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1. Introduction

Motion by mean curvature of an embedded smooth hypersurface without

boundary has been the subject of several recent papers, because of its geometric

interest and of its application to different areas, see for instance the pioneering

book [Brakke 1978], or the papers [Allen and Cahn 1979], [Huisken 1984], [Osher

and Sethian 1988], [Evans and Spruck 1991], [Almgren et al. 1993]. A smooth

boundary ∂E of an open set E = E(0) ⊂ R
n flows by mean curvature if there
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exists a time-dependent family (∂E(t))t∈[0,T ] of smooth boundaries satisfying the

following property: the normal velocity of any point x ∈ ∂E(t) is equal to the

sum of the principal curvatures of ∂E(t) at x. One can show that, at each time

t, such an evolution process reduces the area of ∂E(t) as fast as possible. Mean

curvature flow has therefore a variational character, since it can be interpreted

as the gradient flow associated with the area functional ∂E → Hn−1(∂E), where

Hn−1 indicates the (n−1)-dimensional Hausdorff measure in R
n.

In several physical processes (for instance in certain models of dendritic growth

and crystal growth, see [Cahn et al. 1992], or in statistical physics (see for ex-

ample [Spohn 1993]) it turns out, however, that the evolution of the surface is

not simply by mean curvature, but is an anisotropic evolution. From the en-

ergy point of view, this means that the functional of which we are taking the

gradient flow is not the area of ∂E anymore, but is a weighted area, which can

be derived by looking at R
n as a normed space. Let φ : R

n → [0,+∞[ be a

norm on R
n. One of the most common area measures of ∂E in the normed

space (Rn, φ) is the so-called Minkowski content Mn−1
dφ

(∂E) of ∂E induced by

φ. Denoting by dφ(x, y) := φ(y − x) the distance on R
n induced by φ and by

Hn
dφ

the n-dimensional Hausdorff measure with respect to dφ, M
n−1
dφ

is defined

as

Mn−1
dφ

(∂E) := lim
ρ→0+

1

2ρ
Hn
dφ

(

{z ∈ R
n : inf

x∈∂E
dφ(z, x) < ρ}

)

. (1–1)

Since it is possible to prove that Hn
dφ

coincides with the Lebesgue measure | · |

multiplied by the factor

cn,φ :=
ωn

|{ξ ∈ R
n : φ(ξ) ≤ 1}|

,

ωn being a normalizing constant, we have

Mn−1
dφ

(∂E) = cn,φ lim
ρ→0+

1

2ρ

∣

∣{z ∈ R
n : inf

x∈∂E
dφ(z, x) < ρ}

∣

∣. (1–2)

Therefore, Mn−1
φ (∂E) measures (for small ρ > 0) the ratio between the volume

of a ρ-tubular neighborhood of ∂E and ρ. Definition (1–1) can be made more

explicit, since it turns out that

Mn−1
dφ

(∂E) = cn,φ

∫

∂E

φo(νE) dHn−1. (1–3)

Here νE is the Euclidean unit normal to ∂E pointing outside of E, and the func-

tion φo : R
n → [0,+∞[ is the dual norm of φ. Physically, φo(ν) plays the rôle of

a surface tension of a flat surface whose normal is ν, and can be considered as the

anisotropy. The functional (1–3) is the above mentioned weighted area, whose

gradient flow gives raise to the so-called anisotropic motion by mean curvature.

In the regular case, that is, when φ2 is smooth and strictly convex, the relevant

quantity is the so-called Cahn–Hoffman vector field nEφ on ∂E, which is the im-

age of νEφ := νE/φo(νE) through the map 1
2∇((φo)2), and whose divergence is
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the anisotropic mean curvature of ∂E (denoted by κEφ ). The anisotropic mean

curvature is derived (again by a variational principle) in the computation of the

first variation of (1–3). Therefore, for any time t, anisotropic mean curvature

flow is defined in such a way to decrease Mn−1
dφ

(∂E(t)) as fast as possible.

Besides the regular case, other anisotropies can be considered; we are partic-

ularly interested in the crystalline case, when the function φ is piecewise linear

(or equivalently when the unit ball Bφ := {φ ≤ 1} is a polytope). From the

mathematical point of view, this field of research was initiated by the work of J.

Taylor [Taylor 1978], [Taylor 1986], [Taylor 1991], [Cahn et al. 1992], [Taylor

1992], [Taylor 1993], [Almgren and Taylor 1995]. See also the papers [Hoffman

and Cahn 1972], [Cahn and Hoffman 1974], [Cahn et al. 1993]. Recently, several

authors contributed to the subject: see for instance

• [Girao and Kohn 1994], [Girao 1995], [Rybka 1997], [Ishii and Soner 1999]

and [Giga and Giga 2000] for general properties of the crystalline flow in two

dimensions and for the convergence of a crystalline algorithm;

• [Stancu 1996] for self-similar solutions of the crystalline flow in two dimen-

sions;

• [Fukui and Giga 1996], [Giga and Giga 1997], [Giga and Giga 1998b], [Giga

and Giga 1999] for the crystalline evolution of graphs in two dimensions;

• [Giga and Gurtin 1996] for a comparison theorem for crystalline evolutions in

two dimensions;

• [Roosen and Taylor 1994] for the crystalline evolution in a diffusion field, and

[Giga and Giga 1998a] for the crystalline flow with a driving force in two

dimensions;

• [Ambrosio et al. 2002] for some regularity properties of solutions to crystalline

variational problems in two dimensions;

• [Yunger 1998] and [Paolini and Pasquarelli 2000] for some properties of the

crystalline flow in three dimensions.

In two dimensions (that is, for crystalline curvature evolution of curves) the

situation is essentially understood, since the notion of crystalline curvature is

clear, as well as the corresponding geometric evolution law. For instance, for

polygonal initial curves (whose geometry is compatible with the geometry of

∂Bφ) a comparison principle is available and the flow admits local existence

and uniqueness. It turns out that each edge of the curve translates in normal

direction during the flow, and the evolution can be described by a system of

ordinary differential equations.

However, in three space dimensions the situation is not so clear. As in the two-

dimensional case, it is necessary to redefine what is a smooth boundary ∂E, in

order to assign to our interface some notion of φ-mean curvature. To this purpose

we recall a (rather strong) notion of smoothness, the Lipschitz φ-regularity. Even

with this notion at our disposal, the definition of the crystalline mean curvature

is quite involved. In addition, once the crystalline mean curvature κEφ is defined
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on ∂E, one realizes that, in general, it is not constant on two-dimensional facets

F of ∂E. This fact is a source of difficulties, since (being κEφ identified with the

normal velocity of ∂E at the initial time) facets can split in several pieces, or can

even bend (forming curved regions) during the subsequent evolutionary process.

These phenomena (which probably should not be considered as singularities of

the flow) partially explain why when n = 3, a short time existence theorem for

crystalline mean curvature flow is still missing (even for convex initial data E).

Concerning this kind of behavior, we refer also to the work [Yunger 1998].

Before illustrating the plan of the paper, we observe that other choices of area

measures are possible in (Rn, φ), which are as natural as the φ-Minkowski con-

tent. For example, one could consider the (n−1)-dimensional Hausdorff measure

Hn−1
dφ

(∂E) of ∂E with respect to dφ. Also for this notion of area, an integral rep-

resentation theorem is available, which shows in particular that Mn−1
dφ

(∂E) and

Hn−1
dφ

(∂E) may differ. Therefore, taking the first variation of Hn−1
dφ

would give

a notion of mean curvature (see [Shen 1998]) which is different from κEφ . This,

in turn, implies that the gradient flow of the dφ-Hausdorff measure functional

is a different geometric evolution process. Our viewpoint will be to work with

the φ-Minkowski content of ∂E. We remark that all the theory that we develop

can be similarly constructed for Hn−1
dφ

: indeed, what is really relevant is that

Hn−1
dφ

(∂E) can also be represented as an integral on ∂E, by means of an inte-

grand (weighting νE) which is convex. Finally, we recall that the mean curvature

obtained from the first variation of the volume form for the Minkowski content

on regular hypersurfaces in a Finsler manifold is considered in [Shen 2001].

The content of the paper is the following. In Section 2 we give some notation.

