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1. Introduction

Let F denote a totally real number field, and let K/F denote a totally imag-
inary quadratic extension. We fix an automorphic cuspidal representation π of
GL2(F ), and a finite order Hecke character χ of K. Thus χ is a representation
of GL1(K).

Under certain hypotheses, it is known that the central critical value L(π⊗χ, 1
2 )

is algebraic up to a known transcendental factor. Explicit formulae for this
value have been given by a number of authors, notably Gross, Waldspurger, and
Zhang. Essentially, the work of Gross and Zhang shows that this value is given
by the height of a certain CM divisor on a suitable space, while the work of
Waldspurger gives a criterion for nonvanishing of this value in terms of a certain
linear functional arising from representation theory, and a formula in terms of
torus integrals on a quaternion algebra. Our goal in this article is to explain the
connections between these works, and to provide a bridge between the general
representation-theoretic framework described by Gross (see his article [Gro] in
this volume) and the theorems of Zhang [Zha01a] and Waldspurger [Wal85].

We want to point out that the formula we will discuss has numerous appli-
cations to arithmetic and Iwasawa theory (see [BD96] and its various sequels).
We will therefore attempt to formulate the representation-theoretic results in
terms that are familiar to number theorists. We will not however discuss any
arithmetic applications directly —the reader will find some of these applications
elsewhere in this volume.

Needless to say, the present work is mostly expository. The ideas are largely
drawn from [Gro87], [Gro], [Wal85], [Zha01a]. However, the organization here
is perhaps novel. Our main contribution is given in Theorem 6.4. While the
ingredients in this theorem are all well-known, our formulation seems to be new,
and is well-suited for applications to number theory as in [BD96] and [Vat02].

I thank Benedict Gross, Shou-Wu Zhang, and Hui Xue for patiently answering
my numerous questions on this subject. The statements in this paper reflect my

165



166 VINAYAK VATSAL

very incomplete understanding of their work, and the reader interested in the
details should consult the original sources. Finally, I would also like to thank
Barry Mazur, Christophe Cornut, and the mathematics department at Harvard
University for their hospitality in April 2002, during which time most of this
article was written.

2. Notation and Hypotheses

We start by briefly recalling the basic notions about modular forms in the
adelic setting. For generalities on automorphic forms and representations, se
[Bum97, Chapter 3] or [BJ79]. A clear discussion may also be found at the end
of [Cas73].

Recall that an automorphic form is a function of moderate growth on

GL2(F )\GL2(A),

fixed under right translations by some open compact subgroup of GL2(Af ),
smooth at infinity, and contained in some finite dimensional space which is in-
variant under both a maximal compact subgroup and the center of the universal
enveloping algebra, of the real group GL2(FR). There is a map from classical
Hilbert modular forms to the space of automorphic forms, as in [BJ79, Section
4.3]. The group GL2(A) acts on the space of automorphic forms, with the con-
ventions of [Bum97], section 3.3. In particular, the action of GL2(Af ) is by right
translations. The structure at infinity is more complicated, since the space of
automorphic forms is not preserved by right translations by GL2(FR). For a
detailed discussion of the structure at infinity, see [Bum97].

Now let π denote a cuspidal automorphic representation of GL2(A). Then
π may be viewed in (at least) two different ways. On the one hand, π is by
definition an irreducible subquotient of A, where A is the space of automorphic
cuspforms on GL2(A). On the other hand, it is a theorem of Flath that any
such subquotient is abstractly isomorphic to a restricted tensor product π ∼=
⊗πv, where each πv is a representation of GL2(Fv), at least at the finite places.
The components πv at real places v are not quite representations of GL2(R);
rather, they are just the (g,K)-modules of [Bum97], Chapter 2. We will need
both descriptions of automorphic representations in the sequel. It is a fact that
any cuspidal automorphic representation π occurs with multiplicity one in the
space of automorphic forms. To each automorphic representation π is attached
a certain integral ideal N of F , called the conductor of π. Then N depends only
on the local components πv. We will give the exact definition of N in the next
section, following [Cas73].

Next we need to recall some simple facts about Whittaker coefficients of au-
tomorphic forms, which are the adelic analogue of Fourier coefficients in the
classical theory. We will also need to understand how Whittaker coefficients
transform with respect to the Hecke operators. Thus fix a nontrivial additive
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character η of F̂ /F . For any automorphic cuspform φ and an idele a of F , define
a function Wφ on GL2(F̂ ) by

Wφ(g) =
∫

F̂ /F

φ

((
1 x

0 1

)
g

)
η(−x) dx.

Then φ has a ‘Fourier expansion’

φ(g) =
∑

α∈F×
Wφ

((
α 0
0 1

)
g

)
.

For a proof of the above fact, we refer the reader to [Bum97], Theorem 3.5.5.
It follows from the Fourier expansion that φ is determined by the Whittaker
function Wφ. Furthermore, the strong approximation theorem implies that Wφ

is in turn determined by the numbers

Wφ

((
a 0
0 1

)
g∞

)
,

for a ∈ F̂×f and g∞ ∈ GL2(FR). We call these numbers the Whittaker coefficients
of φ.

The Whittaker coefficients satisfy a simple transformation rule under the ac-
tion of the Hecke operators Tv. To state this, let v denote any finite place of F ,
relatively prime to the level of φ. Then one can define a Hecke operator Tv acting
on φ. (For the precise definition, we refer to [Bum97], Chapter 4, or equation
(7–10) below.) Then Tvφ is also a cuspform, and we have

Wφ

((
a$v 0
0 1

)
g∞

)
= |$v|WTvφ

((
a 0
0 1

)
g∞

)
. (2–1)

Here $ denotes a local uniformizer at v. We will use this formula later.
Finally, we want to point out that the classical Petersson inner product on

Hilbert modular forms has an analog from the adelic point of view. Indeed,
it can be shown that if φ is any automorphic cuspform on GL2(A), such that
the center Z(A) acts on φ via a unitary character, then φ is square integrable
modulo Z(A)GL2(F ). For this we refer the reader to [BJ79], section 4.4. Thus
we may define an inner product pairing on the space of cuspforms by

(φ1, φ2) =
∫

Z(A) GL2(F )\GL2(A)

φ1(g)φ2(g) dg,

where dg denotes any Haar measure. In practice, one must normalize the measure
depending on the application in view. Typically, one requires that some fixed
open compact subgroup U gets measure 1. We will attempt to be careful about
this in the exact formulae later in this article.

Now we specialize everything to the representations π and χ of interest. Thus
recall that π is a representation of GL2(F ), and the finite order Hecke character
χ is a representation of GL1(K). We will impose the following basic assumptions
and notations which will be in force throughout this paper.
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1. If v is any infinite place of F , then the local component πv of π at v is a
weight two discrete series representation.

2. The central character of π is trivial. (This means that the center Z(A) acts
trivially.)

3. The conjugate of χ under the action of Gal(K/F ) is equal to χ−1. In partic-
ular, χ is trivial on GL1(F ).

4. If N denotes the conductor of π, and d denotes the relative discriminant of
K/F , then (N, d) = 1. Here N and d denote integral ideals of the ring of
integers OF of F .

5. If c denotes the conductor of χ, then (c,Nd) = 1. Note that it follows from
assumption 3 above that the conductor of χ is invariant under Gal(K/F ) and
so may be identified with an ideal of F .

More concretely, we assume that π corresponds to a holomorphic Hilbert modular
form of weight (2, . . . , 2), with trivial central character, and that the character χ

is anticyclotomic. Some of the hypotheses above may be weakened, but for the
sake of clarity, it is convenient to impose the extra conditions. We set D = dc2.

