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D. Zagier discovered in 1975 [HZ] the following famous modular form of weight
3
2 for Γ0(4):

EZagier(τ) = − 1
12

+
1

8π
√

v
+

∞∑
m=1

H0(m)qm +
∑
n>0

2g(n, v)q−n2
. (0.1)

Here τ = u+ iv is in the upper half plane, q = e2πiτ , H0(m) is the Hurwitz class
number of binary quadratic forms of discriminant −m, and

g(n, v) =
1

16π
√

v

∫ ∞

1

e−4πn2vrr−3/2dr. (0.2)

This function can be obtained, via analytic continuation, as a special value of
an Eisenstein series E(τ, s) at s = 1

2 . In this note, we will give an arithmetic
interpretation to Zagier’s Eisenstein series and its derivative at s = 1

2 , using
Arakelov theory.

Let M be the Deligne–Rapoport compactification of the moduli stack over
Z of elliptic curves [DR]. In Section 3 we will define a generating function of
arithmetic Chow cycles of codimension 1 in M with real coefficients, in the
sense of Bost and Kühn [Bos1,Kun]:

φ̂(τ) =
∑

m∈Z
Ẑ(m, v)qm, (0.3)

such that
2 deg φ̂(τ) = E(τ, 1

2 ) = EZagier(τ), (0.4)

and
4〈φ̂, ω̂〉 = E ′(τ, 1

2 ). (0.5)

Here ω̂ is a normalized metrized Hodge bundle on M, to be defined in Section 3,
and 〈 , 〉 is the Gillet–Soule intersection pairing ([GS]; see also section 2). Bost’s
arithmetic Chow cycles with real coefficients are crucial here since, for example,
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the negative Fourier coefficients of Zagier’s Eisenstein series are clearly not ra-
tional numbers. This note is a slight variation of joint work with Stephen Kudla
and Michael Rapoport [KRY2]. It confirms a conjecture of Kudla [Ku2].

1. The Chowla–Selberg Formula

Part of the formulas (0.4) and (0.5) can be viewed as a generalization of the
Chowla–Selberg formula which we now describe.

For a positive integer m 6= 0, let Km = Q(
√−m) and let Om be the order in

Km of discriminant −m. Notice that Om exists if and only if m ≡ 0,−1 mod 4.
We can and will write m = dn2 such that −d is the fundamental discriminant of
Km and n ≥ 1 is an integer.

Let Z(m) be the set of isomorphic classes of elliptic curves E over C such
that there is an embedding Om ↪→ End(E). When Om does not exist, we take
Z(m) to be empty. Let

deg Z(m) =
∑

E∈Z(m)

1
#Aut E

(1.1)

and
hFal(Z(m)) =

∑

E∈Z(m)

1
#Aut E

hFal(E), (1.2)

where hFal(E) is the (renormalized) Faltings height, which measures, in some
sense, the complexity of the elliptic curve E. It is defined as follows. Let L be
a number field over which E is defined and has good reduction everywhere, and
let ω be the Néron differential on E over OL. Then

hFal(E) = − 1
2[L : Q]

∑

σ:L↪→C
log

∣∣∣∣
i

2π
e−C

∫

Eσ(C)

ωσ ∧ ω̄σ

∣∣∣∣, (1.3)

where C = 1
2 (γ +log 4π) is a normalizing factor we have the liberty to add. Here

γ is Euler’s constant.
On the other hand, one can define a modified Dirichlet L-series for every

integer m 6= 0
L(s, χm) = L(s, χd)

∏

p|n
bp(n, s) (1.4)

where χd is the quadratic character associated to the quadratic field Km = Kd,
and L(s, χd) is the usual Dirichlet L-series of χd, and

bp(n, s) =
1− χd(p)X + χd(p)pkX1+2k − (pX2)1+k

1− pX2
(1.5)

with X = p−s and k = ordp n. This L-series occurs in the Fourier coefficients of
an Eisenstein series as we will see in Section 3. The complete L-series

Λ(s, χm) = |m|s/2π−(s+a)/2Γ
(

s + a

2

)
L(s, χm) (1.6)
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has an analytic continuation and the functional equation

Λ(s, χm) = Λ(1− s, χm). (1.7)

Here a = (1 + sign m)/2. Now we can state part of our formula as

Theorem 1.1. With the notation as above, one has for m ≥ 1:

(1) 2 deg Z(m) = Λ(0, χm) = H0(m).
(2) 4hFal(Z(m)) = −Λ′(0, χm).

