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Sojourn Times, Singularities of the Scattering

Kernel and Inverse Problems

VESSELIN PETKOV AND LUCHEZAR STOYANOV

Abstract. We study inverse problems in the scattering by obstacles in
odd-dimensional Euclidean spaces. In general, such problems concern the
recovery of the geometric properties of the obstacle from the information
related to the scattering amplitude a(λ, ω, θ), related to the wave equation
in the exterior of the obstacle with Dirichlet boundary condition. It turns
out that all singularities of the Fourier transform of a(λ, ω, θ), the so-called
scattering kernel, are given by the sojourn (traveling) times of scattering
rays in the exterior of the obstacle. Apart from that these sojourn times
are a naturally observable data. The purpose of this survey is to describe
several results in obstacle scattering obtained in the last twenty years con-
cerning sojourn times of scattering rays, and to motivate further study of
related inverse scattering problems.

1. Introduction

The scattering operator S(λ) presents a mathematical model for the data ob-

served experimentally in many branches of physics, chemistry and mathematics.

The operator S(λ) is related to behavior as the time t→ ±∞ of the solutions of

an unperturbed operator L0 and to its perturbation L. The kernel of S(λ)−I,

the so called scattering amplitude a(λ, ω, θ), contains the information related to

the perturbation of L0 and this kernel is the leading term of the asymptotic of

an outgoing solution vs(rθ, λ) of Lvs = 0 as |x| = r → ∞. Obstacle scatter-

ing problems arise in many physical phenomena and concern the perturbation

caused by a bounded obstacle K with connected complement Ω. In general the

inverse scattering problems deal with recovering geometric properties of K from

information related to the scattering amplitude.

Schiffer’s result (see [12], [2]) implies that the obstacle K is uniquely deter-

mined if we know the scattering amplitude a(λ, ω, θ) for λ ∈ (α, β) ⊂ R
+ and

all ω, θ ∈ S
n−1. Some more precise results concerning uniqueness in this inverse

scattering problem are known under weaker assumptions (see [2], [7], [11], [26] for

more details and references.) On the other hand, in general in experiments one
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cannot determine the scattering amplitude for all (outgoing) directions θ ∈ S
n−1

or all (incoming) directions ω ∈ S
n−1, while the sojourn times or traveling times

of the so-called (ω, θ)-rays in the exterior of the obstacle give a physically ob-

servable data. This naturally leads to the consideration of inverse scattering

problems involving such rays. In fact, it turns out that all singularities of the

Fourier transform s(t, ω, θ) of a(λ, ω, θ), the so-called scattering kernel, have the

form −Tγ , where Tγ are sojourn times of (ω, θ)-rays γ. Moreover, for (ω, θ) in

a set of full measure in S
n−1×S

n−1 the singularities of s(t, ω, θ) are precisely

the numbers of the form −Tγ , that is the so-called Poisson relation becomes an

equality (see Section 5). This leads to some interesting geometrical observations.

The purpose of this survey is to describe several results in obstacle scattering

obtained in the last twenty years concerning sojourn times of (ω, θ)-rays, and to

motivate further study of related inverse scattering problems.

The scattering amplitude is defined in Section 2. The case of a convex obstacle

is then considered in details, and the leading term of the asymptotic of the

scattering amplitude as λ→ +∞ is derived. Section 3 is devoted to the Fourier

transform of the scattering amplitude, the so-called scattering kernel s(t, θ, ω),

where t ∈ R and θ, ω ∈ S
n−1. It turns out that the singularities of s(t, θ, ω) in

t are very much related to the geometry of the obstacle K. Namely, these are

given by sojourn (traveling) times of scattering rays in the exterior of the obstacle

incoming with direction ω and outgoing with direction θ. This is particularly

easy to see in the case of a convex obstacle, where a scattering ray can have at

most one reflection at the boundary ∂K of the obstacle. In the general case a

typical scattering ray is a mutiply reflecting ray with reflections at ∂K. Moreover

there are other, more complicated rays, that have to be taken into account when

studying the singularities of the scattering kernel; some of these contain gliding

segments on ∂K which are simply geodesics with respect to the metric on ∂K

induced by the Euclidean structure. All these are generalized bicharacteristics

in the sense of Melrose and Sjöstrand [20]. Their definition is sketched in Section

3, and at the end of that section the leading term of the singularity of s(t, θ, ω)

at t ∼ −T is described, where T is the sojourn time of a scattering ray satisfying

some nondegeneracy properties.

Section 4 is purely geometrical. Here we give a simple definition of a reflecting

(ω, θ)-ray, and show that for almost all (ω, θ) ∈ S
n−1×S

n−1, the reflecting

(ω, θ)-rays in the exterior of K have no tangencies to ∂K and any two of them

have different sojourn times. These properties, together with nondegeneracy

of the differential cross-sections, play an important role in the analysis of the

singularities of the scattering kernel. The latter is dealt with in Section 5. The

central point here is the so-called Poisson relation for the scattering kernel, and

the first half of Section 5 is devoted to the idea of its proof. We then proceed to

discuss the question of how often this relation becomes an equality. One of the

problems to do this is to show that (under certain nondegeneracy assumptions

about the obstacle) for almost all (ω, θ) ∈ S
n−1×S

n−1, the (ω, θ)-rays in the
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exterior of K are reflecting rays, i.e. they do not contain gliding segments on the

boundary. Combining this with previous results gives that the Poisson relation

becomes an equality for almost all (ω, θ) ∈ S
n−1×S

n−1.

In Section 6 we discuss the existence of simply reflecting nondegenerate scat-

tering rays with sojourn times tending to infinity. This leads to some interesting

results concerning the behavior of the modified resolvent of the Laplacian.

Finally, in Section 7 the inverse scattering problem is considered of recovering

geometric information about the obstacle from its scattering length spectrum, i.e.

from the set of sojourn times of scattering rays in the exterior of the obstacle1.

Pairs of obstacles K, L are considered such that for (almost) all (ω, θ) ∈ S
n−1×

S
n−1 the sets of sojourn times of (ω, θ)-rays in the exteriors of K and L are the

same. It then turns out that the generalized geodesic flows in the nontrapping

parts of the cotangent bundles of the exteriors of K and L are conjugated by a

time preserving conjugacy which is almost everywhere smooth and symplectic.

Various geometric relationships between K and L are derived.

2. Scattering Amplitude for Strictly Convex Obstacles

Let K ⊂ R
n, n ≥ 3, n odd, be a bounded domain with C∞ boundary ∂K

and connected complement Ω = R
n \K. Such K is called an obstacle in R

n.

Throughout this paper we deal with the Dirichlet problem for the Laplacian

but similar considerations can be applied to other boundary value problems. To

introduce the scattering amplitude a(λ, θ, ω), (θ, ω) ∈ S
n−1×S

n−1, consider the

outgoing solution vs = vs(x, λ) of the problem

{

(∆+λ2)vs = 0 in Ω̊,

vs +e−iλ〈x,ω〉 = 0 on ∂K

satisfying the so-called (iλ) - outgoing Sommerfeld radiation condition. This

condition means that as |x| = r → ∞ we have

vs(rθ, λ) =
e−iλr

r(n−1)/2

(

a(λ, θ, ω)+O(r−1)
)

, x = rθ.

We can interpret vi = e−iλ〈x,ω〉 as an incoming plane wave, while vs(x, λ) is

the outgoing wave obtained after the impact of vi on ∂K. To obtain a formula

for the leading term a(λ, θ, ω) we apply the Green formula combined with the

outgoing condition and deduce the representation

vs(x, λ) =

∫

∂K

(

Eλ(x−y)
∂vs

∂ν
(y, λ)−

∂Eλ

∂ν
(x−y)vs(y, λ)

)

dSy, (2–1)

1According to the Poisson relation, this is equivalent to trying to obtain information about
the obstacle from the singularities of the scattering kernel.
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where Eλ(x) is the outgoing Green function

Eλ(x) =
(iλ)(n−3)/2

2(2π)(n−1)/2

e−iλr

r(n−1)/2
+O

(

r−(n+1)/2
)

and ν(x) is the unit normal to x ∈ ∂K pointing into Ω. Next, we multiply (2–1)

by eiλrr(n−1)/2, put x = rθ, and taking the limit r → ∞, we get

a(λ, θ, ω) =
(iλ)(n−3)/2

2(2π)(n−1)/2

∫

∂K

(

iλ〈ν(x), θ〉eiλ〈x,θ−ω〉+eiλ〈x,θ〉 ∂vs

∂ν
(x, λ)

)

dSx,

where 〈 · , · 〉 denotes the scalar product in R
n.

Following the physical literature, a(λ, θ, ω) is called the scattering amplitude.

The analysis of the leading term of its asymptotic as λ→ +∞ has a long tradition

in mathematical physics. The simplest case to deal with is when θ 6= ω and K

is a strictly convex obstacle. In this case the integral

I(λ) =
(iλ)(n−1)/2

2(2π)(n−1)/2

∫

∂K

〈ν(x), θ〉eiλ〈x,θ−ω〉dSx

is rather easy to study. The phase function 〈x, θ−ω〉|x∈∂K has two critical points

x± with

〈x+, θ−ω〉 = max
y∈∂K

〈y, θ−ω〉, 〈x−, θ−ω〉 = min
y∈∂K

〈y, θ−ω〉,

ν(x±) = ±
θ−ω

|θ−ω|
.

Here x+ denotes the point in the illuminated region (see Figure 1)

∂K+(ω) = {y ∈ ∂K : 〈ν(y), ω〉 < 0}

related to ω, while x− lies in the shadow region

∂K−(ω) = {y ∈ ∂K : 〈ν(y), ω〉 > 0},

and we have used the convention that the obstacle lies in the half-space

{x ∈ R
n : 〈x, θ−ω〉 < 0}.

K

ω θ
+x

(xν +)

Figure 1.
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Applying a stationary phase argument for the integral over ∂K+(ω), one gets

(iλ)(n−1)/2

2(2π)(n−1)/2

∫

∂K+(ω)

〈ν(x), θ〉eiλ〈x,θ−ω〉dSx

= 1
2e

iλ〈x+,θ−ω〉K(x+)−1/2 〈ν(x+), θ〉

|θ−ω|(n−1)/2
+O(|λ|−1),

K(y) > 0 being the Gauss curvature at y ∈ ∂K. We get a similar expression for

the integral over ∂K−(ω).

The analysis of the term involving ∂vs/∂ν is more complicated. In mathe-

matical physics many efforts have been concerned with construction of an ap-

proximate outgoing solution w0(x, λ) of the problem
{

(∆+λ2)w0 = f(x, λ) in Ω̊,

w0 +e−iλ〈x,ω〉 = g(x, λ) on ∂K,

with f(x, λ) ∈ C∞(Ω) and g(x, λ) ∈ C∞(∂K). This leads to considerable diffi-

culties when one has to describe the form of the solution w0 in a domain close

to the grazing submanifold

G(ω) = {y ∈ ∂K : 〈ν(y), ω〉 = 0}.

The progress of the microlocal analysis in the seventies led to the investigation

of the above problem without a precise information for w0 in a neighborhood

of G(ω). This was done by Majda [14] exploiting the works of Hörmander [9],

Taylor [30] and Melrose [17] for the propagation of the singularities. Below we

present the idea of the approach of Majda and refer to [14] for more details.

Consider the boundary problem
{

(∂2
t −∆)u0 = F (t, x) in R× Ω̊,

u0 +δ(t−〈x, ω〉) = G(t, x) on R×∂K,

where F (t, x) ∈ C∞(R×Ω) vanishes for t ≤ −t0, G(t, x) ∈ C∞
0 (R×∂K) and t0

is chosen so that

suppt δ
(

t−〈x, ω〉|x∈∂K

)

⊂ {t : |t| ≤ t0}.