Now consider the representation π⊗ χ of GL2(F )⊗GL1(K). Let L(π⊗ χ, s)
denote the associated L-function. Then L(π ⊗ χ, s) has a functional equation of
the form L(π ⊗ χ, s) = ε(π ⊗ χ, s)L(π ⊗ χ, 1 − s). For a detailed discussion of
the representation π ⊗ χ, we refer to the article of Gross in this volume. The
L-function and its functional equation are discussed in Chapter 2 of [Zha01a].
Under the hypotheses on π and χ stated above, it can be shown that

ε(π ⊗ χ, 1
2 ) = (−1)#Σ (2–2)

where Σ denotes the set of infinite places of F , together with the set of finite
places v such that ωv(N) = −1. Here ω denotes the quadratic character of
the ideles F̂× of F , defined by the extension K/F , and ωv denotes the local
component. In other words, Σ consists of the infinite places together with finite
places v such that v is inert in K, and such that ordv(N) is odd. We shall say
that we are in the definite case if Σ is even, and in the indefinite case if Σ is odd.
Observe that, under the present hypotheses, the cardinality of Σ depends only
on π and K, and not on the character χ. A general formula for ε(π ⊗ χ, s) may
be found in Chapter 3 of [Zha01a], especially equation (3.1.2).

Evidently, we have L(π ⊗ χ, 1
2 ) = 0 if we are in the indefinite case. This is

the case originally treated by Gross and Zagier, and subsequently generalized
by Zhang [Zha01a], [Zha01b]. We shall not consider this case here. Rather, we
will concentrate on explaining the formulae for the value L(π ⊗ χ, 1

2 ) given in
the definite case by Waldspurger [Wal85], Gross [Gro87], and Zhang [Zha01a].
Thus, from now on, we assume that we are in the definite case, so that the set
Σ has even cardinality.
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3. Atkin–Lehner Theory on GL2

Now we want to discuss newforms in the adelic setting. First recall classical
Atkin–Lehner theory for modular forms on congruence subgroups of SL2(Z).
The basic result states that each cuspform g of level M which is an eigenform
for almost all the Hecke operators is given by g(z) =

∑
a cag0(az), where g0

is a unique form of some level N |M , which is an eigenform for all the Hecke
operators at level N , and a runs over divisors of M/N . The form g0 is called the
Atkin–Lehner newform; it depends only on the package of eigenvalues attached
to g.

We want an analog of this theorem in the adelic set-up. Casselman’s beautiful
idea is to construct a newform φv locally in each representation πv. Then the
global newform is just the tensor product ⊗φv, as v runs over all places. Note
however that this produces the newform as an abstract vector in the restricted
tensor product π = ⊗πv; to obtain a genuine automorphic form, one must embed
π in the space A of automorphic forms as above.

To describe Casselman’s construction, let v denote a finite place of F , and
let $ denote a local uniformizer at v. For a non-negative integer c, we define a
group U0($c) by putting

U0($c) =
{

γ ∈ GL2(OF,v) : γ ≡
( ∗ ∗

0 ∗
)

(mod $c).
}

Let πv denote the local component of π at v. Then Casselman proves the
following theorem.

Theorem 3.1. Let c = cv denote the smallest non-negative integer such that
U0($c) has a nonzero fixed vector in πv. Then the fixed space of U0($c) in πv

has dimension 1.

Definition 3.2. The ideal Nv ⊂ OF,v generated by $cv
v is called the conductor

of πv. The conductor of π is the ideal N =
∏

v Nv.

It can be shown that cv = 0 for almost every v. A nonzero vector φv fixed by
U0($cv ) is called a local newform at v. Note that φv is fixed by GL2(OF,v) for
almost all v. In this case, we say that π is unramified at v.

There is a corresponding statement at the archimedean places of F . However,
matters are somewhat more complicated, since, as we have already remarked,
the local factor at infinity is not a local representation. We will not enter into
a discussion of this point here. Suffice it to say simply that the nature of the
infinite component is given by the weight, which in our case is (2, . . . , 2). Again,
there exists a local newform φv for each v|∞.

Definition 3.3. The Atkin–Lehner newspace is the line in π = ⊗πv spanned
by ⊗φv, where, for each v, φv is a local newform at v.
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Thus an Atkin–Lehner newform for π is a nonzero vector in the newspace. It is
fixed by the group

U0(N) =
{

γ ∈ GL2(ÔF ) : γ ≡
( ∗ ∗

0 ∗
)

(mod N)
}

.

As such, it is defined only up to scalars.
To state the main result of Atkin–Lehner theory, we first need to introduce

notation. Let π be given, and fix a newform φ for π. Let a denote any ideal of
F which is relatively prime to the conductor. We may identify a with an idele
of F in the usual way. We let

ga =
(

a−1 0
0 1

)
∈ GL2(Af ),

and define the function φa by φa(x) = φ(xga). This is well-defined independent of
the idele representing the ideal a, since (a,N) = 1, and φv is fixed by GL2(OF,v).

Now let D denote any ideal prime to N , and write V (π, ND) for the finite
dimensional space of vectors in π fixed by the group U0(ND). We call V (π,ND)
the space of vectors of level ND.

Theorem 3.4 [Cas73]. The space V (π,ND) has a basis consisting of the vectors
φa, as a runs over divisors of D.

Finally, we need to say a word about normalization of the Atkin–Lehner new-
form, since it is only defined up to scalars. In the classical theory, it is customary
to normalize a newform in terms of the Fourier expansion, by requiring that a
normalized newform have first coefficient equal to 1. In the adelic situation,
we normalize via Whittaker functions, as in [Bum97], or [Zha01a], section 2.5.
The details are somewhat technical and we will not reproduce them here. Es-
sentially, one starts by realizing the newform as function on the adeles. Then
the corresponding Whittaker function Wφ breaks up as a tensor product of local
Whittaker functions Wφ,v, and we normalize each Wφ,v so that it takes the value
1 at the identity element, at least at good primes, and if the conductor of the
additive character is 1. In general, one can describe the normalization by re-
quiring that the Mellin transform of the local Whittaker function Wφ,v be equal
to the local L-function L(s, πv). For discussion of the normalization we refer to
Zhang’s paper [Zha01a].

4. Quaternion Algebras and the Jacquet–Langlands
Correspondence

We want to transfer the representation π of GL2 to a representation π′ of a
suitable quaternion algebra B. Indeed, we may take for B the unique quaternion
algebra ramified precisely at the set of primes in Σ, which has even cardinality.
Furthermore, since Σ contains all the infinite places, we see that the algebra B is
totally definite. Since each v ∈ Σ is such that πv is special or supercuspidal if v is
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finite, and in the discrete series if v is infinite, we see that πv is square-integrable
for every v ∈ Σ. Thus the Jacquet–Langlands correspondence implies that a lift
π′ of π to B exists. Furthermore, there exists an embedding K → B (since every
prime v ∈ Σ is by definition inert in K). We fix such an embedding once and for
all. We remark here that a very readable summary of the Jacquet–Langlands
correspondence may be found in the book [Lub94]

Now let R =
∏

Rv denote an order of B̂ = B(F̂ ) defined by requiring that
Rv ⊂ Bv be an order of reduced discriminant Nv which optimally contains OK,v.
For a proof that such orders exist, we refer to [Gro88], Proposition 3.6. Here N

is the level of π as before, and Nv denotes the local component at v.
We put Uv = R×v , so that U =

∏
Uv is an open compact subgroup of B̂×.

Then it follows from work of Gross and Prasad [GP91], Propositions 2.3 and 2.6,
that the subgroup Uv fixes a unique line Lv in the representation space πv for each
v. We fix a nonzero vector ψv ∈ Lv for each v, and write ψ = ⊗ψv ∈ π, where
we have decomposed π as a restricted tensor product relative to the subgroups
Uv. This makes sense because Uv = R×v is a maximal compact subgroup of Bv

for almost every v. We may regard ψ as the analog of an Atkin–Lehner newform
for the representation π′.

It is known that there is a realization of π′ in the space S of cuspforms on
B(F )×\B̂×, where the action of B̂× is by right translations. Indeed, π′ occurs
with multiplicity one in S. We fix an embedding π′ → S. Note that such
an embedding is defined only up to scaling. From this viewpoint, ψ may be
considered as a locally constant function on B̂×, left invariant under B(F )×,
and right invariant under F̂× · U , where the invariance under F̂× comes from
our assumption that π and π′ have trivial central character. Note also here that
since π has weight (2, . . . , 2) and B is totally definite at infinity, the Jacquet–
Langlands correspondence implies that the infinite component of π′ is just the
trivial representation of the compact group B(FR)×/F×R .

