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Inverse Problems in Transport Theory

PLAMEN STEFANOV

Abstract. We study an inverse problem for the transport equation in

a bounded domain in R
n. Given the incoming flux on the boundary, we

measure the outgoing one. The inverse problem is to recover the absorption

coefficient σa(x) and the collision kernel k(x, v′, v) from this data. This

paper is a survey of recent results about general k’s without assuming that

k depends on a reduced number of variables. We present uniqueness results

in dimensions n ≥ 3 for the time dependent and the stationary problem, and

in the time dependent case we study the inverse scattering problem as well.

The proofs are constructive and lead to direct procedures for recovering σa

and k. For n = 2 the problem of recovering k is formally determined and

we prove uniqueness for small k and a stability estimates.

1. Introduction

This paper is a review of the recent progress in the study of inverse problems

for the transport equation in R
n, n ≥ 2 by the author and M. Choulli [CSt1],

[CSt2], [CSt3], [CSt4] and the author and G. Uhlmann [StU]. We are focused

here on the case when the collision kernel k introduced below depends on all

of its variables x, v′, v. There are a lot of works dealing with k’s of the form

k(x, v′ · v) that is also physically important but we will not discuss those results

here.

Define the transport operator T by

Tf = −v · ∇xf(x, v) − σa(x, v)f(x, v) +

∫

V

k(x, v′, v)f(x, v′) dv′, (1–1)

where f = f(x, v) represents the density of a particle flow at the point x ∈ X

moving with velocity v ∈ V . Here X ⊂ R
n is a bounded domain with C1-

boundary, V ⊂ R
n is the velocity space. We assume that V is an open set in

Sections 2 and 3, and that V = Sn−1 (and dv is replaced by dSv) in Section 4.

All of our results in Sections 2 and 3 hold in the case when V = Sn−1 with

obvious modifications. In fact, the case V = Sn−1 leads to some simplifications,
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for example there is no need to work locally in the open set V \ {0} in some

cases and the measure dξ̃ can be chosen to be dξ in Section 3. The coefficient

σa(x, v) ≥ 0 above measures the absorption of particles at the point (x, v) due to

change of velocity or absorption by the surrounding media. The collision kernel

k(x, v′, v) ≥ 0 is related to the number of particles that change their velocity

from v′ to v at the point x.

We study inverse problems for both the time-dependent transport equation

(∂t − T )f = 0 (1–2)

and the stationary transport equation

Tf = 0. (1–3)

Set Γ± = {(x, v) ∈ ∂X × V : ±n(x) · v > 0}, where n(x) is the outer normal to

∂X at x ∈ ∂X. A typical boundary value problem for (1–2) or (1–3) is associated

with boundary conditions

f |Γ−
= f−, (1–4)

where f− is a given function on Γ−, that depends also on t in the first case. On

the boundary we measure the outgoing flux f+ generated by a given incoming

flux f−, i.e., we assume that we know that so called albedo operator A defined

by

A : f− 7−→ f+ = f |Γ+
. (1–5)

The inverse problem that we study is this: Can we determine the functions

σa and k from a knowledge of A? In the time dependent case we study the

inverse scattering problem as well — recovery of σa and k from the knowledge of

the scattering operator S. In order to ensure uniqueness of recovery of σa, we

assume that σa depends on x only, since otherwise there is clearly no uniqueness.

Under this assumption and some natural assumptions in the stationary case

that guarantee the solvability of the direct problem (1–2), we not only prove

uniqueness but give an explicit solution for the inverse problem. Our approach

is based on the study of the singularities of the Schwartz kernel of A and we

show that all information about σa and k is contained in those singularities. For

large σa, those singularities have very small amplitudes and are hard to measure

in real applications, so then this approach is of less interest for the practical

recovery of σa and k. In Section 4 we prove some stability estimates.

2. The Time Dependent Transport Equation

2.1. Main results In this section we present inverse problems results about

the time dependent transport equation (1–2)

∂

∂t
u(x, v, t) = −v · ∇xu(x, v, t) − σa(x, v)u(x, v, t) +

∫

V

k(x, v′, v)u(x, v′, t) dv′.

(2–1)
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We first introduce some terminology and notation. The production rate σp(x, v′)

is defined by

σp(x, v′) =

∫

V

k(x, v′, v) dv.

Following [RS] we say that the pair (σa, k) is admissible if

(i) 0 ≤ σa ∈ L∞(Rn × V ),

(ii) 0 ≤ k(x, v′, ·) ∈ L1(V ) for a.e. (x, v′) ∈ R
n × V and σp ∈ L∞(Rn × V ).

Throughout this paper we assume that σa and k are extended as 0 for x 6∈ X.

Set T0 = −v · ∇x with its maximal domain. It is well-known that T0 is a

generator of a strongly continuous group U0(t)f = f(x − tv, v) of isometries on

L1(X × V ) preserving nonnegative functions. Following the notation in [RS], we

introduce the operators

[A1f ](x, v) = −σa(x, v)f(x, v),

[A2f ](x, v) =

∫

V

k(x, v′, v)f(x, v′) dv′,

T1 = T0+A1,

T = T0+A1+A2

D(T1) = D(T0),

D(T ) = D(T0),

and set A = A1 + A2. Operators A1 and A2 are bounded on L1(X × V ) and

T1, T are generators of strongly continuous groups U1(t) = etT1 , U(t) = etT ,

respectively [RS]. For U1(t) we have an explicit formula

[U1(t)f ](x, v) = e−
R

t

0
σa(x−sv,v) dsf(x − tv, v), (2–2)

while for U(t) we have

‖U(t)‖ ≤ eCt, C = ‖σp‖L∞ . (2–3)

We work in the Banach space L1(X × V ), so here ‖U(t)‖ is the operator norm

of U(t) in L(L1(X × V )). It should be mentioned also that U(t) preserves the

cone of nonnegative functions for t ≥ 0.

One can define the wave operators associated with T , T0 by

W− = s-lim
t→∞

U(t)U0(−t), (2–4)

W̃+ = s-lim
t→∞

U0(−t)U(t). (2–5)

If W− and W̃+ exist, one can define the scattering operator

S = W̃+W−

as a bounded operator in L1(X × V ). Scattering theory for (1–1) has been devel-

oped in [Hej], [Si], [V1] and we refer to these papers (see also [RS]) for sufficient

conditions guaranteeing the existence of S. We would like to mention here also

[P1], [U], [E], [St], [V2], [CMS]. An abstract approach based on the Limiting

Absorption Principle has been proposed in [Mo]. We show below however that S

can always be defined as an operator S : L1
c(R

n × V \{0}) → L1
loc(R

n × V \{0}).
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The inverse scattering problem for (2–1) is the following: Does S determine

uniquely σa, k? The answer is affirmative if σa is independent of v.