Taking a partition of unity {ψj(t, x)}
M
j=1 on [−t0, t0]×∂K, we pass to the analysis

of the solutions of the localized problems
{

(∂2
t −∆)uj = Fj(t, x) in R× Ω̊,

uj +ψjδ(t−〈x, ω〉) = Gj(t, x) on R×∂K ,
(2–2)

with Fj(t, x) ∈ C∞(R×Ω), Gj(t, x) ∈ C∞
0 (R×∂K) and Fj = 0 for t ≤ t0. Then

using the decay of local energy for strictly convex obstacles we get

∂vs

∂ν

∣

∣

∣

∣

∂K

=

M
∑

j=1

∫

e−iλt ∂uj(t, x)

∂ν

∣

∣

∣

∣

R×∂K

dt+O(|λ|−N ) for all N.
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The results on the propagation of the wave front set WF (uj) of the solutions of

(2–2) (see [30], [17]) say that

WF
(

∂uj

∂ν

∣

∣

∣

R×∂K

)

⊂WF
(

ψjδ(t−〈x, ω〉)|R×∂K

)

. (2–3)

In the case when suppψj ∩
(

R×G(ω)
)

= ? the above relation follows from the

pseudo-local property of pseudo-differential operators [10] since we have, modulo

smooth terms, the representation

∂uj

∂ν

∣

∣

∣

R×∂K
= −Bj

(

ψjδ(t−〈x, ω〉)|R×∂K

)

,

Bj being a first order pseudo-differential operator. In the case where suppψj

overlaps with R×G(ω) we apply the results of Taylor [30] and Melrose [17] for

diffraction problems. Thus we are going to study the expression

∑

j

∫ ∫

∂K

e−iλ(t−〈x,θ〉) ∂uj

∂ν
dt dSx, (2–4)

where the integral is interpreted in the sense of distributions. From the definition

of the wave front it is easy to see that the condition

(t, y′, dtΦ, d
′
yΦ) ∩WF (u) = ? for y′ ∈ D ⊂ R

n−1

implies
∫

R

∫

D

e−iλΦ(y′,t)u(y′, t) dt dy′ = O(|λ|−N ) for all N.

In order to exploit this property, assume that in local coordinates Uj ∩ ∂K is

given by

yn = g(y′), y′ = (y1, . . . , yn−1) ∈ D ⊂ R
n−1.

Then (2–3) yields

WF
(

∂uj

∂ν

∣

∣

∣

R×∂K

)

⊂
{

(t, y, τ, ξ) ∈ T ∗(R×∂K) : t = 〈y, ω〉

with y ∈ suppψj

(

y, 〈y, ω〉
)

and (ξ, τ) = ±
(

−ω′−∇g(y′)ωn, 1
)}

.

Clearly, for the phase function Φ = t−〈y, θ〉|y∈Uj ∩ ∂K we have

dy′,tΦ = (−θ′−∇g(y′)θn, 1),

which coincides with the directions of the wave front of (∂uj/∂ν)
∣

∣

R×∂K
only in

the case

−ω′−∇g(y′)ωn = −θ′−∇g(y′)θn.

Thus we deduce immediately

θ−ω

|θ−ω|
= ±ν(y′, g(y′)).
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The assumption θ 6= ω implies that for y ∈ G(ω) the last condition is impossible.

Moreover, the same argument shows that suppψj(y, 〈y, ω〉) must be included in

a small neighborhood U± of x± with ψj(y, 〈y, ω〉) = 1 in a neighborhood of x±.

Since x− lies in the shadow region, we have 〈ν(x−), ω〉 > 0 and the solution

of the wave equation which is smooth for t < 0 in a small neighborhood of

(〈x−, ω〉, x−) has the form u− = −δ(t−〈x, ω〉). Thus we obtain

∂vs

∂ν

∣

∣

∣

∣

U− ∩ ∂K

= iλ〈ν, ω〉e−iλ〈x,ω〉|U− ∩ ∂K ,

and replacing (∂vs/∂ν)|U− ∩ ∂K in expression (2–4), we see that the shadow region

makes no contribution to a(λ, θ, ω) because

〈ν(x−), θ+ω〉 = 0.

Passing to the illuminated region, denote by ψ+ and B+ the cutoff function

and the pseudo-differential operator related to U+. Then for the formally adjoint

operators B∗
+ we obtain

−

∫ ∫

U+

B∗
+

(

e−iλ(t−〈y′,θ′〉−g(y′)θn)
)

ψ+δ
(

t−〈y′, ω′〉−g(y′)ωn

)(

1+|∇g(y′)|2
)1/2

dtdy′

= −λ

∫

U+

eiλ(〈y′,θ′−ω′〉+g(y′)(θn−ωn))b+(y′, θ)dy′ +O(1)

with

b+(y′, θ) = −iβ+

(

y′,−1, θ′+∇g(y′)θn

)(

1+ |∇g(y′)|2
)1/2

,

iβ+ being the principal symbol of B+. Thus our task is reduced to the study of

an integral having the same form as I(λ).

Without loss of generality we can assume that ∇g(x′
+) = 0. From the con-

struction of the asymptotic solution in a neighborhood of x+ we obtain

β+(x′+,−1, θ′) = 〈ν(x+), θ〉 > 0

and we conclude that

1

2

(

iλ

2π

)(n−1)/2
∫

U+

eiλ(〈y′,θ′−ω′〉+g(y′)(θn−ωn))b+(y′, θ)dy′

= 1
2e

iλ〈x+,θ−ω〉K(x+)−1/2 〈ν(x+), θ〉

|θ−ω|(n−1)/2
+O(|λ|−1).

Taking the sum of all contributions, one gets

a(λ, θ, ω) = eiλ〈x+,θ−ω〉K(x+)−1/2〈ν(x+), θ〉|θ−ω|(1−n)/2 +O(|λ|−1).

Finally, in the illuminated region we have

〈ν(x+), θ〉

|θ−ω|
=

〈θ−ω, θ〉

|θ−ω|2
=

1

2
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and

a(λ, θ, ω) = 1
2e

iλ〈x+,θ−ω〉K(x+)−1/2|θ−ω|(3−n)/2 +O(|λ|−1).

Thus from the limit

|a(ω, θ)| = lim
λ→∞

|a(λ, ω, θ)|

we can determine the Gauss curvature K(x+) at x+. When (ω, θ) runs over a

set

V ⊂ S
n−1×S

n−1 \{(ω, ω) : ω ∈ S
n−1} ,

we can recover the Gauss curvature K(y) at every point y ∈ ∂K, provided the

map

V 3 (ω, θ) →
θ−ω

|θ−ω|
∈ S

n−1

is onto. On the other hand, the knowledge of the Gauss curvature at all points

of ∂K determines uniquely ∂K (see [14] for more details).

The case ω = θ is more complicated since the singularities associated to

diffracted rays must be taken into account. See [19] and [31] for results in this

direction.

3. Singularities of the Scattering Kernel

Throughout this section we assume that θ 6= ω. To study the general case

of nonconvex obstacles it is more convenient to consider the scattering kernel

s(t, θ, ω) defined as the Fourier transform of the scattering amplitude:

s(t, θ, ω) = Fλ→t

(

(

λ

2πi

)(n−1)/2

a(λ, θ, ω)

)

,

where (Fλ→tϕ)(t) = (2π)−1
∫

eitλϕ(λ) dλ for functions ϕ ∈ S(R). Let V (t, x;ω)

be the solution of the problem










(∂2
t −∆)V = 0 in R× Ω̊,

V +δ(t−〈x, ω〉) = 0 on R×∂K,

V |t<−t0 = 0.

Then we have

s(σ, θ, ω) = (−1)(n+1)/22−nπ1−n

∫

∂K

∂n−2
t ∂νV (〈x, θ〉−σ, x;ω) dSx,

where the integral is interpreted in the sense of distributions. Our aim will be

to examine the singularities of s(t, θ, ω) with respect to t.

First we define the so-called reflecting (ω, θ)-rays. Given two directions θ, ω

in S
n−1×S

n−1, consider a curve γ ∈ Ω having the form

γ =

m
⋃

i=0

li, m ≥ 1,
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where li = [xi, xi+1] are finite segments for i = 1, . . . ,m−1, xi ∈ ∂K, and

l0 (resp. lm) is the infinite segment starting at x1 (resp. at xm) and having

direction −ω (resp. θ). The curve γ is called a reflecting (ω, θ)-ray in Ω if for

i = 0, 1, . . . ,m−1 the segments li and li+1 satisfy the law of reflection at xi+1

with respect to ∂K. The points x1, . . . , xm are called reflection points of γ and

this ray is called ordinary reflecting (or simply reflecting) if γ has no segments

tangent to ∂K.

Next, we define two important notions related to (ω, θ)-rays (also-called scat-

tering rays). Fix an arbitrary open ball U0 with radius a > 0 containing K.

For ξ ∈ S
n−1 introduce the hyperplane Zξ orthogonal to ξ and such that ξ is

pointing into the interior of the open half space Hξ with boundary Zξ containing

U0. Let πξ : R
n → Zξ be the orthogonal projection. For a reflecting (ω, θ)-ray

γ in Ω with successive reflecting points x1, . . . , xm the sojourn time Tγ of γ is

defined by

Tγ = ‖πω(x1)−x1‖+

m−1
∑

i=1

‖xi−xi+1‖+‖xm−π−θ(xm)‖−2a.

Obviously, Tγ +2a coincides with the length of this part of γ which lies in Hω ∩

H−θ (see Figure 2). In fact, the sojourn time Tγ does not depend on the choice

of the ball U0 since it follows easily that

‖πω(x1)−x1‖ = a+〈x1, ω〉, ‖xm−π−θ(xm)‖ = a−〈xm, θ〉 ,

therefore

Tγ = 〈x1, ω〉+
m−1
∑

i=1

‖xi−xi+1‖−〈xm, θ〉.

Given an ordinary reflecting (ω, θ)-ray γ set uγ = πω(x1). There exists a small

neighborhood Wγ of uγ in Zω such that for every u ∈ Wγ there are a unique

direction θ(u) ∈ S
n−1 and points x1(u), . . . , xm(u) which are the successive re-

flection points of a reflecting (u, θ(u))-ray in Ω with πω(x1(u)) = u. This defines

a smooth map

Jγ : Wγ 3 u→ θ(u) ∈ S
n−1

and dJγ(uγ) is called a differential cross section related to γ. We say that γ is

nondegenerate if

det dJγ(uγ) 6= 0.

The notion of sojourn time as well as that of differential cross section are

well known in the physical literature. The definitions given above are due to

Guillemin [5].

For strictly convex obstacles all (nontrivial) reflecting rays have only one

reflection point x1 and the corresponding sojourn time is equal to 〈x1, ω−θ〉.
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∂K

U0

H
−θ

Z
−θ

θ(u)

θ

uγu

ω

Zω

x1
xm

xm(u)
x1(u)

Figure 2.

Moreover, the stationary phase argument of the previous section implies that

a(λ, ω, θ) has a complete asymptotic expansion

a(λ, ω, θ) = ei〈x+,ω−θ〉
N

∑

j=0

cjλ
−j +O(|λ|−N−1) for all N ∈ N,

which gives

sing supp s(t, θ, ω) = {−T+},

T+ = 〈x+, ω−θ〉 being the sojourn time of the (ω, θ)-ray γ+ reflecting at x+. A

simple geometric argument implies that

|det dJγ+
(uγ+

)| = 4|θ−ω|(n−3)K(x+),

and for t close to −T+ we have

s(t, θ, ω) =
(

−1

2π

)(n−1)/2
∣

∣dJγ+
(uγ+

)
∣

∣

−1/2
δ(n−1)/2(t+T+)+l.o.s.

(the abbrevation stands for “lower order singularities”).

For strictly convex obstacles T+ is an isolated singularity of s(t, θ, ω) related

to an ordinary reflecting ray. This situation can be generalized for generic ob-

stacles if we consider the back scattering direction θ = −ω. Without loss of the

generality we may assume that K lies in the half space {x ∈ R
n : 〈x, ω〉 > 0}.

Then the function

∂K 3 x→ 〈x, ω〉 ∈ R
+

has a positive minimum ρ(ω) and there exists at least one reflecting (ω,−ω)-ray γ

with sojourn time Tγ = 2ρ(ω). Of course we could have many (ω,−ω)-rays with
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the same minimal sojourn time. A geometric argument based on Sard’s theorem

shows that there exists a subset B ⊂ S
n−1 with full measure such that for every

ω ∈ B we have only a finite number of reflecting (ω, θ)-rays with sojourn time

2ρ(ω). Moreover, each of these rays γ1, . . . , γM , has only one reflection point

xk ∈ ∂K, k = 1, . . . ,M , and ∂K has a nonvanishing Gauss curvature K(xk) 6= 0

for every k = 1, . . . ,M . Thus, repeating the argument from Section 2, it follows

that for ω ∈ B the sojourn time T = −2ρ(ω) is an isolated singularity of the

scattering kernel s(t,−ω, ω), and for such ω we have

max sing [suppt s(t,−ω, ω)] = −2ρ(ω),

and for t close to −2ρ(ω),

s(t,−ω, ω) = 21−n
(

−
1

π

)(n−1)/2 M
∑

k=1

∣

∣K(xk)
∣

∣

−1/2
δ(n−1)/2(t+2ρ(ω))+l.o.s.

This result is due to Majda [15]. From the maximal singularity of the back

scattering kernel one obtains that the convex hull of the obstacle is given by

K̂ =
⋂

ω{x : 〈x, ω〉 ≥ ρ(ω)}.