5. The Work of Waldspurger

Now we fix an anticyclotomic character χ of GL1(K) of conductor c. We
retain the hypotheses on N and D made in the previous sections. We identify
the quadratic extension K/F with a maximal torus T of B×, and consider a
realization of π′ in the space of functions on B̂×. The character χ of GL1(K̂) is
a homomorphism K̂×/K× → C×, and we write C(χ) to denote the associated
representation of GL1(K̂). If v is any place of F , we will use a subscript v to
denote the corresponding local object.

With these notations, the fundamental local result is the following proposition
of Waldspurger [Wal85] and Tunnell [Tun83].

Proposition 5.1. Let v denote any place of F . Put

V (πv, Tv, χv) = HomTv (π′v,C(χv)).
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Then dimC(V (πv, Tv, χv)) = 1.

For a discussion of this result, and connection with local root numbers of π, π′,
and χ′, we refer the reader to Gross’ article in this volume.

It follows from the local result above that V (π,T,χ) = HomT (π′,C(χ)) has
dimension 1. Furthermore, it is easy to exhibit a candidate for an element of
this one-dimensional space. Indeed, it is clear that the functional defined by

e 7→ `(e) =
∫

T (F )×F̂×\T̂×
e(t)χ−1(t) dt, (5–1)

is an element (possibly zero) of HomT (π′,C(χ)). Here we may take dt to denote
any Haar measure on T̂ , since any two such differ only by a constant multi-
ple. Note also that the integral converges because the domain of integration is
compact.

With this notation, Waldspurger proved the following global result [Wal85,
Théorème 2, page 221].

Theorem 5.2. The functional ` is nonzero on π′ if and only if L(π⊗χ, 1
2 ) 6= 0.

The above theorem may be viewed as giving a criterion for the nonvanishing of
L(π⊗χ, 1

2 ). Namely, to show that L(π⊗χ, 1
2 ) is nonzero, it suffices to exhibit an

element e ∈ π′ such that `(e) is nonzero. Note, however, that the linear form `

and the ‘test’ vector e are defined only up to scalar, and that there is no obvious
way (yet) to recover the actual value L(π⊗χ, 1

2 ). We will return to this question
later.

6. Test Vectors: The Work of Gross and Prasad

In this section, we will review the basic results of [GP91], where the problem
of constructing local test vectors is solved. Thus let v denote any finite place
of F and let πv denote the local component of π at v. Recall that we have
fixed an embedding K → B and so an embedding Kv → Bv. According to our
hypotheses on N and D, at least one of π and χ is unramified at v. In each case,
we wish to construct an explicit vector ψχ,v ∈ π′v such that `v(ψχ,v) 6= 0, where
`v is any nonzero linear functional in V (πv, Tv, χv) = HomTv (π′v,C(χv)).

First consider the case where πv is an unramified principal series represen-
tation. Then we see that Bv

∼= GL2. Let c(χv) denote the conductor of the
character χv of Kv, and let Rv ⊂ Bv denote a maximal order which optimally
contains the order of Kv with conductor c(χv). Then Gross and Prasad have
shown that the group R×v fixes a unique line in π′v. In this case, we let ψχ,v

denote any nonzero vector fixed by R×v .
Now suppose that πv is ramified, so that χv is unramified. In this case, let

Rv ⊂ Bv denote an order of reduced discriminant Nv which contains OK,v.
(That such orders exist and are unique up to conjugation by Kv is proved in
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[Gro88].) Again, the group R×v fixes a unique line in π′v, and we let ψχ,v denote
any nonzero vector on this distinguished line.

The following result restates Propositions 2.3 and 2.6 of [GP91].

Proposition 6.1 (Gross–Prasad). Let ψχ,v ∈ π′v be defined as above. Then,
if `v is any nonzero element of V (πv, Tv, χv), we have `v(ψχ,v) 6= 0.

Now we want a global test vector. Recall that we have defined a ‘newform’ ψ

in section 4 above by specifying that ψ = ⊗ψv, where each ψv is fixed by R×v ,
for a suitable order Rv ⊂ Bv. We will produce our test vector by modifying
ψ at places v dividing c = c(χ). Indeed, it follows from the definitions that
ψv = ψχ,v for almost all v. Indeed, this equality holds for all v - c(χ). Thus
we may consider the vector ψχ = ⊗ψχ,v as an element of the restricted tensor
product ⊗π′v. Then the following proposition may be extracted from [Wal85],
and resolves the question of global test vectors:

Proposition 6.2. Let ψχ be defined as above. Let ` ∈ HomT (π′,C(χ)) denote
the functional defined in equation (5–1). Then we have ` 6= 0 if and only if
`(ψχ) 6= 0. In particular , L(π ⊗ χ, 1

2 ) 6= 0 if and only if `(ψχ) 6= 0.

Our next task is to produce a formula for the number `(ψχ). According to the
definitions, we have

`(ψχ) =
∫

T (F )×F̂×\T̂×
ψχ(t)χ−1(t) dt. (6–1)

Now observe that the function ψχ is invariant on the right by the group
∏

R×v ,
where Rv is an order of Bv which optimally contains the order of OK,v with
conductor cv = c(χv). Since χ is invariant under Ô×c , it follows that the integral
in (6–1) may be rewritten as a finite sum:

`(ψχ) = µχ ·
∑

t∈Gc

ψχ(t)χ−1(t), (6–2)

where Gc denotes the finite set T (F )×F̂×\T̂×/Ô×c , and µχ is the volume of
the image of Ô×c in T (F )×F̂×\T̂×. Observe that, by class field theory, we may
identify Gc with the quotient of Pic(Oc) by Pic(OF ).

One can even go slightly further, and express the right-hand-side of (6–2) in
terms of the newform ψ (which is independent of χ). As we will see, this leads
naturally to the appearance of certain CM points of conductor c(χ).

To begin with, recall that ψ and ψχ agree at all places v except those finite
places which divide c. If v divides c, then Bv

∼= GL2(Fv) is split, and ψv and ψχ,v

are fixed by maximal orders Rv and Rχ,v respectively, where Rv ∩Kv = OK,v

and Rv,χ ∩ Kv = Oχ,v is the order of conductor cv. Since all maximal orders
in Bv are conjugate, it follows that ψχ,v and ψv are related by the equation
ψχ,v(z) = ψv(zgv), where gv is such that g−1

v Rvgv = Rχ,v. Thus, if we let g ∈ B̂
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denote an element such that ψχ(z) = ψ(zg), the sum in equation (6–2) becomes∑
t∈Gc

ψ(tg)χ−1(t).
Now observe that, for each place v of F , the order tvgvRv(tvgv)−1 is another

local order of Bv which optimally contains Oχ,v. For each t, let Rt denote the
global order of B defined by Rt = B ∩ tgR̂(tg)−1. Then Rt is an order with
discriminant N which optimally contains Oc ⊂ OK . Furthermore, it is clear
that if R′ is any order of B with discriminant N which optimally contains Oc,
then R′ = Rt for some t. (Here we remind the reader that the embedding K → B

is fixed.)
Note that the function ψ factors through the coset space Cl(B) = Cl(B,N) =

B×\B̂×/F̂×R̂×. The set Cl(B) may be identified with conjugacy classes of
oriented orders of discriminant N in B. If R′ is any such order, then R′ deter-
mines an element of Cl(B), and thus it makes sense to speak of the value ψ(B).
From this viewpoint, we see that the sum in (6–2) is just

∑
t χ−1(t)ψ(Rt) and

that the set Rt runs over oriented orders of B of discriminant N that optimally
contain Oc.