Only orders of the form O4m are considered in [KRY2].

Sketch of Proof. Part (1) is basically the analytic class number formula and
is well-known. Part (2) is basically [KRY1, Corollary 10.12]. We give an outline
for this special case for the reader’s convenience.

Step 0: When −m = −d is the fundamental discriminant of Km, the formula is
just the Chowla–Selberg formula (see [Gro1; Gro2; Col] for this interpretation
and geometric proof): For an elliptic curve E with CM by the ring Od of integers,
one has

2hFal(E) = −Λ′(0, χd)
Λ(0, χd)

.

In particular, the height hFal(E) is independent of the choice of the elliptic curves.
Combining this with (1), one proves (2) for this case.

Step 1: In the general case of non-fundamental discriminants, the Chowla–
Selberg formula was considered by Nakkajima and Taguchi [NT]. An elliptic
curve E with CM by K = Kd is of type c if EndE ∼= Odc2 . Let E be an elliptic
curve of type c. Choose a CM elliptic curve E0 of type 1 together with an isogeny
uL : E0 −→ E. Let L be a number field over which E, E0 and uL are defined
and have good reduction everywhere. Extend uL to an isogeny u on their Néron
models over OL with kernel N

0 −→ N −→ E0 −→ E −→ 0.

Then Raynaud’s isogeny theorem [Ra, p. 205] asserts that

hFal(E) = hFal(E0) + 1
2 log(deg uL)− 1

[L : Q]
log |ε∗(ΩN/OL

)|.

The term log |ε∗(ΩN/OL
)| can be computed locally and was done in [KRY1,

Section 10]. In this special case, we can choose E0 so that uL is of degree c by
the theory of complex multiplication, and thus only [KRY1, Propositions 10.1
and 10.3] are needed. Indeed, if Ec = C/c−1Oc2d, which can actually be defined
over Hc, the ring class field of Oc2d, then E1 = C/Od, and the desired map
Ec −→ E1 is induced by the identity map on C. In general, every elliptic curve
E of type c is a Galois conjugate Eσ

c of Ec by some σ ∈ Gal(Hc/K), and thus
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the desired map is Eσ
c −→ Eσ

1 . The end result is the following formula [KRY1,
Theorem 10.7]:

2hFal(E) = 2hFal(E0) + log c−
∑

p

(1− p− ordp c)(1− χd(p))
(1− p−1)(p− χd(p))

log p.

In particular, the Faltings height of an elliptic curve E of type c depends only
on c. In [KRY1], abelian surfaces are considered and an extra isogeny has to be
studied.

Step 2: Now combining terms together with Step 0 produces

2hFal(Z(m)) = 2 deg Z(m)

(
−Λ′(0, χd)

Λ(0, χd)

+

∑
c|n c

∏
l|c(1− χd(l)l−1)

∑
p|c ηp(ordp c) log p∏

p|n bp(n, 0)

)
.

Here

ηp(r) = r − (1− p−r)(1− χd(p))
(1− p−1)(p− χd(p))

.

On the other hand,

−Λ′(0, χm)
Λ(0, χm)

= −Λ′(0, χd)
Λ(0, χd)

+
∑

p|n

(
log |n|p −

b′p(n, 0)
bp(n, 0)

)
.

Now what is needed is to verify an algebraic identity, which was done in [KRY1,
Lemma 10.9] using induction on the number of prime factors of n. ¤

2. Bost’s L2
1-Arithmetic Divisors and Intersection Theory

As a background for section 3, we briefly review Bost’s L2
1-arithmetic divisors

with real coefficients and the corresponding intersection theory for the conve-
nience of the readers. We refer to [Bos1] for detail. A similar theory was also
developed by Kühn [Kun].