Theorem 2.1 ([CSt1], [CSt2]). Let (σa, k), (σ̂a, k̂) be two admissible pairs such

that σa, σ̂a do not depend on v and denote by S, Ŝ the corresponding scattering

operators. Then, if S = Ŝ, we have σa = σ̂a, k = k̂.

The assumption that σa, σ̂a depend on x only can be relaxed a little by assuming

that they depend on x and |v| only. In the general case however, there is no

uniqueness. Assume, for example, that k = 0. Then

Sf = e−
R

∞

−∞
σa(x−sv,v) dsf, (k = 0) (2–6)

and therefore S determines
∫ ∞

−∞
σa(x − sv, v) ds only for any v ∈ V . It is easy

to see that those integrals do not determine σa uniquely. If σa is independent

of v/|v| however, then S determines the X-ray transform of σa and it therefore

determines σa in this case.

Next we consider the albedo operator A. Assume that X is convex and has

C1-smooth boundary ∂X. Consider the measure dξ = |n(x) · v|dµ(x) dv on Γ±,

where dµ(x) is the measure on ∂X. We will solve the problem










(∂t − T )u = 0 in R × X × V ,

u|R×Γ−
= u−,

u|t�0 = 0

(2–7)

for u(t, x, v), where u− ∈ L1
c(R; L1(Γ−, dξ)). Problem (2–7) has a unique solu-

tion u ∈ C(R;L1(X × V )) and one defines the albedo operator A by

Ag = u|R×Γ+
∈ L1

loc(R;L1(Γ+, dξ)). (2–8)

Therefore, A : L1
c(R; L1(Γ−, dξ)) → L1

loc(R;L1(Γ+, dξ)). It can be seen that Ag

can be defined more generally for g ∈ L1(R×Γ−, dt dξ) with g = 0 for t � 0. We

show below that in fact A determines S uniquely and conversely, S determines A
uniquely by means of explicit formulae in case when X is convex. This generalizes

earlier results in [AE], [EP], [P2] showing that there is a relationship between S

and A. To this end, let us define the extension operators J± and the restriction

(trace) operators R± as follows. Set

Ω = {(x, v) ∈ R
n × V \{0} : x − tv ∈ X for some t ∈ R}, (2–9)

and define the functions

τ±(x, v) = min{t ∈ R : (x ± tv, v) ∈ Γ±}, (x, v) ∈ Ω. (2–10)

Given g ∈ L1(R × Γ±, dt dξ), consider the following operators of extension:

(J±g)(x, v) =

{

g
(

±τ±(x, v), x ± τ±(x, v)v, v
)

if (x, v) ∈ Ω,

0 otherwise.
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It is easy to check that J± : L1(R × Γ±, dt dξ) → L1(X × V ) are isometric.

Denote by R± the operator of restriction

R±f = f |Γ±
, f ∈ C(Rn × V ).

Although R± is not a bounded operator on L1(X × V ) (see [Ce1], [Ce2] and

Theorem 3.2 below), we can show that R±U0(t)f ∈ L1(R × Γ±, dt dξ) is well

defined for any f ∈ L1(X × V ). Denote by χΩ the characteristic function of Ω.

We establish the following relationships between S and A.

Theorem 2.2 ([CSt1], [CSt2]). Assume that X is convex . Then

(a) Ag = R+U0(t)SJ−g for all g ∈ L1
c(R × Γ−, dt dξ),

(b) Sf = J+AR−U0(t)f + (1 − χΩ)f , f ∈ L1
c(R

n × V \{0}),
(c) A extends to a bounded operator

A : L1(R × Γ−, dt dξ) → L1(R × Γ+, dt dξ)

if and only if S extends to a bounded operator on L1(X × V ).

We decompose L1(Rn × V ) = L1(Ω) ⊕ L1((Rn × V ) \ Ω). A similar decomposi-

tion holds for L1
c(R

n × V \{0}). Then S leaves invariant both spaces, moreover

S|L1((Rn×V )\Ω) = Id, so S can be decomposed as a direct sum S = SΩ ⊕ Id.

Denote R± = R±U0( · ) : L1(Ω) → L1(R × Γ±, dt dξ). Then R± are iso-

metric and invertible and R−1
± = J± with J± : L1(R × Γ±, dt dξ) → L1(Ω),

J±f := J±f |L1(Ω). Then we can rewrite Theorem 2.2 (a), (b) as follows:

A = R+SΩJ−

SΩ = J+AR−

on L1
c(R × Γ−, dt dξ),

on L1
c(R

n × V \{0}).

Thus A can be obtained from SΩ by a conjugation with invertible isometric

operators and vice-versa.

An immediate consequence of Theorem 2.2 is that A determines σa and k

uniquely for σa independent of v and X convex. In short, in this case the

inverse boundary value problem is equivalent to the inverse scattering problem.

However, we can prove uniqueness for the inverse boundary value problem for

not necessarily convex domains as well independently of Theorems 2.1 and 2.2.

Theorem 2.3 [CSt1], [CSt2]. Let (σa, k), (σ̂a, k̂) be two admissible pairs with

σa, σ̂a independent of v. Then, if the albedo operators A, Â on ∂X coincide, we

have σa = σ̂a, k = k̂.

2.2. Singular decomposition of the fundamental solution and the ker-

nels of S and A. Proof of the main results in section 2.1. The key to

proving the uniqueness results above is to study the singularities of the Schwartz

kernel of S and respectively A. To this end we will study first the kernel of the
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solution operator of the problem (2–7). Given (x′, v′) ∈ R
n × V \{0}, consider

the problem
{

(∂t − T )u = 0 in R × R
n × V ,

u|t�0 = δ(x − x′ − tv)δ(v − v′),
(2–11)

δ being the Dirac delta function. Problem (2–1) has a unique solution

u#(t, x, v, x′, v′)

depending continuously on t with values in D′(Rn
x × Vv × R

n
x′ × Vv′\{0}). We

have the following singular expansion of u#.