6.1. CM points. The reader who is familiar with the formalism of [BD96] and
[Gro87] will recognize the optimal embeddings Oc → Rt occurring in the above
as being precisely the points called ‘definite’ Heegner points, or CM points, in the
former and special points in the latter. We now proceed to describe these special
points from a more adelic point of view, and rewrite Waldspurger’s theorem in
terms of an evaluation of ψ on a suitable CM cycle.

Thus let G′ denote the algebraic group B×/F×. Let U denote any open
compact subgroup of G. Recall that we have fixed an embedding K → B, and
let T denote the torus K×/F× ⊂ G. Then the set of CM points of level U on B

associated to the embedding K → B is defined to be the coset space

C = T (F )\G′(Af )/U,

where Af denotes the space of finite adeles. Note that there is an action of
T̂ /T (F ) = K̂×/K×F̂× on the set C. A CM cycle is just a compactly supported
function on C. In other words, a CM cycle is just a finite linear combination of
characteristic functions of cosets in C.

We can make this definition more concrete in the case that U is the image
of R̂×, for some order R ⊂ B of discriminant N . Indeed, in that case, each
element P in C is represented by some x ∈ B̂, and we may form the order
Bx ⊂ R defined by Bx = B ∩ xR̂x−1. Let Ox ⊂ OK denote the order given
by Ox = K ∩ Bx. By definition, the fixed embedding f : K → B induces an
optimal embedding Ox → Bx. Thus the choice of x yields a pair (Ox, Rx), where
f : Ox → Rx is an optimal embedding. One checks furthermore that choice of
a different representative x′ for the coset defining the CM point P yields a pair
(Ox′ , Rx′) which differs from (Ox, Rx) simply by conjugation by an element of
T . The conductor of P is defined to be the conductor c of the order Ox, which is
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obviously independent of the choice of x. If P has conductor c, then the action
of T̂ /T (F ) on P factors through Gc, where Gc = K̂×/F̂×K×Ô×c as above.
Furthermore, it is clear that Gc acts simply transitively on the set of CM points
of conductor c. If σ ∈ Gc and P is a CM point of conductor c, we write P σ to
denote the image of P under σ.

Remark 6.3. Suppose that F = Q. Then a CM point of conductor c is defined
in [BD96] to be a pair (f, R) where R is an oriented order in B of discriminant
N , and f : Oc → R is an oriented embedding, where points (f, R) and (f ′, R′)
are identified if they are conjugate under the action of B×. One checks readily
that this notion is equivalent to the one above.

We can now combine Waldspurger’s result with those of Gross–Prasad to obtain
a simple criterion in terms of CM points for the non-vanishing of L(π ⊗ χ, 1

2 ).

Theorem 6.4. Let the hypotheses and notation be as in section 2. Let R denote
any order of B of discriminant N which optimally contains OK . Then, if P is
any CM point of conductor c and level U = R̂×, we have L(π ⊗ χ, 1

2 ) 6= 0 if and
only if

∑
σ∈Gc

χ−1(σ)ψ(Pσ) 6= 0.

The theorem above seems to fill a gap in the literature, and is extremely con-
venient for applications to Iwasawa theory and arithmetic. Indeed, it is freely
used in [BD97] and its various sequels, as well as in [Vat02]. (Note also that if
F = Q and K is an imaginary quadratic field, then Gc = Pic(Oc) since Q has
class number 1.)

7. The Work of Gross and Zhang

It is natural now to ask for an exact relationship between the numbers L(π⊗
χ, 1

2 ) and `(ψχ). More generally, one could ask for a relationship between L(π⊗
χ, 1

2 ) and the number
∑

σ∈Gc
χ−1(σ)ψ(P σ) appearing in Theorem 6.4. These

problems fall in the general category of Gross–Zagier formulae, in the sense that
they seek to express L-values in terms of explicit CM cycles. This problem was
first taken up by Gross in [Gro87], where the case where F = Q and N and D

are prime was treated. It was subsequently generalized to slightly more general
D in [Dag96]. The case of general F and D was finally treated in [Zha01a]. All of
these results are more arithmetic in flavour than those of Waldspurger discussed
above, being based on the calculation of Fourier coefficients of certain kernel
functions for Rankin–Selberg convolutions, and the expression of these Fourier
coefficients in terms of a height pairing on the CM cycles.

7.1. Gross’ formula. To fix the ideas, we want to discuss the main result of
[Gro87], which, as described above, deals with the case where F = Q, and N

and D are prime. For the benefit of the number theorists in the audience, we
will start by describing the basic idea in classical rather than adelic language.
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Thus let N denote a positive rational integer, and let g(z) =
∑

anqn denote
a cuspform of weight 2 on Γ0(N). We normalize g so that a1 = 1. Let K/Q
denote an imaginary quadratic field of discriminant D. We assume that both N

and D are prime, and that N remains inert in K. Let χ denote an unramified
Hecke character of K, so that c = 1. (Thus the notation for N and D employed
here is consistent with the general case set out above.) Then g corresponds to
a cuspidal automorphic representation π of GL2(Q), and χ is a representation
of GL1(K). We want to study the value L(π⊗ χ, 1

2 ), which in classical notation
(see [Maz84] for an overview) is just L(g⊗χ, 1). Note that the normalization of
the classical L-function L(g⊗χ, s) yields a functional equation under s 7→ 2− s,
while the automorphic L-function is symmetric under s 7→ 1 − s. As we have
remarked, we will try to keep the classical notation in this section.

The starting point is the expression of L(g ⊗ χ, s) as a Rankin–Selberg con-
volution. It is not our purpose here to discuss the Rankin–Selberg method in
detail, so we will simply extract the one statement that is central to our discus-
sion. The details may be found in [Gro87]. We recall that if Γ is a congruence
subgroup of SL2(Z) and f, g are weight 2 modular forms with respect to Γ, then
the Petersson inner product (f, g) relative to Γ is defined by

(f, g)Γ = 8π2

∫

FΓ

f(z)g(z) dx dy,

where FΓ is a fundamental domain for Γ in the upper half-plane, and z = x+ iy.
The integral converges provided that at least one of f and g is cuspidal.

Proposition 7.1. There exists a kernel function Θχ, which is a modular form
of level ND, such that

L(g ⊗ χ, 1) = (g, Θχ)ND.

Here the Petersson product ( · , · )ND is taken relative to the group Γ0(ND).

The first step in the Gross–Zagier argument is to take the trace of Θχ down to
level N . Thus put Θ = TrND

N (Θχ). Then we clearly have

L(g ⊗ χ, 1) = (g, Θ)N , (7–1)

where this time the inner product is taken at level N . Now, Θ is a modular form
of level N , so we may write

Θ = E(z) +
∑

i

cigi(z) (7–2)

where E(z) is an Eisenstein series, and the sum is taken over a basis of the space
of newforms of level N . (Since N is prime and we are in weight 2, there are no
oldforms.) We may assume that the numbering is such that g(z) = g1. It can
be shown that the coefficients ci are all algebraic, see [Shi76].
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Then, by orthogonality, it is clear that

(g, Θ)N = (g,E +
∑

i

cigi)N = (g, c1g1) = cg(g, g), (7–3)

where cg = c1 is the coefficient of g. Given an eigenform gi, let us put Θgi
= cigi.

We call Θgi the gi-isotypic component of Θ. Thus Θgi denotes the projection of
Θ to the eigenspace of the Hecke algebra with eigenvalues given by the newform
gi. With this notation, we have

L(g ⊗ χ, 1) = (g, Θ)N = (g, Θg)N = cg(g, g)N . (7–4)

Thus, the evaluation of L(g ⊗ χ, 1) boils down to calculating the coefficient
cg of g in the spectral decomposition (7–2) of the kernel function, which is
accomplished by computing the Fourier coefficients of the kernel in terms of CM
points on a suitable quaternion algebra.