In particular, in Subsection 2.1 we introduce the norm φ, its unit ball Bφ and

the induced distance dφ. In Subsection 2.2 we recall the main properties of the

dual φo of φ and of the duality maps Tφ and Tφo . In particular, we discuss the

geometric properties of such maps, also in the crystalline case. In Subsection 3.1

we discuss the integral representation of Hn−1
dφ

(Theorem 3.3). In Subsection 3.2

we discuss the integral representation of Mn−1
dφ

(Theorem 3.7). The relations

between Hn−1
dφ

and Mn−1
dφ

are considered in Subsection 3.3. Section 3 is based

on the results proved in [Bellettini et al. 1996]. In Section 4 we recall the first

variation of area in the Euclidean case, and the main definitions and properties

of Euclidean mean curvature flow. We rely heavily on the notion of oriented

distance function from ∂E. In Subsection 4.2 we focus attention on the regular

case and on the first variation of the weighted area. The definition of φ-mean

curvature is given in (4–9). Also here the oriented φ-distance function plays

a crucial rôle. In Subsection 4.3 we state some generalizations of the previous

results when the norm is space-dependent. Subsections 4.2 and 4.3 are based

on the results proved in [Bellettini and Paolini 1996]. The crystalline case is

deepened in Section 5. Lipschitz φ-regularity is introduced in Definition 5.2, and

illustrated with examples. The geometry of a facet F ⊂ ∂E is studied in Section
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6, which is preliminary to the definition of crystalline mean curvature on F

(Definition 7.2). We will restrict for simplicity to polyhedral Lipschitz φ-regular

sets. After some examples, in Subsection 7.1 we illustrate some properties of

those facets having constant crystalline mean curvature. Sections 5, 6 and 7

are based on the results originally proved in [Bellettini et al. 1999], [Bellettini

et al. 2001a], [Bellettini et al. 2001b], [Bellettini et al. 2001c]. We conclude the

paper with Section 8, where we briefly summarize the main ideas and motivations

behind our approach.

2. Notation

Given two vectors v, w ∈ R
n, n ≥ 2, we denote by 〈v, w〉 the scalar product be-

tween v and w. We also set |v| :=
√

〈v, v〉 and Sn−1 := {v ∈ R
n : |v| = 1}. Given

an integer k ∈ [0, n], we denote by Hk the k-dimensional Hausdorff measure in

R
n (see [Federer 1969] and [Ambrosio et al. 2000]). If B ⊂ R

n is a Borel set, we

let |B| to be the Lebesgue measure of B (which equals Hn(B)) and dist(x,B) to

be the distance of the point x ∈ R
n from B, defined as inf{|y−x| : y ∈ B}. Even

if B is a smooth hypersurface, it is not difficult to realize that the distance func-

tion dist( · , B) is not differentiable on B. We let ωm := πm/2
/ ∫ +∞

0
sm/2e−s ds,

which turns out to be the Lebesgue measure of {x ∈ R
m : |x| ≤ 1}, for an integer

m ∈ [0, n].

We say that the set M ⊂ R
n is an (n−1)-dimensional Lipschitz manifold if

M can be written, locally, as the graph of a Lipschitz function (with respect to

a suitable orthogonal system of coordinates) defined on an open subset of R
n−1.

We say that the open set E ⊂ R
n is Lipschitz (or that its topological boundary

∂E is Lipschitz) if ∂E can be written, locally, as the graph of a Lipschitz function

of (n−1) variables (with respect to a suitable orthogonal system of coordinates)

and E is locally the subgraph. We recall (see [Federer 1969]) that, if E has

Lipschitz boundary, then at Hn−1-almost every x ∈ ∂E, the unit (Euclidean)

normal vector to ∂E pointing toward R
n \ E is well defined and, in the sequel,

will be denoted by νE(x).

If f is a smooth function defined on an open subset of R
n, we denote by

∇f = (∂f/∂x1, . . . , ∂f/∂xn) the gradient of f and by ∆f the Laplacian of f .

2.1. The norm φ and the distance dφ. In what follows we indicate by

φ : R
n → [0,+∞[ a convex function which satisfies the properties

φ(ξ) ≥ λ|ξ|, ξ ∈ R
n, (2–1)

for a suitable constant λ ∈ ]0,+∞[, and

φ(aξ) = |a|φ(ξ), ξ ∈ R
n, a ∈ R. (2–2)

Notice that our assumptions ensure that there exists a constant Λ ≥ λ such that

φ(ξ) ≤ Λ|ξ| for any ξ ∈ R
n. The function φ is a norm on R

n, called a Minkowski
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norm (or Minkowski metric). The vector space R
n endowed with φ is a normed

space called Minkowski space and is probably the simplest example of a Finsler

manifold: in this case, the manifold is R
n, and φ is a norm (independent of the

position) on its tangent space which obviously is a copy of R
n. We set

Bφ := {ξ ∈ R
n : φ(ξ) ≤ 1}

(the unit ball of φ), a bounded convex set containing the origin in its interior and

centrally symmetric (a so-called symmetric convex body). Bφ is usually called

the indicatrix (sometimes also Wulff shape). The function φ can be identified

with Bφ, since given a symmetric convex body K, the function ξ → inf{α > 0 :

ξ ∈ αK} is a convex function satisfying (2–1), (2–2) and having K as unit ball.

Clearly φ is uniquely determined by its values on the unit sphere Sn−1.

Remark 2.1. If we weaken assumption (2–2) into φ(aξ) = aφ(ξ) for any ξ ∈ R
n

and any a ≥ 0, we have that Bφ is not centrally symmetric anymore. Some of

the results in the next sections can be generalized to nonsymmetric functions φ;

in the sequel, for simplicity we will restrict to the symmetric case.

It is always useful to keep in mind the Euclidean case, which corresponds to the

choice φ(ξ) = |ξ|. The Riemannian case corresponds to a norm φ whose Bφ is

an ellipsoid: φ(ξ) :=
√

〈Aξ, ξ〉 for a real positive definite symmetric matrix A.

Definition 2.2. We say that φ is regular if Bφ has boundary of class C∞ and

each principal curvature of ∂Bφ is strictly positive at each point of ∂Bφ.

Example 2.1. Let p ∈ [1,+∞[, p 6= 2 and set φ(ξ) := (
∑n

i=1 |ξi|
p)1/p. Then

φ is not regular: indeed, if p > 2 then Bφ is of class C2 but the requirement on

principal curvatures in Definition 2.2 is not fulfilled. On the other hand, if p < 2

then ∂Bφ is not of class C2.

Definition 2.3. We say that φ is crystalline if Bφ is a polytope.

Example 2.2. The norms φ(ξ) :=
∑n
i=1 |ξn| and φ(ξ) := max{|ξ1|, . . . , |ξn|} are

crystalline.

It is well known that, given the norm φ, we can measure distances in R
n by

“integrating” φ as follows: the φ-distance dφ(x, y) between two points x, y ∈ R
n

is given by

dφ(x, y) = inf
{

∫ 1

0

φ(γ̇) dt : γ ∈ AC([0, 1]; Rn), γ(0) = x, γ(1) = y
}

= φ(y − x), (2–3)

where AC([0, 1]; Rn) is the class of all absolutely continuous curves from [0, 1]

to R
n. The last equality in (2–3) is, for instance, a consequence of Jensen’s

inequality. The function dφ is nonnegative, symmetric, vanishes only if x = y,

and satisfies the triangular property. To be consistent with the beginning of this
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section, when φ(ξ) = |ξ| (Euclidean case) we omit the subscript φ in the notation

of the distance function.

Remark 2.4. We recall the following interesting fact. Given a distance d :

R
n × R

n → [0,+∞[ on R
n, by differentiation we can construct a new function

ψd : R
n × R

n → [0,+∞] which, under suitable assumptions, turns out to be a

Finsler metric (which, in this case, depends on the position x):

ψd(x, ξ) := lim sup
t→0

d(x, x+ tξ)

t
, x ∈ R

n, ξ ∈ R
n.

Some of the properties of the functions ψd, dψd have been investigated for in-

stance in the papers [De Giorgi 1989], [De Giorgi 1990], [Venturini 1992], [Bel-

lettini et al. 1996], [Amar et al. 1998] (see also [De Cecco and Palmieri 1993],

[De Cecco and Palmieri 1995] for related results on Lipschitz manifolds).