Theorem 2.4 [CSt1], [CSt2]. Problem (2–11) has the unique solution u# =

u#
0 + u#

1 + u#
2 , where

u#
0 = e−

R

∞

0
σa(x−sv,v) dsδ(x − x′ − tv)δ(v − v′),

u#
1 =

∫ ∞

0

e−
R

s

0
σa(x−τv,v)dτe−

R

∞

0
σa(x−sv−τv′,v′)dτ

× k(x−sv, v′, v)δ(x − sv − (t−s)v′ − x′) ds,

u#
2 ∈ C

(

R; L∞
loc(R

n
x′ × Vv′ ; L1(Rn

x × Vv))
)

.

The proof of Theorem 2.4 is based on iterating twice Duhamel’s formula

U(t − r) = U1(t − r) +

∫ t

r

U(t − s)A2U1(s − r) ds

and on estimating the remainder term.

To build the scattering theory for the transport equation, we first show that

the wave operators W−, W̃+ (see (2–4), (2–5)) exist as operators between the

spaces

W− : L1
c(R

n × V \{0}) −→ L1(X × V ),

W̃+ : L1(X × V ) −→ L1
loc(R

n × V \{0}).
Then we define the scattering operator

S = W̃+W− : L1
c(R

n × V \{0}) −→ L1
loc(R

n × V \{0}). (2–12)

It can be seen that S is well defined on the wider subset
{

f : ∃t0 such that

U0(t)f = 0 for x ∈ X, t < −t0
}

(the incoming space).

The distribution u#(t, x, v, x′, v′) is the Schwartz kernel of U(t)W−. Let

S(x, v, x′, v′) be the Schwartz kernel of the scattering operator S. Then

S(x, v, x′, v′) = lim
t→∞

u#(t, x+tv, v, x′, v′).

This limit exists trivially, in fact for any K b R
n × V \{0}, the distribution

u#(t, x+tv, v, x′, v′)|K is independent of t for t ≥ t0(K). On the other hand,

as mentioned in the Introduction, it is not trivial to show that under some
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condition, S is a kernel of a bounded operator in L1(Rn × V ). One can also

prove the following integral representation of the scattering kernel:

S(x, v, x′, v′) = e−
R

∞

−∞
σa(x−τv,v)dτδ(x − x′)δ(v − v′)

+

∫ ∞

−∞

e−
R

∞

s
σa(x+τv,v)dτ (A2u

#)(s, x + sv, v, x′, v′) ds. (2–13)

This formula is an analogue of the representation of the scattering amplitude (in

our setting, that would be the second term in the right-hand side above) for the

Schrödinger equation.

Now, combining Theorem 2.4 and the representation above, we get the fol-

lowing express for the kernel S of the scattering operator S.

Theorem 2.5 [CSt1], [CSt2]. We have S = S0 + S1 + S2, where the Schwartz

kernels Sj(x, v, x′, v′) of the operators Sj , j = 0, 1, 2 satisfy

S0 = e−
R

∞

−∞
σa(x−τv,v)dτ δ(x − x′)δ(v − v′),

S1 =

∫ ∞

−∞

e−
R

∞

s
σa(x+τv,v)dτe−

R

∞

0
σa(x+sv−τv′,v′)dτ

k(x + sv, v′, v)δ(x − x′ + s(v − v′)) ds,

S2 ∈ L∞
loc(R

n
x′ × Vv′\{0}; L1

loc(R
n
x × Vv\{0})).

We are ready now to complete the proof of Theorem 2.1. The idea of the proof is

the following. Suppose we are given the scattering operator S corresponding to

a unknown admissible pair (σa, k). Then we know the kernel S = S0 + S1 + S2.

It follows from Theorem 2.5 that S0 is a singular distribution supported on the

hyperplane x = x′, v = v′ of dimension 2n, S1 is supported on a (3n + 1)-

dimensional surface (for v 6= v′), while S2 is a function. Therefore, Sj , j = 0, 1, 2

have different degrees of singularities and given S = S0 + S1 + S2, one can

always recover S0 and S1. From S0 one can recover the X-ray transform of σa

and therefore σa itself, provided that σa is independent of v. Next, suppose for

simplicity that σa and k are continuous. Then for fixed x, v, v′ with v 6= v′, S1

is a delta-function supported on the line x′ = x + s(v − v′), s ∈ R with density

a multiple of k(x + sv, v′, v). Therefore, one can recover that density for each s

and in particular setting s = 0, we get k(x, v′, v). Moreover, based on this, we

can write explicit formulae that extract σa and k from S by allowing S to act

on a sequence of suitably chosen test functions that concentrate on one of the

singular varieties described above, see [CSt2].

We will skip the proof of Theorem 2.2. We merely recall that it proves unique-

ness for the inverse boundary value problem for convex X as a direct consequence

of Theorem 2.5.

Now assume that X is not necessarily convex. We can still prove uniqueness

for the inverse boundary value problem by showing that A determines uniquely

u# for x outside X by following arguments in [SyU], and then using (2–13) and

Theorem 2.5. In order to give a constructive (in fact, explicit) reconstruction, we



118 PLAMEN STEFANOV

study next the Schwartz kernel of the operator A in the spirit of Theorem 2.5.

A priori, this kernel is a distribution in D′(R ×Γ+ ×R ×Γ−). Denote by δ1 the

Dirac delta function on R
1 and by δy(x) the Delta function on ∂X defined by

∫

∂X
δyϕdµ(x) = ϕ(y). Set

θ(x, y) =

{

1 if px + (1 − p)y ∈ X for each p ∈ [0, 1],

0 otherwise.

Theorem 2.6 [CSt1], [CSt2]. The Schwartz kernel of A has the form

α(t − t′, x, v, x′, v′),

that is, formally ,

(Ag)(t, x, v) =

∫

R×Γ−

α(t − t′, x, v, x′, v′)g(t′, x′, v′) dξ(x′, v′)

with α = α0+α1+α2, where the αj(τ, x, v, x′, v′) (with (x, v) ∈ Γ+, (x′, v′) ∈ Γ−)

satisfy

α0 = |n(x′)·v′|−1e−
R τ−(x,v)

0 σa(x−sv,v) dsδ{x−τ−(x,v)v}(x
′)δ(v−v′)δ1(τ−τ−(x, v)),

α1 = |n(x′)·v′|−1

∫

e−
R

s

0
σa(x−pv,v) dpe−

R τ−(x−sv,v′)

0 σa(x−sv−pv′,v′) dp×
δ1(τ−s−τ−(x−sv, v′))k(x−sv, v′, v)δ{x−sv−τ−(x−sv,v′)v′}(x

′)θ(x−sv, x) ds,

α2 ∈ L∞
(

Γ−; L1
loc(Rτ ; L1(Γ+, dξ))

)

.