Thus let B denote the quaternion algebra over Q ramified precisely at N

and infinity, and let R ⊂ B denote a maximal order. Recall also the notation
introduced in Section 6.1, and let X denote the set of CM points of conductor 1
and level U = R̂×. (These are the ‘special points’ of discriminant D in [Gro87].)
Then Gross shows that X admits an action of the group Pic(OK), and that this
action is both simple as well as transitive, as in section 6.1 above. We let P

denote any fixed point in X, and define a CM divisor by

y =
∑

σ∈Pic(OK)

χ−1(σ)Pσ. (7–5)

Furthermore, Gross defines an intersection pairing ( · , · ) on the space of CM
divisors as follows. Each point P ∈ C determines an oriented maximal order R

of B as described in section 6.1, and we put

(P, P ′) = δ(P, P ′), (7–6)

where δ(P, P ′) = 0 unless the orders R, R′ determined by P, P ′ are conjugate in
B. In the latter case, we put δ(P, P ′) = w, where w is the order of the finite
group R×. We extend to pairing to CM divisors (which are just finite linear
combinations of points) by linearity in the first variable, and skew-linearity in
the second. Putting S(U) = B×\B̂/Q̂×R̂×, it is clear that the pairing defined
above is in fact a pairing on S(U)×S(U) (since S(U) is just the set of conjugacy
classes of oriented maximal orders) and that the pairing on CM points factors
through the evident map C → S(U).

Finally, it is not hard to see that the space S(U) inherits an action of the
Hecke operators Tn, for all integers n.

With this notation, the basic result is the following
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Proposition 7.2 (Gross). Write Θ =
∑

bnqn. Then the coefficients bn are
given by

bn =
(y, Tny)
u2
√

D
,

where y and the pairing ( · , · ) are as described above, and u = #O×K/2.

With all this in hand, it is now easy to prove a Gross–Zagier formula. Indeed, we
want to compute the coefficient of the newform g in the spectral decomposition
of Θ. In other words, we want to pick off the projection Θg of Θ to the space
where Tn acts via an = an(g). It is not hard to see that this projection has
coefficients b′n given by

b′n =
(yg, Tnyg)

u2
√

D

where yg denotes the projection of the CM divisor y to the subspace of C[S(U)]
where the Hecke algebra TB (defined by action of the Ti on automorphic forms
of level R̂× on B) acts via the character given by the Jacquet–Langlands cor-
respondent of g. In particular, the first coefficient of the projection Θg is given
by

b1(Θg) =
(yg, yg)
u2
√

D
. (7–7)

Writing Θg = cg · g as in the discussion following (7–2), we see that u2
√

D ·
(yg, yg) = c1(Θg) = cg, since g was normalized to have first Fourier coefficient 1.
Combining this with (7–3), we get the desired formula:

L(g ⊗ χ, 1)
(g, g)N

=
(yg, yg)
u2
√

D
. (7–8)

To compare with Waldspurger’s theorem, we can rewrite this in terms of test
vectors and torus integrals. To do this, we will need to give an adelic description
of the intersection pairing, following [Zha01a], Section 4.1. The argument is in
some sense entirely formal, but it is nevertheless instructive to work through the
details, since this is in fact what occurs in the general case treated in Zhang’s
article. And since the construction is completely general, we will revert for the
moment to the case of general F and K and π, as described in the introduction.

7.2. The intersection pairing revisited. Recall that the set of CM points
of level U is defined to be the coset space C = T (F )\G′(Af )/U , where G′ =
B×/F×, and U is some open compact subgroup of G′(Af ). (In Gross’ situation,
we will take U to denote the image of R(Af )×, for a fixed maximal order R.)
Let S(U) = G′(F )\Ĝ′f/U , where we have simply written Ĝ′f in place of G′(Af ).

Let m denote the characteristic function of U ⊂ Ĝ′f , and consider the kernel
function k(x, y) defined on S(U)× S(U) by

k(x, y) =
∑

γ∈G′(F )

m(x−1γy). (7–9)
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This sum is actually finite. Indeed, if (x, y) ∈ Ĝ′f × Ĝ′f , then m(x−1γy) is
nonzero only for those γ such that γ ∈ xUy−1. But xUy−1 is compact in Ĝ′f ,
and G′(F∞) is compact already, so G′(F ) ∩ xUy−1 injects into the compact set
xUy−1 ×G′(F∞) ⊂ G′(A). Now G′(F ) being discrete in G′(A), it follows that
G′(F ) ∩ xUy−1 is finite.

Now let p1, p2 ∈ S(U), and let ξ1, ξ2 denote the characteristic functions of the
corresponding double cosets. Define the intersection pairing via

(p1, p2) = (ξ1, ξ2) =
∫

S(U)2
ξ1(x)k(x, y)ξ2(y)dydx.

Here the measure on S(U) is induced from a left-G′(F )-invariant measure on
Ĝ′f , normalized so that U gets volume one. To calculate this pairing, observe
that ξ is supported on G′(F )g1U , while ξ2 is supported on G′(F )g2U . It follows
directly from the definitions that the kernel is constant on G(F )g1U ×G(F )g2U .
Indeed, if the elements gi are in different cosets, the kernel is just zero on this
set. If on the other hand the gi are in the same coset, put w = G′(F )∩g1Ug−1

1 =
G′(F ) ∩ g2Ug−1

2 as before. Then the kernel takes the value w on G(F )g1U ×
G(F )g2U .

We can transfer the pairing to the set of CM points via the evident map
C → S(U), as follows. Let k∗(x, y) denote the pullback of k(x, y) to C ×C. Let
P1, P2 denote CM points, and let ξ1 and ξ2 denote the characteristic functions
of the corresponding double cosets in C = T (F )\G′(Af )/U . The measure on
C is understood to be induced from a measure on Ĝ′f such that U gets volume
1. Then we can define the pairing by an integral over C × C as above, and we
find that (P1, P2) is zero unless the Pi project to the same element in S(U), in
which case the pairing has value w/u2, where u denotes the cardinality of the
set T (F ) ∩ U . Indeed, the volume of any coset T (F )gU in C is 1/u.

Example 7.3. Consider the special case of F = Q, and N,D prime. Then we
have recovered Gross’ pairing, including the fudge factor 1/u2 which appears in
the final formulae.

For later use, we want to consider the spectral decomposition of the kernel func-
tion k(x, y), as in [Zha01a], Lemma 4.4.2. But to state the result, we first need
some notation. So recall that G′ is compact at infinity by hypothesis. Then
V = U · G′(R) is an open compact subgroup of Ĝ′. Recall also that we are
interested in representations π of GL2 of parallel weight (2, . . . 2), which corre-
spond via Jacquet–Langlands to representations π′ on G′ whose infinite com-
ponent is trivial. With this in mind, let ψ1, ψ2, . . . , ψr denote an orthonormal
basis for the space of automorphic forms on G′ that are fixed by the subgroup
V . We may assume that the ψi are eigenvectors for the good Hecke opera-
tors. Since G′(R) ⊂ V , we may view any such ψi as a function on the set
S(U) = G′(F )\Ĝ′f/U . Then the basic result is as follows.
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Proposition 7.4 (Zhang). The kernel function k(x, y) has the spectral decom-
position

k(x, y) =
∑

i

ψi(x)ψi(y).

Proof. This is easy. Indeed, if ψ is any function on S(U), then we have
∫

G′(F )\Ĝ′f
ψ(y)k(x, y) dy =

∫

Ĝ′f

ψ(y)m(x−1y) dy,

where m denotes the characteristic function of the compact set U . Since U has
volume 1, we get

∫
G′(F )\Ĝ′f

ψ(y)k(x, y) dy = ψ(x). Since S(U) is finite, we have

k(x, y) =
∑

cijψi(x)ψj(y), for some cij , and so the statement of the proposition
follows. ¤
Remark 7.5. The basis vectors ψi above will not, in general, diagonalize the
Hecke operators, as there will be some contribution from oldforms. In particular,
a given eigenspace for the Hecke operators will contain several vectors ψi.