Let M be an arithmetic surface over Z, and let M = M(C) be the corre-
sponding Riemann surface. A generalized function φ on M is (locally) L2

1 if
both φ and ∂φ are (locally) L2, i.e., square integrable. For example, log log |z|−1

is locally L2
1 near z = 0, but log |z| is not. Similarly, log Im z is locally L2

1 at
z = i∞. It is also known that if φ ∈ L2

1 then eφ is Lp for every p < ∞. A current
α on M is called (locally) L2

−1 if it can be written (locally) as

α = ∂β

for some (locally) L2 1-form β.
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Bost’s arithmetic Chow groups. Let Z1(M) be the free abelian group of
Weil divisors of M, and let Z1

R(M) = Z1(M) ⊗ R. An L2
1-arithmetic divisor

on M is a pair D̂ = (D, g) with D ∈ Z1(M) and g is a L2
1-Green function for

D in the following sense: There is a usual C∞-Green function g0 for D and a
L2

1-generalized function φ ∈ L2
1(M) such that

g = g0 + φ. (2.1)

Equivalently, for any local holomorphic coordinate z on an open neighborhood
of M , one has

g = φ +
∑

P∈U

nP log |z − z(P )|−2 (2.2)

for some φ ∈ L2
1(U) if D =

∑
nP P . In this case,

ω1(D̂) = ddcg + δD

is a “L2
−1”-current on M of degree 2 [Bos1, p. 255]. Let Ẑ1(M) be the abelian

group of L2
1-arithmetic divisors in M. Notice that (2.2) makes sense even if nP ∈

R. In such a case, we call (D, g) a L2
1-arithmetic divisor with real coefficients,

and denote the abelian group of all L2
1-arithmetic divisors with real coefficients

by Ẑ1
R(M). For a rational function f ∈ Q(M),

d̂iv(f) = (div(f), − log |f |2)

is certainly a L2
1-arithmetic divisor—a principal arithmetic divisor. Let ĈH

1
(M)

and ĈH1
R(M) be the quotient groups of Ẑ1(M) and Ẑ1

R(M) respectively by the
principal arithmetic divisors. There is a natural map

ĈH
1
(M) −→ ĈH1

R(M)

whose kernel is determined by [Bos1, Theorem 5.5], and the intersection pairing

on ĈH
1
(M) (to be reviewed below) factors through ĈH1

R(M).

The Arakelov–Gillet–Soule–Bost pairing. If D̂1 = (D1, g1) and D̂2 =
(D2, g2) are L2

1-arithmetic divisors on M such that |D1| and |D2| do not meet
in the generic fiber MQ , their intersection is defined as (see [Bos1, (5.8)])

〈D̂1, D̂2〉 = d̂eg D1.D2 +
1
2

∫

M

g1 ∗ g2 (2.3)

where the star product integral
∫

M
g1 ∗ g2 is defined as follows [Bos1, (5.1) and

(5.4)]. If both g1 and g2 are C∞-Green functions, one has as usual

g1 ∗ g2 = g1ω2 + g2δD1 , (2.4)

where
ωi = ddcgi + δDi
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is a C∞-form of degree 2 on M . If g̃i = gi + φi such that gi are C∞ and
φi ∈ L2

1(M), then
∫

M

g̃1 ∗ g̃2 =
∫

M

g1 ∗ g2 +
∫

M

φ1ω2 +
∫

M

φ2ω1 +
1

2πi

∫

M

∂φ1 ∧ ∂̄φ2. (2.5)

It is checked in [Bos1, Section 5.1]) that this is well-defined, and 〈D̂, d̂iv(f)〉 = 0.
So (2.3) and (2.4) give an intersection pairing on ĈH1(M) and ĈH1

R(M) [Bos1,
Theorem 5.5].

L2
1-metrized line bundles and Bost’s arithmetic Picard group. A L2

1-
metrized line bundle is a pair L̄ = (L, ‖ · ‖) where L is as usual a line bundle on
M and ‖·‖ is a L2

1-metric on L = L⊗C (invariant under complex conjugation) in
the following sense: There is a C∞ metric ‖ ·‖0 on L together with an φ ∈ L2

1(L)
such that

‖ · ‖2 = ‖ · ‖20e−φ. (2.6)

The natural map P̂ic(M) −→ ĈH
1
(M) given by

L̄ 7→ ĉ1(L̄) = (div(s),− log ‖s‖2) (2.7)

extends to the L2
1-case, where s is a meromorphic section of L. Let L̄0 = (L, ‖·‖0),

then
ĉ1(L̄) = ĉ1(L̄0) + (0, φ ◦ s), (2.8)

and the corresponding first Chern form is

c1(L̄) = c1(L̄0) + ddc(φ ◦ s). (2.9)

Via the map (2.7), we have then an intersection theory

P̂ic(M)× ĈH1
R(M) −→ C.