Thus one can recover the geometry of a convex obstacle.

It is much more complicated to get similar results in the case of nonconvex

obstacles. Now the information obtained by means of rays having only one reflec-

tion is no longer sufficient. One needs to consider multiple reflecting (ω, θ)-rays

leading to isolated singularities of s(t, θ, ω). Roughly speaking, the singularities

of the scattering kernel are amongst the sojourn times of (ω, θ)-rays, however

now one has to consider not only simply reflecting (ω, θ)-rays but all general-

ized geodesics incoming with direction ω and outgoing with direction θ (see [22,

Chapter 9] and [18]); these are simply called (ω, θ)-rays. In general, there exist

(ω, θ)-rays with grazing or gliding segments (see Figure 3).

The precise definition of an (ω, θ)-ray is based on the notion of a generalized

bicharacteristic of the operator ˜ = ∂2
t −∆x given as trajectories of the gener-

alized Hamilton flow Ft in Ω generated by the symbol
∑n

i=1 ξ
2
i −τ

2 of ˜ (see

[20] for a precise definition). In general, Ft is not smooth and in some cases

there may exist two different integral curves issued from the same point in the

phase space (see [30] for an example). To avoid this situation we assume that

the following generic condition is satisfied.

(G) If for (x, ξ) ∈ T ∗(∂K) the normal curvature of ∂K vanishes of infinite

order in direction ξ, then ∂K is convex at x in direction ξ.

We will now sketch the definition of a generalized bicharacteristics of ˜ . Let

p(x, ξ) be the restriction of the principal symbol of ˜ to the level surface τ = 1

(this is the case of motion with unit speed along geodesics). Notice that in

this case the so-called zero bicharacteristic set Σ = p−1(0) coincides with the
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K

θ
ω

Figure 3.

cosphere bundle S∗(Ω) of Ω. Given a point x ∈ ∂K, we choose local coordinates

x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn)

in T ∗(Rn) so that locally ∂K is given by x1 = 0 and Ω by x1 ≥ 0. The coordinates

(x, ξ) can be chosen so that, up to a nonzero smooth factor, p(x, ξ) has the form

p(x, ξ) = ξ21 −r(x, ξ
′)

with x′ = (x2, . . . , xn), ξ′ = (ξ2, . . . , ξn) and r(x, ξ′) homogeneous of order two

in ξ′. Introduce the sets

Σ0 = {(x, ξ) ∈ T ∗(Rn)\{0} : x1 > 0},

H = {(x, ξ) ∈ Σ : x1 = 0, r(0, x′, ξ′) > 0},

G = {(x, ξ) ∈ Σ : x1 = 0, r(0, x′, ξ′) = 0}.

The sets H and G are called hyperbolic and glancing set, respectively. Next

consider the symbols

r0(x
′, ξ′) = r(0, x′, ξ′), r1(x

′, ξ′) =
∂r

∂x1
(0, x′, ξ′),

and define the diffractive and gliding sets by

Gd = {(x, ξ) ∈ G : r1(x
′, ξ′) > 0},

Gg = {(x, ξ) ∈ G : r1(x
′, ξ′) < 0},

respectively. The generalized bicharacteristics are related to the Hamilton vector

fields

Hp =
n

∑

j=1

(

∂p

∂ξj
.
∂

∂xj
−
∂p

∂xj
.
∂

∂ξj

)

,

Hr0
=

n
∑

j=2

(

∂r0
∂ξj

.
∂

∂xj
−
∂r0
∂xj

.
∂

∂ξj

)

.

We have dξp(x, ξ) 6= 0 on S∗(Ω) and dξ′r0(x
′, ξ′) 6= 0 on G. Moreover, the

above definitions are independent on the choice of the local coordinates. Using
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the above local coordinates the generalized bicharecteristics of ˜ are defined as

follows.

Let I ⊂ R be an open interval. A curve γ : I → S∗(Ω) is called a general-

ized bicharacteristic of ˜ if there exists a discrete subset B ⊂ I such that the

following conditions hold:

(i) If γ(t0) ∈ Σ0 ∪ Gd for some t0 ∈ I \B, then γ is differentiable at t0 and

d

dt
γ(t0) = Hp(γ(t0)).

(ii) If γ(t0) ∈ G\Gd for some t0 ∈ I \B, then

γ(t) = (x1(t), x
′(t), ξ1(t), ξ

′(t))

is differentiable at t0 and

dx1

dt
(t0) =

dξ1
dt

(t0) = 0,
d

dt
(x′(t), ξ′(t))|t=t0 = Hr0

(γ(t0)).

(iii) If t0 ∈ B, then γ(t) ∈ Σ0 for all t 6= t0, t ∈ I with |t− t0| sufficiently small.

Moreover, in this case for ξ±1 (x′, ξ′) = ±
√

r0(x′, ξ′) we have

lim
t→t0,±(t−t0)>0

γ(t) =
(

0, x′(t), ξ±1 (x′(t0)), ξ
′(t0)

)

∈ H.

The functions x(t), ξ′(t), |ξ1(t)| are continuous on I, while the function ξ1(t)

has a jump discontinuity at any point t ∈ B. Finally, under the condition (G)

a generalized bicharacteristic γ : R → S∗(Ω) of ˜ is uniquely extendible in the

sense that for each t ∈ R the only generalized bicharacteristic (up to the change

of parameter t) passing through γ(t) is γ ([20]; see also [10, vol. III]).

More generally, working with the restriction of the principal symbol of ˜

to a level surface τ = τ0 6= 0, one defines generalized bicharacetristics on the

set Ṫ ∗(Ω) of all (x, ξ) ∈ T ∗(Ω) such that ξ 6= 0. Given σ = (x, ξ) ∈ Ṫ ∗(Ω),

there exists a unique generalized bicharacteristic (x(t), ξ(t)) ∈ Ṫ ∗(Ω) such that

x(0) = x and ξ(0) = ξ. Set Ft(x, ξ) = (x(t), ξ(t)) for all t ∈ R. This defines a flow

Ft : Ṫ ∗(Ω) → Ṫ ∗(Ω) ([20]) which is sometimes called the generalized geodesic

flow on Ṫ ∗(Ω). Obviously, it leaves the cosphere bundle S∗(Ω) invariant. At

points of transversal reflection at Ṫ ∗
∂K(Ω) the flow Ft is discontinuous. To make

it continuous, consider the quotient space Ṫ ∗
b (Ω) = Ṫ ∗(Ω)/ ∼ of Ṫ ∗(Ω) with

respect to the following equivalence relation: ρ ∼ σ if and only if ρ = σ or

ρ, σ ∈ T ∗
∂K(Ω) and either limt↗0 Ft(ρ) = σ or limt↘0 Ft(ρ) = σ. Let S∗

b (Ω)

be the image of S∗(Ω) in Ṫ ∗
b (Ω). Melrose and Sjöstrand ([20]) proved that the

natural projection of Ft on Ṫ ∗
b (Ω) is continuous.

After these definitions a curve γ = {x(t) ∈ Ω : t ∈ R} is called an (ω, θ)-ray

if there exist real numbers t1 < t2 such that

γ̃(t) = (x(t), ξ(t)) ∈ S∗(Ω)
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is a generalized bicharacteristic of ˜ and

ξ(t) =

{

ω for t ≤ t1,

θ for t ≥ t2,

provided that the time t increases when we move along γ̃. Denote by Lω,θ(Ω)

the set of all (ω, θ)-rays in Ω. The sojourn time Tδ of δ ∈ Lω,θ(Ω) is defined as

the length of the part of δ lying in Hω ∩ H−θ.

Turning to the problem of the behavior of s(t, θ, ω) near singularities, assume

that γ is a fixed nondegenerate ordinary reflecting (ω, θ)-ray such that

Tγ 6= Tδ for every δ ∈ Lω,θ(Ω)\{γ}. (3–1)

By using the continuity of the generalized Hamilton flow, it is easy to show that

(−Tγ −ε,−Tγ +ε) ∩ sing supp s(t, θ, ω) = {−Tγ}

for ε > 0 sufficiently small. The singularity of s(t, θ, ω) at t = −Tγ can be

investigated using a global construction of an asymptotic solution as a Fourier

integral operator ([6], [21], Chapter 9 in [22]).

Theorem 3.1 [21]. Under the assumption (3–1) we have

−Tγ ∈ sing supp s(t, θ, ω)

and for t close to −Tγ the scattering kernel has the form

s(t, θ, ω) =
(

1

2πi

)(n−1)/2

(−1)mγ−1 exp
(

i
π

2
βγ

)

×

∣

∣

∣

det dJγ(uγ)〈ν(q1), ω〉

〈ν(qm), θ〉

∣

∣

∣

−1/2

δ(n−1)/2(t+Tγ)+l.o.s., (3–2)

where mγ is the number of reflections of γ and q1, qm are the first and last

reflection points, respectively , of γ and βγ ∈ Z.

For strictly convex obstacles we have βγ = −(n−1)/2, q1 = qm and θ−ω is

parallel to ν(q1).

4. Properties of Reflecting (ω,θ)-Rays

To apply the result of the previous section we need the condition (3–1) and it is

desirable to prove that there exists a subset S ⊂ S
n−1×S

n−1 with zero Lebesgue

measure such that for all directions (ω, θ) ∈ S
n−1×S

n−1 \S the corresponding

(ω, θ)-rays satisfy (3–1). Here one has to deal with all (generalized) (ω, θ)-rays

and this makes the problem rather difficult. We start with a result concerning

the ordinary reflecting (ω, θ)-rays only.

Theorem 4.1 [23]. For every ω ∈ S
n−1 there exists a set S(ω) ⊂ S

n−1 the

complement of which is a countable union of compact subsets of S
n−1 of measure

zero such that if θ ∈ S(ω), then any two different ordinary reflecting (ω, θ)-rays

in Ω have distinct sojourn times.
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Sketch of proof. Let U0 be an open ball with center 0 and radius a containing

K and let Z = Zω be the hyperplane introduced in Section 3. Given an integer

k ≥ 1, denote by Uk the set of those u ∈ Z for which the trajectory γ(u) of

the generalized Hamiltonian flow starting in u with direction ω is an ordinary

reflecting ray with exactly k reflection points. Let Jk(u) ∈ S
n−1 be the direction

of γ(u) after the last reflection. Obviously, Uk is open in Z and the map

Jk : Uk 3 z → Jk(u) ∈ S
n−1

is smooth.

Now let us fix two arbitrary integers k ≥ 1, s ≥ 1. For u ∈ Uk denote by

f(u) the sojourn time of the scattering ray determined by γ(u). In the same

way denote by g(v) the sojourn time of the scattering ray with s reflections

determined by v ∈ Vs. The functions f : Uk → R, g : Vs → R are smooth.

For u ∈ Uk denote by x1(u), . . . , xk(u) the successive reflection points of γ(u).

The corresponding maps xi : Uk → ∂K are smooth and for every y ∈ ∂K we

denote by N(y) the unit normal to ∂K pointing into Ω. Thus for u ∈ Uk we

obtain

Jk(u) =
xk(u)−xk−1(u)

∥

∥xk(u)−xk−1(u)
∥

∥

−2

〈

xk(u)−xk−1(u)
∥

∥xk(u)−xk−1(u)
∥

∥

, N(xk(u))

〉

N(xk(u)),

and

f(u) =

k−1
∑

i=0

‖xi+1(u)−xi(u)‖+ t−2a,

with the convention that x0(u) (resp. xk+1(u)) denotes the orthogonal projection

of x1(u) (resp. xk(u)) on Z (resp. Z−Jk(u)), and where t = ‖xk(u)−xk+1(u)‖.

We obtain easily t = a−〈Jk(u), xk〉, so

f(u) =

k−1
∑

i=0

‖xi+1(u)−xi(u)‖−〈xk(u), Jk(u)〉−a.

For v ∈ Vs the successive reflection points of γ(v) will be denoted by y1(v), . . . ,

ys(v). Next we set y0(v) = v and we define ys+1(v) in the same way as xk+1(u).

Now denote by W (k, s) the set of those (u, v) ∈ Uk×Vs for which

Jk(u) = Js(v), f(u) = g(v)

and

rank dJk(u) = rank dJs(v) = n−1.

Lemma 4.2. W (k, s) is a smooth (n−2)-dimensional submanifold of Uk×Us.

Proof of Lemma 4.2. Consider a point w0 = (u0, v0) ∈ W (k, s). Since

rank dJk(u0) = rank dJs(v0) = n−1, there exists a neighborhood U of w0 in

Uk×Vs such that for every (u, v) ∈ U we have

rank dJk(u) = rank dJs(v) = n−1.
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Define the map L : U → R
n by

L(u, v) =
(

λ(u, v), (χ(j)(u, v))1≤j≤n−1

)

with

λ(u, v) = f(u)−g(v), χ(u, v) = Jk(u)−Js(v).

