0

(x, ξ)eL
πX ◦ π−1

Y

Figure 11. Visualization of the symplectic structure of ΛMN (cone structure

omitted).

It remains to check the commutation relations. The relations (6–1) are valid

for any ε, because the Hamilton flow conserves the symplectic form on T ∗Y \ 0.

The commutation relations for ∂(y′, η′)/∂εi follow, using that ∂(y′, η′)/∂εi =Hei
.

˜

Let MMN be the canonical relation associated with the map G we just con-

structed, i.e. MMN = {(G(x, e, ξ, ε);x, e, ξ, ε)}. We now construct a Maslov-type

phase function for MMN that is directly related to a phase function for ΛMN .

Suppose (y′I , η
′
J , x) are suitable coordinates for ΛMN (ε = 0). For ε small, the

constant-ε subset of MMN allows the same set of coordinates, thus we can use

coordinates (y′I , η
′
J , x, ε) on MMN . Now there is (see Theorem 4.21 in Maslov

and Fedoriuk [73]) a function SMN (y′I , x, η
′
J , ε) such that MMN is given by

y′J = −∂SMN

∂η′J
, η′I =

∂SMN

∂y′I
, ξ = −∂SMN

∂x
, e =

∂SMN

∂ε
.

Thus a phase function for MMN is given by

ΨMN (y′, x, e, η′J , ε) = SMN (y′I , x, η
′
J , ε) + 〈η′J , y′J 〉 − 〈ε, e〉. (6–3)

A Maslov-type phase function for ΛMN then follows as

ΦMN (y′, x, η′J ) = ΨMN

(

y′, x,
∂SMN

∂ε

∣
∣
∣
ε=0

, η′J , 0
)

= SMN (y′I , η
′
J , x, 0)+〈η′J , y′J〉.

The variable ε also plays a role in the formulation of the generalized Radon

transform in Section 9.

7. Modeling and Inversion under the Kirchhoff Approximation

Another way to model the subsurface is to assume that it consists of differ-

ent regions (layers) separated by smooth interfaces. The medium parameters,

stiffness cijkl and density ρ, are assumed to vary smoothly on each region, and

smoothly extendible across each interface, but they vary discontinuously at an
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interface. Here we model the reflection of waves at a smooth interface between

two such layers with smoothly varying medium parameters.

7A. Reflection at an interface: Microlocal analysis of the “Kirchhoff”

approximation. The amplitude of the scattered waves is determined essen-

tially by the reflection coefficients, and, implicitly, also by the curvature of the

reflecting interface. Expressions for these coefficients are well known for the case

of two constant coefficient media separated by a plane interface (see e.g. Aki and

Richards [2], Chapter 5). In the case of smoothly varying media the reflection

coefficients determine the scattering in the high-frequency limit. For a treatment

of reflection and transmission of waves using microlocal analysis, see Taylor [98];

for the acoustic case, see also Hansen [56].

Mathematically the reflection and transmission of waves is formulated as a

boundary value problem. The displacement ul must satisfy the elastic wave

equation under given initial conditions. In addition the displacement and the

normal traction must be continuous at the interface. Denote the normal to the

interface by ν. The

Pilul = fi away from the interface, ul = 0 for t < 0, (7–1)

must hold, while

ρ−1/2ul is continuous at the interface,

νjcijkl
∂

∂xk
(ρ−1/2ul) is continuous at the interface.

(7–2)

Here we have the factors ρ because of our normalization (2–3). We assume that

the source vanishes on a neighborhood of the interface. That this is a well-

posed problem can be shown using energy estimates; see, for instance, Lions and

Magenes [71], Section 3.8.

The solutions to the partial differential equation with f = 0 follow from

the theory discussed in Section 2. The singularities are propagated along the

bicharacteristics, curves in T ∗(X × R) \ 0, given by

(xM (x0, ξ0,±t), t, ξM (x0, ξ0,±t),∓BM (x0, ξ0)).

This is the bicharacteristic associated with the M,± constituent of the solution;

see Section 2. We define a bicharacteristic to be incoming if its direction is from

inside a layer towards the interface for increasing time. We define a bicharac-

teristic to be outgoing if its direction is away from the interface into a layer for

increasing time.

Assume that the incoming bicharacteristic stays inside a layer from t = 0 until

it hits the interface, then the solution along such a bicharacteristic is determined

completely by the partial differential equation and the initial condition. On the

other hand, the solution along the outgoing bicharacteristics is not determined

by the partial differential equation and the initial condition. We show that
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Figure 12. 2-dimensional section of an n = 3-dimensional slowness surfaces

at some point of the interface, for the medium on both sides of the interface.

The slownesses of the modes that interact (i.e. reflect and transmit into each

other) are the intersection points with a line that is parallel to the normal of the

interface. The group velocity, which is normal to the slowness surface, determines

whether the mode is incoming or outgoing.

the solution along the outgoing bicharacteristics is determined by the partial

differential equation and the interface conditions in (7–2).

We consider the consequences of the interface conditions. Assume for the mo-

ment that the interface is located at xn = 0. We denote x′ = (x1, . . . , xn−1), x =

(x′, xn) and similarly, ξ = (ξ′, ξn). The wavefront set of the restriction of ul to

xn = 0 satisfies

WF(ul|xn=0) =
{
(x′, t, ξ′, τ) : there is ξn with (x′, 0, t, ξ′, ξn, τ) ∈ WF(ul)

}
.

It follows that a solution traveling along a bicharacteristic that intersects the

boundary at some point (x′, 0, t) interacts with any other such solution as long

as the associated values for ξ′, τ in their wavefront sets coincide (Snell’s law).

This is depicted in Figure 12.

Depending upon the boundary coordinate x′ and the “tangential” slowness

−τ−1ξ′, the number of interacting bicharacteristics may vary. For large values

of −τ−1ξ′ there will be neither incoming nor outgoing modes; for small values

there are n incoming and n outgoing modes. The situation where the vertical
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line in Figure 12 is tangent to the slowness surface corresponds to rays tangent

to the interface. Such rays are associated with head-waves and are not treated in

our analysis. Equation (2–9) implies that the incoming and the outgoing modes

correspond to the real solutions ξn of

detPil(x
′, 0, ξ′, ξn, τ) = 0.

This equation has 2n real or complex conjugated roots. The complex roots

correspond to evanescent wave constituents. To number the roots we use an

index µ.

In the following theorem we show that if none of the rays involved is tan-

gent, there exists a pseudodifferential operator-type relation between the differ-

ent modes restricted to the surface xn = 0; we calculate its principal symbol in

the proof. Let x 7→ z(x) : R
n → R

n be a coordinate transformation such that

the interface is given by zn = 0. The corresponding cotangent vector is denoted

by ζ, and satisfies

ζi(ξ) =

((
∂z

∂x

)−1
)tij

ξj ;

moreover the z form coordinates on a manifold Z.

Assumption 6. There are no rays tangent to the interface zn = 0 microlocally

at (z′, t, ζ ′, τ).

Theorem 7.1. Suppose the roots τ of (2–9) have constant multiplicity and

Assumption 6 is valid microlocally on some neighborhood in T ∗(Z ′ × R) \ 0. Let

uin
N(ν) be microlocal constituents of a solution describing the “incoming” modes,

and suppose GM(µ)refers to an “outgoing” Green’s function (2–19). Microlocally ,

the single reflected/transmitted constituent of the solution is given by

uM(µ)(x, t) =

∫

zn=0

GM(µ)(x, x(z), t− t0)2iDt0

(
Rµν(z,Dz′ ,Dt0)u

in
N(ν)(x(z), t0)

)

×
∣
∣
∣
∣
det

∂x

∂z

∣
∣
∣
∣

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥

dz′ dt0, (7–3)

where Rµν(z,Dz′ ,Dt) is a pseudodifferential operator of order 0.

In the proof we derive the explicit form of Rprin
µν (z, ζ ′, τ); see Remark 7.2. The

|det ∂x/∂z| ‖∂zn/∂x‖ dz′ integration is the Euclidean surface integral over the

surface zn = 0.

Proof. (See [91].) For the moment we assume z(x) = x, i.e. that we have a

reflector at xn = 0, and smooth coefficients on either side. We show that at the

interface there is a relation of the type

uout
M(µ)(x

′, 0, t) = R0
µν(x′, 0,D′,Dt)u

in
N(ν). (7–4)
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We use the notation cjk;il = cijkl and also (cjk)il = cijkl [111]. The partial

differential equation (2–1) reads in this notation

(

ρδil
∂2

∂t2
− cjk;il

∂2

∂xj∂xk

)

(ρ−1/2ul) + l.o.t. = 0.

This equation can be rewritten as a first-order system in the variable xn for

the vector Va of length 2n that contains both the displacement and the normal

traction (normal to the surface xn = const.)

Va =

(
ρ−1/2ui

cnk;il
∂(ρ−1/2ul)

∂xk

)

, i = 1, . . . , n (7–5)

in preparation for the boundary value problem (7–1), (7–2). Here a is an index

in {1, . . . , 2n}. The first-order system then is

∂Va

∂xn
= iCab(x,D

′,Dt)Vb,

where Cab is a matrix partial differential operator given to highest order by

Cab(x,D
′,Dt) =

− i










−
n−1∑

q=1

n∑

j=1

(cnn)−1
ij cnq;jl

∂

∂xq
(cnn)−1

il

−
n−1∑

p,q=1

bpq;il
∂2

∂xp∂xq
+ ρδil

∂2

∂t2
−

n−1∑

p=1

∂

∂xp
cpn;ij(cnn)−1

jl










ab

.