It can be computed directly as follows:

〈L̄, (D, g)〉 = hL̄(D) +
1
2

∫

M(C)

gc1(L̄), (2.10)

where the height function hL̄(D) is defined as in [KRY1, pages 15-16]. The
change from arithmetic surfaces to stacks is the same as in [KRY1, Section 4].

3. The Main Result

Let M0 be the moduli stack over Z of elliptic curves considered by Deligne
and Rapoport [DR]. Over C, it is the same as the orbifold

M0(C) = [SL2(Z)\H],

where each elliptic curve E ∈ M0(C) is counted with multiplicity 1/(#Aut E),
i.e., with the order of its stabilizer in SL2(Z). Let M be the Deligne–Rapoport
compactification of M0, so M(C) is M0(C) plus the cusp ∞.
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For an integer m ≥ 1 (with m ≡ −1, 0 mod 4), let Z(m) be the moduli
stack over Z of elliptic curves E such that there is Om ↪→ End(E). Then Z(m)
is a divisor on M, and one has Z(m)(C) = [Z(m)] with each elliptic curve
counted 1/(#Aut E) times. This explains the weight in defining deg Z(m) and
hFal(Z(m)). We can view Z(m) as giving a class in CH1(M).

For every integer m and a positive real number v > 0, Kudla constructed
in [Ku1] a function Ξ(m, v) on M0(C). We will review this construction in
Section 4 and sketch a proof of the following proposition.

Proposition 3.1. (1) When m > 0, Ξ(m, v) is also smooth at the cusp ∞ and
is a Green’s function for Z(m) on M(C). That is, there is a C∞ (1, 1)-form
ω(m, v) on M such that

ddcg + δZ(m) = [ω(m, v)]

as currents.
(2) When −m > 0 is not a square, Ξ(m, v) is smooth everywhere, including at

the unique cusp ∞.
(3) When −m = n2 > 0 is square, Ξ(m, v) is smooth in the upper half plane but

is singular at the cusp ∞. As a current , it satisfies the Green’s equation

∂ ∂̄Ξ(m, v) + g(n, v)δ∞ = [ω(m, v)] (3.1)

for a L2
−1-form ω(m, v) on M of degree 2. Here g(n, v) is given in (0.2).

(4) When m = 0, Ξ(0, v) is smooth in the upper half plane but is singular at the
cusp ∞. As a current , it satisfies the Green’s equation

∂ ∂̄Ξ(0, v) +
1

16π
√

v
δ∞ = [ω(0, v)]

for a L2
−1-form ω(0, v) on M of degree 2.

Because of this proposition, we can define the arithmetic Chow cycles with real
coefficients Ẑ(m, v) ∈ ĈH1

R(M) for m 6= 0 and v > 0 via

Ẑ(m, v) =





(Z(m), Ξ(m, v)) if m > 0,

(0, Ξ(m, v)) if −m > 0 is not a square,

(g(n, v) · ∞,Ξ(m, v)) if −m = n2 > 0.

(3.2)

To define Ẑ(0, v), we need the metrized Hodge bundle ω̂ on M. Let E be the
universal elliptic curve over M with zero section ε. Then the Hodge line bundle
is ω = ε∗ΩE/M. Notice that ω2 is the relative differential bundle ΩM/Z , which
is associated to modular forms of weight 2. So the Hodge bundle is associated
to modular forms of weight one. The metric on ωC is defined as follows. For a
section α of ωC , αz at z ∈ M(C) corresponds to a holomorphic 1-form on the
associated elliptic curve Ez, we define

‖αz‖2 =

∣∣∣∣
i

2π
e−C

∫

Ez(C)

αz ∧ ᾱz

∣∣∣∣ (3.3)
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where C is the constant as in (1.3). We remark that ω̂ = (ω, ‖ ‖) ∈ P̂ic(M)
has singularity at the cusp ∞. See [Bos2] and [Kun] for detailed discussion on
this issue. In these papers, Bost and Kühn independently computed the self-
intersection number of ω̂, and their result is

〈ω̂, ω̂〉 = 1
2ζ(−1) + ζ ′(−1) + 1

12 C, (3.4)

where ζ is the usual Riemann zeta function and C is the constant in (1.3). In
view of the map (2.7), we may view ω̂ ∈ ĈH1

R(M). Its first Chern form c1(ω̂) is

1
4π

dx ∧ dy

y2
.