Clearly, W (k, s) ∩ U ⊂ L−1(0) and to prove that W (k, s) is a smooth (n−2)-

dimensional submanifold of Uk×Vs it is sufficient to show that L is a submersion

at any point w0 of L−1(0). For this purpose we assume without loss of generality

that θn 6= 0. Suppose that

n−1
∑

j=1

Aj gradχ(j)(w0)+C gradλ(w0) = 0

with some constants Aj , C. Calculating the derivatives involved above and using

the geometrical meaning of f , g, Jk and Js, one derives A1 = · · · = An−1 = C =

0. Thus L is a submersion at w0. See [23] for more details. ˜

Consider the map ϕ : Uk×Vs → S
n−1 given by ϕ(u, v) = Jk(u). This map is

smooth and dim W (k, s) = n−2 shows that ϕ(W (k, s)) is a countable union of

compact subsets of S
n−1 of measure zero. Clearly

Fk = {u ∈ Uk : rank dJk(u) ≤ n−2}

is a countable union of compact subsets. By Sard’s theorem, Jk(Fk) has measure

zero in S
n−1 for all k, so F =

⋃

k Jk(Fk) also has measure zero in S
n−1. Hence

the subset

S(ω) = S
n−1 \

(

F ∪
⋃

k,s Jk(W (k, s))
)

of S
n−1 has the desired properties. This concludes the proof of Theorem 4.1. ˜

Setting S = {(ω, θ) ∈ S
n−1×S

n−1 : θ ∈ S(ω)}, we see that for (ω, θ) ∈ S any

two different ordinary reflecting rays in Ω have distinct sojourn times and the

complement of S in S
n−1×S

n−1 has measure zero.

To deal with reflecting rays with tangent segments, we introduce a more gen-

eral type of trajectories. A curve γ in R
n is called an (ω, θ)-trajectory for Ω if

it has the form γ =
⋃s

i=0 li, where li = [xi, xi+1], i ranges from 1 through s−1,

xi ∈ ∂K for i = 1, . . . , s, while l0 (resp. ls) is the infinite ray starting at x1

(resp. xs) with direction −ω (resp. θ) and, for every i = 0, 1, . . . , s−1, li and

li+1 satisfy the law of reflection at xi with respect to ∂K. It is clear that every

reflecting (ω, θ)-ray is an (ω, θ)-trajectory, but the converse is not true in general

since some (ω, θ)-trajectory may intersect transversally ∂K. On the other hand,

every (ω, θ)-reflecting ray with tangent segment is an (ω, θ)-trajectory. We have

the following.

Theorem 4.3 [23]. There exists T ⊂ S
n−1×S

n−1 the complement of which is

a countable union of compact subsets of measure zero in S
n−1×S

n−1 such that

for (ω, θ) ∈ T all (ω, θ)-trajectories for Ω are ordinary .
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Proof. We follow the idea of the proof of Theorem 4.1. For simplicity set

∂K = X. Fix two integers k and s so that s ≥ 1, 0 ≤ k ≤ s. Let M(s, k) be the

set of those

ζ = (ω;x; y; θ) ∈Ms = S
n−1×X(s)×X×S

n−1

with x = (x1, . . . , xs) such that there exists an (ω, θ)-trajectory for X with

successive transversal reflection points x1, . . . , xs, the segment [xk, xk+1] of which

is tangent to X at y ∈ (xk, xk+1). Here

X(s) = {(x1, . . . , xs) ∈ Xs : xi 6= xj , i 6= j}

and x0 (resp. xs+1) is the orthogonal projection of x1 on Zω (resp. of xs on Z−θ).

The main step in the proof is to show that M(s, k) is a smooth submanifold of

Ms of dimension 2n−3. This follows from a specially adapted parametrization of

M(s, k); see [23] for details. Using this one obtains Theorem 4.3 easily. Consider

the projection

πs : Ms = S
n−1×X(s)×X×S

n−1 → S
n−1×S

n−1

given by

πs(ω;x; y; θ) = (ω, θ),

and introduce the open subsets of Ms

Ur(s, k) = {(ω;x; y; θ) ∈Ms : x
(r)
k 6= x

(r)
k+1}, r = 1, . . . , n.

Then Mr(s, k) = M(s, k) ∩ Ur(s, k) is a smooth submanifold of Ms of dimension

2n−3 < dim(Sn−1×S
n−1). Since πs is smooth, the set

Lr(s, k) = πs

(

Mr(s, k)
)

⊂ S
n−1×S

n−1

has measure zero. Consequently, for the covering Mr(s, k) =
⋃∞

j=1Kj with Kj

compact, one gets that

Lr(s, k) =
∞
⋃

j=1

πs(Kj)

is a countable union of compact subsets of S
n−1×S

n−1 of measure zero. Setting

T = S
n−1×S

n−1 \
⋃

0≤k≤s

∞
⋃

r=1

Lr(s, k),

completes the proof of Theorem 4.3. ˜

Finally, we find a subset U ⊂ S
n−1×S

n−1 such that for (ω, θ) ∈ T ∩ U all

reflecting (ω, θ)-rays are ordinary and nondegenerate. So there exists a subset

A = T ∩ U ∩ S of S
n−1×S

n−1 of full measure so that for every (ω, θ) ∈ A

the corresponding (ω, θ)-reflecting rays are ordinary, nondegenerate and with

distinct sojourn times.

The study of the generalized (ω, θ)-rays leads to many difficulties. However

it is quite natural to expect that for almost all (ω, θ) in S
n−1×S

n−1 there are



314 VESSELIN PETKOV AND LUCHEZAR STOYANOV

no generalized (ω, θ)-rays different from reflecting ones. This will be discuss in

details in the next section.

5. Poisson Relation for the Scattering Kernel

Let K be an obstacle in R
n, n ≥ 3, n odd, with C∞ boundary ∂K so that

K ⊂ {x ∈ R
n : |x| ≤ ρ0}

and let Ω = R
n \K. In what follows we assume that K satisfies the condition

(G) from Section 3. Let π : T ∗(R×Ω) → Ω be the natural projection.

The following result of [21], [1] (see also [22, Chapter 8] and [18]) shows that

for ω 6= θ all singularities in t of s(t, θ, ω) are given by (negative) sojourn times.

Theorem 5.1 [21], [1]. For ω 6= θ we have

sing supp s(t, θ, ω) ⊂ {−Tγ : γ ∈ Lω,θ(Ω)}. (5–1)

In analogy with the well-known Poisson relation for the Laplacian on Riemannian

manifolds, (5–1) is called the Poisson relation for the scattering kernel, while the

set of all Tγ , where γ ∈ Lω,θ(Ω), (ω, θ) ∈ S
n−1×S

n−1, is called the scattering

length spectrum of K.

Sketch of proof. The proof uses results on the propagation of singularities

along generalized bicharactaristics, and some properties of oscillatory integrals.

Consider a fixed t0 so that

−t0 /∈ {−Tγ : γ ∈ L(ω,θ)(Ω)}.

Take T > 0 with |t0| < T and introduce the set

ΓT = {Tγ : |Tγ | ≤ T, γ ∈ L(ω,θ)(Ω)}.

The continuity of the generalized Hamiltonian flow implies that ΓT is closed, so

we can choose ε0 > 0 so that

Tγ /∈ [t0−ε0, t0 +ε0] for all γ ∈ L(ω,θ)(Ω).

Let ρ(t) ∈ C∞
0 (R), ρ(t) = 1 for |t| ≤ 1/2, ρ(t) = 0 for |t| ≥ 1. Set ρδ(t) = ρ(t/δ)

for 0 < δ ≤ ε0/2. To prove that t0 /∈ sing supp s(t, θ, ω), it is sufficient to show

that the integral

J(λ) =
〈

s(t, θ, ω), ρδ(t+ t0)e
−iλt

〉

=

n−2
∑

k=0

ck(−iλ)n−2−k

∫

R

∫

∂Ω

eiλ(t−〈x,θ〉) d
kρδ

dtk
(〈x, θ〉− t+ t0)

∂w

∂ν
(t, x;ω) dt dSx,

with ck a constant, is rapidly decreasing with respect to λ. Here w(t, x;ω) =

V (t, x;ω)+δ(t−〈x, ω〉), where V (t, x;ω) is defined in Section 3. Let us treat the

term with k = 0, the other ones can be examined by a similar argument.
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Without loss of generality we may assume that ω = (0, . . . , 0, 1). Set

Z(τ) = {x ∈ R
n : xn = τ},

where τ < −ρ0 and let R
+
τ = {t ∈ R : t > τ}. To localize the problem, introduce

a partition of unity on Z(τ) given by functions

ϕj(x
′) ∈ C∞

0 (Rn−1), x′ = (x1, . . . , xn−1).

Consider the problems















˜ vj = 0 in R
+
τ ×R

n
x ,

vj(τ, x) = ϕj(x
′)δ(τ−x′),

∂vj

∂t
(τ, x) = ϕj(x

′)δ′(τ−xn),



























˜Wj = 0 in R× Ω̊,

Wj = 0 on R×∂Ω,

Wj(τ, x) = ϕj(x
′)δ(τ−x′),

∂Wj

∂t
(τ, x) = ϕj(x

′)δ′(τ−xn).

Clearly, there exists a compact set F ′
0 ⊂ R

n−1 such that if supp ϕj ∩ F
′
0 = ?,

then the straight lines issued from (x′, τ), x′ ∈ suppϕj , with direction ω do not

meet ∂Ω. For such j and ω 6= θ we have

WF

(

(

∂Wj

∂ν

)

|R×∂Ω

)

∩
{

(t, x, 1,−θ|Tx(∂Ω)) : |t| ≤ T +ρ0 +1, x ∈ ∂Ω
}

= ?.

(5–2)

This implies easily
∫

R

∫

∂Ω

eiλ(t−〈x,θ〉)ρδ(〈x, θ〉− t+ t0)
∂Wj

∂ν
dt dSx = O(|λ|−m) for all m ∈ N.

(5–3)

Now set F0 = {x ∈ R
n : x′ ∈ F ′

0, xn = τ} and denote by l(u0) the straight

line passing through u0 ∈ F0 with direction ω. There are three cases:

(i) ? 6= l(u0) ∩ K ⊂ ∂Ω;

(ii) l(u0) meets transversally ∂Ω at x1(u0);

(iii) l(u0) is tangent to ∂Ω at x1(u0) and ω is an asymptotic direction for ∂Ω at

x1(u0).

In the case (i) the generalized bicharecteristic γ0 with Im (π◦γ0) = l(u0) is

uniquely extendible, and results on propagation of singularities lead to (5–2)

which in turn gives (5–3). To deal with the case (ii), set t1(u) = |u−x1(u)|, u ∈

F0. The solution vj with such j is given by an oscillatory integral and WF (vj)

is included in the set of all (t, x,±σ,∓ω) ∈ T ∗(Rn+1)\{0} such that σ > 0 and

there exist x̂ ∈ Z(τ), x̂′ ∈ suppϕj , s ≥ 0 with t = τ±σs, x = x̂±σsω. We

modify vj on the intersection of a small neighborhood of x1(u0) with the interior

of K so that the modified function ṽj satisfies (for some ε > 0) the properties

ṽj =

{

vj for t < t1 +ε,

0 for t > t1 +2ε.
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Here t1 = max{t1(u) : u ∈ O(u0)}, where O(u0) is a sufficiently small neighbor-

hood of u0 with supp ϕj ⊂ O(u0) and ε is small enough. Moreover, we preserve

the condition

˜ ṽj = 0 in R
+
τ × Ω̊.

Set hj = (ṽj)|R+
τ ×∂Ω and notice that hj = 0 for t sufficiently close to τ . We

extend hj as 0 for t < τ and consider the solution wj of the problem










˜wj = 0 in R× Ω̊,

wj +hj = 0 on R×∂Ω,

wj = 0 for t < τ .

We have (∂/∂t)(wj + ṽj)|R+
τ ×∂Ω = 0 and we are going to study the integrals

Ij,δ(λ) =

∫

R

∫

∂Ω

eiλ(t−〈x,θ〉)ρδ

(

〈x, θ〉− t+ t0
)

(

∂

∂ν
−〈ν, θ〉

∂

∂t

)

ṽj dt dSx,

Jj,δ(λ) =

∫

R

∫

∂Ω

eiλ(t−〈x,θ〉)ρδ

(

〈x, θ〉− t+ t0
)

(

∂

∂ν
−〈ν, θ〉

∂

∂t

)

wj dt dSx.