Finally, we want to mention the action of the Hecke operators on the CM cycles.
Given a function φ on T (F )\Ĝ′f/U , we define a Hecke operator Tv for each place
v such that Bv is split and Uv is maximal as follows:

Tvφ(x) =
∫

Hv

φ(xhv) dhv, (7–10)

where Hv is the set of matrices hv in Bv such that det(hv) is a uniformizer in
Fv. Here the measure on Hv is such that the maximal compact Uv gets measure
1. One may check that the operator Tv is self-adjoint with respect to the L2

norm, so that (Taφ, φ′) = (φ, Taφ′), provided that the functions φ and φ′ have
compact support so that the L2 integral makes sense. We can of course make a
similar definition for functions on S(U) = G′(F )\Ĝ′f/U .

7.3. Gross’ formula: adelic version. We now go back to Gross’ situation,
where F = Q, and N,D are prime. The goal is to rewrite the special value
formula (7–8) as a torus integral, as in Waldspurger’s theorem. Obviously, we
must compute the divisor y defined in (7–5), as well as the projection to the
appropriate Hecke eigenspace. The first question is rather easy. Indeed, consider
the image of T (Q)\T̂ = Pic(OK) inside the set C = T (Q)\G′(Af )/U . Each class
σ ∈ Pic(OK) defines a CM point ξσ ∈ C. We may therefore form the CM divisor

y =
∑

χ(σ)ξσ.

Next we need to make sense of the projection to the Hecke eigenspace of
interest. To do this, it will be convenient to identify the CM point ξσ with the
characteristic function of the corresponding double coset in C. By definition of
the intersection pairing, we have

(y, y) =
∫

C2
ξy(u)k∗(u, v)ξy(v) du dv.
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In view of the spectral decomposition of the kernel in Proposition 7.4, the integral
above may be rewritten as

(y, y) =
∑∫

C

ξy(u)ψi(u)ψi(v)ξy(v) du dv,

where the sum is taken over an orthonormal basis for the space of cuspforms
on S(U). In the situation where F = Q and the level N is prime, there are in
fact no oldforms, so we may take the basis vectors ψi to be Jacquet–Langlands
newforms, each belonging to a distinct eigenspace for the Hecke algebra. We
may assume by renumbering that our original representation π′ corresponds to
the vector ψ = ψ1.

Thus the pairing decomposes as

(y, y) =
∑

i

(∫

C

ξy(u)ψi(u) du

)(∫

C

ψi(v)ξy(v) dv

)
.

By self-adjointness of the Hecke operators, we have
∫

C

Taξy(u)ψi(u) du =
∫

C

ξy(u)Taψi(u) du,

for any a prime to the level N . Since N is prime, strong multiplicity one implies
that, if yπ′ denotes the projection of y to the eigenspace corresponding to π′,
then we have the formula

(yπ′ , yπ′) =
(∫

C

ξy(u)ψ(u) du

)(∫

C

ξy(v)ψ(v) dv

)
.

But it is easy to see that the integrals above are precisely torus integrals of
the test vector ψ, since the function ξy is supported on the image of the torus
T̂ . Indeed, we have

`χ(ψ) =
∫

C

ξy(u)ψ(u) du

==
1
u

∑

t∈T (F )\T̂ /ÔK

χ−1(t)ψ(t)
∫

T (F )\T̂ /T (ÔK)

χ−1(t)ψ(T ),

where the measure on T̂ is such that T (ÔK) gets measure 1.
Thus we may rewrite Gross’ formula in the form

L(g ⊗ χ, 1)
(g, g)N

=
|`(ψ)|2√

D
, (7–11)

where ` is the torus integral with respect to a Haar measure giving T (ÔK) volume
1, and ψ is a Jacquet–Langlands newform, normalized to have L2 norm 1, with
respect to a Haar measure on Ĝ′. Here the measure on Ĝ′ is normalized so that
a maximal compact U ⊂ Ĝ′ has volume equal 1.
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7.4. The work of Zhang. We now want to describe the formula of [Zha01a].
We therefore return to the general situation, keeping the notation fixed in Sec-
tion 2. Thus we want to study the special value L(π ⊗ χ, 1

2 ), and the starting
point is once again the expression of the L-series as a Rankin L-function. The
basic strategy is the same as in the discussion above, but with some important
improvements. We will attempt here to at least explain the statement of the
final formula, if not all the new ideas introduced in Zhang’s proof.

7.5. Quasi-newforms on GL2. As before, one begins with a theta kernel Θχ,
which (under the present hypotheses) is an automorphic form of weight (2, . . . , 2)
on GL2, and which satisfies the equation

L(π ⊗ χ, 1
2 ) = (φ, Θχ) (7–12)

where φ denotes the Atkin–Lehner newform of level N associated to π as de-
scribed in section 3. Here the form Θχ is of level ND, where D = dc2, d is the
discriminant of K/F , and c is the conductor of χ.

Note that there are various normalizations already implicit in the above for-
mula. Specifically, the formula holds with φ normalized as in section 3, and the
inner product is taken with respect to the L2 metric on GL2(F )F̂×\GL2(F̂ ).
The Haar measure on the latter is fixed so that the open compact subgroup
U0(ND)K∞ gets measure 1, where K∞ is a product of the various maximal
compact subgroups at primes dividing infinity. The detailed construction of the
kernel Θχ is given in Chapter 2 and section 3.1 of [Zha01a].

If we were to follow the classical argument exactly, the next step would be
to compute the trace of the theta kernel down to level N . This appears to
be rather difficult, since the extra level D = dc2 is large when c 6= 1. Thus
Zhang works directly with the kernel function at level ND, as follows. Let
π1, π2, . . . , πr be an enumeration of the finitely many non-isomorphic cuspidal
automorphic representations of weight (2, . . . , 2) occurring at levels dividing ND.
Then π = πj for some j, say j = 1, and we may decompose Θχ in a manner
analogous to (7–2), as

Θχ = Eisenstein part +
∑

φi (7–13)

where each φi is a form in the Hecke eigenspace corresponding to the represen-
tation πi. Then one has

L(π ⊗ χ, 1
2 ) = (φ, Θχ) = (φ, φπ), (7–14)

where φπ = φ1 is the term in (7–13) corresponding to the fixed representation π.
However, since we are working at level ND, and φ has level N , it is no longer

true that φπ is simply a scalar multiple of the newform φ. Indeed, the best we
can say is that φπ is some linear combination

φπ =
∑

caφa,
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where the sum is taken over ideals a dividing D, and φa is as in Casselman’s
theorem. It is evident from this that, even if one could compute the Fourier
coefficients of Θχ in terms of CM cycles, a simple argument as in (7–7) cannot
be made to work, since one has no evident normalization of the form φπ. Note
here that it is crucial to the argument following (7–7) that the newform g was
normalized to have first Fourier coefficient 1.

In view of the considerations above, we are led to normalize the vector φπ

in some convenient way. In other words, we are looking for some distinguished
vector on the line L spanned by the vector φπ.

Definition 7.6. Let S denote the space of cuspforms of level ND. If L is any
line in S, then the quasi-newform φ# = φ#

L associated to π on the line L is the
orthogonal projection of the Atkin–Lehner newform φ on L.

Remark 7.7. The definition assumes that φ has already been normalized. This
already occurs in the formula (7–12).

Remark 7.8. By definition, there is a quasi-newform on each line in the ambient
space S. Thus, for the definition to be useful, one needs to specify the line L.
Note that the quasi-newform attached to L is zero if L is orthogonal to the
Atkin–Lehner newform φ.

Remark 7.9. Let the line L be given. Suppose that L is not orthogonal to φ

so that φ#
L 6= 0. Then if v is any vector on L, we will have v = cφ#

L , for some
scalar c. For simplicity, we assume that c is real, which will be the case in our
applications. One then has

(φ, v) = (φ, cφ#
L ) = c(φ, φ#

L ) = c(φ#
L , φ#

L ),

since φ#
L is the orthogonal projection of φ on L.