Finally, we define

Ẑ(0, v) =
( 1

16π
√

v
∞, Ξ(0, v)

)
− ω̂ − (0, log v) ∈ ĈH

1

R(M) (3.5)

and the generating function of arithmetic cycles

φ̂(τ) =
∑

m∈Z
Ẑ(m, v)qm. (3.6)

According to [Ku2], φ̂(τ) should be a modular form of weight 3/2 valued in
the arithmetic Chow group. In particular, for any linear functional f on the
arithmetic Chow group,

f(φ̂(τ)) =
∑

m∈Z
f(Ẑ(m, v))qm

should be a scalar modular form of weight 3/2. The main theorem below asserts
that it is true when f is the degree map or the intersection map with ω̂. Here
the degree map is given by

deg D̂ =
∫

M(C)

ω1(D̂),

where ω1(D̂) = ddcg+δD if D̂ = (D, g). To be more precise, we need to introduce
the Eisenstein series. Following Hirzebruch and Zagier [HZ, pp. 91, 93] and using
their notation, we let

E(τ, s) =
∑
m>0

(m,2n)=1

(
n

m

)(−1
m

)1/2

(mτ + n)3/2|mτ + n|2s
(3.7)

and

F(τ, s) = − 1
96

(
(1− i)E(s, τ)− iτ3/2|τ |−2sE

(
s,− 1

4τ

))
. (3.8)
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They are non-holomorphic modular forms of weight 3
2 . We renormalize it as

E(τ, s) =
( 1
2 + s)Λ(1 + 2s)

Λ(2)

(
v

2

)(1/2)(s−1/2)

F(τ, 1
2 (s− 1

2 )) (3.9)

We refer to [KRY1; KRY2] for adelic construction of such Eisenstein series, which
seems more natural.

Theorem 3.2. Let the notation be as above.

(1) E(τ, s) = E(τ,−s).
(2) E(τ, 1

2 ) = EZagier(τ) = 2 deg(φ̂(τ)).
(3) E ′(τ, 1

2 ) = 4φheight(τ), where

φheight(τ) = 〈φ̂(τ), ω̂〉 =
∑
m

〈Ẑ(m, v), ω̂〉qm.

In particular, when m > 0 the unfolding of the height pairing gives

〈Ẑ(m, v), ω̂〉 = hFal(Z(m)) +
1
8π

∫

M(C)

Ξ(m, v)
dx dy

y2
. (3.10)

So just like the degree, the generating function of the Faltings’ height∑
m>0 hFal(Z(m))qm is part of a modular form of weight 3/2. Moreover, we also

give some arithmetic interpretation of the negative terms of Zagier’s Eisenstein
series as well as its ‘derivative’.

We would like to point out three interesting features of Theorem 3.2. Firstly
s = 1

2 is not the symmetric center although it is a critical point. Secondly, both
the value and the derivative of the Eisenstein series have interesting arithmetic
meanings. In particular, the derivative here is not the leading term but the
second term. Finally, since Zagier’s Eisenstein series has real numbers g(n, v) as
its Fourier coefficients, any arithmetic interpretation of the Eisenstein series as
degree generating function would be forced to consider arithmetic Chow cycles
with real coefficients as we did here and in [KRY2]. It is a little amusing to
us that our Greens’ function Ξ(m, v), originally defined for the Heegner cycle
Z(m) for m > 0, gives such a cycle and matches up perfectly with the Fourier
coefficients when −m = n2 > 0.

Corollary 3.3. Let E(τ, s) be as in Theorem 3.2. Then, for m > 0,

(1) 2 deg Z(m) = Em(τ, 1
2 )q−m;

(2) 4hFal(Z(m)) = limv 7→∞ E ′m(τ, 1
2 )q−m.