The proof of Theorem 2.3 now follows from the theorem above by analyzing the

singularities of α as above. In this case, we can also wite explicit formulae for σa

and k as certain limits of the distribution α acting on a sequence of test functions

concentrating near the singularities of α0 and α1, respectively; see [CSt2].

3. The Stationary Transport Equation

We turn our attention now to the boundary value problem (1–3), (1–4) for

the stationary transport equation

{ −v · ∇xf(x, v) − σa(x, v)f(x, v) +

∫

V

k(x, v′, v)f(x, v′) dv′ = 0 in X × V ,

f |Γ−
= f−. (3–1)

Here X does not need to be convex. We impose some conditions in order to

ensure the unique solvability of the direct problem (3–1). Recall the definition

(2–10) of τ±. Set τ = τ− + τ+. We will consider two cases. First we assume that

‖τσa‖L∞ < ∞, ‖τσp‖L∞ < 1. (3–2)

This condition in particular guarantees that the dynamics U(t) corresponding to

the time-dependent transport equation (∂t −T )u = 0 is subcritical [RS], that is,

the L1-norm of the solution is uniformly bounded for t > 0; compare with (2–3).
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Note that (3–2) holds if in particular
∥

∥|v|−1σa

∥

∥

L∞ < ∞, diamX
∥

∥|v|−1σp

∥

∥

L∞ <

1. The second situation we will consider is when [DL]

0 ≤ ν ≤ σa(x, v) − σp(x, v) for a.e. (x, v) ∈ X × V (3–3)

with some ν > 0. This condition means that the absorption rate is greater

than the production rate. This also implies that the corresponding dynamics is

subcritical.

The main result in this section is this:

Theorem 3.1 [CSt3], [CSt4]. Assume that (σa, k), (σ̂a, k̂) are two admissible

pairs with σa = σa(x, |v|), σ̂a = σ̂a(x, |v|) and assume that they satisfy either

(3–2) or (3–3). Assume that the corresponding albedo operators A and Â coin-

cide. Then

(a) if n ≥ 3, then σa = σ̂a, k = k̂;

(b) if n = 2, then σa = σ̂a.

In the stationary case we have less data than in the time dependent one studied

in Section 2 because the time variable is not present. The inverse boundary value

problem is overdetermined in dimension n ≥ 3 because the kernel of A depends

on 4n−2 variables while k is a function of 3n variables, σa(x, v/|v|) is a function

of 2n − 1 variables. In the 2D case however, the inverse problem for recovery of

k is formally determined (but still overdetermined for the recovery of σa) and

the theorem above does not provide uniqueness in this case. In Section 4 we

formulate a uniqueness result in the 2D case for small k.

To prove Theorem 3.1, we again study the Schwartz kernel of the albedo

operator A. Note that in the stationary case, A acts on functions on Γ− and

maps them to functions on Γ+ (see next subsection for details). It turns out that,

similarly to the time dependent case, the kernel of A has a singular decomposition

α = α0 + α1 + α2, where α0 and α1 are delta functions for n ≥ 3 supported on

varieties of different dimensions with densities that identify respectively σa and

k. The third term α2 is a locally L1 function and can be distinguished form α0

and α1. If n = 2, α0 is still a delta function, but α1 is a locally L1 function and

cannot be distinguished from α2 and this explains why this method does not

work then. The 2D case is considered separately in next section.

3.1. Some estimates in the stationary case Similarly to the measure

defined in Section 2.1, we define a measure on Γ± by:

dξ̃ = min{τ(x, v), λ}
∣

∣n(x) · v
∣

∣ dµ(x) dv,

where λ > 0 is an arbitrary constant. Using the trace Theorem 3.2 below, we can

show that A : L1(Γ−, dξ) → L1(Γ+, dξ) is a bounded operator if (3–2) holds and

A : L1(Γ−, dξ̃) → L1(Γ+, dξ̃) is bounded if (3–3) holds; see also [DL]. Note that

if a neighborhood of the origin is not included in V or in particular, if V = Sn−1,

then we can choose dξ̃ = τdξ.
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Theorem 3.2 (Trace theorem). (a) [CSt3]
∥

∥f |Γ±

∥

∥

L1(Γ±,dξ)
≤ ‖T0f‖ + ‖τ−1f‖.

(b) [Ce1], [Ce2]
∥

∥f |Γ±

∥

∥

L1(Γ±,dξ̃)
≤ λ‖T0f‖ + ‖f‖.

Note that (b) follows from (a) by setting f = min{λ, τ}g.

We introduce the spaces W, W̃ via the norms

‖f‖W = ‖T0f‖ + ‖τ−1f‖, ‖f‖W̃ = ‖T0f‖ + ‖f‖.

Then Theorem 3.2 says that taking the trace f 7→ f |Γ±
is a continuous operator

from W into L1(Γ±, dξ) and similarly from W̃ into L1(Γ±, dξ̃).

Given f− ∈ L1(Γ−, dξ), define Jf− as the following prolongation of f− inside

X × V :

Jf− = e−
R τ−(x,v)

0 σa(x−sv,v) dsf−(x − τ−(x, v)v, v), (x, v) ∈ X × V .

Jf− is defined so that T1Jf− = 0, Jf−|Γ−
= f−, therefore J is the solution

operator of the problem T1f = 0, f |Γ−
= f−.

Proposition 3.1. (a) Assume that ‖τσa‖L∞ < ∞. Then

‖Jf−‖W ≤ C‖f−‖L1(Γ−,dξ),

with C = 1 + ‖τσa‖L∞ . If σa = 0, then we have equality above (and C = 1).

(b) Assume (3–3). For any f− ∈ L1(Γ−, dξ̃) we have

‖Jf−‖W̃ ≤ C‖f−‖L1(Γ−,dξ̃),

where C = (1 + ‖σa‖L∞)max{1, (νλ)−1}.

We reduce the boundary value problem (3–1) to an integral equation using stan-

dard arguments to get

(I + K)f = Jf−, (3–4)

where I stands for the identity and K is the integral operator

Kf = −
∫ τ−(x,v)

0

e−
R

t

0
σa(x−sv,v) ds(A2f)(x − tv, v) dt. (3–5)

Formally, K = T−1
1 A2, and for T−1

1 we have

T−1
1 f = −

∫ τ−(x,v)

0

e−
R

t

0
σa(x−sv,v) dsf(x − tv, v) dt.