2.2. The dual norm φo. The duality maps. Given the norm φ acting on

vectors, we define the dual norm φo : R
n → [0,+∞[ of φ (acting on covectors)

as

φo(ξo) := sup{〈ξ, ξo〉 : ξ ∈ Bφ}, ξo ∈ R
n. (2–4)

It is not difficult to verify that φo is a norm on (the dual of) R
n, and that

(φo)o = φ. It is possible to prove that if φ is regular then also φo is regular, and

that if φ is crystalline then φo is crystalline. The function φo is strictly related to

the Legendre–Fenchel transform φ∗ of φ, defined as φ∗(ξo) := sup{〈ξ, ξo〉−φ(ξ) :

ξ ∈ R
n}. Indeed φ∗(ξo) = +∞ if ξ /∈ Bφo , and φ∗(ξo) = 0 if ξ ∈ Bφo .

Example 2.3. Figure 1 describes how to construct Bφo starting from φ. As-

sume we have been given a smooth symmetric convex body {φ ≤ 1} as (the

ellipse) in Figure 1. Let ν ∈ Sn−1 be a unit vector. By definition and using

the homogeneity, computing φo(ν) is equivalent to solve the maximum problem

max{〈ν, z〉 : z ∈ ∂Bφ}.

The vector ξ = ξ(ν) in Figure 1 is the solution, hence φo(ν) = 〈ν, ξ〉. Observe

that the strict convexity of Bφ ensures uniqueness of the solution of the maximum

problem (2–4); it is clear that if ∂Bφ contains some flat region, problem (2–4)

has in general more than one solution.

Remark 2.5. Notice that

φo(ν) =
1

2
H1(prν(Bφ)), (2–5)

where prν(Bφ) denotes the orthogonal projection of Bφ onto the line Rν; see

Figure 1.

The map described in Figure 1 associating to the vector ξ ∈ ∂Bφ the vector

ν/φo(ν) ∈ ∂Bφo (extended in a one-homogeneous way on the whole of R
n) is

called the duality map, and can also be defined in the crystalline case.
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ν

−ξ

ξ

Bφ

S1

H1(prν(Bφ))

Figure 1. ν is a unit vector. The vector ξ ∈ ∂Bφ (dotted line) is such that

φo(ν) = 〈ν, ξ〉. Observe that the line tangent to ∂Bφ at ξ is orthogonal to ν.

The distance between this line and its parallel line tangent to ∂Bφ at −ξ is the

length of the orthogonal projection of Bφ onto the one-dimensional subspace

Rν, and equals 2φo(ν).

Definition 2.6. By Tφ and Tφo we denote the (possibly multivalued) duality

maps defined as

Tφ(ξ) := {ξo ∈ R
n : 〈ξo, ξ〉 = φ(ξ)2 = (φo(ξo))2}, ξ ∈ R

n,

Tφo(ξ
o) := {ξ ∈ R

n : 〈ξ, ξo〉 = (φo(ξo))2 = φ(ξ)2}, ξo ∈ R
n.

(2–6)

Possibly adopting the conventions on multivalued mappings (see for instance

[Brezis 1973]) one can check that Tφ(aξ) = |a|Tφ(ξ) for any ξ ∈ R
n and any

a ∈ R, and similarly for Tφo . Moreover Tφ takes ∂Bφ onto ∂Bφo , Tφo takes ∂Bφo

onto ∂Bφ, and TφTφo = TφoTφ = Id.

Remark 2.7. Let φ be regular. Then Tφ and Tφo are single valued. Moreover

Tφ =
1

2
∇((φ)2) = φ∇φ, Tφo =

1

2
∇((φo)2) = φo∇φo. (2–7)

Example 2.4. When φ(ξ) = |ξ| (Euclidean case), then Tφ = Id. When φ(ξ) =
√

〈Aξ, ξ〉 is Riemannian, then Tφ(ξ) = Aξ.

Figure 2 illustrates how to construct Tφ in a regular case. First of all, since Tφ
is one-homogeneous, it is enough to evaluate Tφ on ∂Bφ.

The point ξ belongs to ∂Bφ; since Tφ(ξ) = ∇φ(ξ) and ∂Bφ is a level set of φ,

it is clear that Tφ(ξ) is orthogonal to ξ. In addition, φo(∇φ(ξ)) = 1 = 〈ξ,∇φ(ξ)〉,

which implies |Tφ(ξ)| = 〈ξ,∇φ(ξ)/|∇φ(ξ)|〉−1.

In what follows, it is important to keep in mind that the duality maps in (2–6)

are still well defined under our assumptions on a Minkowski norm, in particular

in the crystalline case. If φ is not regular, the equalities in (2–7) become

Tφ = 1
2∇

−((φ)2) = φ∇−φ, Tφo = 1
2∇

−((φo)2) = φo∇−φo, (2–8)
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ξ

ξo

ξo

Bφ Bφo

Tφ

Figure 2. The point ξ belongs to ∂Bφ. The point Tφ(ξ) := ξo ∈ ∂Bφo is the

unit normal νBφ(ξ) to ∂Bφ at ξ, multiplied by the factor 〈ξ, νBφ(ξ)〉−1.

where ∇− denotes the usual subdifferential in convex analysis (see for instance

[Rockafellar 1972]); the main feature of the maps Tφ and Tφo is that they are no

longer one-to-one.

Geometrically, if ξ ∈ ∂Bφ, then Tφ(ξ) is the intersection of the closed outward

normal cone to ∂Bφ with ∂Bφo . In Figure 3 we show an example of Bφ and of

its dual body Bφo : Bφ is the Cartesian product of a planar regular hexagon with

the interval [−1, 1]. If ξ ∈ ∂Bφ is a point in the relative interior of a facet, then

the normal cone Tφ(ξ) to ∂Bφ at ξ is a singleton (a vertex in ∂Bφo); if ξ ∈ ∂Bφ is

a point in the relative interior of an edge, then Tφ(ξ) is a one-dimensional closed

segment (a closed edge in ∂Bφo); if ξ ∈ ∂Bφ is a vertex, then Tφ(ξ) is a closed

triangle (a closed facet in ∂Bφo).

Bφo Bφ

Figure 3. Dual polytopes. Duality maps take vertices into closed facets, points

in the relative interior of a facet into vertices, and points in the relative interior

of an edge into closed edges. The Bφo depicted here is supposed to look like an

umbrella viewed from above.

3. Area Measures in (Rn, φ)

3.1. The (n−1)-dimensional Hausdorff measure. We recall the definition

of Hausdorff measure in the metric space (Rn, dφ); see [Federer 1969].
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Definition 3.1. If A ⊆ R
n is a Borel subset of R

n and m ∈ {n− 1, n} we set

Hm
dφ

(A) :=
ωm
2m

lim
δ→0+

inf

{+∞
∑

i=1

(diamdφ(Si))
m : A ⊆

⋃+∞
i=1 Si, diamdφ(Si) < δ

}

,

(3–1)

where diamdφ(Si) := sup{dφ(s, σ) : (s, σ) ∈ Si × Si} is the diameter of the set

Si with respect to dφ.

It is not difficult to prove that the limit in (3–1) exists. Consistent with the

notation in Section 2, when φ is the Euclidean norm we omit the subscript dφ
in the notation of the Hausdorff measure. The following integral representation

result provides an explicit formula for computing Hn
dφ

and Hn−1
dφ

.

Theorem 3.2. Let φ be a norm on R
n. Then

Hn
dφ

(A) =

∫

A

ωn
|Bφ|

dx =
ωn
|Bφ|

|A|,

for any Borel set A ⊆ R
n.

Given ν ∈ Sn−1, denote by

Sν(Bφ) := {ξ ∈ Bφ : 〈ν, ξ〉 = 0}

the section of Bφ with the hyperplane orthogonal to ν passing through the origin;

moreover, set

Iφ(ν) :=
1

Hn−1(Sν(Bφ))
. (3–2)

Theorem 3.3. Let φ be a norm on R
n. Let M be a (n−1)-dimensional Lipschitz

manifold in R
n. Then

Hn−1
dφ

(A ∩M) = ωn−1

∫

A∩M

Iφ(νM ) dHn−1, (3–3)

where νM (x) is a unit vector normal to M at x and A ⊆ R
n is a Borel set .