Proof. (1) follows directly from Theorem 3.2. (2) follows from Theorem 3.2,
(3.7) and the fact that the integral in (3.7) goes to zero when v goes to infinity. ¤

Now we describe the Fourier expansion of the Eisenstein series. Let

Ψ(a, b, t) =
1

Γ(a)

∫ ∞

0

e−tr(1 + r)b−a−1ra−1dr (3.11)
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be the classical second confluent hypergeometric function for a > 0 and t > 0,
and let

Ψn(s, t) = Ψ
(

1
2 (1 + n + s), 1 + s, t

)
. (3.12)

This function satisfies the functional equation

Ψn(−s, t) = zsΨn(s, t). (3.13)

Theorem 3.4. The Eisenstein series E(τ, s) in Theorem 3.2 has the following
Fourier expansion

E(τ, s) =
∑

m≡0,−1 mod 4

Am(v, s)qm,

where

(1) for m > 0,

Am(v, s) = Λ( 1
2 − s, χm)(4πmv)(1/2)(s−1/2)Ψ−3/2(s, 4πmv);

(2) for m < 0,

Am(v, s) =
(s2 − 1

4 )Λ( 1
2 − s, χm)(4π|m|v)(1/2)(s−1/2)Ψ 3

2
(s, 4π|m|v)

4
√

πe4πmv
;

(3) the constant term is given by

A0(v, s) = − 1
2π

(G(s) + G(−s))

with
G(s) = (4v)(1/2)(1/2−s)(s + 1

2 )Λ(1 + 2s).

4. Construction of the Green’s Function Ξ(m, v)

Although the construction is quite general [Ku1], we stick to the special case
at hand.

Let

V = {x =
(

b c

−a −b

)
∈ M2(Q) : tr x = 0}, (4.1)

with the quadratic form

Q(x) = det x = ac− b2.

It has signature (1, 2). Let D be the set of negative 2-planes in V (R). Then D

is in bijection with the upper half plane H, given by

z = g(i) ∈ H ←→ z = {gz1g
−1, gz2g

−1} ∈ D

for any g ∈ GL2(R), where

z1 =
(

1 0
0 −1

)
, z2 =

(
0 1
1 0

)
.



FALTINGS HEIGHTS AND ZAGIER’S EISENSTEIN SERIES 281

Here {v1, v2} denotes the subspace of V (R) spanned by v1 and v2 in V (R). We
will use z to stand for both the complex number in H and the associated negative
two-plane by abuse of notation. Given z ∈ H = D, one has the orthogonal
decomposition

V (R) = z ⊕ z⊥, x = (prz x, prz⊥ x).

For x ∈ V (R) as in (4.1) and z ∈ H, define

R(x, z) = −(prz x, prz x) =
1
2
(azz̄ + b(z + z̄) + c− detx). (4.2)

Then R(x, z) ≥ 0 and it equals zero if and only if z ⊥ x. Notice that when
x > 0 (meaning Q(x) > 0), Dx = x⊥ is a negative 2-plane and thus a point in
D. Notice that R(x, z) = 0 if and only if z = Dx in this case.

Instead of the maximal integral lattice M2(Z)∩V used in [KRY2], we choose
the lattice

L = {x =
(

b 2c

−2a −b

)
: a, b, c ∈ Z} ⊂ V (4.3)

(notice that Q(x) = 4ac− b2), and for m 6= 0, let

L(m) = {x ∈ L : det x = m}.

Then, for m > 0, one has the following identification

[L(m)/ SL2(Z)] ↔ Z(m)(C), x 7→ Dx

where x ∈ L(m)/ SL2(Z) is counted with multiplicity 1/(#Γx), and Γx is the
stabilizer of x in SL2(Z). For every integer m and real number v > 0, we define

Ξ(m, v)(z) =
1
2

∑

0 6=x∈L(m)

ρ(x
√

v, z) (4.4)

where

ρ(x, z) =
∫ ∞

1

e−2πR(x,z)r dr

r
= −Ei(−2πR(x, z)). (4.5)

Proposition 11.1 of [Ku1] asserts that as currents on D, one has

ddcρ(x, z) + δDx = [φKM (x)] (4.6)

where Dx is empty if (x, x) ≤ 0 and

φKM (x) =
(

(x, z)2 − 1
2π

)
e−2πR(x,z) i

2
dzdz̄

(Im z)2
(4.7)

is a smooth (1, 1)-form in the upper half plane. Set

ω(m, v) =
1
2

∑

0 6=x∈L(m)