Proposition 3.2. Assume (3–2). Then:

(a) τ−1T−1
1 , τ−1T−1 and A2τ are bounded operators in L1(X × V ) and therefore

K = T−1
1 A2 is a bounded operator in L1(X × V ; τ−1 dx dv). Moreover , the

operator norm of K is not greater than ‖τσp‖L∞ < 1 and therefore (I +K)−1

exists in this space.
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(b) The integral equation (3–4) and therefore the boundary value problem (3–1)

are uniquely solvable for any f− ∈ L1(Γ−, dξ) and then f ∈ W.

(c) The albedo operator A is a bounded map A : L1(Γ−, dξ) → L1(Γ+, dξ).

Proposition 3.3. Assume (3–3). Then:

(a) K, T−1
1 and T−1 are bounded operators in L1(X × V ) and K = T−1

1 A2.

Further , I + K is invertible and (I + K)−1 = I − T−1A2.

(b) The integral equation (3–4) and therefore the boundary value problem (3–1)

are uniquely solvable for any f− ∈ L1(Γ−, dξ̃) and then f ∈ W̃.

(c) A is a bounded map A : L1(Γ−, dξ̃) → L1(Γ+, dξ̃).

3.2. The fundamental solution of the stationary transport equation.

We solve (3–1) with f− = φ−, where

φ− =
1

|n(x′) · v′|δ{x′}(x)δ(v − v′),

where (x′, v′) ∈ Γ− are regarded as parameters, n(x′) is the outer normal, and

δ{x′} is a distribution on ∂X defined by (δ{x′}, ϕ) =
∫

δ{x′}(x)ϕ(x)dµ(x) = ϕ(x′).

On the other hand, we will denote by δ the ordinary Dirac delta function in R
n.

The integral above is to be considered in distribution sense. Let us denote by

φ(x, v, x′, v′) the solution (in distribution sense) of
{

Tφ = 0 in X × V ,

φ|Γ−
= φ−.

(3–6)

To solve (3–6), we write

ϕ = Jϕ− − KJϕ− + (I + K)−1K2Jϕ−

and analyze each term. To treat the third term, we observe that

(I + K)−1K2Jϕ− = T−1A2KJϕ−.

We are led to:

Theorem 3.3. Assume that (σa, k) is admissible and either (3–2) or (3–3) holds.

Then the solution φ(x, v, x′, v′) of (3–6) can be written as φ = φ0+φ1+φ2, where

φ0 =

∫ τ+(x′,v′)

0

e−
R τ−(x,v)

0 σa(x−pv,v) dpδ(x − x′ − tv)δ(v − v′) dt,

φ1 =

∫ τ−(x,v)

0

∫ τ+(x′,v′)

0

e−
R

s

0
σa(x−pv,v) dpe−

R τ−(x−sv,v′)

0 σa(x−sv−pv′,v′) dp

× k(x − sv, v′, v)δ(x − x′ − sv − tv′) dt ds,

and
φ2 ∈ L∞(Γ−; W) if (3–2) holds,

min{τ, λ}−1φ2 ∈ L∞(Γ−; W̃) if (3–3) holds.
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The so constructed solution φ(x, v, x′, v′) is the distribution kernel of the solution

operator f− 7→ f of (3–1). In order to find the distribution kernel α(x, v, x′, v′)

((x, v) ∈ Γ+, (x′, v′) ∈ Γ−) of the albedo operator A, it is enough to set

α(x, v, x′, v′) := φ(x, v, x′, v′)|(x,v)∈Γ+
, (x′, v′) ∈ Γ−.

Then, in the sense of distributions,

(Af−)(x, v) =

∫

Γ−

α(x, θ, x′, θ′)f−(x′, θ′) dξ(x′, θ′) for all f− ∈ C∞
0 (Γ+).

Theorem 3.3 yields the following.

Theorem 3.4. Assume that (σa, k) is an admissible pair and that either (3–2)

or (3–3) holds. Then the distribution kernel α(x, v, x′, v′) of A satisfies α =

α0 + α1 + α2 with

α0 =
1

n(x) · v e−
R τ−(x,v)

0 σa(x−pv,v) dpδ{x′+τ+(x′,v′)v′}(x)δ(v − v′),

α1 =
1

n(x) · v

∫ τ+(x′,v′)

0

e−
R τ+(x′+tv′,v)

0 σa(x−pv,v) dpe−
R

t

0
σa(x+pv′,v′) dp

× k(x + tv′, v′, v)δ{x′+tv′+τ+(x′+tv′,v)}(x) dt,

and

α2 ∈ L∞(Γ−; L1(Γ+, dξ)) if (3–2) holds,

min{τ(x′, v′), λ}−1α2 ∈ L∞(Γ−; L1(Γ+, dξ̃)) if (3–3) holds.

Theorem 3.4 implies the following way for proving Theorem 3.1. Assume that we

are given the albedo operator A, corresponding to some admissible pair (σa, k),

satisfying either (3–2) or (3–3). Then we also know the distribution α(x, v, x′, v′).

By Theorem 3.4, α = α0+α1+α2. Here α0 is a delta-type distribution supported

on a (2n − 1)–dimensional variety in Γ+ × Γ−. Next, α1 is also a delta-type

distribution (provided that n ≥ 3) supported on a 3n-dimensional variety in

Γ+×Γ−, while α2 is a (locally L1) function on the (4n−2)-dimensional Γ+×Γ−.

Notice that if n = 2, then α1 is a function as well. Therefore, if n ≥ 3, one can

distinguish between α0 + α1 and α2. Moreover, since α0 and α1 have different

degrees of singularities, one can recover α0 and α1. Now, if σa = σa(x, |v|), then

α0 determines the X-ray transform
∫

σa(x + sω, |v|) ds of σa for all x, |v| and

ω in an open subset of Sn−1 (for all ω ∈ Sn−1 if V is spherically symmetric).