The measure Hn−1
dφ

is also called Busemann surface measure, see the books

[Thompson 1996], [Schneider 1993] for detailed information on this topic and

for complete references.

We will still denote by Iφ the one-homogeneous extension of the function in

(3–2) on the whole of R
n. We then have that the unit ball of Iφ can be written

as

{ξ ∈ R
n : Iφ(ξ) ≤ 1} =

{

ξ ∈ R
n : |ξ| ≤ Hn−1(Sξ/|ξ|(Bφ))

}

,

that is, {Iφ ≤ 1} is the so-called intersection body I(Bφ) of Bφ. An interesting

result of Busemann ensures that I(Bφ) is convex (see [Busemann 1947], [Buse-

mann 1949], [Thompson 1996], [Schneider 1993] and references therein). This, in

turn, is essentially equivalent to the following semicontinuity property of Hn−1
dφ

:
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if {Ek}k is a sequence of finite perimeter sets whose characteristic functions con-

verge in L1(Rn) to the characteristic function of a finite perimeter set E, then

Hn−1
dφ

(∂E) ≤ lim infk→+∞ Hn−1
dφ

(∂Ek).

3.2. The (n−1)-dimensional Minkowski content.

Definition 3.4. Let M be a (n−1)-dimensional Lipschitz manifold. We define

the (n−1)-dimensional Minkowski content Mn−1
dφ

(M) of M with respect to dφ
as

Mn−1
dφ

(M) := lim
ρ→0+

Hn
dφ

({z ∈ R
n : distφ(z,M) < ρ})

2ρ
. (3–4)

Under our regularity assumption on ∂E it is possible to prove that the limit in

(3–4) exists (see [Federer 1969], [Ambrosio et al. 2000]).

In the Euclidean case φ(ξ) = |ξ|, the (n−1)-dimensional Minkowski content

coincides with the (n−1)-dimensional Hausdorff measure.

Observe that Hn
dφ

and Mn−1
φ are invariant under isometries between the

normed ambient spaces, while cn,φ is not invariant.

Remark 3.5. The Minkowski content Mn−1
dφ

provides a notion of surface mea-

sure which is constructed by means of the orthogonal projections of Bφ onto

the (one-dimensional) normal spaces to the manifold M ; on the other hand the

Hausdorff measure Hn−1
dφ

is constructed by means of the intersections of Bφ with

the ((n−1)-dimensional) tangent spaces to M . Other notions of surface mea-

sure, different in general from these two notions, can be considered, such as the

Holmes–Thompson measure, see [Thompson 1996], or the definitions introduced

in [De Giorgi 1995] (see [Ambrosio and Kirchheim 2000]).

Remark 3.6. It can be proved that, for a Lipschitz set E, Mn−1
dφ

(∂E) coincides

with the perimeter of the set E with respect to φ, whose definition is given in a

distributional way.

The following representation result provides an explicit integral formula for com-

puting the Minkowski content of a sufficiently smooth set.

Theorem 3.7. Let M be a (n−1)-dimensional Lipschitz manifold . Then

Mn−1
dφ

(M) = cn,φ

∫

M

φo(νM ) dHn−1. (3–5)

The validity of Theorem 3.7 can be explained as follows: the measure Hn
dφ

is

cn,φ times the Lebesgue measure. Moreover the Lebesgue measure of the ρ-

tubular neighborhood (in the distance dφ) in (3–4) is approximately Hn−1(M)

multiplied by the 1-dimensional length of the orthogonal projection of {φ ≤ ρ}

in the direction ν, see Figure 4. This length equals 2ρφo(ν), hence (3–5) follows.

Since φo is convex, the following semicontinuity property of Mn−1
dφ

holds:

if {Ek}k is a sequence of finite perimeter sets whose characteristic functions

converge in L1(Rn) to the characteristic function of a finite perimeter set E,

then Mn−1
dφ

(∂E) ≤ lim infk→+∞ Mn−1
dφ

(∂Ek).
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2φo(ν)

M

ν

{φ ≤ ρ}

Figure 4. We assume for simplicity that M is flat, and that ν ∈ Sn−1 is

orthogonal to M . The ρ-tubular neighborhood (in the distance dφ) is obtained

by centering rescaled sets {φ ≤ ρ} of {φ ≤ 1} at points of M .

3.3. From the Hausdorff measure to the Minkowski content. As already

remarked in the Introduction, in what follows we will work with Mn−1
dφ

and this

will affect the value of the φ-mean curvature. However, one could consider Hn−1
dφ

as well, and change all subsequent definitions by replacing φo with Iφ. We refer

to [Shen 1998] for a definition of mean curvature obtained by considering the

intrinsic Hausdorff measure.

The following result follows from Theorems 3.3 and 3.7.

Proposition 3.8. Let φ be a norm on R
n. Then

Hn−1
dφ

= Mn−1
dψ

, ψ :=

(

ωn−1|B(Iφ)o |

ωn

)1/(n−1)

(Iφ)o. (3–6)

4. First Variation of Area and Mean Curvature Flow.

Regular Case

In this section we define the anisotropic φ-mean curvature. We first recall

some facts concerning the Euclidean case.

4.1. Preliminaries on the Euclidean case. Let E ⊂ R
n be an open set with

smooth compact boundary. It is known (see for instance [Giusti 1984], [Ambrosio

1999]) that, under these assumptions, there exists a tubular neighborhood U of

∂E such that the oriented distance function dE from ∂E negative inside E,

defined as

dE(z) := dist(z,E) − dist(z,Rn \ E), z ∈ R
n,

is smooth on U , and |∇dE(z)| = 1 for any z ∈ U (eikonal equation). Hence, given

any x ∈ ∂E, ∇dE(x) is the outer unit normal νE(x) to ∂E at x. In addition

∆dE(x) is the sum of the principal curvatures (the mean curvature) of ∂E at x.

Therefore −∆dE(x)∇dE(x) is the mean curvature vector of ∂E at x.
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In order to compute the first variation of area, we need to introduce a class of

admissible variations. We define a family Ψλ of compactly supported diffeomor-

phisms of the ambient space R
n as follows. Denote by Ψ : R

n+1 → R
n a smooth

vector field. Given any λ ∈ R, define Ψλ : R
n → R

n as Ψλ(x) := Ψ(x, λ).

Assume that Ψ0 = Id and that Ψλ− Id has compact support for any λ ∈ R \{0}.

The following theorem is the classical result on the first variation of area, see for

instance [Giusti 1984].

Theorem 4.1. For any λ ∈ R define Eλ := Ψλ(E). Then

d

dλ
Hn−1(∂Eλ)|λ=0 =

∫

∂E

∆dE 〈X,∇dE〉 dHn−1, (4–1)

where X := (∂Ψλ/∂λ)|λ=0.

Observe that only the normal component of X enters in formula (4–1).

We are now in a position to define the smooth mean curvature flow starting

from a given ∂E.

Definition 4.2. Let E ⊂ R
n be an open set with smooth compact boundary.

Let T > 0 and, for any t ∈ [0, T ], let E(t) be a set with compact boundary.

We say that (E(t))t∈[0,T ] is a smooth mean curvature flow in [0, T ] starting from

E = E(0) if the following conditions hold:

(i) there exists an open set A ⊂ R
n containing ∂E(t) for any t ∈ [0, T ] such

that, if we set

d̄(z, t) := dist(z,E(t)) − dist(z,Rn \E(t)), z ∈ R
n, t ∈ [0, T ],

we have d̄ ∈ C∞
(

A× [0, T ]
)

;

(ii)
∂

∂t
d̄(x, t) = ∆d̄(x, t), x ∈ ∂E(t), t ∈ [0, T ]. (4–2)

Condition (i) implies that each ∂E(t) is a smooth boundary, smoothly evolving

in time. The vector −(∂d̄/∂t)∇d̄(x, t) is the projection of the velocity of the

point x on the normal space to ∂E(t) at x (see for instance [Ambrosio 1999]).