Here bpq;il = cpq;il −
∑n

j,k=1 cpn;ij(cnn)−1
jk cnq;kl (in this equation we indicate the

summations explicitly because the summations over p, q are 1, . . . , n−1, whereas

j ∈ {1, . . . , n}).

We next decouple this first-order system microlocally, in a way similar to the

decoupling in Section 2A. We want to find scalar pseudodifferential operators

Cµ(x,D′,Dt) and a matrix pseudodifferential operator Laµ(x,D′,Dt) such that

Cab(x,D
′,Dt) = Laµ(x,D′,Dt) diag(Cµ(x,D′,Dt))µν L

−1
νb (x,D′,Dt).

The principal symbols Cprin
µ (x, ξ′, τ) are the solutions for ξn of

detP prin
il (x, (ξ′, ξn), τ) = 0. (7–6)

In fact, it suffices for the transformed operator (the matrix diagCµ(x,D′,Dt)µν)

to be block-diagonal: a block for each different real root of (7–6), a block with

eigenvalues with positive imaginary part, and a block with eigenvalues with nega-

tive imaginary part. (This has also been discussed by Taylor [98].) By hypothesis

of the theorem this transformation can be realized. This is because when varying

ξ′, τ , the multiplicity of a real eigenvalue only changes when the multiplicity of

the corresponding root of (2–9) changes, or when two real eigenvalues become
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complex. The number of complex eigenvalues with positive or negative imagi-

nary part changes only when two real eigenvalues become complex or vice versa.

The latter case occurs only when there are tangent rays, and is hence excluded.

The 2n × 2n principal symbol Lprin
aµ (the columns appropriately normalized)

is given by

Lprin
aµ (x, ξ′, τ)=

(
Qprin

iM(µ)(x, (ξ
′, Cprin

µ (x, ξ′, τ)))

cin;kl(− i(ξ′, Cprin
µ (x, ξ′, τ))k)Qprin

lM(µ)(x, (ξ
′, Cprin

µ (x, ξ′, τ)))

)

aµ

.

(The polarization vector QiM (x, ξ) can also be defined for complex ξ). We define

Vµ = L(x,D′,Dt)
−1
µaVa. (The index mapping µ 7→M(µ) assigns the appropriate

mode to the normal component of the wave vector).

If the principal symbol of Cµ(x, ξ′, τ) is real, the decoupled equation for mode

µ is of hyperbolic type. It corresponds to an outgoing wave or to an incoming

wave, depending on the direction of the corresponding ray. If the principal

symbol of Cµ(x, ξ′, τ) is complex, the decoupled operator for mode µ is of elliptic

type. Depending on the sign of the imaginary part it corresponds to a mode that

grows in the n-direction, a backward parabolic equation, or one that decays, a

forward parabolic equation. The growing mode has to be absent, in view of

energy considerations; see also Hörmander [62], Section 20.1.

The matrix Laµ is fixed up to normalization of its columns. For the elliptic

modes (ImCprin
µ (x, ξ′, τ) 6= 0) the normalization is unimportant. For the hyper-

bolic modes the normalization can be such that the vector Vµ = L(x,D′,Dt)
−1
µaVa

agrees microlocally with the corresponding mode uM,± defined in Section 2. To

see this, assume Vµ refers to the same mode as uM,±. In that case there is an in-

vertible pseudodifferential operator ψ(x,D,Dt) of order 0 such that Vµ = ψuM,±.

Now we can define Vµ,new = ψ−1Vµ,old. Because ψ may depend on ξn, this factor

cannot directly be absorbed in L. However, since Vµ,old satisfies a first-order

hyperbolic equation the dependence on ξn can be eliminated and the factor ψ−1

can be absorbed in L.

In proving this let the in-modes be the modes for which the amplitude is

known, which are of the incoming hyperbolic and the growing elliptic type. De-

note by L
(1)
aµ , L

(2)
aµ the matrix Laµ on either side of the interface. We define the

2n× 2n matrix Lin such that it contains the columns related to incoming modes

extracted from L
(1)
aµ , L

(2)
aµ , i.e.

Lin
aµ = (L(1),in −L(2),in )aµ ,

and define Lout
aµ similarly (so, here, µ is slightly different). The interface condi-

tions (7–2) now read

Lout
aµ V

out
µ + Lin

aµV
in
µ = 0.

If we set R0
µν = −(Lout)−1

µaL
in
aν (for the question whether the inverse exists; see

Remark 7.2 after the proof) then the part referring to the hyperbolic modes gives

Equation (7–4).
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The uout
M are determined at the interface by (7–4). Describing their propaga-

tion away from the interface is a (microlocal) initial value problem similar to the

problem for GM,± above, where now the xn variable plays the role of time. The

solution is again a Fourier integral operator, with canonical relation generated by

the bicharacteristics. It follows that we can use φM,±(x, t− t0, x0, ξJ , τ) as phase

function (taking care that n /∈ J). The amplitude AM,±(xI , x0, ξJ , τ) satisfies

the transport equation as before. However, the restriction of the Fourier integral

operator to the “initial surface” xn = 0 is a pseudodifferential operator that is

not necessarily the identity. Let us assume

uout
M (x, t) =

∫

x0,n=0

GM,±(x, (x′0, 0), t− t0)ψ(x,Dx′
0
,Dt0)u

out
M (x′0, 0, t0) dx′0 dt0,

(7–7)

where ψ(x,D′,Dt) is to be found such that the restriction of this representation

to xn = 0 is the identity. The ± sign is chosen such that GM,± is the outgoing

mode. We can use again Section 8.6 of Treves [102] to find that the principal

symbol of this pseudodifferential operator should be

ψ(x, ξ′, τ) =

∣
∣
∣
∣

∂BM

∂ξn
(x, ξ′, Cprin

µ (ξ′, τ))

∣
∣
∣
∣
=

∣
∣
∣
∣

∂xM,n

∂t
(x, ξ′, Cprin

µ (ξ′, τ), 0)

∣
∣
∣
∣
, (7–8)

i.e., the normal component of the velocity of the ray, the group velocity.

We now replace GM,± by (the relevant part of) GM , using the equality

GM = 1
2 iGM,+BM (x,D)−1 − 1

2 iGM,−BM (x,D)−1. Taking this and the rela-

tion Bprin
M (x, ξ) = ∓τ into account, we have now obtained (7–3) for the case that

z = x (no coordinate transformation).

We argue that (7–3) is also true when z(x) is a general coordinate transforma-

tion. This follows from transforming the equations (7–1), (7–2) to z coordinates.

In general, to highest order, the symbol of (pseudo)differential operators trans-

forms as ψtransf(z, ζ, τ) = ψ
(
x(z), (∂z/∂x)tζ, τ

)
. Tracing the steps of the proof

we find the following equivalent of (7–4)

uout
M(µ)(x(z

′, 0), t) = R0
µν(z′, 0,Dz′ ,Dt)u

in
N(ν)(x(z

′, 0), t). (7–9)

When the interface is at zn = 0 we can obtain (7–7) in z coordinates instead

of x coordinates. Transforming GM , uM back to x coordinates we find that, for

x away from the interface,

uM (x) =

∫

zn=0

GM (x, x(z), t− t0)

∣
∣
∣
∣

∂zM,n

∂t
(z,Dz′ ,Dt0)

∣
∣
∣
∣

× uout
M (x(z), t0)

∣
∣
∣
∣
det

∂x

∂z

∣
∣
∣
∣
dz′ dt0.
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Here

∣
∣
∣
∣

∂zM,n

∂t
(z,Dz′ ,Dt)

∣
∣
∣
∣

is the transformed version of (7–8). Expression (7–3)

follows, with

Rµν(z, ζ ′, τ) =

∣
∣
∣
∣

∂zM,n

∂t
(z, ζ ′, τ)

∣
∣
∣
∣

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥

−1

R0
µν(z, ζ ′, τ). ˜

Remark 7.2. The principal symbol R0,prin
µν (z, ζ ′, τ) that occurs in the proof is

simply the flux-normalized reflection coefficient for the amplitudes. The prin-

cipal symbol Rprin
µν (z, ζ ′, τ) is obtained by multiplying R0,prin

µν with the normal

component of the velocity of the ray, given (for z(x) = x) by (7–8). The reflec-

tion coefficients satisfy unitary relations; see Chapman [28] and Kennett [70] (the

appendix to Chapter 5). These follow essentially from conservation of energy. It

follows that the matrix of reflection coefficients is well defined and in particular

that the inverse of Lout
aµ exists. Chapman [28] also gives a direct proof of the

reciprocity relations for the reflection coefficients.

