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Abstract. This note presents a connection between Ulmer’s construction
[Ulm02] of non-isotrivial elliptic curves over Fp(t) with arbitrarily large
rank, and the theory of Heegner points (attached to parametrisations by
Drinfeld modular curves, as sketched in Section 3 of Ulmer’s article (see
page ??). This ties in the topics in Section 4 of that article more closely to
the main theme of this volume.

A review of the number field setting. Let K be a quadratic imaginary
extension of F = Q, and let E/Q be an elliptic curve of conductor N . When
all the prime divisors of N are split in K/F , the Heegner point construction
(in the most classical form that is considered in [GZ], relying on the modular
parametrisation X0(N) −→ E) produces not only a canonical point on E(K),
but also a norm-coherent system of such points over all abelian extensions of K

which are of “dihedral type”. (An abelian extension H of K is said to be of
dihedral type if it is Galois over Q and the generator of Gal(K/Q) acts by −1 on
the abelian normal subgroup Gal(H/K).) The existence of this construction is
consistent with the Birch and Swinnerton-Dyer conjecture, in the following sense:
an analysis of the sign in the functional equation for L(E/K, χ, s) = L(E/K, χ̄, s)
shows that this sign is always equal to −1, for all complex characters χ of G :=
Gal(H/K). Hence

L(E/K, χ, 1) = 0 for all χ : G −→ C×.

The product factorisation

L(E/H, s) =
∏
χ

L(E/K, χ, s)

implies that

ords=1L(E/H, s) ≥ [H : K], (1)
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so that the Birch and Swinnerton-Dyer conjecture predicts that

rank(E(H))
?≥ [H : K]. (2)

In fact, the G-equivariant refinement of the Birch and Swinnerton-Dyer conjec-
ture leads one to expect that the rational vector space E(H)⊗Q contains a copy
of the regular representation of G.

It is expected in this situation that Heegner points account for the bulk of the
growth of E(H), as H varies over the abelian extensions of K of dihedral type.
For example we have:

Lemma 1. If ords=1L(E/H, s) ≤ [H : K], then the vector space E(H)⊗Q has
dimension [H : K] and is generated by Heegner points.

Proof. For V any complex representation of G, let

V χ := {v ∈ V such that σv = χ(σ)v, for all σ ∈ G}.
Since equality is attained in (1), it follows that each L(E/K, χ, s) vanishes to
order exactly one at s = 1. Zhang’s extension of the Gross–Zagier formula to L-
functions L(E/K, s) twisted by (possibly ramified) characters of G [Zh01] shows
that

dimC(HPχ) = 1, (3)

where HP denotes the subspace of E(H) ⊗ C generated by Heegner points.
Theorem 2.2 of [BD90], whose proof is based on Kolyvagin’s method, then shows
that

dimC((E(H)⊗ C)χ) ≤ 1. (4)

The result follows directly from (3) and (4). ¤

0.1. The case F = Fq(u). As explained in Section 3 of [Ulm03], the Heegner
point construction can be adapted to the case where Q is replaced by the rational
function field Fq(u).

The basic idea of our construction is to start with an elliptic curve E0 defined
over Fp(u), and produce a Galois extension H of Fq(u) (for some power q of p)
such that

(i) the Galois group of H over Fq(u) is isomorphic to a dihedral group of order
2d;

(ii) H satisfies a suitable Heegner hypothesis relative to E0 over Fq(u) so that
the Birch and Swinnerton-Dyer conjecture implies an inequality like (2);

(iii) H is the function field of a curve of genus 0, say H = Fq(t), so that E0

yields a curve E over Fp(t) which acquires rank at least d over Fq(t).

A further argument is then made to show that the rank of E remains large over
Fp(t), provided suitable choices of d and q have been made.

To illustrate the method, let p be an odd prime and let F0 be the field Fp(u),
with u an indeterminate. Let K0 = Fp(v) be the quadratic extension of F0
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defined by v + v−1 = u. Choose an element u∞ ∈ P1(Fp) such that the place
(u−u∞) is inert in K0. (Such a u∞ always exists when p > 2.) The chosen place
u∞ will play the role in our setting of the archimedean place of Q in the previous
discussion. Note that K0/F0 becomes a quadratic “imaginary” extension with
this choice of place at infinity, and that this continues to hold when Fp is replaced
by Fq with q = pm, provided that m is odd.