Let us apply this to the formula (7–14) with L taken to be the line spanned
by φπ. Then (7–14) implies that L(π ⊗ χ, 1

2 ) = 0 if and only if L is orthogonal
to φ, or φπ is zero. If this not the case, then we may put v = φπ = cπφ#

L , and
this gives the key formula

L(π ⊗ χ, 1
2 ) = (φ, φπ) = cπ(φ#

L , φ#
L ). (7–15)

We are therefore led to compute the line L spanned by the vector φπ, and to
determine the corresponding quasi-newform φ#

L . The former problem has been
solved by Zhang, as we now explain.

Thus recall that the form φπ is by definition the projection of the kernel Θχ

to the eigenspace (for the good Hecke operators) corresponding to the represen-
tation π. According to Casselmans’ theorem, a basis for this eigenspace is given
by the functions φa, where a runs over the ideals dividing D. Thus we have
φπ =

∑
xaφa, and we must compute the coefficient xa for each a. Note here

that the vectors φa are not orthonormal, or even orthogonal.
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In practice, it is much easier to compute the inner products (φπ, φa), thereby
determining the orthogonal complement to our line L, rather than L itself. To
state the result, we need some notation. Recall that the character χ is anticy-
clotomic. For each prime v of F which is ramified in K, one sees therefore that
the local character χv is quadratic. It follows that χv is the composition of some
unramified character ν of Fv with the local norm from Kv to Fv.

Now, for any place v dividing ND, define a function ν∗(v) as follows. If v is
ramified in K, we put ν∗(v) = ν(πv) where πv is a uniformizer of Fv, and ν is
the local character defined above. If v is unramified in K, we put ν∗(v) = 0. We
can extend the function ν∗ to the set of ideals dividing ND by multiplicativity,
and by putting ν∗(1) = 1.

Proposition 7.10 (Zhang). Let Sπ denote the linear span of the vectors φa,
as a runs over divisors of ND. Let φπ ∈ S denote the projection of Θχ to Sπ.
Then:

• If L(π⊗χ, 1
2 ) 6= 0, then φπ 6= 0, and the line L spanned by φπ is the orthogonal

complement in Sπ of the hyperplane given by
∑

a caφa, where
∑

caν∗(a) = 0.

• If L(π ⊗ χ, 1
2 ) = 0, then φπ = 0.

The proof of this is a somewhat elaborate computation, based on the precise
definition and normalization of the kernel function Θχ, which enables one to
calculate (φa, Θχ) for any a. The details may be found in Section 3.1 of [Zha01a].
Note also here that L is not orthogonal to the Atkin–Lehner newform, so the
quasi-newform φ#

L is non-zero.
Let L denote the line defined in the first part of Proposition 7.10. Then

φ# = φ#
L will denote the (nonzero) quasi-newform associated to this L. We put

cπ = 0 if L(π ⊗ χ) = 0, and we define it by equation (7–15) if not. Then, with
this convention, it is clear that (7–15) holds in general. Indeed, the identity

φπ = cπφ# (7–16)

holds in general as well.

7.6. Toric newforms on the quaternion algebra B. The next step in
the argument is to calculate the Fourier (or Whittaker) coefficients of the kernel
function Θχ in terms of CM cycles on the quaternion algebra B, and then to
express the final formula in terms of a Waldspurger functional on some suitable
test vector. Again, the details are somewhat involved, so we will limit ourselves
to explaining the statements and results that are relevant to our purposes. The
details may be found in Chapter 4 of [Zha01a]. We point out here that the results
in [Zha01a] include a general construction of geometric intersection pairings on
CM cycles, and in fact yield a very beautiful local version of the Gross–Zagier
formula, neither of which we will attempt to discuss here. We will just describe



SPECIAL VALUE FORMULAE FOR RANKIN L-FUNCTIONS 185

Zhang’s construction of toric newforms, which are the analog in his set-up of the
test vectors described in Section 6 above. The two notions are related, but are
not equivalent.

Recall that we have fixed an embedding K → B. Let OK denote the ring of
integers in K. Then we let R ⊂ B denote an order defined by

Rv = OK,v +OK,vλvc(χv),

where c(χv) is the conductor of χv and λv satisfies two conditions:

1. λvx = xλv, for each x ∈ Kv. Here x denotes the conjugate of x over Fv.
2. ord(λv) = ord(Nv).

Note that Rv is maximal for almost every v. Note also that λ = (λv) generates
a two-sided ideal in R̂, and that there is a map R̂/λR̂ → ÔK/cÔK . Since χ is a
character of conductor c, it defines a character of (ÔK/cÔK)×, and we thereby
deduce an extension of χ to R̂×. By abuse of notation, we will continue to
denote the extended character by χ. Note however that, as a character of R̂×, χ

is trivial at all places v - c, since χv is trivial on the units of Kv at places away
from the conductor.

Finally, we define a subgroup ∆ ⊂ B̂×as follows. If v is unramified in K, we
put

∆v = F×v R×v .

If v is ramified in K, we put

∆v = K×
v R×v .

This definition makes sense, since Kv is normalized by Rv, so the product in
the definition above is indeed a group. Furthermore, one checks that χ, which is
defined on both Kv and Rv, extends in an obvious way to ∆. We write χ∆ for
this extended character.

With this definition, Zhang gives the following definition and existence result.

Definition 7.11 ([Zha01a], Section 2.3). Let the group ∆ be as above, and
let χ∆ denote the character of ∆ constructed above. A vector φχ in π′ is called
a toric newform with character χ if

• φχ is an eigenform for the Hecke operator Tv at all places v away from ND,
and

• The action of ∆ on φχ is given by the character χ∆.

Proposition 7.12. There exists a unique line in the representation π′ where ∆
acts via the character χ∆. Thus nonzero toric newforms exist .

Remark 7.13. The existence and uniqueness of the toric newvector ψχ may be
checked locally. As we have already remarked, χ∆ is trivial at all primes away
from D. Thus if ψ = ⊗ψv denotes the newform attached to the representation π′
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in Section 4, we may simply take φχ,v = ψv for all v away from D. This already
gives the Hecke eigenvector property.

As for the places v dividing D, one has to replace ψv with a local vector φχ,v

satisfying the appropriate transformation property under ∆v. This is similar
to the techniques from [GP91]. Note, however, that optimal embeddings do
not appear directly in the present set-up. We refer the reader to Chapter 2 of
[Zha01a] for the details.

Remark 7.14. It may be of interest to explicate the connection between the
toric newform and the test vector of Gross–Prasad. It is easy to see that the two
notions are the same at primes away from the conductor of χ, so the we need
only consider primes v where χ is ramified. While the general relationship is
complicated, we can make a simple statement at primes v|c(χ) which are inert
in K.

Thus, let v denote such a prime. Then the local representation πv = π′v de-
composes under the action of the torus T as the sum of one-dimensional invariant
subspaces (see [Tun83]). The Gross–Prasad local test vector has the property
that it projects nontrivially on to any line where the action of T is via a character
of conductor dividing that of χ. Zhang’s test vector, on the other hand, lies on
the line where T acts via the fixed character χ of interest.

7.7. The final formula. We are now almost ready to state Theorem 1.3.2 of
[Zha01a], which gives a formula for L(π ⊗ χ, 1

2 ). But first we need to specify
precisely the groups we work with, and the normalizations of the measures and
vectors which will appear.

Let G = GL2(F )/F×. Then we normalize the Haar measure on G(A) by
requiring that U0(ND) get measure 1. On the quaternion side, we let G′ =
B×/F×, and let U ⊂ R̂ denote the kernel of χ. We fix the measure on Ĝ′ so
that ∆ gets measure 1. Here R denotes the order constructed in Section 7.6.
Finally, we fix a Haar measure on T̂ = K̂×/F̂× by requiring that the maximal
compact subgroup gets measure 1. This of course is independent of χ.

Remark 7.15. The subgroup U giving the level is not simply the image of R̂×.
Rather, it is the subgroup of R̂× corresponding to the kernel of χ. This will be
important in understanding the statements.