Remark 7.3. We have shown that the reflected/transmitted wave is given by

a composition of Fourier integral operators acting on the source. In the proof of

Theorem 7.1, one can recognize the elements of the derivation of the Kirchhoff(-

Helmholtz) approximate scattering theory for scalar waves [18]. In the case

of multiple reflections or transmissions (for instance in a medium consisting of

a number of smooth domains separated by smooth interfaces) this is also the

case (cf. Frazer and Sen [46]). It follows that microlocally the solution operator

describing the reflected solutions is itself a Fourier integral operator, where the

canonical relation is given by the generalized bicharacteristics (i.e. the reflected

and transmitted bicharacteristics) and the amplitude is essentially the product of

the ray amplitudes and the reflection/transmission coefficients. The integration

over z′ accounts for the effects associated with the curvature of the interface.

7B. Modeling: Kirchhoff versus Born. In this subsection we match the

expression for the data modeled using the smooth jump (Kirchhoff) approxima-

tion to the expressions for the Born modeled data we obtained in Section 3. The

smooth medium above the interface plays the role of the background medium in

the Born approximation.

From Theorem 7.1 it follows that reflection of an incident N -mode with cov-

ector ξ̃0 into a scattered M -mode with covector ξ̂0 can take place if the fre-

quencies are equal and ξ̂0 + ξ̃0 is normal to the interface. In other words,

ξ̂0 + ξ̃0 must be in the wavefront set of the singular function of the interface,

δ(zn(x)). Given ξ̃0, ξ̂0 one can identify µ(M), ν(N), and define (at least to high-

est order) the reflection coefficient as a function of (x, ξ̂0, ξ̃0), R
prin
MN (x, ξ̂0, ξ̃0) =

Rprin
µ(M),ν(N)(z

′(x), ζ ′(ξ̃0), τ). This factor can now be viewed as a function either of

coordinates (y′I , x, η
′
J ) or of coordinates (x, ξ, e) on ΛMN (strictly speaking only

defined for x in the interface, and ξ normal to the interface). To highest order,

RMN does not depend on ‖ξ‖ and is simply a function of (x, e). We obtain the
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following result, which is a generalization of the Kirchhoff approximation. The

normalization factor ‖∂zn/∂x‖ of the δ-function is such that integral

∫

(· · ·)
∥
∥
∥
∂zn

∂x

∥
∥
∥δ(zn(x)) dx

is an integral over the surface zn = 0 with Euclidean surface measure in x

coordinates.

Theorem 7.4. Suppose Assumptions 1, 6, 2, and 3 are satisfied microlocally for

the relevant part of the data. Let ΦMN (y′, x, η′J ),BMN (y′I , x, η
′
J ) be the phase

and amplitude as in Theorem 3.2, but here for the smooth medium above the

interface. Then the data modeled with the smooth jump interface model is given

microlocally by

Grefl
MN (y′)=(2π)−|J|/2−(3n−1−c)/4

∫
(
BMN (y′I , x, η

′
J )2iτ(η′)RMN (y′I , x, η

′
J )+l.o.t.

)

× e iΦMN (y′,x,η′
J )

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥
δ(zn(x)) dη′J dx; (7–10)

in other words, by a Fourier integral operator with canonical relation ΛMN and

order (n−1+c)/4 − 1 acting on the distribution ‖∂zn/∂x‖δ(zn(x)).

Proof. We write the distribution kernel of the reflected data (7–3) in a form

similar to (3–3). First recall the reciprocal expression for the Green’s function

(2–24),

GN (x(z), x̃, t0) = (2π)−(|J̃|+1)/2−(2n+1)/4

×
∫

AN (x̃Ĩ , x(z), ξ̃J̃ , τ)e
iφN (x̃,x(z),t0,ξ̃J̃ ,τ) dξ̃J̃ dτ.

By using Theorem 7.1, and doing an integration over a t and a τ variable one

finds that the Green’s function for the reflected part is given by

Grefl
MN (x̂, x̃, t) = (2π)−(|Ĵ|+|J̃|+1)/2−n

×
∫

zn=0

(
2iτAM (x̂Î , x(z), ξ̂Ĵ , τ)AN (x̃Ĩ , x(z), ξ̃J̃ , τ)Rµ(M)ν(N)(z, ζ

′, τ) + l.o.t.
)

× e iΦMN (x̂,x̃,t,x(z),ξ̂Ĵ ,ξ̃J̃ ,τ)

∣
∣
∣
∣
det

∂x

∂z

∣
∣
∣
∣

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥

dξ̂Ĵ dξ̃J̃ dτ dz′,

where ζ ′ depends on (x(z), ξ̃0) (the indices µ, ν for the reflection coefficients

have been explained in Section 7A). The integration
∫
(· · ·)dz′ is now replaced

by
∫
(· · ·)δ(zn)dz. The latter can be transformed back to an integral over x.

Thus we obtain
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(2π)−(|Ĵ|+|J̃|+1)/2−n

×
∫
(
2iτAM (x̂Î , x, ξ̂Ĵ , τ)AN (x̃Ĩ , x, ξ̃J̃ , τ)Rµ(M)ν(N)(z(x), ζ

′(ξ̃J , x), τ) + l.o.t.
)

× e iΦMN (x̂,x̃,t,x,ξ̂Ĵ ,ξ̃J̃ ,τ)

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥
δ(zn(x)) dξ̂Ĵ dξ̃J̃ dτ dx.

This formula is similar to (3–3), except for the fact that the amplitude is different

and δcijkl(x)/ρ(x), δρ(x)/ρ(x) is replaced by the δ-function ‖∂zn/∂x‖δ(zn(x)).

Also the factors wMN ;ijkl, wMN ;0 depend only on the background medium, while

Rµ(M)ν(N) depends on the total medium. The phase function ΦMN now comes

from the smooth medium above the reflector.

The data are modeled by Grefl
MN (x̂, x̃, t) with (x̂, x̃, t) in the acquisition man-

ifold, as is explained in the text below Lemma 3.1. We follow the approach of

Section 3, and do a coordinate transformation (x̂, x̃, t) 7→ (y ′, y′′), such that the

acquisition manifold is given by y′′ = 0. It follows that under Assumptions 2

and 3 the data are obtained as the image of a Fourier integral operator acting

on ‖∂zn/∂x‖δ(zn(x)) and that it is given by (7–10). ˜

We now construct the reflectivity function and the operator that maps it to

seismic data. This is done by applying the results of Section 6 to the Kirchhoff

modeling formula (7–10), and its equivalent under the Born approximation (3–3).

Theorem 7.5. [91] Suppose that microlocally Assumptions 1, 6, 2, 3, and 4 are

satisfied . Let HMN : E ′(X × E) → D′(Y ) be the Fourier integral operator with

canonical relation given by the extended map (x, ξ, e, ε) 7→ (y′, η′) constructed in

Section 6, and with amplitude to highest order given by

(2π)n/2(2iτ)BMN (y′I , x, η
′
J , ε),

such that BMN (ε = 0) is as given in Theorem 3.2. Then the data, in both

Born and Kirchhoff approximations, are given by HMN acting on a distribution

rMN (x, e) of the form

rMN (x, e) = (pseudo)(x,Dx, e)(distribution)(x). (7–11)

For the Kirchhoff approximation this distribution equals ‖∂zn/∂x‖δ(zn(x)), while

the principal symbol of the pseudodifferential operator equals RMN (x, e), so to

highest order rMN (x, e) = RMN (x, e)‖∂zn/∂x‖δ(zn(x)). For the Born approx-

imation the function rMN (x, e) is given by a pseudodifferential operator acting

on (
δcijkl

ρ
,
δρ

ρ

)

α
,

with principal symbol (2iτ(x, ξ, e))−1wMN ;α(x, ξ, e); see (3–5).

Proof. We do the proof for the Kirchhoff approximation using (7–10); for the

Born approximation the proof is similar. Because Assumption 4 is satisfied,

the projection πY of ΛMN into T ∗Y \ 0 is an embedding, and the image is a
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coisotropic submanifold of T ∗Y \0. Therefore we can apply Lemma 6.1. Formula

(6–3) implies that the phase factor e iΦMN can be written in the form

e iΦMN (y′
I ,x,η′

J) = e i(SMN (y′
I ,x,η′

J ,0)+〈y′
J ,η′

J〉)

= (2π)−(n−1−c)

∫

e i(SMN (y′
I ,x,η′

J ,ε)+〈y′
J ,η′

J〉−〈e,ε〉) dεde;

we define

ΨMN (y′, x, e, η′J , ε) = SMN (y′I , x, η
′
J , ε) + 〈y′J , η′J 〉 − 〈e, ε〉.

Thus the number of phase variables is increased by making use of a stationary

phase argument. Let BMN (y′I , x, η
′
J , ε) be as described. Then we obtain

Grefl
MN (y′) = (2π)−(|J|+n−1−c)/2−(2n−1−c)/2

×
∫
(
(2π)n/22iτ(η′)BMN (y′I , x, η

′
J , ε)RMN (x, e) + l.o.t.

)

× e iΨMN (y′,x,e,η′
J ,ε)

∥
∥
∥
∥

∂zn

∂x

∥
∥
∥
∥
δ(zn(x)) dη′J dεdxde.

In this formula, the data are represented as a Fourier integral operator acting on

‖∂zn/∂x‖δ(zn(x)) considered as a function of (x, e). Multiplying by H−1
MN gives

a pseudodifferential operator of the form described acting on ‖∂zn/∂x‖δ(zn(x)).