This study is based on certain information about the generalized wave front set

WFb(v) ⊂ T ∗(R× Ω̊) ∪ T ∗(R×∂Ω) = T̃ ∗(R×Ω),

where the map ∼ is the one introduced in Section 3 (see [20] for the properties

of WFb(u)). For x ∈ ∂Ω we have

∼ : T ∗(R×Ω) 3 (t, x, τ, ξ) → (t, x, τ, ξ|Tx(∂Ω)) ∈ T ∗(R×∂Ω).

The crucial step in the analysis of Ij,δ(λ) and Jj,δ(λ) is the following.

Proposition 5.2. Set T1 = ρ0+|t0|+1 and suppose that there exists η > 0 such

that

WFb(wj) ∩ {µ ∈ T̃ ∗(R×Ω) : µ =∼ (t, x, 1,−θ), T1 +η ≤ t ≤ T1 +2η} = ?,

WFb(ṽj) ∩ {µ ∈ T̃ ∗(R×Ω) : µ =∼ (t, x, 1,−θ), T1 +η ≤ t ≤ T1 +2η} = ?.

Then

Ij,δ(λ) = O(|λ|−m), Jj,δ(λ) = O(|λ|−m) for all m ∈ N.

A similar argument can be applied in case (iii), which completes the proof of

Theorem 5.1. ˜

While in general the relation (5–1) is not an equality, it turns out that there

exists a set R of full measure in S
n−1×S

n−1 such that for (ω, θ) ∈ R the

Poisson relation becomes an equality. This is rather important for some inverse

scattering problems.

It is proved in [27] that for each T > 0, S∗(Ω) can be represented as a

countable union of Borel subsets Si such that on each Si , {Ft}0≤t≤T coincides

with the restriction of an one-parameter family G
(i)
t of Lipschitz maps defined in

a neighborhood of Si in Ṫ ∗(Ω), taking values in T ∗(Rn) and such that for all but
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finitely many t, G
(i)
t is smooth and its restriction to smooth local cross-sections

is a contact transformation. As a consequence of this regularity property one

gets the following.

Theorem 5.3 [27]. The generalized geodesic flow Ft preserves the Hausdorff

dimension of Borel subsets of S∗(Ω).

This would have been a trivial fact if the maps Ft were Lipschitz. However,

it is well-known and easy to see that this not the case. Locally near a point

ρ ∈ S∗(Ω), the map Ft is Lipschitz on a neighborhood of ρ for small |t| when

ρ /∈ S∗
∂K(Ω) or ρ is a transversal reflection point. Whenever ρ ∈ G, the map Ft

is not Lipschitz (see [20] or [10, vol. III]). For example, in the simplest case of

a diffractive tangent point ρ ∈ Gd, the map Ft has a singularity of “square root

type” at ρ, so it is clearly not Lipschitz.

Let Γ : I → S∗(Ω) be a generalized geodesic in Ω. We say that Γ is gliding

on ∂K if the set of those t ∈ I such that Γ(t) ∈ Gg is dense in I. In this case

the trajectory {Γ(t) : t ∈ I} is called a gliding segment on ∂K.

Given T > 0, denote by TT the set of those ρ ∈ S∗(Ω) such that {Ft(ρ) :

0 ≤ t ≤ T} ∩ Gg 6= ?, that is, the trajectory {Ft(ρ) : 0 ≤ t ≤ T} contains a

nontrivial gliding segment on ∂K.

Lemma 5.4. ([27]) Let L0 be an isotropic submanifold of S∗(Ω)\S∗
∂K(Ω) of

dimension n−1 such that Hp(ρ) is not tangent to L0 at any ρ ∈ L0. Then for

every T > 0 we have dimH FT (TT ∩ L0) ≤ n−2. Moreover , if for a given T

we have FT (L0) ⊂ S∗(Ω)\S∗
∂K(Ω), then there exists a countable family {Im} of

smooth (n−2)-dimensional isotropic submanifolds of S∗(Ω) such that FT (TT ∩

L0) ⊂
⋃

m Im.

Using Theorems 3.1, 4.1, 4.3, 5.1 and Lemma 5.4, one obtains:

Theorem 5.5 [27]. There exists a subset R of full Lebesgue measure in S
n−1×

S
n−1 such that for each (ω, θ) ∈ R the only (ω, θ)-rays in Ω are reflecting (ω, θ)-

rays and

sing supp s(t, θ, ω) = {−Tγ : γ ∈ Lω,θ(Ω)}.

Sketch of proof. It follows from the results of Melrose and Sjöstrand [20] (see

also Theorem 24.3.9 in [10], vol. III) that every (ω, θ)-ray γ in Ω that does not

contain gliding segments is a reflecting (ω, θ)-ray, that is, it consists of finitely

many straight line segments in Ω (see Section 3).

We will show that there exists a subset R of full Lebesgue measure in S
n−1×

S
n−1 such that for each (ω, θ) ∈ R the only (ω, θ)-rays in Ω are reflecting (ω, θ)-

rays.

As before, denote by U0 = {x ∈ R
n : |x| < ρ0} an open ball in R

n containing

the obstacle K and let C be the boundary sphere of U0. Fix ω ∈ S
n−1, x0 ∈ C

and consider the generalized geodesic (x(t), ξ(t)) = Ft(x0, ω). Let T > 0 be such
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that x(T ) ∈ C. Set

S0 =
{

(x, ξ) ∈ S∗(Ω) : x ∈ C, ξ is transversal to C
}

.

Since Σ = p−1(0) = S∗(Ω), using the notation S∗
C(Ω) =

{

(x, ξ) ∈ S∗(Ω) : x ∈

C
}

, we have

S′
0 = S0 ∩ Σ =

{

(x, ξ) ∈ S∗
C(Ω) : ξ is transversal to C

}

.

Then S′
0 is a symplectic submanifold of S. Let P : S0 → S0 be the local map

defined in a neighborhood of (x0, ω) using the shift along the flow Ft; then

P(S′
0) ⊂ S′

0. Consider the Lagrangian submanifold

L0 =
{

(x, ξ) ∈ S′
0 : ξ = ω

}

of S′
0. Setting T = TT and applying Lemma 5.4 to L0 gives that FT (L0 ∩ T ) is

contained in a countable union of isotropic (n−2)-dimensional submanifolds of

S. Since locally near (x0, ω) the map FT : S0 → FT (S0) is smooth, FT (S0) is

a (2n−1)-dimensional submanifold of S transversal to the flow Ft at FT (x0, ω).

Consequently, locally near FT (x0, ω) ∈ FT (S0) ∩ S0 the shift Q along Ft from

FT (S0) to S0 (forwards or backwards) is a smooth map. Moreover Q maps

FT (S′
0) into S′

0 (since p−1(0) is invariant under the flow Ft), the restriction

Q : FT (S′
0) → S′

0 is a local symplectic map, and P = Q◦FT . Hence the

set P(L0 ∩ T ) = Q(FT (L0 ∩ T )) is contained in a countable union of isotropic

(n−2)-dimensional submanifolds of S. The projection j : S ′
0 → S

n−1, j(x, ξ) =

ξ, is smooth, so Sard’s theorem gives now that the set j(P(L0 ∩ T )) has Lebesgue

measure zero in S
n−1. Hence there exists a neighborhood U of x0 in C and a

subset Rω(U) = S
n−1\j(P(L ∩ T )) of full Lebesgue measure in S

n−1 such that

for x ∈ U every generalized (ω, θ)-ray in Ω passing through x with θ ∈ Rω(U)

is a reflecting (ω, θ)-ray. Covering C by a finite family of neighborhoods Ui, we

find a subset Rω =
⋂

i Rω(Ui) of full Lebesgue measure in S
n−1 such that every

(ω, θ)-ray in Ω with θ ∈ Rω is a reflecting (ω, θ)-ray. It now follows from Fubini’s

theorem that

R′ = {(ω, θ) ∈ S
n−1×S

n−1 : θ ∈ Rω}

is a subset of full Lebesgue measure in S
n−1×S

n−1. Moreover it is clear that

for (ω, θ) ∈ R′, all (ω, θ)-rays in Ω are reflecting ones.

According to Theorems 4.1 and 4.3 above, there exists a subset R′′ = T ∩

S of full Lebesgue measure in S
n−1×S

n−1 such that for (ω, θ) ∈ R′′ every

reflecting (ω, θ)-ray in Ω has no tangencies to ∂K and Tγ 6= Tδ whenever γ and

δ are different reflecting (ω, θ)-rays in Ω. Then R = R′ ∩ R′′ has full Lebesgue

measure in S
n−1×S

n−1. Given (ω, θ) ∈ R, it follows from Theorem 3.1 that

−Tγ ∈ sing supp s(t, θ, ω) for all γ ∈ Lω,θ(Ω). Combining this with Theorem

5.1 completes the proof of the theorem. ˜

Using Theorem 5.5 we will now derive a simple but rather important property of

obstacles ([12]; see also [27, Proposition 2.3]): most rays incoming from infinity
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are not trapped by the obstacle K. Here it is essential that we consider points

in the set

S∗
C(Ω) =

{

(x, ξ) ∈ S∗(Ω) : x ∈ C
}

,

where C as before is the boundary sphere of an open ball U0 containing K. In

general it is not true that the trapped points (x, ξ) ∈ S∗(ΩK) with x near K

form a set of Lebesgue measure zero in S∗(ΩK). Example 7.1 below, due to M.

Livshitz, shows that in some cases the set of trapped points may even contain a

nontrivial open subset of S∗(ΩK).

Proposition 5.6. The set of those (x, ξ) ∈ S∗
C(Ω) such that the trajectory

{Ft(x, ξ) : t ≥ 0} is bounded has Lebesgue measure zero in S∗
C(Ω).

Proof. For (x, ω) ∈ S∗
C(Ω), let δ(x, ω) be the generalized geodesic in ΩK is-

sued from x in direction ω. Assume that there exists a subset W of positive

Lebesgue measure in S∗
C(Ω) such that δ(x, ω) ⊂ U0 for all (x, ω) ∈ W . Accord-

ing to Theorem 4.3 and to an argument from the proof of Theorem 5.5 above

(or using Lemma 5.4 directly), we may assume that for all (x, ω) ∈ W the gen-

eralized geodesic δ(x, ω) does not contain gliding segments on ∂K and has only

transversal reflections at ∂K. Given (x, ω) ∈W , denote by x′ the first common

point of δ(x, ω) with ∂K and by ω′ the reflected direction of δ(x, ω) at x′, i.e.

ω′ = ω−2〈ω, ν(x′)〉ν(x′), where ν(x′) is the outer unit normal to K at x′. Then

the set W ′ = {(x′, ω′) ∈ S∗
∂K(Ω) : (x, ω) ∈ W} is a subset of positive Lebesgue

measure in S∗
∂K(Ω).

Denote by M ⊂ S∗
∂K(Ω) the set of those (y, η) ∈ S∗

∂K(Ω) for which the

standard billiard ball map B is well-defined. The map B (as a local map)

preserves the so-called Liouville’s measure µ on M which is absolutely continuous

with respect to the Lebesgue measure on S∗
∂K(Ω).

Next, we use the argument from the proof of the Poincaré Recurrence Theorem

in ergodic theory. It follows from the definition of W ′ that Bk(W ′) ⊂ M and

µ(Bk(W ′)) = µ(W ′) > 0 for all k = 0, 1, 2, . . . . On the other hand, in the

situation under consideration we clearly have µ
(
⋃∞

k=0B
k(W ′)

)

<∞. Therefore

there exist nonnegative integers k < m with Bk(W ′) ∩ Bm(W ′) 6= ?. Since

B is invertible, this means that there exists (x′, ω′) ∈ W ′ ∩ Bm−k(W ′). Then

(x′, ω′) = B(y, η) for some (y, η) ∈ Bm−k−1(W ′) ⊂ M . Now the choice of W

and the definition of W ′ show that W ′ has no common points with B(M). This

is a contradiction which proves the proposition. ˜

6. Existence of Scattering Rays with Sojourn Times Tending to

Infinity

In this section we study the existence of (ω, θ)-rays for trapping obstacles. The

image S∗
b (Ω) = ∼(S∗(Ω)) of the characteristic set S∗(Ω) is called the compressed

characteristic set and the image γ̃ =∼ (γ) of a generalized bicharacteristic de-

fined in Section 3 is called a compressed generalized bicharacteristic.
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Let again U0 be an open ball containing K and C be its boundary sphere.

Given a point z = (x, ξ) ∈ S∗
b (Ω), consider the compressed generalized bicharac-

teristic

γz(t) =
(

x(t), ξ(t)
)

∈ S∗
b (Ω)

parametrized by the time t and passing through z for t = 0. Denote by T (z) ∈

R
+ ∪ ∞ the maximal T > 0 such that x(t) ∈ U0 for 0 ≤ t ≤ T (z). We introduce

the trapping set

Σ∞ =
{

(x, ξ) ∈ S∗
b (Ω) : x ∈ C, T (z) = ∞

}

.