This determines uniquely σa (see e.g. [H]). Next, once we know σa, from α1

we can recover k. If n = 2, then we can recover α0 and therefore σa, but we

cannot (at least using those arguments) distinguish between α1 and α2 which

are both functions and therefore this approach does not work for reconstructing

k in two dimensions. Based on those arguments, we can write explicit formulas

for recovering the X-ray transform of σa and for recovering k as limits of the

action of α on certain sequences of test functions with supports shrinking to the

singularities of α0 and α1, respectively; see [CSt4].
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4. The Two-Dimensional Stationary Transport Equation

In this section we study the inverse problem for the stationary transport

equation (1–3) in the 2D case. As explained in Section 2, the inverse problem of

recovering k from the albedo operator A is formally determined in this case. We

prove below that there exists unique solution provided that k is small enough in

the L∞ norm and we also derive a stability estimate. The results of this section

are based on joint work by the author and G. Uhlmann [StU].

Let X ⊂ R
2 be an open convex set with smooth boundary and let us write

the 2D stationary transport equation (1–3) in the form

− v(θ) · ∇xf − σa(x, θ)f +

∫

S1

k(x, θ′, θ)f(x, θ′) dθ′ = 0, (4–1)

where x ∈ X, θ, θ′ ∈ S1 and

v(θ) = (cos θ, sin θ).

We assume that σa and k are in L∞. For simplicity, we consider the case V = S1

here.

In this paper we work with k sufficiently small and under this assumption the

direct problem (3–1) is always uniquely solvable with f− ∈ L∞(X × S1) and

Af− ∈ L∞(Γ+). For the purpose of the inverse problem however, it is enough

to think of A as an operator mapping C∞
0 (Γ−) to L∞(Γ+).

Uniqueness and stability in the 2D case are proved for small k in the case when

k = k(x, cos(θ − θ′)) in [R1], and in the case k = k(θ, θ′) uniqueness for small

k is proved in [T]. Note that in those cases the inverse problem is still formally

overdetermined. In this section we prove a uniqueness results for general (but

still small) k(x, θ′, θ). Our first result addresses the uniqueness of this inverse

problem.

Theorem 4.1 [StU]. Define the class

UΣ,ε = {(σa(x), k(x, θ′, θ)) : ‖σa‖L∞ ≤ Σ, ‖k‖L∞ ≤ ε} . (4–2)

For any Σ > 0 there exists ε > 0 such that a pair (σa, k) ∈ UΣ,ε is uniquely

determined by its albedo operator A in the class UΣ,ε.

To prove Theorem 4.1, we study again singularities of the distribution kernel

α(x, θ, x′, θ′) of A as in Section 3. In the two dimensional case however α =

α0 + α1 + α2 with α0, α1, α2 as in Theorem 3.4, but α1 is not a delta type

distribution anymore, instead it is an L1 function and cannot be distinguished

from α2 as in Section 3. We denote b = α1 + α2. The term α1 does have a

singularity (integrable) at θ = ±θ′ and it is L∞
loc outside this set. Similarly, α2

has a weaker, logarithmic singularity, as shown below. We will prove below that

sin(θ − θ′)b ∈ L∞. We can therefore write

α =
δ(θ − θ′)δ{x′+τ+(x′,θ′)v(θ′)}(x)

n(x) · v(θ)
e−a(x′,θ′) + b(x, θ, x′, θ′), (4–3)
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where

a(x′, θ′) =

∫ τ+(x′,θ′)

0

σa(x′ + tv(θ′), θ′) dt, sin(θ − θ′)b ∈ L∞. (4–4)

In particular, knowing A, we can uniquely determine a and b. Let we have two

pairs (σa, k) and (σ̃a, k̃) with albedo operators A and Ã, respectively. Set

δ1 = ‖a − ã‖H1(Γ−), δ2 = ‖(b − b̃) sin(θ − θ′)‖L∞(Γ−×Γ+). (4–5)

Our second result is the following stability estimate.

Theorem 4.2 [StU]. Let

Vs
Σ,ε =

{

(σa(x), k(x, θ′, θ)) ∈ Hs(X) × C(X × S1 × S1) :

‖σa‖Hs ≤ Σ, ‖k‖L∞ ≤ ε
}

. (4–6)

Then, for any s > 1, Σ > 0, there exists ε > 0 such that for any (σa, k) ∈ Vs
Σ,ε

and (σ̃a, k̃) ∈ Vs
Σ,ε and 0 < µ < 1 − 1/s, there exists C > 0 such that

‖σa − σ̃a‖L∞ ≤ Cδ
1−1/s−µ
1 ,

‖k − k̃‖L∞ ≤ C(δ
1−1/s−µ
1 + δ2).

Remark. It follows from (4–15) and (4–16) below that we can choose ε =

C(d)e−2dΣ, where d = diamD.

Idea of the proof of Theorem 4.1. Recall that σa and k are L∞ in all

variables. It is convenient to think later that σa and k are extended as 0 for

x 6∈ X.

First we reduce the boundary value problem
{

Tf = 0 in X × S1,

f |Γ−
= f− ∈ C∞

0 (Γ+)
(4–7)

to the integral equation (3–4). Then f is given by

f = (I + K)−1Jf−, (4–8)

provided that I + K is invertible in a suitable space. The definition (3–5) of K

implies immediately that

‖Kf‖L∞(X×S1) ≤ C‖f‖L∞(X×S1),

where C = diamX‖k‖L∞ . Therefore, if (σa, k) ∈ UΣ,ε and ε < 1/diamX, then

I + K is invertible in L∞(X × S1), and then the solution f to (4–7) is given by

(4–8). By using Neumann series, it is not hard to see that the trace (I+K)−1f |Γ+

is well defined in L∞(Γ+) for any f ∈ L∞(X × S1). This proves in particular

that A maps C∞
0 (Γ−) into L∞(Γ+) under the smallness assumption on k above.

The same arguments also show that Af− can be defined for any f− ∈ L∞(Γ−)

as well but we will not need this since we work with the distribution kernel of A.



INVERSE PROBLEMS IN TRANSPORT THEORY 125

Define the fundamental solution φ(x, θ, x′, θ′) of the boundary value problem

(4–7) as in Section 3. For (x′, v′) ∈ Γ−, let φ(x, v, x′, v′) solve
{

Tφ = 0 in X × S1,

φ|Γ−
= |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′).

(4–9)

As before, the albedo operator A has distribution kernel

α(x, θ, x′, θ′) = φ(x, θ, x′, θ′)|(x,θ)∈Γ+
,

with (x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+.

As in Section 3, we construct a singular expansion φ = φ0 +φ1 +φ2 as follows.