Thus the result follows. ˜

Figure 13 illustrates the relation between RMN and the Born approximation.
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Figure 13. Constituent reflection coefficients linearized in (δcijkl/ρ, δρ/ρ)α for

incident qP and scattered qP in a transversely isotropic medium: The relation

between the Born and Kirchhoff approximations.
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7C. Inversion. The operator HMN is invertible. A choice of phase function

and amplitude for its inverse is given by (see Chapter 8 of Treves [102])

−ΨMN (y′, x, e, η′J , ε), BMN (y′I , x, η
′
J , ε)

−1

∣
∣
∣
∣
det

∂(y′, η′)

∂(y′I , x, η
′
J , ε)

∣
∣
∣
∣
,

respectively. Thus microlocally an explicit expression for rMN (x, e) in terms of

the data is given by

rMN (x, e) =

∫

BMN (y′I , x, η
′
J , ε)

−1

∣
∣
∣
∣
det

∂(y′, η′)

∂(y′I , x, η
′
J , ε)

∣
∣
∣
∣

× e− iΨMN (y′,x,e,η′
J ,ε)dMN (y′) dη′J dεdy′.

Because the function rMN (x, e) is to highest order equal to the product of

reflection coefficient and the singular function of the reflector surface, this re-

construction of the function rMN (x, e) leads to the following result for Kirchhoff

data.

Corollary 7.6. Suppose that the medium above the reflector is given, and that

it satisfies Assumptions 1, 6, 2, 3, and 4. Then one can reconstruct the position

of the interface and the angle dependent reflection coefficient Rµν(x, e) on the

interface.

Remark 7.7. In amplitude-versus-angles analysis it is the reflection coefficient

obtained from the inversion that is directly subjected to interpretation. De-

pending on the (medium) coefficients symmetries, the reflection coefficient may

be expanded into trigonometric functions of scattering angle and azimuth (e).

(The foundation of such expansions dates back to the work of Shuey [88].) The

leading order coefficients in such expansion provide information about the P and

S phase velocities just below the reflector.

Such information may be used to infer additional properties of the subsur-

face. For example, the ratio of P and S phase velocities is nearly independent of

pore pressure (or effective stress) and hence renders information about the fluid

compressibility (and hence fluid mixture) in a porous formation. The S phase

velocity as such will reveal primarily the pore pressure. This separation of infor-

mation is most easily recovered by crossplotting the P and S phase impedances.

The analysis is of key importance in time-lapse seismology with application for

example to reservoir monitoring.

8. Annihilators of Seismic Data

The results of the previous subsections may be exploited in the problem of

estimating the smooth background medium (or, in the Kirchhoff approximation,

the smooth medium parameters above/in between the interfaces). If n−1−c > 0

there is a redundancy in the data through the variable e. The redundancy in the

data manifests itself as a redundancy in images from these data. If the smooth
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medium parameters (above the interface) are correct, then applying the operator

H−1
MN of Theorem 7.5 to the data results in a reflectivity function rMN (x, e),

such that the position of the singularities does not depend on e. Thus we obtain

multiple images of the reflectivity parametrized by e such that their singular

supports (in x) should agree. This can be used as a criterion to assess the

accuracy of the choice of the background medium.

One way to measure this agreement is by taking a derivative with respect to e.

We develop this strategy further. The derivative ∂rMN (x, e)/∂e is one order less

singular if rMN (x, e) depends smoothly on e, as in (7–11), than when it does

not (for instance a δ function versus its derivative in the Kirchhoff case). Taking

also the factor in front of the δ function of rMN into account — see (7–11 — we

obtain that to the highest two orders

(

RMN (x, e)
∂

∂e
− ∂Rprin

MN

∂e
(x, e)

)

rMN (x, e) = 0. (8–1)

If RMN (x, e) is nonzero then the lower order terms can be chosen such that this

equation is valid to all orders.

Conjugating the differential operator of (8–1) with the invertible Fourier in-

tegral operator HMN , we obtain a pseudodifferential operator on D′(Y ). Thus

we obtain the following corollary of Theorem 7.5

Corollary 8.1. Let the pseudodifferential operators WMN (y′,Dy′)be given by

WMN (y′,Dy′) = HMN

(

RMN (x, e)
∂

∂e
− ∂RMN

∂e
(x, e)

)

H−1
MN .

Then for Kirchhoff data dMN (y′) we have to the highest two orders

WMN (y′,Dy′)dMN (y′) = 0. (8–2)

For values of e where RMN (x, e) 6= 0, the operator WMN (y′,Dy′) can be chosen

such that (8–2) is valid to all orders.

We refer to WMN as an annihilator of the data.

Remark 8.2. In principle, the annihilators WMN (y′,Dy′) can be used to quan-

tify the agreement between the data and the background medium. Symes [95]

discusses such criteria for acoustic media using differentiation with respect to

the offset coordinate. Upon introducing the seminorm ‖WMNdMN‖, an error

criterion is obtained and an optimization scheme can be derived to minimize

the action of the annihilators and to obtain an improved estimate of the back-

ground medium coefficients. Such an optimization scheme requires a “gradient”

computation combined with a regularization procedure. Here the “gradient” is

viewed as a derivative along a curve in the space of background media. We have

adapted the Tikhonov regularization that penalizes roughness in the background

medium. The gradient computation makes use of ray perturbation theory. The

procedure is known to seismologists as migration velocity analysis. An example

is presented in Section 9E.
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9. The Generalized Radon Transform

Honoring the symplectic geometry presented in Section 6, we extract a gener-

alized Radon transform from the modeling and inversion Fourier integral oper-

ators developed in Sections 4 and 7. The generalized Radon transform becomes

the basis of a processing procedure. It is developed through several intermediate

steps by selecting relevant neighborhoods of the canonical relation ΛMN . These

steps enable the use of traveltime in the phase function while restricting the

imaging operator to a given value of e.

9A. Diffraction stack. To describe the kernel of the operator FMN ;α as an

oscillatory integral on a neighborhood of the point on ΛMN parametrized by

(x0, α̂, α̃, τ), the minimum number of phase variables is given by the corank of

the projection

Dπ : TΛMN → T (T ∗Y × T ∗X)

at (x0, α̂, α̃, τ), which is here given by

corank Dπ = 1 + corank
∂sN

∂α̃
(x, α̃) + corank

∂rM
∂α̂

(x, α̂).

This corank is > 1 when s or r is in a caustic point relative to x. Let

Λ′
MN = ΛMN \

(
closed neighborhood of {λ ∈ ΛMN : corank Dπ > 1}

)
. (9–1)

The subset Λ′
MN can be described by phase functions of the traveltime form

τ (t− T
(m)
MN (x, s, r))

with the only phase variable τ and where T
(m)
MN is the value of the time variable

in (3–10); see Remark 4.2. The index m labels the branches of the multi-valued

traveltime function. Thus the set {T (m)
MN}m∈M describes the canonical relation

(3–10) except for a neighborhood of the subset of the canonical relation where

mentioned projection is degenerate. Each T
(m)
MN is defined on a subset D(m) of

X×Os×Or (possibly dependent on MN). We define F
(m)
MN ;α to be a contribution

to FMN ;α with phase function given by τ(t− T
(m)
MN ), and symbol A(m)

MN in a

suitable class such that on a subset Λ′
MN of the canonical relation where the

projection is nondegenerate, FMN ;α is given microlocally by
∑

m∈M F
(m)
MN ;α.

Remark 9.1. With the phase function τ(t − T
(m)
MN ), the application of the

imaging or inversion operator on the data, up to leading order, amounts to

a “diffraction stack”, which is for the contribution at the image point x, an

integration of the analytic extension of the data over (s, r) subjecting the time

to t = T
(m)
MN (x, s, r). Let s, r be restricted to a hyperplane (the earth’s surface)

and introduce the half offset H and midpoint m such that s = m − H and

r = m + H. Assume that M = N . Upon composing T
(m)
NN with this map, we

obtain t
(m)
N (x,m,H) = T

(m)
NN (x,m − H,m + H). Let t

(m)
0 = t

(m)
N (x,m,H = 0)

denote the zero-offset traveltime. It is common practice to write H = h$ with
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$ ∈ Sn−2. Since dt
(m)
N /dh|h=0 = 0, expanding t

(m)
N into a Taylor series, and

squaring the result leads to the expansion

(t
(m)
N )2 = (t

(m)
0 )2 + (2h)2 〈$,U$〉

︸ ︷︷ ︸

V 2
nmo($)

+ . . . ,

in which Uij = t
(m)
0 ∂Hi

∂Hj
t
(m)
N |H=0/4 is an (n−1)× (n−1) matrix, which defines

the normal moveout velocity along a common midpoint line in the direction $

[103]. This hyperboloid was the original shape used in the diffraction stack that

was organized in (m,h,$) rather than (s, r). In the generalized Radon transform

we can think of ξ/‖ξ‖ replacing m and e replacing H.

9B. Common image point gathers in scattering angles. In (4–4) we

introduced the scattering angles. Here we introduce in addition the migration

dip ν, defined as the direction of ξ in ΛMN (cf. (3–10)),

νMN (x, α̂, α̃) =
ξ

‖ξ‖ ∈ Sn−1. (9–2)

On D(m) there is a map (x, α̂, α̃) 7→ (x, s, r). We define e
(m)
MN = e

(m)
MN (x, s, r) as

the composition of eMN with the inverse of this map. Likewise, we define ν
(m)
MN .