It follows from the continuity of the generalized Hamiltonian flow that Σ∞ is

closed in Σ. The obstacle K is called trapping if Σ∞ 6= ?. We have the following.

Theorem 6.1 [23]. Let the obstacle K be trapping and satisfy the condition (G).

Then there exists a sequence of ordinary reflecting nondegenerate scattering rays

γm with sojourn times Tγm
→ ∞.

Proof. It is easy to see that Σ∞ 6= S∗
b (Ω), hence the boundary ∂Σ∞ of Σ∞

in S∗
b (Ω) is not empty. Take a point ẑ ∈ ∂Σ∞. Since S∗

b (Ω)\Σ∞ 6= ?, there

exists a sequence zm = (xm, ξm) ∈ S∗
b (Ω), xm ∈ C, such that zm /∈ Σ∞ for all

m and zm → ẑ. Consider the compressed generalized bicharacteristics γzm
(t) =

(zm, ξm(t)) passing through zm for t = 0 and such that T (zm) < ∞. The

sequence {T (zm)} is unbounded, since otherwise we will have T (ẑ) < ∞ in

contradiction with ẑ ∈ Σ∞. Thus we may assume that limm→∞ T (zm) = +∞.

Set ym = xm(T (zm)) ∈ C, ωm = ξm(T (zm)) ∈ S
n−1. Taking a subsequence,

we may assume that ym → u ∈ C and ωm → ω ∈ S
n−1. For the generalized

bicharacteristics γµ(t) = (y(t), ξ(t)) issued from µ = (u, ω) we have T (µ) = ∞

and y(t) ∈ U0 for t ≥ 0.

Let Zω be the hyperplane passing through u and orthogonal to ω and let

Z∞ be the set of those points y ∈ Zω for which the generalized bicharacteristic

γµy
passing through µy = (y, ω) has the property T (µy) = ∞. The set Z∞ is

closed in Zω, Zω 6= ? and Z∞ 6= Zω. Thus there exists a sequence of points

um → y0 for some y0 ∈ Zω with um ∈ Zω \Z∞ such that T (µum
) < ∞ for

all m and T (µum
) → ∞. Applying Proposition 5.6, we can approximate γum

by ordinary reflecting rays γδm
with sojourn times going to infinity and by a

second approximation we may choose the ordinary reflecting rays γδm
to be

nondegenerate.

Now consider a fixed ordinary reflecting (ω′
m, θ

′
m)-ray with sojourn time Tm

which is nondegenerate. In general it is possible to have other (generalized)

(ω′
m, θ

′
m)-rays with the same sojourn time and Tm could be a nonisolated point

in sing supp s(t, ω′
m, θ

′
m). Let A ⊂ S

n−1×S
n−1 be the set introduced at the end

of Section 4 and let R ⊂ S
n−1×S

n−1 be the set of Theorem 5.5. Let

Ξ = R ∩ A ⊂ S
n−1×S

n−1.
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Then for (ω, θ) ∈ Ξ each (ω, θ)-ray is ordinary reflecting and nondegenerate. By

applying the inverse mapping theorem, it is easy to see that we may approximate

(ω′
m, θ

′
m) by a pair (ω′′

m, θ
′′
m) ∈ Ξ sufficiently close to (ω′

m, θ
′
m) so that there exist

ordinary reflecting nondegenerate (ω′′
m, θ

′′
m)-rays with sojourn times T ′′

m → ∞

(see [23] for more details). ˜

The sojourn times T ′′
m are isolated points in sing supp s(t, ω′′

m, θ
′′
m) and the ar-

gument of Section 3 based on (3–2) implies that following.

Theorem 6.2. Under the assumptions of Theorem 6.1 there exists a sequence

(ωm, θm)∈S
n−1×S

n−1 and ordinary reflecting nondegenerate (ωm, θm)-rays with

sojourn times Tm → ∞ so that

−Tm ∈ sing supp s(t, ωm, θm) for all m ∈ N. (6–1)

Relation (6–1) was called property (S) in [24], and there we conjectured that

every trapping obstacle has the property (S). The above result shows that for

generic obstacles this conjecture is true. Moreover, the above argument implies

that for each m ∈ N there exists a set Πm ⊂ S
n−1×S

n−1 with positive measure

εm > 0 so that the (ω, θ)-rays with (ω, θ) ∈ Πm produce singularities −τm ≤ −m

of the scattering kernel s(t, ω, θ). Thus for obstacles satisfying (S) some sojourn

times can be observed after a sufficiently long time.

The property (S) leads to some interesting results concerning the behavior of

the modified resolvent of the Laplacian [23]. For Imλ > 0 consider the outgoing

resolvent R(λ) = (−∆−λ2)−1 of the Laplacian in Ω with Dirichlet boundary

conditions on ∂Ω. The outgoing condition means that for f ∈ C∞
0 (Ω) there

exists g(x) ∈ C∞
0 (Rn) so that we have

R(λ)f(x) = R0(λ)g(x) as |x| → ∞,

where

R0(λ) = (−∆−λ2)−1 : L2
comp(Rn) → H2

loc(R
n)

is the outgoing resolvent of the free Laplacian in R
n related to the outgoing

Green function introduced in Section 2. The operator

R(λ) : L2
comp(Ω) 3 f → R(λ)f ∈ H2

loc(Ω)

has a meromorphic continuation in C with poles λj such that Imλj < 0, called

resonances ([12], [25]). Let χ1(x), χ2(x) ∈ C∞
0 (Rn) be cutoff functions such that

χ1(x) = χ2(x) = 1 on a neighborhood of K and χ1(x) = 1 on supp χ2(x). It is

easy to see that the modified resolvent

R̃(λ) = χ1R(λ)χ2

has a meromorphic continuation in C. The poles of R̃(λ) are independent of

the choice of χi and they coincide with their multiplicities with those of the

resonances (see [12], [25]). On the other hand, the scattering amplitude a(λ, ω, θ)

also admits a meromorphic continuation in C and the poles of this continuation
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and their multiplicities are the same as those of the resonances (see [12]). From

the general results on propagation of singularities ([20]) it follows that if K is

nontrapping, there exist ε > 0 and d > 0 so that R̃(λ) has no poles in the domain

Uε,d = {λ ∈ C : d−ε log(1+ |λ|) ≤ Imλ ≤ 0}.

For trapping obstacles we expect to have poles in all domains Uε,d. For the

moment this is an open problem and we have a weaker result.

Theorem 6.3 [23]. Assume that there exists a sequence of ordinary reflecting

(ωm, θm)-rays in Ω with sojourn times Tm → ∞. Let Φ ∈ C∞
0 (R) be such that

supp Φ ⊂ (−1, 1) and Φ(t) = 1 for |t| ≤ 1
2 . Assume that there exists a sequence

γm → 0 of nonzero real numbers and an integer k independent on m such that
∣

∣

∣

∣

Ft→λ

(

Φ
(

t+Tm

γm

)

s(t, ωm, θm)

)
∣

∣

∣

∣

≥ (cm−om(1))|λ|k as |λ| → ∞,

where cm > 0. Then there are two possibilities:

(i) For each ε > 0 and each d > 0, the modified resolvent R̃(λ) has poles in the

domain Uε,d.

(ii) For some ε > 0 and d > 0 the modified resolvent R̃(λ) is holomorphic in

Uε,d but for all α ≥ 0, p ∈ N, k ∈ N we have

sup
λ∈Uε,d

‖ϕ‖
Hk(Ω)

=1

(1+ |λ|)−pe−α| Im λ|‖R̃(λ)ϕ‖H1(Ω) = +∞.

It is natural to make the conjecture that under the assumptions of Theorem 6.3,

condition (i) always takes place.

7. Rigidity of the Scattering Length Spectrum

Fix again a large open ball U0 in R
n, n ≥ 3, n odd2, and let C = ∂U0.

Throughout this section we consider obstacles K in R
n contained in U0 with

smooth boundaries ∂K that satisfy the condition (G) from Section 3 and such

that γK(σ) is a nondegenerate simply reflecting ray for almost all σ ∈ S∗
C(Ω)

such that γK(σ) ∩ ∂K 6= ?. Denote by K0 the class of obstacles with these

properties. One can derive from [22] (see Chapter 3 there) that K0 is of second

Baire category (with respect to the C∞ Whitney topology; see [8]) in the class

of all obstacles with smooth boundaries.

Since in this section we deal with more than one obstacle, it is convenient to

replace the notation Ω, Ft, s(t, ω, θ), Ṫ
∗
b (Ω) and S∗

b (Ω) used so far (see Section 3

for the latter two) by ΩK , F (K)
t, sK(t, ω, θ), Ṫ ∗

b (ΩK) and S∗
b (ΩK), respectively.

A point σ = (x, ω) ∈ Ṫ ∗(ΩK) is called a trapped point if at least one of the

curves {pr1(F
(K)

t(σ)) : t ≤ 0} and {pr1(F
(K)

t(σ)) : t ≥ 0} in ΩK is bounded.

2In fact, most of the considerations in this section are purely geometrical and apply also in
the case when n is even, n ≥ 2.
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A
F1

Q

E

F2
B

P

Figure 4. Livshits’ example. Adapted from [18, Chapter 5].

Here we use the notation pr1(y, η) = y and pr2(y, η) = η. Denote by Trap ΩK

the set of all trapped points in Ṫ ∗(ΩK). Notice that the set Σ∞ used in Section

6 coincides with Trap ΩK ∩ S∗
C(ΩK). It is easy to see that Σ∞ 6= ? if and only

if Trap ΩK 6= ?. So, if Trap ΩK = ?, then K is a nontrapping obstacle. It is

known for example that all star-shaped obstacles are nontrapping.

The scattering length spectrum (SLS) of K is by definition the family of sets of

real numbers SLK = {SLK(ω, θ)}(ω,θ) where (ω, θ) runs over S
n−1×S

n−1 and

SLK(ω, θ) is the set of sojourn times Tγ of all (ω, θ)-rays γ in ΩK . Thus, SLK

is a map which assigns to each pair of directions (ω, θ) a set SLK(ω, θ) of real

numbers.

In this section we discuss the problem of recovering information about the

geometry of the obstacle K from its SLS. Two obstacles K and L in R
n are said

to have almost the same SLS if there exists a subset R of full Lebesgue measure

in S
n−1×S

n−1 such that SLK(ω, θ) = SLL(ω, θ) for all (ω, θ) ∈ R. We will say

that a property P of obstacles in R
n can be recovered by the SLS of the obstacle

if whenever K and L have almost the same SLS and K has property P, then L

has property P as well.

It follows from results of A. Majda [15] (see also Majda and Ralston [16]) and

P. Lax and R. Phillips [13] that the convex hull K̂ of K can be recovered from

SLK . Consequently, in the class of convex obstacles and also in the class of

connected obstacles with real analytic boundaries, K is completely determined

by its SLS.

Example 7.1. The following example of M. Livshits (Chapter 5 in [18]) shows

that in general SLK does not determine K uniquely. Here the part E is half an

ellipse with foci F1 and F2. The ellipse has the property that any ray intersecting

the segment connecting the foci, after reflection at the boundary, intersects the

same segment again. It is now clear that no scattering ray in the exterior of the

obstacle K has a common point with the parts P and Q, so these two “pockets“

cannot be recovered from the SLS of the obstacle. It should be mentioned that

this example is in R
2 and no examples like this in higher dimensions are known

to the authors.
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The problem considered at the beginning of this section is of a global nature. The

following simple example shows that in the corresponding local problem there is

no uniqueness (unless possibly some nondegeneracy conditions are imposed).

Example 7.2. Consider two obstacles K and L = L1 ∪ L2 ∪ L3 in R
n, n ≥ 2,

as shown in Figure 5. Here K and L2 are (strictly) convex domains, while L1

and L3 are convex domains. Moreover K and L2 are symmetric with respect

to the hyperplane α containing the flat “top parts” of ∂L1 and ∂L3. The rays

on the figure are generated by some σ0 (far from K and L). For any σ close to

σ0 we have F (K)
t(σ) = F (L)

t(σ) for t � 0 and both trajectories have common

points with the corresponding obstacles (and are nondegenerate). On the other

hand, K ∩ L = ?. It should be mentioned however that the obstacles K and

L in this example do not satisfy the condition G. Whether such examples exist

with K and L satisfying G is an open problem.

It turns out that if two obstacles K and L have almost the same SLS, then their

generalized geodesic flows are conjugate with a time preserving conjugacy on the

nontrapping parts of their phase spaces.