Let

E(x, θ, t) = e∓
R

t

0
σa(x+sv(θ),θ) ds, ±t ≥ 0

be the total absorption along the path [x, x+tv(θ)]. Then

φ0 = Jφ−, φ1 = KJφ−, φ2 = (I + K)−1K2Jφ−, (4–10)

and φ− = |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′) as in (4–9). Next,

φ0 = E(x, θ,−∞)δ(θ − θ′)

∫ τ+(x′,v(θ′))

0

δ(x − x′ − tv(θ′)) dt

and

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

∣

∣sin(θ − θ′)
∣

∣

E(y, θ,∞), (4–11)

where y = y(x′, θ′, x, v) is the point of intersection of the rays (0,∞) 3 s 7→
x′ + sv(θ′) and (−∞, 0) 3 t 7→ x + tv(θ) and χ = χ(x, θ, x′, θ′) equals 1, if those

two rays intersect in X̄, otherwise χ = 0. Recall that X is convex.

To estimate φ2, we need a lemma.

Lemma 4.1. Let (σa, k) and (σa, k̃) be in L∞. Let A2, K and Ã2, K̃ be related

to k and k̃ (not necessarily nonnegative), respectively . Then there exists C > 0

depending on diamX only such that

|(K̃Kφ0)(x, θ, x′, θ′)| ≤ C‖k̃‖L∞‖k‖L∞

(

1 + log
1

sin |θ − θ′|

)

almost everywhere on X × S1 × Γ−, and also almost everywhere on Γ+ × Γ−.

The proof of this lemma is based on the estimate

∣

∣(Ã2Kφ0)(x, θ, x′, θ′)
∣

∣ ≤
∫

y∈l(x′,θ′)

∣

∣k̃(x, arg(x−y), θ)k(y, θ′, arg(x−y))
∣

∣

|x − y| dl(y),

where l(x′, θ′) is the line through x′ parallel to θ′ and dl is the Euclidean measure

on it. Using the following elementary estimate
∫ A

−A

ds√
ν2 + s2

≤ 2
(

1 + log
A

ν

)

, 0 < ν ≤ A,
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we easily complete the proof of the lemma.

For φ2 we therefore have φ2 = (I + K)−1φ#
2 with φ#

2 = K2φ0 and by

Lemma 4.1,

0 ≤ φ#
2 (x′, θ′, x, θ) ≤ C‖k‖2

L∞

(

1 + log
1

∣

∣sin(θ − θ′)
∣

∣

)

. (4–12)

This implies a similar estimate for φ2, because φ2 = φ#
2 + (I − K)−1Kφ#

2 . We

summarize those estimates:

Proposition 4.1. For ε > 0 small enough, the fundamental solution φ of (4–7)

defined by (4–9) admits the representation φ = φ0 + φ1 + φ2 with

φ0 = E(x, θ,−∞)δ(θ − θ′)

∫ τ+(x′,v(θ′))

0

δ(x − x′ − tv(θ′)) dt,

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

| sin(θ − θ′)|E(y, θ,∞),

0 ≤ φ2 ≤ C‖k‖2
L∞

(

1 + log
1

∣

∣sin(θ − θ′)
∣

∣

)

,

where y, χ are as in (4–11) and C = C(diamX).

Note that φ1 is not a delta function but it is still singular with singularity at

v(θ) = v(θ′) (forward scattering) and v(θ) = −v(θ′) (back-scattering). This

singularity is integrable however, in fact it is easy to see that
∫

Γ+
φ1dξ ≤

∫

σp(x
′ + tv(θ′)) dt. The term φ2 is also singular at v(θ) = ±v(θ′) with a weaker,

logarithmic singularity. Therefore, we can still distinguish between the singular-

ities of the three terms as in the case n ≥ 3. This analysis however can give us

information about k only near forward and backward directions. It is interest-

ing to see whether by studying subsequent lower order terms we can recover all

derivatives of k(x, θ′, θ) at θ = θ′ and θ = θ′ + π. If so, this would allow us to

recover collision kernels analytic in θ, θ′ (actually, analytic in θ − θ′ would be

enough) and to approximate k near θ = θ′ and θ = θ′ + π for smooth k. This

would not require smallness assumptions on k but we still have to be sure that

the direct problem is solvable.

We are ready now to sketch the proof of Theorem 4.1. Fix Σ > 0 and assume

that we have two pairs (σa, k), (σ̃a, k̃) in UΣ,ε with the same albedo operator and

σa, σ̃a depending on x only. Denote by φj and φ̃j , j = 0, 1, 2, the corresponding

components of the fundamental solutions φ and φ̃ as in Proposition 4.1. Then

φ0 + φ1 + φ2 = φ̃0 + φ̃1 + φ̃2 for (x, θ) ∈ Γ+. (4–13)

As in Section 3, the most singular terms must agree; therefore,

φ0(x
′, θ′, x, θ) = φ̃0(x

′, θ′, x, θ) for (x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+. (4–14)
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Thus the X-ray transform of σa(x) and σ̃a(x) coincide. Therefore σa(x) = σ̃a(x).

Next,

χE(y, θ′,−∞)
k(y, θ′, θ) − k̃(y, θ′, θ)

| sin(θ − θ′)| E(y, θ,∞) = φ̃2 − φ2 on Γ− × Γ+,

where y, χ are as in (4–11). This, together with (4–13) and (4–14), leads to the

inequality

χ|k(y, θ′, θ) − k̃(y, θ′, θ)| ≤ C
∣

∣sin(θ − θ′)
∣

∣|φ̃1 − φ1|
= C

∣

∣sin(θ − θ′)
∣

∣|φ̃2 − φ2| on Γ− × Γ+, (4–15)

where C = e2dΣ, d = diamD. The rest of the proof is based on the estimate

ess sup
Γ−×Γ+

∣

∣sin(θ − θ′)
∣

∣|φ̃2 − φ2| ≤ Cε‖k − k̃‖L∞(X×S1×S1) (4–16)

with C > 0 depending on diamD only. An essential role in its proof is played by

Lemma 4.1. Observe that in particular, the factor sin(θ− θ′) cancels the weaker

logarithmic singularity of φ2 and φ̃2. Then by (4–15), (4–16),

‖k − k̃‖L∞(X×S1×S1) ≤ Cε‖k − k̃‖L∞(X×S1×S1),

and for ε > 0 small enough this implies k = k̃. ˜

Sketch of the proof of Theorem 4.2. According to Proposition 4.1, for the

distribution kernel α(x, θ, x′, θ′) of A we have the representation (4–3), where

a is as in (4–4), while b = (φ1 + φ2)|(x,θ)∈Γ+
. Then b is a function and an

elementary calculation show that b ∈ L∞(Γ+, L1(Γ−)). Proposition 4.1 shows

that b sin(θ − θ′) ∈ L∞. Assume that we have two pairs of continuous functions

(σa, k) and (σ̃a, k̃) in Vs
Σ,ε with albedo operators A and Ã, respectively. In what

follows we will denote the quantities a, b, α, etc., related to the second pair by

putting a tilde sign over it. Also, we will use the notation ∆A to denote the

difference ∆A = A − Ã, and similarly ∆a = a − ã, etc. In this paper, ∆ never

stands for the Laplacian.