Note that also T
(m)
MN is the composition of TMN with mentioned inverse, and that

we can introduce w
(m)
MN ;α in a similar manner.

In preparation of the generalized Radon transform (GRT) we define the an-

gles imaging operator, Ľ, via a restriction in F ∗
MN ;β of the mapping e

(m)
MN to a

prescribed value e; that is, the distribution kernel of each contribution (F
(m)
MN ;β)∗

is multiplied by δ(e− e
(m)
MN (x, s, r)). (This restriction transfers over to the con-

struction of the left inverse in (4–2).) Invoking the Fourier representation of this

δ, the kernel of L follows as (cf. Section 6)

Ľ(x, e, r, s, t) =
∑

m∈M

(2π)−(n−1)

∫

A(m)
MN (x, s, r, τ)w

(m)
MN ;β(x, s, r, τ)

× eiΦ
(m)
MN (x,e,s,r,t,ε,τ) dτdε, (9–3)

where A(m)
MN = BMN with |J | = 1 (and η′J = τ) is a symbol for the m-th

contribution to FMN ;β , supported on D(m), and

Φ
(m)
MN (x, e, s, r, t, ε, τ) = τ(T

(m)
MN (x, s, r) − t) + 〈ε, e− e

(m)
MN (x, s, r)〉.

As before, ε is the cotangent vector corresponding to e.

Let ψL =ψL(Ds,Dr,Dt) be a pseudodifferential cutoff such that ψL(σ, ρ, τ)=0

on a conic neighborhood of τ = 0. Then ψLĽ is a Fourier integral operator [90]

with canonical relation

ΛĽ =
⋃

m∈M

{
(x,e

(m)
MN , ξ

(m)
MN , ε; s, r, T

(m)
MN, σN , ρ

(m)
M , τ) : (x, s, r) ∈ D(m),

ε ∈ R
n−1, τ ∈ R\0

}
⊂ T ∗(X×E)\0×T ∗Y \0, (9–4)
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where e
(m)
MN and T

(m)
MN are functions of x, s, r and

ξ
(m)
MN = ξ

(m)
MN (x, s, r, τ, ε) = ∂xΦ

(m)
MN = τ∂xT

(m)
MN (x, s, r) − 〈ε, ∂xe

(m)
MN (x, s, r)〉,

(9–5)

while similar expressions hold for σ
(m)
N and ρ

(m)
M .

Effectively, for each x we select a different subset of the data. This is fun-

damentally different from the common offset Kirchhoff integral approach which

amounts to a straightforward restriction in the acquisition manifold.

9C. Artifacts of type II. With the choice (4–4) for e, the following assumption

is implied. However, for other choices of e it needs to be verified.

Assumption 7. Consider the mapping

Ξ : ΛMN → T ∗X \ 0 ×E, λ(x, α̂, α̃, τ) 7→ (x, ξ, e), with ξ = ‖ξ‖νMN .

Composing this mapping with the inverse of the mentioned map (x, α̂, α̃) 7→
(x, s, r), yields per branch m a mapping Ξ(m) from (x, s, r, τ) to an element of

T ∗X \ 0 × E. Ξ(m) is locally diffeomorphic, i .e.

rank
∂(ξ

(m)
MN ,e

(m)
MN )

∂(s, r, τ)

∣
∣
∣
∣
∣
ε=0

is maximal , at given x and branch m.

Let dMN be the Born modeled data in accordance with Theorem 3.2. To re-

veal any artifacts generated by Ľ, i.e. singularities in ĽdMN at positions not

corresponding to an element of WF(gα), we consider the composition Ľ FMN ;α.

With Assumption 7 this composition is equal to the sum of a smooth e-family

of pseudodifferential operators and, in general, a non-microlocal operator. The

wavefront set of the non-microlocal operator contains no elements with ε = 0 [90,

Theorem 6.1]. The origin of contributions from ε 6= 0 is illustrated in Figure 14.

A filter needs to be applied to remove contributions from |ε| ≥ ε0 > 0; we define

the generalized Radon transform L as the Fourier integral operator with canon-

ical relation UL — also denoted as ΛL — to be a neighborhood of ΛĽ ∩ {ε = 0},

which derives from the left inverse (4–2).

Figure 14. The origin of artifacts generated by the generalized Radon transform.

(Inside the T ∗Y \ 0 box of Figure 11.)
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The artifacts in the compose of the canonical relation of Ľ with that of FMN ;α

can be evaluated by solving the system of equations

r = rM (x, α̂), (9–6)

s = sN (x, α̃), (9–7)

T
(m)
MN (z, s, r) = TM (x, α̂) + TN (x, α̃), (9–8)

ρ
(m)
M (z, s, r, τ, ε) = −τpr

M (x, α̂), (9–9)

σ
(m)
N (z, s, r, τ, ε) = −τps

N (x, α̃). (9–10)

(The frequency is preserved.) Equations (9–6)–(9–8) imply that the image point

z must lie on the isochrone determined by (x, s, r). Equations (9–9) and (9–10)

enforce a match of slopes (apparent in the appropriate “slant stacks”) in the

measurement process:

− τ∂rT
(m)
MN (z, s, r) +

〈
ε, ∂re

(m)
MN (z, s, r)

〉
= −τpr

M (x, α̂), (9–11)

− τ∂sT
(m)
MN (z, s, r) +

〈
ε, ∂se

(m)
MN (z, s, r)

〉
= −τps

N (x, α̃). (9–12)

For ε 6= 0 the take-off angles of the pairs of rays at (r, s) may be distinct. Equa-

tions (9–11) and (9–12) imply the matrix compatibility relation (upon eliminat-

ing ε/τ)

(
∂re

(m)
MN (z, s, r)

)−1(
pr

M (x, α̂) − ∂rT
(m)
MN (z, s, r)

)

=
(
∂se

(m)
MN (z, s, r)

)−1(
ps

N (x, α̃) − ∂sT
(m)
MN (z, s, r)

)
. (9–13)

Those summarize the geometrical composition equations determining the arti-

facts: For each (x, α̂, α̃) ∈ K solve the 3n− 2 equations (9–6)–(9–8), (9–13) for

the 3n− 2 unknowns (z, s, r). (From (9–11) we then obtain ε/τ hence ε.)

Remark 9.2. The generalized Radon transform reconstructs a distribution

in E ′(X) smoothly indexed by e ∈ E. Thus, we can carry out the composition

(NMN )−1
αβL (no summation over M,N) as in (4–2) to yield the generalized Radon

transform inversion [33]. Likewise, we can carry out a composition with the

modeling operator FMN ;α (or HMN ;α).

9D. Filters. In general, filters need to be applied to the common image point

gathers to remove the artifacts of type II. At the same, the generalized Radon

transform is a transformation of data as a function of the (2n − 1) variables

(s, r, t) to a distribution of the (2n − 1) variables (x, e). After the removal of

artifacts, the alignment in the e directions (ε = 0) of the singular support of this

distribution represented in the common image point gathers simplifies the task of

denoising the final image of the medium perturbation. Treating the artifacts as

noise as well, a joint approach based upon non-adaptive wavelet thresholding [41]
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applies; an analysis of subbands will then aid in the suppression of the artifacts,

associated with ε 6= 0.

The removal of the illumination effects (which can be written as the action of

a pseudodifferential operator on gα) is also amenable to the use of wavelets. A

possible approach is matching pursuit [72].

9E. An example: Estimating the background model. To get to an ex-

ample, a discretization both of cijkl, ρ (background) and of δcijkl, δρ (singular

perturbation) has to be chosen. We have represented the background by cubic

splines the smoothness of which aid in the numerical computation of geometrical

spreading.

In Figure 16 we illustrate the performance of an optimization minimizing the

annihilators developed with the aid of the generalized Radon transform. In the

example, the medium is isotropic and hence we have only two parameters i.e.

the P-wave and S-wave speeds. We reconstruct a smooth Gaussian lens (in P-

wave speed) in six iterations (the intermediate model on the left and some ray

geometry originating at a scattering point on the reflector on the right), starting

from an initial model that did not contain a lens whence in the initial model

no caustics were formed. Note the alignment in the final common image point

gather reflecting the reduncancy in the data. In the final model caustics do

occur, as illustrated in Figure 15.

9F. An example: reconstructing the singular perturbation. From a

geological point of view, it is attractive to represent the singular perturbation

by fractional splines.

We apply the generalized Radon transform to multicomponent ocean bottom

seismic data acquired over the Valhall field in the Norwegian sector of the North

Sea to obtain common image point gathers representing rMN (x, e). In this re-

gion, it is believed that the presence of gas in the overburden yields lenses that

cause caustics to form. An isotropic elastic background model was obtained;
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Figure 15. The Gaussian lens model with reflecting surface (left) and the modeled

data (vertical component) for a given source position, in an experiment of the

type in Figure 1 (right).
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Figure 16. Successive (P, P) common image point gathers (left) and charac-

teristics associated with a particular Green’s function originating at the reflector

(right) in the process of minimizing the annihilator. A smooth Gaussian lens is

being reconstructed (from [22]).
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the P-wave speed is shown in Figure 17 (top). Note the presence of the lenses.