Theorem 7.16 (Zhang). We have L(π⊗χ, 1
2 ) = 0 if and only if `(φχ) 6= 0. If

L(π ⊗ χ, 1
2 ) 6= 0, then we have the formula

c# · L(π ⊗ χ, 1
2 ) =

2n|φ#|2√
DK/F

·
(∫

F×\T̂ χ−1(t)φχ(t) dt

|φχ|

)2

(7–17)

Here n denotes the degree of F/Q, DK/F denotes the absolute norm of the dis-
criminant of K/F , and c# is the first Whittaker coefficient of the quasi-newform
φ# (the precise definition is given below). The norms are understood to be the
L2 norms relative to the measures specified above.
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Remark 7.17. The number c# is missing from the statement in [Zha01a]. Its
appearance is explained below.

Needless to say, we are not in a position to say anything substantial about the
proof of this theorem. Broadly, it follows the lines sketched in the discussion of
Gross’ formula. We have already indicated above how the fact that Zhang works
at level ND leads to the appearance of the quasi-newform φ#, rather than the
newform φ. Let us therefore briefly indicate how the toric newform makes an
appearance on the quaternion algebra side of the question. In the process, we
will also explain the factor c#.

As we have remarked several times, the basic point is to relate the Whittaker
coefficients of the theta kernel to the values of an intersection pairing. Thus,
recall that the theta kernel on GL2 is determined by its Whittaker coefficients

W

((
a 0
0 1

)
· g∞

)
,

where a runs over the finite ideles of F , and g∞ ∈ G∞ = G(F ⊗R). To define
the Whittaker functions, we assume fixed a nontrivial additive character η of
F̂ /F . We let δ denote the conductor of η.

We want to express the Whittaker coefficient above, which is a function of a

and the parameter g∞, as the value of a pairing on CM cycles. Let yχ denote
the CM cycle given by the following compactly supported function yχ =

∏
yχ,v

on C, where yχ,v is supported on T (Fv)R×v and satisfies

yχ,v(tu) = χ(t)χ(u), t ∈ T (Fv), u ∈ ∆v. (7–18)

where Gc = T\T̂ /Ôc as before, and ξσ is the corresponding element of C. For
each g∞ ∈ G∞, we define an intersection pairing ( · , · )(g∞) on the space of CM
cycles as in Gross’ theorem, where the multiplicity function m = mg∞ depends
on g∞. Indeed, we define

mg∞(x) = 2nW∞(g∞)m(x), x ∈ G′(F )\Ĝ′f
where W∞ is a standard Whittaker function for the weight 2 discrete series on
G∞, and m is the characteristic function of U . (See [Zha01a], Eq. 4.4.2.) With
this definition, Zhang proves that the Whittaker coefficients of Θχ satisfy

W

((
aδ−1 0

0 1

)
· εg∞

)
=
|a|(Tayχ, yχ)(g∞)√

DK/F

, (7–19)

for all ideles a with component 1 at places dividing ND. Here ε =
(

1
0

0
−1

)
.

Let φπ denote the projection of Θχ to the π-isotypic part. Then we have

φπ = cπφ#

for the quasi-newform φ#, with the conventions of (7–16). We now examine what
this means in terms of the intersection pairings, as in the argument following
(7–7). According to the strong multiplicity one theorem, we can pick off the the
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π-isotypic component of Θχ by means of the good Hecke operators. In other
words, there exists some polynomial t in the good Hecke operators Ta such that
if Θχ =

∑
φi as in (7–13), then tΘχ = φπ is the π-isotypic part. Thus we can

compute the first Whittaker coefficient of φπ, using the formulae (2–1) for the
action of Hecke operators on Whittaker coefficients:

Wφπ

((
δ−1 0
0 1

)
· εg∞

)
=

(tyχ, yχ)(g∞)√
DK/F

. (7–20)

On the other hand, we have φπ = cπφ# by definition. So we would like to
compare Whittaker coefficients, but we have to be slightly careful, since certain
coefficients may a priori be zero. Define a number c#(g∞) by the formula

c#(g∞) = Wφ#

((
δ−1 0
0 1

)
εg∞

)
. (7–21)

Lemma 7.18. The function c#(g∞) is nonzero, and c# = c#(1) 6= 0.

For a proof of this lemma, we refer the reader to forthcoming work of Zhang and
to his article in this volume.

With this is mind, we can write φπ = cπφ# and compare Whittaker coeffi-
cients. Then we get

cπ =
(tyχ, yχ)(g∞)

c#(g∞)
√

DK/F

.

To evaluate cπ, we may take g∞ = 1. In this case, we will simply drop it from
the notation. Then comparing with the equation (7–15), we find that

L(π ⊗ χ, 1
2 )

(φ#, φ#)
=

(tyχ, yχ)
c#

√
DK/F

.

It remains to compute the pairing (tyχ, yχ), and this we can compute via the
spectral decomposition in Proposition 7.4. When g∞ = 1, it turns out that the
kernel for the intersection pairing has the decomposition

k∗(x, y) = 2n
∑

i

φi(x)φi(y),

where n is the degree of F/Q, and the sum is taken over an orthonormal basis
for the space of forms of level U . We may assume that these basis vectors are all
eigenvectors for the good Hecke operators. Thus the pairing (tyχ, yχ) becomes

(tyχ, yχ) = 2n
∑ (∫

C

tyχ(u)φi(u) du

)(∫

C

φi(v)yχ(v) dv

)
, (7–22)

By the self-adjointness of the Hecke operators and the definition of the projec-
tion operator t, the contribution from vectors ψi corresponding to eigenspaces
other than π′ are all wiped out. Here we use the fact the Jacquet–Langlands
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correspondence preserves the Hecke eigenvalues. The vectors that remain corre-
spond to an orthonormal basis for the π′-isotypic subspace of forms of level U ,
which will, in general, have dimension strictly greater than 1. Thus suppose that
φ1, . . . , φr are an orthonormal basis for the space of π′-isotypic forms of level U .
We may assume that φ1 is the toric newvector. Then we want to show that the
terms for i = 2, . . . , r in (7–22) are all zero as well.

Consider therefore the action of the subgroup ∆ on the functions φi by the
usual right translation. Then ∆ acts on φχ = φ1 by the character χ, by defi-
nition of the toric newvector. Since π′ is unitary, the action of ∆ preserves the
orthogonal complement of φ1, namely, the space spanned by φ2, . . . , φr. Now ∆
is a totally disconnected group, so any finite dimensional complex representation
of ∆ factors through a finite quotient. Then the complement of φ1 breaks up as
the sum of irreducible representations, all distinct from χ, since the space of toric
newforms is one dimensional. Since ∆ acts on the function yχ by the character
χ, it follows that the terms for φi with i ≥ 2 are all zero.

Thus we have shown that (tyχ, yχ) = 2n| ∫
C

yχ(u)φχ(u)|2. But it is easy to
see that the quantity on the right is just a torus integral of the test vector φχ.

Remark 7.19. To conclude, we want to indicate what is not yet proven. For
the purposes of Iwasawa theory and p-adic L-functions, it would be desirable to
reformulate Zhang’s theorem in terms of the fixed level structure N of π. As in
[BD96] and [Vat02], the desired formula should have the shape

|`(ψ)|2 = Cχ

L(π ⊗ χ, 1
2 )

(φ, φ)N
(7–23)

where ψ is the Gross–Prasad test vector, φ denotes the Atkin–Lehner newform
for π, and the number Cχ is an explicit constant in Q depending on χ. While
it is obvious from Zhang’s result that such a formula holds up to some algebraic
constant, it does not seem easy to compute the number Cχ. The main problem is
determining the length of the quasi-newform in Zhang’s theorem. For a discus-
sion of this point we refer the reader to Zhang’s article in this volume. We would
like to point out, however, that for the purposes of the main results in [Vat02]
and [BD96] and its various sequels, it is enough to know that nonvanishing of the
L-function is equivalent to nonvanishing of `(ψ), and this is true unconditionally
in view of the results of Waldspurger and Gross–Prasad: see Theorem 6.4.
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