φKM (x
√

v). (4.8)
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Note that, when m = 0, we sum over the set of nonzero null vectors L(0)− {0}.
When m > 0, the series (4.8) is absolutely convergent and thus

ddcΞ(m, v) + δZ(m) = [ω(m, v)]. (4.9)

This proves Proposition 3.1(1). The same is true when −m > 0 is not a square.
However, when −m ≥ 0 is a square, the series (4.8) is convergent not termwise
integrable. It turns out that ω(m, v) has a logarithmic singularity at the cusp
∞ in this case and is in L1(M(C)) according to Funke [Fu]. From this, one
can check that [ω(m, v)] is a L2

−1-current and (Z(m, v), Ξ(m, v)) is an arithmetic
divisor with real coefficient. Furthermore, Funke proved [Fu, Propositions 4.7,
4.8] that ∫

M(C)

ω(m, v) = g(n, v) (4.10)

in this case. This proves Proposition 3.1.

5. The proof of Theorem 3.2

Now we sketch a proof of Theorem 3.2 and refer to [KRY2] for details. The
functional equation follows from Theorem 3.4 and functional equations (1.7) and
(3.13).

Checking the identity EZagier(τ) = deg φ̂(τ) amounts to verifying that

deg Ẑ(m, v) =
∫

M(C)

ω(m, v) =





1
2H0(m) if m > 0,

0 if −m > 0 is not a square,

g(n, v) if −m = n2 > 0,

1/(16π
√

v) if m = 0.

When m < 0, this is basically (4.10). When m > 0,

deg Ẑ(m, v) = deg Z(m) = 1
2H0(m)

is just Theorem 1.1(1).
The identity E(τ, 1

2 ) = EZagier(τ) follows from Theorem 3.4 directly. Indeed,
when m > 0, the fact Ψ−3/2( 1

2 , t) = 1 implies that

Am(v, 1
2 ) = Λ(0, χm)qm = EZagier,m(τ).

When −m > 0, one has [KRY1, page 84]

Ψ 3
2
(
1
2
, 4π|m|v) =

e4π|m|v
√

4π|m|v

∫ ∞

1

e−4π|m|vrr−3/2dr.

So Am(v, 1
2 ) = 0 unless Λ(s, χm) has a pole at s = 0, i.e., −m = n2 is a square.

If −m = n2 > 0, then

Λ(s, χm) = Λ(s)ns
∏

p|n
bp(n, s)
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and

lim
s−→0

sΛ(−s, χm) = n.

Therefore

Am(v, 1
2 ) =

1
8π
√

v

∫ ∞

1

e−4π|m|vrr−3/2dr = EZagier,m(τ)q−m.

The case m = 0 is similar.
Part (3) of Theorem 3.2 is new and is proved in a term-by-term manner. The

case m > 0 is basically Theorem 1.1 together with a routine calculation of the
integral ∫

M(C)

Ξ(m, v)
dx dy

y2
. (5.1)

The case where −m > 0 is not a square is also a routine calculation of the
integral (5.1), and is done in [KRY1, Section 12]. The case −m = 0 involves the
self-intersection of the Hodge bundle ω̂, which was given by (3.4).

Finally, when −m = n2 > 0 is a square, the proof goes as follows. Notice
[Bos2; Kun] that

ĉ1(ω̂) = 1
12 (∞,− log |∆|2) + (0, C) (5.2)

where C is the constant defined in (1.3). So

Ẑ(m, v) = 12g(n, v)ĉ1(ω̂) + (0, β(n, v)) (5.3)

with

β(n, v) = Ξ(−n2, v)− 12g(n, v)C − g(n, v) log |∆(τ)|2. (5.4)

Notice that β(n, v) is smooth at ∞. Therefore

〈Ẑ(m, v), ω̂〉 = 12g(n, v)〈ω̂, ω̂〉+
1
8π

∫

M(C)

β(n, v)
dx dy

y2
. (5.5)

Since the self-intersection 〈ω̂, ω̂〉 is computed by Bost and Kühn, the key is thus to
compute the integral in (5.5) and compare it with A′(−n2, 1

2 ). The computation
turns out to be quite involving and amusing to us.
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