We will illustrate the data, the action of the generalized Radon transform, the

common image point gathers, and images of particular medium parameter com-

binations in the slice depicted in Figure 17 (bottom). The common image point

gathers will be restricted to x lying on the black vertical line and e being the

scattering angle. A fan of characteristics originating at the (dark) reservoir layer

is shown in Figure 18, which illustrates the formation of caustics in GM (M = P).
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Figure 17. The cP model in perspective (top) and a slice (bottom). Note the

stack of lenses that contain gas. The dark layer represents the reservoir.
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Figure 18. Characteristics in the model of Figure 17 (bottom).

The horizontal component of the data, for given source position, is shown in

Figure 19. These illustrations can be thought of as regularizations of the data

and medium perturbation distributions.

For the pairs (P, P) and (P, S) the common image point gathers are shown

in Figure 20 (left, middle). Observe the alignment of a sequence of (singular)

supports at the arrow with scattering angle (here converted to incidence angle)

at reservoir depth. The rMN (x, e) for (N,M) =(P, S) corresponding with the

0
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Figure 19. Data: fixed source position, horizontal component (parallel to acqui-

sition surface).
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Figure 20. Common image point gathers with x on the black line in Figure 17

(bottom). In the framework of the Born approximation for (P, P) (left) and (P, S)

(middle) and in the framework of the Kirchhoff approximation for (P, S) (right);

from [21].

middle common image point gather is shown on the right. Note the change of

sign of the amplitude at the key reflector, which is an indication of the presence

of anisotropy.

In Figure 21, the images of P- and S-phase impedances inside the white box of

Figure 17 (bottom) are presented, and compared with a standard seismic image

from (P, S) in Figure 22. The use of these images combined was addressed in

Remark 7.7.

10. Wavefield “Continuation”

In general, FMN ;αF
∗
MN ;β cannot be a pseudodifferential operator. However,

exploiting carefully the redundancies in the data, L∗L (note that L is an imaging

operator itself) attains, under certain conditions, pseudodifferential properties.

This observation is at the basis of seismic wavefield “continuation”.

In this section, we use a simplified notation: We suppress the subscripts MN

in the operators F (originally FMN ;α) and N (originally NMN ;αβ). Also, we
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Figure 21. High resolution images of impedance revealing sedimentary layers and

faults, from: (P, P) scattered waves (left) and (P, S) scattered waves (right).
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Figure 22. A (P, P) image from hydrophone data obtained with standard seismic

processing (transversely isotropic) corresponding with Figure 17 (bottom). The

white box corresponds with the image of Figure 21 (left).

re-introduce y replacing y′ to enable with the same notation a further restriction

to acquisition submanifolds.

10A. Modeling restricted to an acquisition submanifold. Single reflection

seismic wavefield continuation aims at generating from reflection data — through

the canonical relation (3–10) — associated with T ∗X \ 0 × Ei, in which Ei is an

(n−1)-dimensional open neighborhood of e say, reflection data associated with

T ∗X \0×Eo, in which Eo ⊃ Ei. Such continuation, within the acquisition man-

ifold Y , is accomplished through the composition of Fourier integral operators

generating an intermediate image of δcijkl (resp. δρ). In the previous section,

we analyzed a Fourier integral operator, the generalized Radon transform, that

generates (linear combinations of) δcijkl (resp. δρ) from data on T ∗X \ 0 × Ei.

In this section we consider, once data are modeled from δcijkl (resp. δρ) as

in Theorem 3.2, the restriction to an acquisition submanifold parametrized by

(x, ξ, e) through the canonical relation (3–10), such that e ∈ Eo. In the following

subsections, the restriction, modeling and generalized Radon transform imaging
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operators will be composed to yield the continuation. In this composition, the

background coefficients (ρ, cijkl) are used, but, naturally, δcijkl (resp. δρ) does

not appear. The continuation is illustrated in Figure 23.

Figure 23. Continuation and characteristic strips. (Inside the T ∗Y \ 0 box of

Figure 11.)

Our starting point is the situation where c = 0. We consider the restriction to

an acquisition submanifold by increasing c to c̃, say. This submanifold is written

as Y c̃ = Σc̃ × (0, T ), with Σc̃ ı→ Os ×Or representing an embedded manifold of

codimension c = c̃ ≥ 0. We reconsider Assumption 3. Let

(y′1, . . . , y
′
2n−2−c, y

′
2n−1−c
︸ ︷︷ ︸

t

, y′′2n−c, . . . , y
′′
2n−1)

denote a local coordinate system on Y such that Σc is given by (y′′2n−c, . . . , y
′′
2n−1)

= (0, . . . , 0) locally. In the applications under consideration, we order the coor-

dinates such that y′2n−1−c = t.

Assumption 8. The intersection of ΛMN with the manifold y′′ = 0 is transver-

sal , i .e.

∂y′′

∂(x, α̂, α̃, τ)
has maximal rank .

Applying [43, Thm. 4.2.2] to the pair F and the restriction R = Rc from

Os×Or → Σc with Assumption 8 implies that RcF is a Fourier integral operator

of order (n−1+c)/4 with canonical relation

Λc
MN =

{
(y′, t, η′, τ ;x, ξ) : ∃ y′, y′′, η′, η′′ such that

(y′, y′′, η′, η′′;x, ξ) ∈ ΛMN and y′′ = 0
}
⊂ T ∗Y c \ 0 × T ∗X \ 0. (10–1)

(Here Λ0
MN = ΛMN .) We mention two examples: Zero offset, where c = n − 1

and Σc := ΣZO ⊂ diag(∂X) (subject to the n − 1 constraints r = s when

arccos(α̂ · α̃) = 0 and eo at x follows from (4–4)), and common azimuth (CA),

where c = 1 and Σc := ΣCA subject to one constraint typically of the form that

the (n − 1)st coordinate in r − s is set to zero, while Eo 3 e at x follows from

the mapping e(m). We set Y ZO = ΣZO × (0, T ) and Y CA = ΣCA × (0, T ).
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The restriction to acquisition submanifolds is placed in the context of inversion

in [80].

10B. Continuation. We analyze the continuation of multiple finite-offset seis-

mic data — in the absence of knowledge about the singular medium perturbation.

The compose FL is a well-defined operator D′(Y ) → D′(Y ). Its wavefront set is

contained in the composition of the wavefront sets of F and L [43, Thm. 1.3.7],

hence in the composition of canonical relations,

ΛMN◦Λ′
L =

{
(s2, r2, t2, σ2, ρ2, τ2; s1, r1, t1, σ1, ρ1, τ1) : ∃ x, ξ, ε such that

(s2, r2, t2, σ2, ρ2, τ2;x, ξ) ∈ ΛMN and (x, e, ξ, ε; s1, r1, t1, σ1, ρ1, τ1) ∈ ΛL

}

⊂ T ∗Y \ 0 × T ∗Y \ 0, (10–2)

with Λ′
L = {(x, ξ; s, r, t, σ, ρ, τ) : ∃x, ξ, ε such that (x, e, ξ, ε; s, r, t, σ, ρ, τ) ∈ ΛL}.

(To avoid the introduction of Λ′
L, we could consider the composition of HMN

with L; see Theorem 7.5.) Whether the compose is a Fourier integral operator

is yet to be investigated.

Using the parametrizations of ΛMN in Remark 3.3 and ΛL in (9–4), the com-

pose (10–2) can be evaluated through solving a system of equations, the first

n being trivial fixing the scattering point x0 = x, the second n equating the

cotangent vectors

τ2∂xTMN (x0, α̂, α̃)
︸ ︷︷ ︸

‰(x,α̂,α̃,τ2)

= τ1∂xT
(m)
MN (x, s, r) − 〈ε, ∂xe

(m)
MN (x, s, r)〉

︸ ︷︷ ︸

‰
(m)
MN (x,s,r,τ1,ε)

. (10–3)

Given e(x, α̂, α̃) = e (n − 1 constraints) these constitute n equations with the

2n − 1 unknowns (α̂, α̃, τ2). (On D(m) the constraints on e can be invoked on

s, r instead, namely, via the inverse of the map (x, α̂, α̃) 7→ (x, s, r) as before.)

Lemma 10.1. With Assumptions 4 and 7 the composition FL yields a smooth

family of Fourier integral operators parametrized by e. Their canonical relations

are given by

ΛC = ΛMN ◦ UL = {(s2, r2, t2, σ2, ρ2, τ2; s1, r1, t1, σ1, ρ1, τ1)}

parametrized by (x0, α̂, s1, τ1, ε), where upon substituting x = x0 and once r1
is obtained from s1 through the value e of e

(m)
MN (which mapping is defined

below equation (4–4)), (s1, r1, t1, σ1, ρ1) are given in (9–4), and , given (α̂, ε),

(s2, r2, t2, σ2, ρ2) are given in Theorem 3.2 in which (α̃, τ2) are obtained by solv-

ing (10–3).