Theorem 7.3 [29]. If the obstacles K,L ∈ K0 have almost the same SLS , then

there exists a homeomorphism

Φ : Ṫ ∗
b (ΩK)\Trap ΩK → Ṫ ∗

b (ΩL)\Trap ΩL

with the following properties:

(i) Φ defines a symplectic map on an open dense subset of Ṫ ∗
b (ΩK)\Trap ΩK ;

(ii) Φ maps S∗
b (ΩK)\Trap ΩK onto S∗

b (ΩL)\Trap ΩL;

(iii) F (L)
t ◦Φ = Φ◦F (K)

t for all t ∈ R;

(iv) Φ(x, ξ) = (x, ξ) for any (x, ξ) ∈ Ṫ ∗
b (ΩK)\Trap ΩK = Ṫ ∗

b (ΩL)\Trap ΩL such

that x /∈ U0.

Conversely, it is not difficult to show that if K,L ∈ K0 are two obstacles for

which there exists a homeomorphism Φ : S∗
b (ΩK)\Trap ΩK → S∗

b (ΩL)\Trap ΩL

such that F (L)
t◦Φ = Φ◦F (K)

t for all t ∈ R and Φ = id on S∗(Rn\U0)\Trap ΩK ,

then K and L have the same SLS ([29]).
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There is a clear analogy between the property described above and the lens

equivalence of geodesic flows on Riemannian manifolds without boundary (see

[3] and the references there).

Sketch of proof of Theorem 7.3. Assume that the obstacles K and L have

almost the same SLS. The existence of the conjugacy Φ follows easily from the

following main lemma.

Lemma 7.4. Assume that σ ∈S∗(Rn\U0) and t∈R with F (K)
t(σ)∈S∗(Rn\U0).

Then F (K)
t(σ) = F (L)

t(σ).

Given σ ∈ Ṫ ∗(Ω)\Trap ΩK , take t ∈ R so large that F (K)
t(σ) ∈ S∗(Rn \U0).

Then define Φ(σ) = F (L)
−t ◦F

(K)
t(σ). It follows from the above lemma that

the definition of Φ is correct and moreover F (L)
t ◦Φ = Φ◦F (K)

t for all t ∈ R

and Φ(σ) = σ for σ ∈ Ṫ ∗(Rn \U0)\Trap ΩK . Clearly Φ is a homeomorphism

and it follows from the properties of the generalized geodesic flows ([20]) that it

is a symplectic map on an open dense subset of Ṫ ∗
b (ΩK)\Trap ΩK . This shows

how Theorem 7.3 is derived from Lemma 7.4.

Proof of Lemma 7.4. Fix for a moment an arbitrary (ω0, θ0) ∈ S
n−1×S

n−1,

and let δ be a nondegenerate simply reflecting (ω0, θ0)-ray in ΩK with reflection

points x1, . . . , xk (k ≥ 1) and δ′ is a nondegenerate simply reflecting (ω0, θ0)-ray

in ΩL with reflection points y1, . . . , ym (m ≥ 1). Using the nondegeneracy of δ

and the Inverse Mapping Theorem one derives the existence of a neighborhood

U of (ω0, θ0) in S
n−1×S

n−1 such that for each (ω, θ) ∈ U there are a unique

reflecting (ω, θ)-ray δ(ω, θ) in ΩK with reflection points x1(ω, θ), . . . , xk(ω, θ)

close to x1, . . . , xk, respectively, and a unique reflecting (ω, θ)-ray δ ′(ω, θ) in ΩL

with reflection points y1(ω, θ), . . . , ym(ω, θ) close to y1, . . . , ym, respectively.

Lemma 7.5. Under the preceding assumptions, suppose in addition that Tδ(ω,θ) =

Tδ′(ω,θ) for all (ω, θ) ∈ U . Then for each (ω, θ) ∈ U there exist real numbers

λ(ω, θ) and µ(ω, θ) such that

y1(ω, θ) = x1(ω, θ)+λ(ω, θ)ω, ym(ω, θ) = xk(ω, θ)+µ(ω, θ)θ. (7–1)

Proof. Let (ω, θ) = (ω(u), θ(v)), (u, v) ∈ R
n−1×R

n−1, be a smooth param-

etrization of U and set xj(u, v) = xj(ω(u), θ(v)) and yj(u, v) = yj(ω(u), θ(v)).

For the functions

f(u, v) = 〈ω(u), x1(u, v)〉+

k−1
∑

i=1

‖xi(u, v)−xi+1(u, v)‖−〈xk(u, v), θ(v)〉,

g(u, v) = 〈ω(u), y1(u, v)〉+

m−1
∑

i=1

‖yi(u, v)−yi+1(u, v)‖−〈ym(u, v), θ(v)〉,
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we have f(u, v) = g(u, v) for all (u, v), therefore the derivatives of these two

functions coincide. A simple calculation gives

∂f

∂uj
(u) =

〈

∂ω

∂uj
, x1

〉

+
〈

ω,
∂x1

∂uj

〉

+
k−1
∑

i=1

〈

xi+1−xi

‖xi+1−xi‖
,
∂xi+1

∂uj
−
∂xi

∂uj

〉

−
〈

∂xk

∂uj
, θ

〉

.

Using the notation ei =
xi+1−xi

‖xi+1−xi‖
and the reflection law at the points x1, . . . ,

xk−1, we find

∂f

∂uj
(u) =

〈

∂ω

∂uj
, x1

〉

+
〈

ω−e1,
∂x1

∂uj

〉

+
〈

e1−e2,
∂x2

∂uj

〉

+ · · ·

+
〈

ek−2−ek−1,
∂xk−1

∂uj

〉

+
〈

ek−1−θ,
∂xk

∂uj

〉

=
〈

∂ω

∂uj
, x1

〉

.

In the same way one gets
∂g

∂uj
=

〈

∂ω

∂uj
, y1

〉

. Hence

〈

∂ω

∂uj
, x1

〉

=
〈

∂ω

∂uj
, y1

〉

for all j = 1, . . . , n−1, so y1−x1 = λω for some λ ∈ R.

Similarly, ym = xk +µθ for some µ ∈ R. ˜

We continue the proof of Lemma 7.4. As usual, we denote by M̊ the interior

(largest open subset) of a subset M of R
n. Let R be a subset of full Lebesgue

measure in S
n−1×S

n−1 such that

SLK(ω, θ) = SLL(ω, θ), (ω, θ) ∈ R. (7–2)

Shrinking R if necessary, we will assume that (ω, ω) /∈ R for any ω ∈ S
n−1. Then

for (ω, θ) ∈ R, any (ω, θ)-ray in ΩK (and in fact in the exterior of any obstacle)

must have at least one reflection point. Furthermore, using Theorems 4.3, 5.1

and 5.5 above, we may assume that the set R is chosen in such a way that: (i) for

(ω, θ) ∈ R all (ω, θ)-rays in ΩK (resp. ΩL) are nondegenerate simply reflecting

(ω, θ)-rays; (ii) if (ω, θ) ∈ R and γ and δ are (ω, θ)-rays in ΩK (resp. ΩL), then

Tγ 6= Tδ.

It follows from [13] and [15] (see also [16]) that K̂ = L̂.

Let σ0 = (u0, ω0) ∈ S∗(Ω̊K̂) and t0 ∈ R be such that F (K)
t0(σ0) /∈ S∗(Ω̊K̂).

We will show that F (K)
t0(σ0) = F (L)

t0(σ0). Using various results from [20], [23]

and [29], one derives that it is enough to consider the case when σ0 is nontrapped

and (ω0, θ0) ∈ R. Then δ = γK(σ0) is a nondegenerate simply reflecting (ω0, θ0)-

ray in ΩK .

The essential case to consider is when γK(σ0) ∩ ∂K 6= ?. Then there exists

s0 ∈ R with F (K)
s0

(σ0) = (x0, ξ0), x0 ∈ ∂K, and without loss of generality

we will assume s0 > 0 and moreover that s0 is the minimal positive number

with pr1(F
(K)

s0
(σ0)) ∈ ∂K. Let x1 = x0, x2, . . . , xk be the successive reflection
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points of δ. According to (7–2), there exists a reflecting (ω0, θ0)-ray δ′ in ΩL

with Tδ′ = Tδ. Let y1, . . . , ym be the successive reflection points of δ′. The

choice of R and (ω0, θ0) ∈ R imply that δ′ is nondegenerate. From the latter

one derives that there exist a neighborhood U of (ω0, θ0) in S
n−1×S

n−1 and a

neighborhood Ui of xi in ∂K for each i = 1, . . . , k such that for every (ω, θ) ∈

U there is a unique reflecting (ω, θ)-ray δ(ω, θ) in ΩK with reflection points

x1(ω, θ) ∈ U1, . . . , xk(ω, θ) ∈ Uk smoothly depending on (ω, θ). Similarly, there

exists a neighborhood U ′
j of yj in ∂L for each j = 1, . . . ,m such that for every

(ω, θ) ∈ U there is a unique reflecting (ω, θ)-ray δ′(ω, θ) in ΩL with reflection

points y1(ω, θ) ∈ U ′
1, . . . , ym(ω, θ) ∈ U ′

m smoothly depending on (ω, θ). Moreover

δ(ω0, θ0) = δ and δ′(ω0, θ0) = δ′.

According to (7–2), for each (ω, θ) ∈ R ∩ U there exists a unique reflecting

(ω, θ)-ray δ′′(ω, θ) in ΩL with

Tδ′′(ω,θ) = Tδ(ω,θ). (7–3)

Assuming U is small enough, it then follows that δ ′′(ω, θ) = δ′(ω, θ) for each

(ω, θ) ∈ R ∩ U . Otherwise there exists a sequence {(ωp, θp)}
∞
p=1 ⊂ R ∩ U

converging to (ω0, θ0) such that δ′′(ωp, θp) 6= δ′(ωp, θp) for all p. Let Z =

Zω0
. Denote by up the (incoming) intersection point of δ′′(ωp, θp) with Z;

then δ′′(ωp, θp) = γL(up, ωp). Considering an appropriate subsequence, we may

assume that up → u ∈ Z as p → ∞. Then δ′′ = γL(u, ω0) is an (ω0, θ0)-

ray in ΩL and clearly Tδ′′ = limp Tδ′′(ωp,θp) = Tδ′′(ω0,θ0). Now (7–3) implies

Tδ′′ = Tδ(ω0,θ0) = Tδ and therefore Tδ′′ = Tδ′(ω0,θ0) = Tδ′ . This and (ω0, θ0) ∈ R

give δ′′ = δ′. Hence u belongs to δ′ = δ′(ω0, θ0) and therefore for large p, the ray

δ′′(ωp, θp) has m reflection points belonging to the neighborhoods U ′
j , respec-

tively. From the choice of U and the uniqueness of the (ω, θ)-rays δ ′(ω, θ) for

(ω, θ) ∈ U , it now follows that δ′′(ωp, θp) = δ′(ωp, θp). This is a contradiction

with the choice of the sequence {(ωp, θp)}p which proves that δ′′(ω, θ) = δ′(ω, θ)

for all (ω, θ) ∈ R ∩ U . Hence

Tδ′(ω,θ) = Tδ(ω,θ) (7–4)

for (ω, θ) ∈ R ∩ U . This gives that (7–4) holds for all (ω, θ) ∈ U , and then

Lemma 7.5 implies that equations (7–1) hold for some real numbers λ(ω, θ) and

µ(ω, θ) for all (ω, θ) ∈ U . In particular, δ′ = γL(σ0).

Let F (K)
t0(σ0) = (z, ζ). Then either ζ = ω0 and z = x1 +sω0 for some s < 0,

or ζ = θ0 and z = xk +sθ0 for some s > 0. The same holds for F (L)
t0(σ0) =

(z′, ζ ′). In both cases (7–1) and (7–4) imply (z, ζ) = (z ′, ζ ′), i.e. F (K)
t0(σ0) =

F (L)
t0(σ0). ˜

Using the existence of the conjugacy Φ and the fact that it is measure preserving

with respect to the canonical measures on S∗
b (ΩK) and S∗

b (ΩL), one derives the

following.
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Corollary 7.6. Let the obstacles K and L have almost the same SLS . If

the sets of trapped points of both K and L have Lebesgue measure zero, then

VolK = VolL.

Livshits’ example shows that the above conclusion is not true without any as-

sumption about the sets of trapped points. Notice that far from the obstacle the

trapping set is relatively small. For example, if C is a large sphere in R
n (i.e.

it contains K in its interior), a slight modification of the proof of Proposition

5.6 shows that dim
(

S∗
C(ΩK) ∩ Trap ΩK

)

≤ 2n−3. On the other hand, in some

cases (as in Livshits’ example) we have dim
(

Trap ΩK ∩ S∗
b (ΩK)

)

= 2n−1 =

dim
(

S∗
b (ΩK)

)

.