Example 4.1. The main explicit example of mean curvature flow is the one

of the sphere E = {|z| < R0}, which shrinks self-similarly. Indeed in this case

d̄(z, t) = |z| − R(t), and the equation (4–2) becomes Ṙ = −(n − 1)/R. Its

solution represents the evolving sphere of radius R(t) =
√

R2
0 − 2(n− 1)t for

t ∈ [0, 1
2R

2
0/(n− 1)], which disappears for times larger than 1

2R
2
0/(n− 1).

It is customary to say that the evolution law (4–2) is the gradient flow of the

area functional Hn−1(∂E); the idea is that, at each time, the set E(t) evolves in

such a way to make Hn−1(∂E(t)) as small as possible. This assertion has been

made rigorous in the paper [Almgren et al. 1993], where it is shown that the
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correct (nonsymmetric) distance between sets to use in order to obtain the mean

curvature flow is

(E,F ) ⊂ R
n × R

n →

∫

(E\F )∪(F\E)

dist(x, ∂F ) dx. (4–3)

Mean curvature flow has been the subject of several recent papers, of which we

list some. We refer to:

• [Gage and Hamilton 1986] and [Evans and Spruck 1992a] for a local in time

existence and uniqueness theorem of a smooth solution;

• [Ecker and Huisken 1989] and [Ecker and Huisken 1991] for the evolution of

graphs;

• [Huisken 1984] for the evolution of convex sets;

• [Grayson 1987] and [Angenent 1991a] for local and global properties of the

flow of curves;

• [Barles et al. 1993], [Evans and Spruck 1992b], [Evans and Spruck 1995],

[White 1995], [White 2000], [White 2003] for some qualitative properties of

the flow.

• Concerning global in time solutions, defined after the onset of singularities,

we refer to:

• [Brakke 1978], where a geometric measure theory approach is introduced;

• [Evans and Spruck 1991] and [Chen et al. 1991] for the level set method and

viscosity solutions;

• [Ilmanen 1992], [Ilmanen 1993a], [De Giorgi 1993], [De Giorgi 1994] and

[Bellettini and Paolini 1995] for the barriers method (see also [Soner 1993]);

• [Almgren et al. 1993] for a variational approach based on time discretization;

• [Ilmanen 1993b] for the approximation of mean curvature flow by means of a

sequence of reaction-diffusion equations;

• [Ilmanen 1994] for the elliptic regularization method;

• [Angenent 1991a], [Soner and Souganidis 1993], [Altschuler et al. 1995]

and [Bellettini and Paolini 1994] for the analysis of some kind of singularity

of the flow;

• [Fierro and Paolini 1996], [Paolini and Verdi 1992], [Angenent et al. 1995] for

numerical simulations of certain singularities.

4.2. The anisotropic regular case. We assume in this subsection that φ is a

regular norm. Let E be a set with smooth compact boundary. Also in this case

it is possible to prove that there exists a tubular neighborhood U of ∂E such

that the oriented φ-distance function dEφ from ∂E negative inside E, defined as

dEφ (z) := distφ(z,E) − distφ(z,R
n \E), z ∈ R

n,

is smooth on U , and φo(∇dEφ (z)) = 1 for any z ∈ U (anisotropic eikonal equa-

tion). Therefore

Tφo(∇d
E
φ (z)) = φo(∇dEφ (z))∇φo(∇dEφ (z)) = ∇φo(∇dEφ (z)), z ∈ U. (4–4)
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In particular, given any x ∈ ∂E, we have

∇dEφ (x) =
νE(x)

φo(νE(x))
=: νEφ (x). (4–5)

The following result is a generalization of Theorem 4.1, and shows also the rôle

of the duality map Tφo . Let Ψλ and Eλ be as in Subsection 4.1.

Theorem 4.3. For any λ ∈ R define Eλ := Ψλ(E). Then

d

dλ
Mn−1

dφ
(∂Eλ)|λ=0 = cn,φ

∫

∂E

div nEφ 〈X,∇dEφ 〉 φ
o(νE)dHn−1, (4–6)

where X := ∂
∂λΨλ|λ=0

, and

nEφ (z) := Tφo(∇d
E
φ (z)), z ∈ U. (4–7)

The vector field nφ is sometimes called the Cahn–Hoffman vector field, and

satisfies

φ(nEφ ) = 1 = 〈∇dEφ , n
E
φ 〉 on U. (4–8)

In the Euclidean case φ(ξ) = |ξ| we have nEφ = νEφ = νE on ∂E.

Remark 4.4. The left hand side of (4–6) depends on the values of φo only on

Sn−1 (recall (3–5)). Hence also the right hand side of (4–6), written in terms of

the one-homogeneous extension of φo on the whole of R
n, must depend only on

the values of φo on Sn−1.

Observe that

d

dλ
Mn−1

dφ
(∂Eλ)|λ=0 =

∫

∂E

div nEφ 〈X,∇dEφ 〉 dP
n−1
φ ,

where dPn−1
φ is the measure on ∂E having cn,φφ

o(νE) as density with respect

to Hn−1.

We are in a position to give the following definition.

Definition 4.5. Let E be an open set with smooth compact boundary. We

define the φ-mean curvature κEφ of ∂E as

κEφ (x) := div nEφ (x), x ∈ ∂E. (4–9)

It is possible to prove that κEφ (x) is also the tangential divergence of nEφ evaluated

at x ∈ ∂E. Indeed, define f(z) := 〈νE(x),nEφ (z)〉 for any z ∈ U . Thanks to

(4–8), f has a maximum at x (with value φo(νE(x))). Therefore ∇f vanishes at

x, that is, νE(x)∇nEφ (x) = 0. This implies that the tangential divergence of nEφ
at x equals div nEφ (x).

Example 4.2. The φ-mean curvature of ∂Bφ is constantly equal to n−1. Indeed

∇d
Bφ
φ (z) = ∇φ(z) and Tφo(∇d

Bφ
φ (z)) = z/φ(z) for any z in R

n \ {0}. Then a

computation gives div(z/φ(z)) = n− 1 on ∂Bφ.
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Example 4.3. Let n = 2, and write φo(ξo) = |ξo|φo(ξo/|ξo|) =: ρψ(θ), where

ξo = (ξo1 , ξ
o
2) = (ρ cos θ, ρ sin θ). Then κEφ = κE(ψ + ψ′′), where κE is the

Euclidean curvature of ∂E.

Example 4.4. Observe that from (4–4) we derive κEφ = tr(∇2φo(∇dEφ )∇2dEφ )

on ∂E, where ∇2 denotes the Hessian matrix and tr is the trace operator.

Remark 4.6. In the paper [Bellettini and Fragalà 2002] the second variation of

Mn−1
dφ

is computed. What replaces the squared length of the second fundamental

form of ∂E is the term tr(∇nEφ∇nEφ ). In the same paper, a sort of Laplace–

Beltrami operator is introduced, see also [Bao et al. 2000] (for references therein),

[Shen 2001], [Mugnai 2003].

We are now in a position to define what is a smooth anisotropic mean curvature

flow, for a regular anisotropy φ.

Definition 4.7. Let E ⊂ R
n be an open set with smooth compact boundary.

Let T > 0 and, for any t ∈ [0, T ], let E(t) be a set with compact boundary. We

say that (E(t))t∈[0,T ] is a smooth φ-mean curvature flow in [0, T ] starting from

E = E(0) if the following conditions hold:

(i) there exists an open set A ⊂ R
n containing ∂E(t) for any t ∈ [0, T ] such

that, if we set

d̄φ(z, t) := distφ(z,E(t)) − distφ(z,R
n \ E(t)), z ∈ R

n, t ∈ [0, T ],

we have dφ ∈ C∞
(

A× [0, T ]
)

;

(ii)
∂

∂t
dφ(x, t) = divn

E(t)
φ (x), x ∈ ∂E(t), t ∈ [0, T ]. (4–10)

Example 4.5. We show that {ξ ∈ R
n : φ(ξ) < R0} shrinks self-similarly under

the flow (4–10). We have in this case d̄φ(z, t) = φ(z)−R(t), and (4–10) (thanks to

Example 4.2) becomes Ṙ = −(n− 1)/R. Its solution represents the evolving set

{ξ ∈ R
n : φ(ξ) < R(t)}, where R(t) =

√

R2
0 − 2(n− 1)t for t ∈ [0, 1

2R
2
0/(n− 1)],

which disappears for times larger than 1
2R

2
0/(n− 1).