Proof. First we extend the operator F to act on distributions in E ′(X × E)

by assuming that the action does not depend on e ∈ E. The calculus of Fourier

integral operators gives sufficient conditions that the composition of two Fourier

integral operators, here F and L, is again a Fourier integral operator. The

essential condition is that the composition of canonical relations is transversal,
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i.e. that L = ΛMN × UL and M = T ∗Y \ 0 × diag(T ∗(X × E) \ 0) × T ∗Y \ 0

intersect transversally. We have

ΛMN UL

↙ ↘ ↙ ↘
T ∗Y \ 0 T ∗X \ 0 (×E) T ∗Y \ 0

(10–4)

where the inner two projections are submersions.

On the other hand, in a neighborhood of a point in ΛMN given by (9–4), ΛMN

can be parametrized as in Λ′
MN . Using this parametrization one finds that the

composition of ΛMN and ΛL is transversal if and only if the matrix

∂

∂(s, r, α̂, α̃, τ2, ε, τ1)

(

ξ(x, α̂, α̃, τ2) − ξ
(m)
MN (x, s, r, τ1, ε)

)

has maximal rank (cf. (10–3)). This follows, for example, just from the ξ con-

tribution in view of the submersivity of the projection πX : ΛMN → T ∗X \ 0.

However, it follows also from the ξ
(m)
MN contribution: Parametrizing ΛL by (x, ξ, ε)

and restricting ΛL to UL further to ε = 0, results in a parametrization in terms

of (x, ξ) (with the artifacts filtered out). Then ξ
(m)
MN becomes ξ and it follows

that the composition of ΛMN and UL is transversal if and only if

rank
∂

∂(ξ, α̂, α̃, τ2)

(
ξ(x, α̂, α̃, τ2) − ξ

)
is maximal.

This is indeed the case. ˜

Subjecting the operator F in the composition to the constraint that e (cf. (4–4))

attains a prescribed value, the parameter α̂ in the lemma will be eliminated.

Remark 10.2. Following seismological convention, we have used the termi-

nology wavefield continuation. In fact, this is continuation in the context of

continuation theorems also. We consider the continuation of the wavefield in

the acquisition manifold from T ∗X \ 0 × Ei to T ∗X \ 0 × Eo. This contin-

uation is unique in the sense that FLd = 0 implies F ∗FLd = 0 and, since

F ∗F = N is strictly elliptic and pseudodifferential, then Ld = 0 so that the

image of (δcijkl, δρ) vanishes. In the single scattering approximation this implies

that d = F (δcijkl, δρ) = 0, all modulo smoothing contributions.

Remark 10.3. The subject of data regularization is the transformation of mea-

sured reflection data, sampled in accordance with the actual acquisition, to data

associated with a regular sampling of the acquisition manifold Y . In our approach

the operator RcF
∫

Ei
de〈N−1〉L replaces the forward interpolation operator in

the usual regularization procedures.
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10C. Transformation to common azimuth: Azimuth MoveOut. Az-

imuth MoveOut [13] (AMO) is the process following composing R1 = R1
CA

restricting Y to Y CA with modeling operator F with the imaging generalized

Radon transform L centered at a given value of e (conventionally for given value

of offset r−s); the sing supp of the Lagrangian-distribution kernel of the resulting

operator is what seismologists call the AMO impulse response. The composition

F L has been addressed in Lemma 10.1. The general restriction has been ad-

dressed in Section 10A. Here we combine these results in the following

Theorem 10.4. With Assumptions 4, 7 and 8 with Y c = Y CA, the composition

R1
CAF L yields a smooth family of Fourier integral operators parametrized by e.

The resulting operator is called Azimuth MoveOut .

The following Bolker-like condition ensures that the restriction to common az-

imuth is “image preserving”. Let ΛCA
MN denote the canonical relation of R1

CAF in

accordance with the analysis of Section 10A,

Assumption 9. The projection

πY CA : ΛCA
MN → T ∗Y CA \ 0

is an embedding .

This assumption is most easily verified whether an element in T ∗Y CA\0 uniquely

determines an element in T ∗X \ 0 smoothly given the background medium. Us-

ing “all” the data (when available), integration over the (n − 1) dimensional e

removes the artifacts under the Bolker condition, Assumption 4: We obtain the

transformation to common azimuth (TCA)

Corollary 10.5. Let 〈N−1〉 denote the regularized inverse of the normal op-

erator in Theorem 4.3. With Assumptions 2, 3, 4 and 8 (with Σc = ΣCA), the

composition R1
CAF 〈N−1〉F ∗ =

∫
deR1

CAF 〈N−1〉L is a Fourier integral operator ,

D′(Y ) → D′(Y CA). With Assumption 9 the reduced dataset generates the same

image as the original dataset .

The proof follows that of Theorem 4.3 closely (see [91, Theorem 4.5]).

11. Sampling Canonical Relations: Quasi-Monte Carlo

Integration Methods

The canonical relations of the modeling and imaging operators can be opti-

mally sampled through their parametrizations. Here we consider the parametri-

zation in (x, α̂, α̃, τ) and the parametrization in (x, ξ, e). In seismic experiments,

time is evenly sampled and hence, as far as τ is concerned, Nyquist’s criterion

(Shannon’s law) applies. As far as (α̂, α̃) is concerned, we discuss a sampling ap-

proach based upon quasi-Monte Carlo methods (see De Hoop and Spencer [37]).
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For quasi-Monte Carlo methods we refer here to one original paper by Nieder-

reiter [78]; for a comprehensive treatment of their foundations, see Hammersley

and Handscomb [55]. We also apply more recent work by Wözniakowski [112].

11A. The notion of discrepancy. The basic idea underlying Monte Carlo

integration is straightforward. The example often quoted in numerical textbooks

(e.g., Press et al. [81]) is that of determining the volume of a general region E

contained in the s-dimensional unit hypercube Is with I = [0, 1). If N points

are chosen at random over the unit hypercube then the volume of E ⊂ I s, V (E)

say, is given by

V (E) ≈ 1

N

N∑

i=1

cE(xi), (11–1)

where cE(xi) is the characteristic function that takes the value 0 if the point xi

is outside E, 1 otherwise. In other words, the volume is computed by simply

counting the number of points in Is that fall within E and dividing by the total

number of points.

Likewise, the integral IE [f ] of an integrable function f over E is approximated

by the mean

IE [f ] =

∫

Is

f(x)cE(x) dx ≈ 1

N

N∑

i=1

f(xi)cE(xi). (11–2)

From the central limit theorem it can be deduced that the integration error aris-

ing from using Eq.(11–2) is Gaussian-like distributed and its expected value is

O(N−1/2). The attractive feature of this result is that the order of the error is

independent of the dimension s of the problem and, hence, Monte Carlo integra-

tion methods become increasingly favorable for higher-dimensional problems.

Monte Carlo methods work as well as they do, because randomly chosen points

in s dimensions sample the s-dimensional unit hypercube I s “fairly”. This prop-

erty is not uniquely confined to purely random numbers. Any fair, deterministic,

distribution will suffice and may be superior. Fairness is here defined based on

a deterministic measure of the difference between an estimate of the volume of

a region K resulting from the use of the N point samples xi, i = 1, 2, . . . , N and

the true volume, V (K) say. We assume that K is a Cartesian region contained

in Is, i.e., K = K1×K2×· · ·×Ks with Kn = [0, kn), 0 ≤ kn ≤ 1, n = 1, 2, . . . , s.

Let

RN (k;x1, x2, . . . , xN ) =

∣
∣
∣
∣
∣

1

N

N∑

i=1

cK(xi) − V (K)

∣
∣
∣
∣
∣
, k =

{
k1, k2, . . . , ks

}
.

(11–3)

Given xi, i = 1, 2, . . . , N , then the discrepancy DN is defined as the supremum,

DN = sup
k ∈ Is

RN (k;x1, x2, . . . , xN ),
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or root-mean-square average or any equivalent measure, of RN over all K ⊂ Is

i.e. k ∈ Is. For example, Wözniakowski [112] uses the L2 discrepancy TN of a

set of points xi, i = 1, 2, . . . , N ,

T 2
N =

∫

Is

R2
N (k;x1, x2, . . . , xN ) dk.

Finite sets of points with low discrepancies provide valid approximations to a

uniform distribution of points.

It is possible to express the error bounds on the integral of f over E in terms

of the discrepancy of the point set xi, i = 1, 2, . . . , N in Is and, for example, the

Hardy–Krause variation of f on Is. An error bound can be obtained in which

the influence of the regularity of the integrand has been separated from the

influence of the uniformity of the distribution of nodes. Hence, the desirability

of sampling based on a set of points or nodes with low discrepancy, to give an

accurate estimate of the integral.

There exist two approaches to low-discrepancy sets:

(i) Given N , find N points in Is with small discrepancy DN (low-discrepancy

point set).

(ii) Find a set of N points in Is, such that the first M points of the sequence

show low discrepancy DM for any M ≤ N (low-discrepancy sequence).

Point sets of dimension s can be derived from sequences of dimension s− 1 by a

method described by Neiderreiter [79]: For s ≥ 2, let

x′i = {x1
i , . . . , x

s−1
i } ∈ Is−1, i = 1, 2, . . . , N (11–4)

be a low-discrepancy sequence in Is−1. Let D′
M be the discrepancy of the first

M ≤ N terms of the sequence. Then, for given N , put

xi =

{
i− 1

N
,x′i

}

∈ Is, i = 1, 2, . . . , N. (11–5)

Niederreiter [79] has shown that the discrepancy DN of these points satisfies

N DN ≤ max
1≤M≤N

M D′
M + 1, (11–6)

so that they form a low-discrepancy point set.