Let δ1 and δ2 be as in (4–5). According to Proposition 4.1, δ2 < ∞. Our goal is

to estimate ∆σa and ∆k in terms of δ1 and δ2. Observe that, as in the uniqueness

proof, ∆e−a and ∆(α1 + α2) can be recovered from ∆α by separating the most

singular part of ∆α from the rest. Therefore, δ1 measures the magnitude of the

singular part of ∆α, while δ2 measures the magnitude of the regular part.

We start by estimating ∆σa. By a result of Mukhometov [Mu],

‖∆σa‖L2 ≤ Cδ1. (4–17)

Next we estimate ∆k in terms of δ1 and δ2. Set

E1(y, θ, θ′) = E(y, θ′,−∞)E(y, θ,∞).

By (4–11), sin |θ − θ′|α1(x, θ, x′, θ′) = χ(E1k)(y, θ′, θ) with y, χ as in (4–11).
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Our starting point is the relation ∆(E1k) = k∆E1 + Ẽ1∆k. Note first that

|∆E1| ≤ 2d|∆σa| ≤ 2dδ′1, where δ′1 = ‖∆σa‖L∞ . Hence, on supp χ,

Ẽ1|∆k|(y, θ, θ′) ≤ |∆(E1k)| + k|∆E1|
≤ |∆(α1 + α2) sin |θ − θ′| − ∆α2 sin |θ − θ′|| + Cδ′1

≤ δ2 + |∆α2| sin |θ − θ′| + Cδ′1. (4–18)

Therefore,

‖∆k‖L∞ ≤ C
(

δ′1 + δ2 + ‖∆α2 sin |θ − θ′|‖L∞

)

(4–19)

The next step is to prove an estimate similar to (4–16) for the last term in the

right-hand side above. Recall that in (4–16), we have σa = σ̃a, while here we

only know how to estimate the difference ∆σa = σa − σ̃a. Nevertheless, we can

proceed along similar lines in order to get

|∆α2 sin |θ − θ′|‖L∞ ≤ Cε
(

‖∆k‖L∞ + δ′1
)

. (4–20)

Therefore, for ε > 0 small enough, (4–19) implies the stability estimate

‖∆k‖L∞ ≤ C (δ′1 + δ2) . (4–21)

Estimate (4–21) is the base of our stability estimate. Using an interpolation

inequality, we conclude that, for any fixed 0 ≤ µ ≤ 1 − 1/s,

‖∆σa‖1+sµ ≤ C(Σ)‖∆σa‖1−1/s−µ
L2 for σa, σ̃a ∈ Vs

Σ,ε.

By a standard Sobolev embedding theorem and (4–17),

δ′1 = ‖∆σa‖L∞ ≤ C(Σ)‖∆σa‖1−1/s−µ
L2 ≤ C ′(Σ)δ

1−1/s−µ
1 . (4–22)

Therefore, (4–21) yields

‖∆k‖L∞ ≤ C
(

δ
1−1/s−µ
1 + δ2

)

. (4–23)

Estimates (4–22) and (4–23) complete the proof of Theorem 4.2. ˜

5. Open Problems

Our choice of open problems is subjective and mainly reflects personal taste.

Uniqueness for σa depending on both x and v. As we have demonstrated

in the previous sections, if k = 0, then σa(x, v) cannot be recovered from A
(or from the scattering operator) because the line integrals

∫

σa(x + tv, v) dt

do not recover σa. Suppose however that σp = σa. Then the absorption is

due only to the fact that particles may change velocity and each such event is

interpreted as a particle instantly moving from the point (x, v ′) of the phase

space (therefore absorption at (x, v′)) to the point (x, v). Then the counter

example above does not work. Can we recover σa(x, v) in this case? If yes, then

recovery of k goes along the same lines as above. More generally, one can assume
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that σa(x, v) = σp(x, v)+a(x). Even more generally, the counter example above

cannot be generalized in an obvious way if k > 0 in X. Is this condition alone

enough for uniqueness?

Relaxing the smallness condition in the two-dimensional case. It would

be interesting to prove uniqueness in the 2D case without smallness assumption

on k. Some conditions on σa and k are needed even for the direct problem; see,

for example, (3–1) and (3–3) — the first one does require k to be small (but with

an explicit bound in general much larger than the one needed for the inverse

problem) while the second one does not. As mentioned in Section 4, one can try

to recover k(x, v′, v) near v = ±v′ at infinite order by studying the singularities

of the kernel of A which solves the problem for k analytic in v and v ′. It would

also be interesting to see whether one could recover the singularities of k from

boundary measurements, at least if we assume that they are of jump type across

some curve.

Stability for n ≥ 3. Stability estimates in dimensions n ≥ 3 have been proven

by Romanov (see [R1], [R2], [R3], for example) and by Wang [W], under addi-

tional assumptions that k depend on fewer variables. In the general situation

studied in Section 3, we know of no stability estimates, even for small k as in

Theorem 4.2 (where n = 2). We believe that such an estimate should be possi-

ble to derive following the proof of Theorem 3.1. This is done in [W] under the

additional assumption that k = k(v′, v).

Alternative recovery method for large σa and k. We do not impose small-

ness assumptions on the coefficients in dimensions n ≥ 3, and our method gives

in fact an explicit solution of the inverse problem which in particular implies a

reconstruction method based on taking certain limits near the singularity of α.

However, for large σa, the amplitude of the most singular part α0 is exponentially

small for large σa. For all practical purposes, measuring the leading singularity

is hard or impossible in this case. Therefore, it would be important to develop

a method for relatively large σa and k that does not rely on measuring the

singularities of α. One possible way is to study the diffusion limit (replacing σa

and k by λσa and λk and taking λ → ∞) and an associated inverse problem.
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