Let E = Eu be an elliptic curve over F0 having split multiplicative reduction
at u∞. Let E denote the Néron model of E over the subring O = Fp[ 1

u−u∞
] and

let N denote its arithmetic conductor, viewed as a divisor of P1−{u∞}. Suppose
that

all prime divisors of N are split in K0/F0, (5)

which is the analogue of the classical Heegner hypothesis in our function field
setting.

Finally, given any integer d, let od be the order of p in (Z/dZ)×. Assume that

the integer od is odd. (6)

We then set q = pod and consider the extensions

F = Fq(u); K = Fq(v); H = Fq(t), with v = td.

Note that H/K is an abelian extension with Galois group G = Gal(H/K) iso-
morphic to µd(Fq) ' Z/dZ, and that this extension is of dihedral type, relative
to the ground field F . Therefore the analysis of signs in functional equations
that was carried out to conclude (1) carries over, mutatis mutandis, to prove the
following.

Proposition 2. Assume the Birch and Swinnerton-Dyer conjecture over func-
tion fields. Then the rank of E(H) is at least d. More precisely ,

dimC ((E(H)⊗ C)χ) ≥ 1, for all χ : G −→ C×.

One also wants to estimate the rank of E over the field H0 := Fp(t). Let
G̃ = Gal(H/K0); then G̃ is the semi-direct product G × 〈f〉, where 〈f〉 ⊂
(Z/dZ)× is the cyclic group of order od generated by the Frobenius element
f ∈ Gal(H/H0) = Gal(Fq/Fp), which acts by conjugation on the abelian nor-
mal subgroup G = µd(Fq) in the natural way. Since E is defined over K0 (and
even over F0), the space V := E(H)⊗ C is a complex representation of G̃, and
one may exploit basic facts about the irreducible representations of such a semi-
direct product to obtain lower bounds for E(H)f=1 = E(Fp(t)). More precisely,
suppose that the character χ of G is one of the φ(d) faithful characters of G.
Proposition 2 asserts that the space V χ contains a non-zero vector vχ. Note
that V χ is not preserved by the action of f , which sends V χ to V χp

. Because of
this, the vectors vχ, fvχ, . . ., fod−1vχ are linearly independent since they belong
to different eigenspaces for the action of G. Hence the vector

v[χ] = vχ + fvχ + · · ·+ fod−1vχ
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is non-zero and belongs to V f=1 = E(H0)⊗C. Futhermore the v[χ] are linearly
independent, as χ ranges over the f -orbits of faithful characters of G. Hence

rank(E(Fp(t)) ≥ φ(d)/od.

By taking into account the contributions coming from all the characters (and
not just the faithful ones) one can obtain the following stronger estimate.

Proposition 3. Assume the Birch and Swinnerton-Dyer conjecture over func-
tion fields. Then

rank(E(Fp(t)) ≥
∑

e|d

φ(e)
oe

≥ d

od
. (7)

Proof. A complex character χ of G is said to be of level e if its image is
contained in the group µe of eth roots of unity in C and in no smaller subgroup.
Clearly the level e of χ is a divisor of d, the order oe of p in (Z/eZ)× divides
od, and there are exactly φ(e) distinct characters of G of level e. Note also that
if χ is of level e, then foe maps V χ to itself. The same reasoning used to prove
Proposition 2, but with d replaced by e, and q by poe , shows that (under the
Birch and Swinnerton-Dyer assumption)

V χ contains a non-zero vector fixed by foe .

If vχ is such a vector, then just as before the vectors

v[χ] = vχ + fvχ + · · ·+ foe−1vχ

form a linearly independent collection of φ(e)/oe vectors in E(Fp(t)) ⊗ C, as χ

ranges over the f -orbits of characters of G of level e. Summing over all e dividing
d proves the first inequality in (7). The second is obtained by noting that

∑

e|d

φ(e)
oe

≥ 1
od

∑

e|d
φ(e) =

d

od
. ¤

Remarks. 1. It is instructive to compare the bound (7) with the formula for
the rank of Ulmer’s elliptic curves which is given in Theorem 4.2.1 of [Ulm03].