The evolution law (4–10) is the gradient flow of Mn−1
dφ

(∂E). This can be seen,

for instance, by using the (nonsymmetric) distance between sets in (4–3), where

dist(x, ∂F ) is replaced by distφ(x, ∂F ).

For what concerns anisotropic mean curvature flows, we refer to the following

(largely incomplete) list of papers: [Hoffman and Cahn 1972], [Angenent 1991b],

[Spohn 1993], [Cahn et al. 1993], [Gage 1994], [Giga and Goto 1992] (see also

[Giga et al. 1991] for weak solutions to a large class of anisotropic equations).

4.3. On space dependent norms. In this subsection we list some general-

ization of the previous results. Assume that φ = φ(x, ξ) : R
n × R

n → [0,+∞[

depends on the position x, φ2 is smooth, φ2(x, · ) is strictly convex (in the sense of

Definition 2.2) and φ satisfies (2–1), (2–2) for any x ∈ R
n, with λ independent of
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x. Define φo(x, ξo) := sup{〈ξ, ξo〉 : ξ ∈ Bφ(x)}, Bφ(x) := {ξ ∈ R
n : φ(x, ξ) ≤ 1},

and dφ as in the first equality of (2–3), with φ(γ, γ̇) in place of φ(γ̇). Tφ and Tφo

are defined as in (2–8) taking x fixed. Then (3–3) holds with

Iφ(x, νM (x)) =
1

Hn−1(Sν(Bφ(x))

in place of Iφ(νM (x)). The n-dimensional dφ-Hausdorff measure Hn
dφ

in R
n has

the integral representation

Hn
dφ

(A) = ωn

∫

A

1

|Bφ(x)|
dx,

for any Borel set A ⊆ R
n. Then (3–5) becomes

Mn−1
dφ

(M) = ωn

∫

M

φo(x, νM (x))
1

|Bφ(x)|
dHn−1(x).

In addition, the function ψ in (3–6) becomes ψ(x, ξ) = f(x)(Iφ)o(x, ξ), where f

depends only on x and has the expression

f(x) =

(

ωn−1|B(Iφ)o(x)|

ωn

)1/(n−1)

.

Concerning the first variation of area and φ-mean curvature, (4–6) of Theorem

4.3 reads as

d

dλ
Mn−1

dφ
(∂Eλ)|λ=0 = ωn

∫

∂E

divφ nEφ 〈X,∇dEφ 〉
1

|Bφ(x)|
φo(x, νE)dHn−1,

where the operator divφ acts on a smooth vector field v as follows:

divφ v := div v +

〈

v, ∇
(

log
1

|Bφ(x)|

)

〉

,

and

nEφ (z) := ∇φo(z,∇dEφ (z)),

∇φo being the gradient of φo with respect to the ξ variable.

5. The Crystalline Case: Lipschitz φ-Regular Sets

In this section we assume that φ is a crystalline norm. The main difficulties

when trying to generalize the notion of φ-curvature given in (4.5) to the crys-

talline case are due to the loss of regularity, both of ∂E and of the norm φo.

Observe that the explicit computation of κEφ in (4.5) requires the computation

of the hessian of φo which, in the crystalline case, is just a (nonnegative) mea-

sure. Recall also that, in the crystalline case, the duality maps are not single

valued anymore. This will force us to consider inclusions in place of equalities,

and suitable selection principles will be required. Finally, we have to keep in
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mind that, whichever definition of smoothness we choose, the set ∂Bφ must be

smooth.

Unlike the regular case, in the crystalline case we have to redefine what is

a smooth boundary. The idea is to define smoothness of ∂E by requiring the

existence of at least one Lipschitz selection of a normal (in a suitable sense)

vector field.

Before giving formal definitions, we recall some notation. At points x ∈

∂E where νE(x) exists we set νEφ (x) := νE(x)/φo(νE(x)). We indicate by

Lip(∂E; Rn) the class of all Lipschitz vector fields defined on the Lipschitz bound-

ary ∂E.

Definition 5.1. If E ⊂ R
n is Lipschitz we define

Norφ(∂E; Rn) := {N∈ L∞(∂E; Rn) : N(x)∈ T o(νEφ (x)) for Hn−1a.e. x ∈ ∂E},

Lipν,φ(∂E; Rn) := Lip(∂E; Rn) ∩ Norφ(∂E; Rn).

As we shall see, in general smooth sets E in the usual sense do not admit even

one element in the class Lipν,φ(∂E; Rn). The best of smoothness that we can

hope is described by the following definition [Bellettini and Novaga 1998]:

Definition 5.2. Let E ⊂ R
n be an open set with compact boundary. We say

that E is Lipschitz φ-regular if ∂E is Lipschitz continuous and there exists a

vector field η ∈ Lipν,φ(∂E; Rn). With a small abuse of notation, the pair (E, η)

will also denote a Lipschitz φ-regular set.

Observe that, unlike νEφ , the vector field η is defined everywhere on ∂E.

To better understand the meaning of Definition 5.2, we consider examples.

E

p

ω

a
a

b

b

c

c

c

b

q

x

Bφo Bφ

Tφo

Figure 5. The open ball E is not Lipschitz φ-regular when we endow R
2 with

the norm φ(ξ) = max{|ξ1|, |ξ2|}.
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Example 5.1. Let n = 2 and φ(ξ) := max{|ξ1|, |ξ2|}, in such a way that Bφ
is the square of side 2, see Figure 5. Let E := {z ∈ R

2 : |z| < 1} be the

open unit disk. Then E is not Lipschitz φ-regular. Indeed, to see that E is

Lipschitz φ-regular, we have to compute T o(νEφ (x)), for x ∈ ∂E, and to show

that we can produce a vector field η on ∂E which is a Lipschitz selection for

the multivalued map x ∈ ∂E → Tφo(ν
E
φ (x)). Observe now that T o(νEφ (p)) is

the upper horizontal segment [a, b] of ∂Bφ; we depict therefore a corresponding

dotted triangle at p. Similarly, Tφo(ν
E
φ (q)) is the right vertical segment [b, c] of

∂Bφ, and again we depict the corresponding dotted triangle at q. On the other

hand, any point x on ∂E lying in the (relatively) open arc A between p and q is

such that Tφo(ν
E
φ (x)) = b. We deduce that η ≡ b on A, and η ≡ c on the open arc

on ∂E between q and ω. Hence, any vector we choose inside the dotted triangles

(for instance, the triangle at q) will produce a discontinuity in the vector field η

(at q). We can conclude that the circle, considered in (R2, φ), is not Lipschitz

φ-regular, and that it takes the rôle of the square in the usual Euclidean plane.

E

Bφo Bφ

Tφo

Figure 6. Example of a Lipschitz φ-regular set E when φ(ξ) = max{|ξ1|, |ξ2|}.

The values of η are uniquely determined at the vertices and on the curved arc

of ∂E. Any Lipschitz extension of these values on the interior of the edges,

which lies in the dotted triangles, produces a Lipschitz vector field satisfying

the required properties (that is, making E Lipschitz φ-regular). Examples are

depicted in Figures 10 and 13.

Example 5.2. Let φ(ξ) := max{|ξ1|, |ξ2|}. In Figure 6 we show an example of

a Lipschitz φ-regular set E.

At the vertices of ∂E the vector νEφ is not defined. Let v be a vertex of ∂E,

and let F1 and F2 be the two arcs of ∂E having v as a vertex (arcs can also be

flat, i.e., segments). For any x in the relative interior of Fi, the closed convex

set Tφo(ν
E
φ (x)) is either a segment or a singleton; in both cases is independent
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of x and depends only on Fi. Denote it by Ki. The crucial property that makes

E Lipschitz φ-regular is that the intersection ∩2
i=1Ki is a singleton, see Figure

6. This produces a unique vector at each vertex of ∂E; at this point, it is easy

to realize that we can construct infinitely many vector fields η ∈ Lipν,φ(∂E; R2)

lying inside the dotted triangles with the assigned values at the vertices (see for

instance Figures 10 and 13).

E

Bφo Bφ

Tφo

F1

F2

F3

q p
x

Figure 7. An example of Lipschitz φ-regular set E for the norm φ whose unit

ball is the product of an hexagon with [−1, 1].