11B. Halton sequences and Hammersley point sets. The discrepancy in

L2 and other norms has been extensively studied, and relations with number

theory have been established. Halton [54] was the first to demonstrate that it

is possible to construct a sequence of points with discrepancy of order DN =

O(N−1[logN ]s). These sequences are now known as Halton sequences. If x′
i is

a point in such a Halton sequence of N points in Is−1, then

xi =

{
i− 1

N
,x′i

}

or 1 −
{
i− 1

N
,x′i

}

, i = 1, 2, . . . , N
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is a Hammersley point set in s-dimensional space, with discrepancy DN =

O(N−1[logN ]s−1) (see Eq.(11–6)) . In fact, upon “shifting” the Hammersley

points, the L2 discrepancy can be minimized to yield TN =O(N−1[logN ](s−1)/2),

which result is optimal (Wözniakowski [112]). The convergence rate of the sum-

mation replacing the integration is better for the Hammersley point set than for

a set of randomly distributed points.

Several methods for constructing Halton sequences and Hammersley point

sets are referred to in Niederreiter [79]. All those methods rely on expansions

of integers, to different bases for each of the s coordinates. We will give the

construction involving expansions of integers in prime number bases; this con-

struction has been reviewed and exploited by Wözniakowski [112].

Consider the creation of the j’th point in a Halton sequence in an (s − 1)-

dimensional space. Let the first s−1 prime numbers be denoted p1, p2, . . . , ps−1.

Expand the integer j as a power series in each of these s− 1 prime numbers:

∀m∈{1,...,s−1} : j =

dlogpm
je

∑

µ=0

aµ (pm)µ, aµ ∈ {0, . . . , pm − 1}, (11–7)

where d·e denotes the integral part. By reversing the order of the digits in j,

we can uniquely construct a fraction lying between 0 and 1, namely, the radical

inverse

φpm
(j) =

dlogpm
je

∑

µ=0

aµ (pm)−µ−1, (11–8)

which can then be used to assemble a Halton sequence,

y′j =
{
φp1

(j), φp2
(j), . . . , φps−1

(j)
}
. (11–9)

Consider the first M terms, j = 1, 2, . . . ,M , with M = (p1p2 · · · ps−1)
h, h ∈ N

and extend this sequence periodically as

y′j+M = y′j . (11–10)

Choosing h = dlog2Ne + 1, N ≥ 2, leads to the desired discrepancy estimate

O(N−1[logN ]s−1) for the first N points of the set. The “shifted” Hammersley

point set for dimension s is then given by

xi = 1 − zi, i = 1, 2, . . . , N, (11–11)

where

zi =
{
i− 1 + η

N
, y′i

}

, η ∈ R such that 0 ≤ i− 1 + η < N. (11–12)

For η = 0, expressions (11–11) and (11–12) define the original Hammersley point

set. The constant shift η was used by Wözniakowski [112] in order to minimize

the L2 discrepancy, though an explicit expression for the optimal shift has not

been found, hence its value must be determined by experiment.
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11C. Spherical geometry: Sn−1 and Sn−1 × Sn−1. For the use of quasi-

Monte Carlo methods in the application of Fourier integral operators, we must

design an algorithm for integration over double spheres rather than over rectan-

gular domains. In this framework, it is appropriate to consider the construction

of low-discrepancy sets over the sphere Sn−1. In the application of the general-

ized Radon transform (for a given value of e) we encounter an integration over

ν ∈ Sn−1; in the application of the (imaging-)inversion operator we encounter

an integration over (α̂, α̃) ∈ Sn−1 × Sn−1 or over (ν, e) ∈ Sn−1 × Sn−1. We will

discuss and illustrate the case n = 3.

The integration over double spheres S2 × S2 can be written as the double

integral over two spheres defined by the unit vectors α̂ and α̃. We consider these

spheres separately. The horizontal projection of S2 onto the tangent cylinder

along the equator is an area preserving map; thus we may choose a point on the

cylinder and obtain a corresponding point on the sphere. We shall draw (ϑ̂, ϕ̂)

from a Hammersley point set in the rectangle [−π, π] × [−1, 1] and assign the

point α̂ ∈ S2 in accordance with
(√

1 − ϕ̂2 cos ϑ̂,
√

1 − ϕ̂2 sin ϑ̂, ϕ̂
)
.

(This mapping implies in the case of randomly chosen points a uniform distribu-

tion with respect to the natural area measure on S2.) We apply this procedure

also for α̃. Once the sampling in (α̂, α̃) is accomplished, we deduce the sampling

in (ν, e) using (4–4) and (9–2).

12. An Outlook on Global Seismology

The primary phases amenable to the application of microlocal analysis are

earthquake generated short-period body waves; see, for example, the work of

Bostock et al. [19]. It was by ray methods that the depth to the core mantle

boundary was first estimated, and the existence of an inner core was recognized.

Indeed, the phases that interact with the inner core boundary (ICB) and core

mantle boundary (CMB) can be modeled with microlocal techniques. In the

crust, the Moho discontinuity can be thought of as a conormal distribution re-

flections off which are detected and interpreted. There are also transitions of a

different nature in the deep earth. We mention the ones associated with anoma-

lously large velocity gradients (around 400 km and 600 km depths).

In the analysis of discontinuities in the mantle transition zone, Ps conversions

from teleseismic body waves are processed using a delay-and-sum approach [105].

This approach can be mathematically justified using the linearized inversion

formulation of Section 4 in a planarly layered background medium. Studies of

lithosperic and upper mantle structure, that account for anisotropic elasticity,

provide constraints on continental dynamics and evolution.

Here we focus our final discussion on inverse scattering at the CMB and

selective neighborhoods. Most seismological research of the CMB region has
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been based on the scattering [6; 5] and diffraction [57] of relatively high frequency

body waves. The dynamic wave group of PKKP fits in the framework of the

presented inverse scattering theory. These are waves that propagate through the

mantle, refract into the core, bounce back from the underside of the CMB, and

refract into the mantle again on their way to the receivers at earth’s surface (see

Figure 24, which illustrates the formation of caustics).

ICB

CMB

ICB

CMB

ICB

CMB

ICB

CMB

Figure 24. An illustration of characteristics associated with PKKP showing the

formation of caustics (left) and characteristics associated with PcP (right).

PKKP is most readily detected in vertical-component short-period records.

Often the analysis is restricted to high-frequency data to avoid contamination

by long arc surface wave propagation. Other members of this wavegroup are

SKKP, PKKS, and SKKS. This multiplicity can provide data redundancy for

the study of the CMB near the underside reflections. PKKP and SKKS (and

SKKP and PKKS in between them) can best be observed at epicentral distances

up to some 100 degrees, and in a time window of some 10 minutes before the

arrival of P′P′ (PKIKPPKIKP, i.e., a wave that passes through the core and

reflects at earth’s surface instead of at the underside of the CMB). However,

due to inner core attenuation and the small reflection coefficient at near-vertical

incidence, the PKKPdf arrivals are typically very weak [44]; hence, most data

comes from the caustics.

12A. The core mantle boundary and its vicinity. The core mantle bound-

ary (CMB) is located at about 2880 km depth, where the temperature is about

4000 K and the pressure is about 135 GPa, and marks one of the most dramatic

changes in composition and physical properties in our planet. The CMB sepa-

rates the solid mantle silicates from the liquid iron-alloy in the outer core. From

mantle to core, the increase in density is about 4500 kg m−3 (compared to the

2700 kg m−3 difference between air and crustal rock near the earth’s surface), the

increase in temperature is about 1000-1500 K, the shear wave speed drops from

some 7.2 km sec−1 in the lowermost mantle to zero in the liquid outer core, and
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the compressional wavespeed drops from 13.7 km s−1 to 8 km s−1. The CMB

also separates two vastly different dynamic regimes. Across it the viscosity drops

at least 10 and perhaps as much as 20 orders of magnitude. Mantle convection

in the stiff mantle silicates, driven by thermal buoyancy, is slow, a few cm yr−1;

in contrast, thermal and compositional buoyancy drives turbulent flow in the

liquid core at several mm s−1, that is, some 6 orders of magnitude faster than

in the mantle. Another consequence of the enormous viscosity contrast is that

the mantle can support lateral variations in density, temperature, and elastic

properties, whereas the core is usually considered homogeneous.

12B. Heterogeneity in the outermost core. On the core side, the PKKP

underside reflections at high latitude straddle the intersection of the virtual “tan-

gential cylinder”, which is an essential feature of the magneto-hydrodynamics

of the outer core related to the generation of the earth’s magnetic field (e.g.

[113; 114]). These reflections allow us to investigate if there are any changes in

the character of the inside of the CMB associated with the topology of outer

core flow. Of particular interest is the search for any evidence of heterogeneity

in the outermost core. Core flow is partly driven by compositional buoyancy,

and it is possible that “puddles” of iron that is enriched in light elements form

either in topographic highs of the CMB or in certain locations relative to the

virtual tangential cylinder or Taylor columns in the outer core.
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