2. Note that the expression which appears on the right of (7) can be made
arbitrarily large by setting d = pn − 1 with n odd, so that od = n.

Some examples. Elliptic curves satisfying the Heegner assumptions of the
previous section are not hard to exhibit explicitly. For example, suppose for
notational convenience that p is congruent to 3 modulo 4, and let E[u] be a
non-isotrivial elliptic curve over Fp(u) having good reduction everywhere except
at u = 0, 1 and ∞, and having split multiplicative reduction at u∞ = 0. There
are a number of such curves, for example:

(i) An (appropriate twist of a) “universal” elliptic curve over the j-line in char-
acteristic p 6= 2, 3, with u = 1728/j;

(ii) A “universal” curve over X0(2), or over X0(3);
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(iii) The Legendre family y2 = x(x − 1)(x − u) (corresponding to a universal
family over the modular curve X(2)).

(iv) The curve y2 +xy = x3−u that is used in [Ulm03], in which the parameter
space has no interpretation as a modular curve.

Choosing any parameter λ in Fp − {0,±1}, we see that the curve E
[

u
λ+λ−1

]
over Fp(u) satisfies all the desired properties, since two of the places u = ∞
and λ + λ−1 dividing the conductor of E are split in K/F , while the third place
u = 0, which lies below v = ±i, is inert in K/F . (This is where the assumption
p ≡ 3 (mod 4) is used.) Hence Proposition 3 implies

Corollary 4. Assume the Birch and Swinnerton-Dyer conjecture for function
fields. Let E[u] be any of the curves over Fp(u) listed above, and let λ be any
element in Fp − {0,±1}. Then the curve

E

[
td + t−d

λ + λ−1

]

has rank at least d/od over Fp(t).

Dispensing with the Birch and Swinnerton-Dyer hypothesis. It may
be possible, at least for some specific choices of E[u] and of d, to remove the
Birch and Swinnerton-Dyer assumption that appears in corollary 4, since the
notion of Heegner points which motivated Proposition 2 also suggests a possi-
ble construction of a (hopefully, sufficiently large) collection of global points in
E(H). To produce explicit examples where the module HP generated by Heeg-
ner points in E(H) has large rank, it may not be necessary to invoke the full
strength of the theory described in Section 3 of [Ulm03] since quite often the
mere knowledge that the Heegner point on E(K) is of infinite order is sufficient
to gain strong control over the Heegner points that appear in related towers. It
appears worthwhile to produce explicit examples where Propositions 2 and 3 can
be made unconditional thanks to the Heegner point construction.

Remark. Crucial to the construction in this note is the fact that P1 has a
large automorphism group, containing dihedral groups of arbitrarily large order.
Needless to say, this fact breaks down when Fp(u) is replaced by Q, which has
no automorphisms. In this setting Heegner points are known to be a purely
“rank one phenomenon”, and are unlikely to yield any insight into the question
of whether the rank of elliptic curves over Q is unbounded or not.

Remarks on Ulmer’s construction. Let d be a divisor of q+1, where q = pn.
The curve

Ed : y2 + xy = x3 − td

studied in Theorem 4.2.1 of [Ulm03] is a pullback of the curve

E0 : y2 + xy = x3 − u
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by the covering P1 → P1 given by t 7→ u := td, a covering that becomes Galois
(abelian) over Fq2 . It is not hard on the other hand to see that the curve Ed

does not arise as a pullback via any geometrically connected dihedral covering
P1 → P1. However, one may set

F = Fq(u), K = Fq2(u), H = Fq2(t), with u = td.

The congruence q ≡ −1 (mod d) implies that Gal(H/F ) is a dihedral group of
order 2d. Hence is becomes apparent a posteriori that the curves of [Ulm02]
can be approached by a calculation of the signs in functional equations for the
L-series of E0 over K twisted by characters of Gal(H/K). (See the remarks in
sec. 4.3 of [Ulm03] for further details on this calculation and its close connection
with the original strategy followed in [Ulm02].)

It should be noted that the elliptic curves produced in our Corollary 4 have
smaller rank-to-conductor ratios than the curves Ed in Theorem 4.2.1 of [Ulm03],
which are essentially optimal in this respect.
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