Example 5.3. In Figure 7 it is shown an example of Lipschitz φ-regular set

in R
3 when the unit ball of φ is prism with hexagonal basis. Observe that the

vector νEφ is not defined on the vertices and on the edges of ∂E. Let p ∈ ∂E

be a vertex of ∂E and let F1, F2, F3 be the three (relatively) closed facets of ∂E

having p as a common vertex. For any x in the relative interior of Fi, the convex

set Tφo(ν
E
φ (x)) is a closed facet of ∂Bφ which is independent of x and depends

only on Fi. Denote it by Ki. The intersection ∩3
i=1Ki is a singleton (and is the

corresponding vertex of ∂Bφ). In Figure 7 we have depicted such an intersection

as a vector at the point p. On the other hand, if F1 and F2 have in common

the segment S, and q is a point in the relative interior of S, then ∩2
i=1Ki is the

corresponding edge of ∂Bφ. We have depicted this set as a triangle. Finally, if x

is a point in the relative interior of a facet (for instance, the top facet F ), then

νEφ (x) coincides with the top vertex of the ∂Bφo , and therefore Tφo(νφ(F )) is the

top facet of ∂Bφ, and we have depicted this set on the interior of F as a pyramid.

Showing that E is Lipschitz φ-regular means to exhibit a Lipschitz vector field

η : ∂E → R
3 which on the vertices of ∂E is fixed (to be the corresponding

vertices of ∂Bφ), on the relative interior of an edge of ∂E is constrained to lie in

the corresponding segment of ∂Bφ, and in the relative interior of a facet of ∂E

is constrained to lie in the corresponding facet of ∂Bφ. It is at this point easy
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to realize that such a choice can be made (in infinitely many different ways) for

the set E in Figure 7.

E

Bφo Bφ

C

a

a b

b

Figure 8. A non polyhedral Lipschitz φ-regular set E.

Example 5.4. In Figure 8 we show an example of Lipschitz φ-regular set E in

R
3 which is not polyhedral. The curved region C is ruled ; if S is any horizontal

segment in C (see the dotted lines), any vector field η ∈ Lipν,φ(∂E; R3) must lie,

on S, in the corresponding segment [a, b] of ∂Bφ.

In two dimensions the structure of Lipschitz φ-regular sets E having a finite

number of arcs (arcs can be also segments) can be described as follows. The arcs

are located in a precise order consistent with φ-regularity, and are divided into

two classes. In the first class there are edges which are parallel to some facet of

Bφ and have the same exterior Euclidean normal vector (and we say that the

edge corresponds to a facet of Bφ). The second class consists of the arcs (some

of which can be flat) not belonging to the first class, where there is only one

possible choice of the vector field η consistent with the φ-regularity. The arcs

of the second class have therefore zero φ-curvature (see [Taylor 1993], [Giga and

Gurtin 1996]).

6. On Facets of Polyhedral Lipschitz φ-Regular Sets

We have seen in Example 5.2 that, even in two dimensions, if (E, η) is a

Lipschitz φ-regular set, there are in general infinitely many vector fields η ∈

Lipν,φ(∂E; R2) such that (E, η) is Lipschitz φ-regular. Therefore the divergence

of each of these η could be considered as a φ-mean curvature of ∂E, and in this

way the Lipschitz boundary ∂E would have infinitely many different φ-mean

curvatures. This approach could be pursued to some extent; however, we shall
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see that, among all vector fields satisfying the required constraints, there are

some which are distinguished, have the same divergence, and such a uniquely

defined divergence is what we can call the φ-mean curvature of ∂E, at least

from the evolutionary point of view. Indeed, this notion of φ-mean curvature

should be identified with the initial velocity of the interface under crystalline

mean curvature flow.

To simplify notation, in this section we shall consider, when n ≥ 3, only poly-

hedral Lipschitz φ-regular sets E with a finite number of facets, that will be

understood as (relatively) closed connected (n−1) dimensional flats with Lip-

schitz (polyhedral) boundary. The symbol F will always denote such a facet.

This is surely a restriction, since in general facets can produce curved regions

during the flow.

6.1. Some notation. If F ⊂ ∂E is a facet, we denote by ∂F and int(F ) the

relative boundary and relative interior of F . An edge of ∂E with vertices p, q

will be denoted by [p, q], and its relative interior by ]p, q[. We denote by ΠF the

affine hyperplane spanned by the facet F .

ν̃F

ν̃F

ν̃F

F

ν(F )

ΠF

Figure 9. A facet F . The dotted lines delimit the solid set E having F as a

facet.

We define ν(F ) to be the unit normal to int(F ) which points outside of E

and we set νφ(F ) := ν(F )/φo(νφ(F )). We indicate by ν̃F the (Hn−2-almost

everywhere defined) unit normal to ∂F pointing outside of F ; see Figure 9.

Only facets F such that Tφo(νφ(F )) is a facet of Bφ (that is., facets of ∂E

corresponding to some facet of ∂Bφ) will be considered.

Definition 6.1. Let (E, η) be a Lipschitz φ-regular set. We define the trace

function cF ∈ L∞(∂F ) as

cF := 〈η, ν̃F 〉. (6–1)
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E

Figure 10. The normal trace of η on the boundary of each one-dimensional

facet of ∂E is independent of η itself (among all vector fields making E Lipschitz

φ-regular).

Example 6.1. In Figure 10 we depict a vector field η which makes ∂E Lipschitz

φ-regular (Bφ is the square as in Figure 6). Since the values of η are uniquely

determined at the vertices of ∂E, the constants cF do not depend on the partic-

ular choice of η. The dotted vectors at the vertices indicate the unit normals (in

the line containing the facet F ) pointing outward F (that is, ν̃F ).

Bφ

E p

q

F

Figure 11. A Lipschitz φ-regular set when Bφ is the cube.

Example 6.2. Consider the Lipschitz φ-regular set (E, η) of Figure 11 (Bφ is

the unit cube). In Figure 12 the bold vectors at the vertices of ∂E are the unique

possible values for η. The vector field ν̃F points outside F , and on ]p, q[ points

inside E. The pyramids with vertex on the relative interior of the two facets

having [p, q] in common represent the corresponding facets of ∂Bφ (for instance,

Tφo(νφ(F )) for the facet F ), that is, the range of admissibility of η. It follows

that cF is negative on ]p, q[, while cF is positive on the remaining relatively open

edges of ∂F .

Given a Lipschitz φ-regular set (E, η), in general it is possible to prove that

cF does not depend on the choice of η in Lipν,φ(∂E; Rn). More precisely, for
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Bφ

E

p

q

F

ν̃F

ν̃F

ν̃F

ν̃F

Figure 12. On the relative interior of [p, q] the function cF is negative (and

constant).

Hn−1-almost every x ∈ ∂F , we have

cF (x) =

{

max{〈ξ, ν̃F (x)〉 : ξ ∈ Tφo(νφ(F ))} if ν̃F (x) points outside E,

min{〈ξ, ν̃F (x)〉 : ξ ∈ Tφo(νφ(F ))} if ν̃F (x) points inside E.
(6–2)

7. φ-Mean Curvature on a Facet

In this section we want to define (pointwise almost everywhere) the φ-mean

curvature on a facet F of a polyhedral Lipschitz φ-regular set (E, η). We need

some preliminaries. We let

Norφ(F ; ΠF ) :=
{

N ∈ L∞(int(F ); ΠF ) :

N(x) ∈ Tφo(νφ(F )) for Hn−1 a.e. x ∈ int(F )
}

.

It is possible to prove (see [Giga et al. 1998]) that any N ∈ Norφ(F ; ΠF ) with

divN ∈ L2(int(F )) admits a normal trace 〈N, ν̃F 〉 on ∂F , for which the Gauss–

Green Theorem holds on F (see [Anzellotti 1983]). We set

H(F ; ΠF ) :=
{

N ∈ Norφ(F ; ΠF ) : divN ∈ L2(int(F )), 〈N, ν̃F 〉 = cF Hn−2 a.e. on ∂F
}

.

Remark 7.1. Thanks to (6–2), the class H(F ; ΠF ) does not depend on the

choice of the vector field η making E Lipschitz φ-regular.