Another simple consequence of Theorem 7.3 concerns backscattering rays.

Denote by Trap(n) ∂K the set of those x ∈ ∂K such that (x, νK(x)) ∈ Trap ΩK ,

where νK(x) is the outward unit normal to ∂K at x.

Suppose that K and L are obstacles with almost the same SLS. Let Φ be

the conjugacy from Theorem 7.3. Given x ∈ ∂K \Trap(n) ∂K, take an arbitrary

t > 0 such that (z, ζ) = F (K)
t(x, νK(x)) ∈ S∗(Rn \U0). Then F (K)

t(z,−ζ) =

(x, νK(x)) and F (K)
2t(z,−ζ) = (z, ζ). Therefore

(z, ζ) = Φ(z, ζ) = Φ◦F (K)
2t(z,−ζ) = F (L)

2t ◦Φ(z,−ζ) = F (L)
2t(z,−ζ),

so for (y, η) = F (L)
t(z,−ζ) we must have y ∈ ∂L and η ⊥ ∂L at y. Thus,

Φ(x, νK(x)) = (y, νL(y)) for some y ∈ ∂L\Trap(n) ∂L. Setting ϕ(x) = y, one

gets a homeomorphism

ϕ : ∂K \Trap(n) ∂K → ∂L\Trap(n) ∂L

such that ϕ(x) = y whenever Φ(x, νK(x)) = (y, νL(y)). In particular, assuming

that dim Trap(n) ∂K < n−2 and dim Trap(n) ∂L < n−2, it follows that K and

L must have the same number of connected components.

Here we denote by dimX the topological dimension of X (see [4], for example).

Since dimX ≤ dimH X, where dimH X is the Hausdorff dimension of the metric

space X (see [4], for example), all assumptions of the form dimX ≤ a can be

replaced by dimH X ≤ a.

It seems natural to conjecture that in the case of nontrapping obstacles the

SLS uniquely determines the obstacle. While this is still an open problem, using

Theorem 7.3 and backscattering rays as above, one can prove this conjecture

at least for star-shaped obstacles (as mentioned above, these are necessarily

nontrapping).

Proposition 7.7 [29]. Let K and L have almost the same SLS . If K is star-

shaped , L = K.

Even though the trapping set is relatively small far from the obstacle, in general

it may be big enough to topologically divide S∗
C(ΩK), i.e. it may happen that

S∗
C(ΩK)\Trap ΩK has more than one connected component.
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We will denote by ∂K(ob) the union of all connected components of ∂K that

have a common point with at least one scattering ray in ΩK , and call it the

observable part of the boundary ∂K. The obstacle K will be called observable,

if ∂K = ∂K(ob).

Theorem 7.8 [28]. Let K,L be obstacles in R
n with real analytic boundaries that

have almost the same SLS . If K is such that Trap ΩK does not topologically divide

S∗
C(ΩK), then ∂K(ob) = ∂L(ob). If in addition both K and L are observable,

then K = L.

The idea of the proof of Theorem 7.8 is rather simple. Let Y be the union

of all connected components of ∂K (ob) that do not coincide with connected

components of L. Assuming Y 6= ?, one finds σ ∈ S∗(Rn\U) such that γK(σ) =
{

pr1(F
(K)

t(σ)) : t ∈ R
}

has a common point with Y . Consider a smooth curve

σ(s) in S∗(Rn\U) that connects σ to a point σ(0) = σ0 generating a free ray, i.e.

a ray without common points with K. After some regularization of the curve σ(s)

(imposing some transversality conditions on it), we choose the smallest s with

γK(σ(s)) ∩ Y 6= ?. For ρ = σ(s), the scattering ray γK(ρ) has only one common

point y with Y which is a tangent point, and all transversal reflection of its occur

at connected components of ∂K that coincide with connected components of L.

Then we show that y′ ∈ ∂L for a dense set of points y′ in a neighborhood of y

in Y . Thus, ∂K = ∂L near y which is a contradiction with the definition of Y .

See [28] for details.

It is not clear how restrictive the condition that Trap ΩK does not topologi-

cally divide S∗
C(ΩK) is. It turns out ([28]) that this condition is satisfied when

K is a finite disjoint union of strictly convex domains with C∞ boundaries. This

and Theorem 7.8 imply the following.

Corollary 7.9. ([28]) If K is a finite disjoint union of strictly convex domains,

K and L have almost the same SLS and both ∂K and ∂L are real analytic, then

K = L.

It is an open problem whether the statement of Corollary 7.9 remains true for

obstacles with C∞ boundaries ∂K and ∂L.

Next, we describe a few results from [29] involving scattering rays having

tangencies to the boundary.

Denote by K(fin) the class of obstacles K ∈ K0 such that the normal curvature

of K does not vanish of infinite order. From now on until the end of this section

we assume that K,L ∈ K(fin).

Consider an arbitrary scattering ray γ in ΩK and let X and Y be arbitrary

cross-sections of the incoming and outgoing rays of γ. Define the cross-sectional

map PK : S∗
X(Rn) → S∗

Y (Rn) by the shift along the flow F (K)
t. Now assume

that the obstacle K and L have almost the same SLS. It then follows from

Theorem 7.3 that PK = PL. In particular the singularities of PK and PL are
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the same, and this implies that for any σ0 = (x0, ξ0) ∈ S∗(Rn \U0)\Trap ΩK ,

the ray γK(σ0) contains a point of tangency to ∂K if and only if γL(σ0) contains

a point of tangency to ∂L.

Next, suppose that σ(s), s ∈ [0, a], is a continuous curve in S∗(ΩK) consisting

of nontrapped points. Using an idea of Melrose and Sjöstrand [20] involving

winding numbers, one shows that if γK(σ(s)) is simply reflecting for each s, then

the number of reflection points of γK(σ(s)) is the same for all s ∈ [0, a]. Now

assume that σ = σ(0) generates a ray γK(σ) containing a gliding segment on

∂K. If sk ↘ 0 are such that each γK(σ(sk)) is simply reflecting, it follows from

[20] that the number of reflection points of γK(σ(sk)) tends to ∞. Hence there

must be infinitely many s ∈ (0, a] such that F (K)
t(σ(s)) ∈ S∗(∂K) for some

t = t(s). On the other hand if γK(σ) is tangent to ∂K but does not contain

a gliding segment, then it is not difficult to construct a continuous curve σ(s)

(0 ≤ s ≤ a, a > 0) in S∗(ΩK) with σ(0) = σ such that γ(σ(s)) is a simply

reflecting ray for all s ∈ (0, a].

These observation yield that from the SLS of an obstacle one can determine

which points σ ∈ S∗(ΩK)\Trap ΩK generate rays containing gliding segments

on ∂K.

Corollary 7.10. ([29]) Let K,L have almost the same SLS . If there exists

a scattering ray containing a gliding segment in ΩK , then ΩL has the same

property . Consequently , if K is a finite disjoint union of convex domains in R
n

and dim Trap ΩL ∩ S∗(∂L) < 2n−3, then L is also a finite disjoint union of

convex domains, moreover K and L must have the same number of connected

components and are therefore diffeomorphic.

A point σ ∈ S∗
C(ΩK) will be called accessible if it belongs to a connected com-

ponent of S∗
C(ΩK)\Trap ΩK containing a point that generates a free ray. Pre-

sumably the SLS provides more substantial information about the behavior of

the flow F (K)
t near accessible points ρ ∈ S∗

C(ΩK) and correspondingly about

parts of ∂K that can be reached by rays generated by accessible points. The

following result shows for example that the SLS determines uniquely the num-

ber of reflection points of simply reflecting rays γK(σ) generated by accessible

points σ.

Proposition 7.11 [29]. Let K,L have almost the same SLS . For every connec-

ted component W of S∗
C(ΩK)\Trap ΩK there exists an integer m = m(K,L,W )

such that

#(γK(σ) ∩ ∂K) = #(γL(σ) ∩ ∂L)+m

for all σ ∈W ∩ U (K). Whenever W is accessible, m = 0; that is,

#(γK(σ) ∩ ∂K) = #(γL(σ) ∩ ∂L)

for any accessible point σ.
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See [29] for further results concerning relationship between obstacles having al-

most the same SLS.

References

[1] F. Cardoso, V. Petkov, L. Stoyanov, Singularities of the scattering kernel for generic

obstacles, Ann. Inst. H. Poincaré (Physique théorique) 53 (1990), 445–466.

[2] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,
2nd edition, Appl. Math. Sciences, Springer, Berlin, 1998.

[3] C. Croke, Rigidity and the distance between boundary points, J. Diff. Geometry 36,
(1991), 445–464.

[4] G. Edgar, Measure, Topology and Fractal Geometry, Berlin, Springer, 1990.

[5] V. Guillemin, Sojourn time and asymptotic properties of the scattering matrix, Publ.
RIMS Kyoto Univ. 12 (1977), 69–88.

[6] V. Guillemin and R. Melrose, The Poisson summation formula for manifolds with

boundary, Adv. in Math. 32 (1979), 128–148.

[7] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127,
Springer, Berlin, 1998.

[8] M. Hirsch, Differential Topology, Berlin, Springer 1976.

[9] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183.

[10] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer,
Berlin, 1983–1985 (4 volumes).

[11] A. Kirsch and R. Kress, Uniqueness in inverse scattering, Inverse Problems 9

(1993), 285–299.

[12] P. Lax and R. Phillips, Scattering Theory, 2nd Edition, Academic Press, New York,
1989.

[13] P. Lax and R. Phillips, The scattering of sound waves by an obstacle, Comm. Pure
Appl. Math. 30 (1977), 195–233.

[14] A. Majda, High Frequency Asymptotics for the Scattering Matrix and the Inverse

Problem of Acoustical Scattering, Comm. Pure Appl. Math. 29 (1976), 261–291.

[15] A. Majda, A representation formula for the scattering operator and the inverse

problem for arbitrary bodies, Comm. Pure Appl. Math. 30 (1977), 165–194.

[16] A. Majda and J. Ralston, An analogue of Weyl’s formula for unbounded domains,
Duke Math. J. 45 (1978), 183–196.

[17] R. Melrose, Microlocal parametrices for diffractive boundary value problems, Duke
Math. J. 42 (1975), 605–635.

[18] R. Melrose, Geometric Scattering Theory, Cambridge Univ. Press, Cambridge,
1994.

[19] R. Melrose and M. Taylor, Near peak scattering and the corrected Kirchoff approx-

imation, Adv. in Math. 55 (1985), 242–315.

[20] R. Melrose and J. Sjöstrand, Singularities in boundary value problems, I, II,
Commun. Pure Appl. Math. 31 (1978), 593–617 and 35 (1982), 129–168.



332 VESSELIN PETKOV AND LUCHEZAR STOYANOV

[21] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex

bodies, Commun. PDE. 5 (1980), 293–329.

[22] V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral

Problems, John Wiley & Sons, Chichester, 1992.

[23] V. Petkov and L. Stoyanov, Sojourn times of trapping rays and the behavior of the

modified resolvent of the Laplacian, Ann. Inst. H. Poincaré (Physique théorique) 62

(1995), 17–45.

[24] V. Petkov and L. Stoyanov, Singularities of the scattering kernel for trapping

obstacles, Ann. Scient. Ec. Norm. Sup. 29 (1996), 737–756.

[25] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering

poles, Journal of AMS, 4 (1991), 729–769.

[26] P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle

inverse problem in obstacle scattering, Preprint, 2002.

[27] L. Stoyanov, Generalized Hamiltonian flow and Poisson relation for the scattering

kernel, Ann. Scient. Ec. Norm. Sup. 33 (2000), 361–382.

[28] L. Stoyanov, On the scattering length spectrum for real analytic obstacles, J. Funct.
Anal., 177 (2000), 459–488.

[29] L. Stoyanov, Rigidity of the scattering length spectrum, Math. Ann. 324 (2002),
743–771.

[30] M. Taylor, Grazing rays and reflection of singularities of solutions to wave equa-

tions, Comm. Pure Appl. Math. 29 (1976), 1–37.

[31] M. Zworski, High frequency scattering by a convex obstacle, Duke Math. J. 61

(1990), 543–634.

Vesselin Petkov

Département de Mathématiques Appliquées

Université Bordeaux I

351, Cours de la Libération

33405 Talence

France

petkov@math.u-bordeaux.fr

Luchezar Stoyanov

Department of Mathematics and Statistics

University of Western Australia

Perth 6709

Australia

stoyanov@maths.uwa.edu.au