We define the functional F( · , F ) : H(F ; ΠF ) → [0,+∞[ as

F(N,F ) := cn,φ

∫

int(F )

(divN)2 φo(νE)dHn−1. (7–1)

The right hand side of (7–1) equals cn,φφ
o(ν(F ))

∫

F
(divN)2 dHn−1, since F is

flat.
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Our definition of φ-mean curvature is based on the following result: the min-

imum problem

inf {F(N,F ) : N ∈ H(F ; ΠF )} (7–2)

admits a solution, and any two minimizers have the same divergence.

Denote by NF
min a solution of problem (7–2); since divNF

min is independent of

the choice of NF
min among all minimizers of (7–2), we can give the definition of

crystalline mean curvature.

Definition 7.2. We define the φ-mean curvature κFφ on the relative interior of

F as

κFφ (x) := divNF
min(x), Hn−1 a.e. x ∈ int(F ).

Observe that κFφ is only a function in L2(int(F )). We then set κEφ := κFφ on each

facet F of ∂E: it turns out that the orthogonal projection of minimizing vector

fields on the orthogonal to ∂F is continuous on ∂F .

Remark 7.3. The minimum problem (7–2), which is at the basis of Definition

7.2, arises when looking at the best way to decrease the Mn−1
dφ

(∂E) through

deformations of the ambient space, precisely in the computation of the first

variation

lim inf
λ→0+

Mn−1
dφ

(∂Eλ) −Mn−1
dφ

(∂E)

λ

of Mn−1
dφ

at ∂E. Here, using the notation of Theorem 4.3, we have Eλ = Ψλ(E)

and Ψλ(x) = x+ λX(x), where X is a suitable Lipschitz vector field.

The φ-mean curvature of ∂Bφ is constantly equal to n − 1. Indeed, the vector

field x/φ(x) has constant divergence on ∂Bφ, hence it solves the Euler–Lagrange

inequality derived from (7–2). We now use the (strict) convexity in the divergence

to show that x/φ(x) is actually a minimizer of F( · , F ) on any facet F ⊂ ∂Bφ.

The following example concerning crystalline curvature of curves is enlighten-

ing.

E

F

Figure 13. The vector field NE
min : ∂E → R

2 is, on each facet F , the linear

combination of the values of η at the vertices.
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Example 7.1. Let n = 2. We compute explicitly the φ-curvature of a two-

dimensional Lipschitz φ-regular set (E, η). Given a facet F ⊂ ∂E (in this case

F equals a segment [z, w]), the minimum problem (7–2) reads as

inf

{

∫

]z,w[

(N ′(s))2dH1(s) : N ∈ L2(]z, w[; Π[z,w]), N
′ ∈ L2(]z, w[),

N(x) ∈ Tφo(ν
[z,w]
φ (x)) for a.e. x ∈ ]z, w[, N(z) = cz, N(w) = cw

}

,

where cz and cw are the orthogonal projections of η(z) and η(w) on the line

Π[z,w], with the correct sign.

We now observe that the above minimum problem has a unique solutionNF
min,

which is simply the linear function connecting cz at z with cw at w. Hence, when

n = 2, not only the divergence of a minimizer is unique, but also the minimizer

itself. If we now repeat this procedure for any facet, and on each facet we add to

NF
min the proper (constant) normal component to F , we end up with the vector

field NE
min : ∂E → R

2 whose divergence is the φ-curvature of ∂E. An example

of this vector field is depicted in Figure 13. Curved regions in ∂E have zero

φ-curvature. On the other hand, if F is a facet of ∂E ⊂ R
2 and BF ⊂ ∂Bφ is

the corresponding facet in ∂Bφ, κ
F
φ is constant on F and

κFφ = δF
|BF |

|F |
on int(F ), (7–3)

where δF ∈ {0,±1} is a convexity factor: δF = 1, −1 or 0 depending on whether

E is locally convex at F , locally concave at F , or neither.

In two dimensions (7–3) is used to define the curvature flow of a Lipschitz φ-

regular set (see the references quoted in the Introduction). If ∂E has a finite

number of arcs, crystalline curvature flow can be described with a system of

ordinary differential equations, since each arc (with nonzero φ-curvature) moves

in normal direction in the evolution process: it cannot split or curve since, as

dictated by (7–3), its normal velocity is constant. On the other hand, arcs or

segments with zero φ-curvature stay still, and are progressively eaten by the

other evolving arcs.

When the space dimension n is larger than or equal to 3, the computation of

the φ-mean curvature on a facet is not, in general, an easy problem. As already

mentioned in the Introduction, a short time existence theorem of a crystalline

mean curvature flow is still missing. Concerning the comparison principle, only

an indirect proof is available, in a certain class of crystalline evolutions, see

[Bellettini et al. 2000].

Definition 7.4. We say that E is convex at F if E, locally around F , lies on

one side of ΠF .

The following results show that the φ-curvature enjoys some additional regularity

properties.
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Theorem 7.5. κFφ ∈ L∞(int(F )). Moreover , κFφ has bounded variation on

int(F ). Finally , if F is convex and E is convex at F , then κFφ is convex on

int(F ).

Since the jump set of a function with bounded variation is well defined (see

for instance [Ambrosio et al. 2000]), this theorem makes it possible to speak

of the jump set of κFφ on int(F ), which should describe, at time zero, where

the facet splits under crystalline mean curvature flow. For small times in the

evolution problem, F is expected to translate parallel to itself if κFφ is constant

on int(F ) or to bend if κFφ is continuous but not constant on int(F ). Facets

with constant φ-mean curvature have been isolated and studied in [Bellettini et

al. 1999], [Bellettini et al. 2001c], where the following notation was introduced.

Definition 7.6. We say that F is φ-calibrable if κFφ is constant on int(F ).

More explicitly, F is φ-calibrable provided there exists a vector fieldN : int(F ) →

ΠF which solves the following problem:


























N ∈ L∞(int(F ); ΠF ),

N(x) ∈ Tφo(νφ(F )) for Hn−1 a.e. x ∈ int(F ),

〈N, ν̃F 〉 = cF Hn−2 a.e. on ∂F,

divN =
1

|F |

∫

∂F

cF dHn−1.

(7–4)

Observe that the constant on the right hand side of the differential equation in

(7–4) is determined by using the Gauss–Green theorem on F . The complete

characterization of φ-calibrable facets F is not yet available. We conclude the

paper by pointing out some known results in this direction.

7.1. Characterization of φ-calibrable facets in special cases. Assume

that n = 3. Let BF ⊂ ∂Bφ be the facet corresponding to F . If necessary, we

identify BF with its orthogonal projection on the plane parallel to ΠF passing

through the origin of R
3. We also assume that BF contains the origin in its inte-

rior and that it is symmetric (this latter assumption can be weakened). Therefore

BF can be considered as the unit ball of a norm (in R
2), which we denote by φ̃.

We assume that F is Lipschitz φ̃-regular. Denote by κF
φ̃

the φ̃-curvature of ∂F

and by φ̃o the dual of φ̃. The following result holds.

Theorem 7.7. Let n = 3. Assume that F is convex and that E is convex at F .

Then F is φ-calibrable if and only if

sup
∂F

κF
φ̃
≤

1

|F |

∫

∂F

φ̃o(ν̃F ) dH1. (7–5)

The sup in (7–5) is an essential supremum, since κF
φ̃

is a function in L∞(∂F ).

Hence, under the assumptions of Theorem 7.7, problem (7–4) is solvable if and

only if the φ̃-curvature of ∂F is bounded above by the constant on the right
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hand side of (7–5); this means, roughly speaking, that the edges of ∂F cannot

be too “short”.

Finally, let us mention that examples of facets which are not φ-calibrable are

given in [Bellettini et al. 1999], and that the problem of calibrability when Bφ
is a portion of a cylinder (hence not in a crystalline setting) has been recently

considered, under rather mild assumptions, in the papers [Bellettini et al. 2002]

and [Bellettini et al. 2003].

8. Concluding Remarks

Fix a norm φ on R
n and denote by dφ the distance induced by φ. As a

starting point of our approach let us consider the (n−1)-dimensional measure

Mn−1
dφ

, defined as in (1–1) on compact and sufficiently smooth boundaries ∂E

of solid sets E. Such a notion is called the φ-Minkowski content of the manifold

∂E, and is a geometric invariant under isometries of the ambient space (because

the n-dimensional Hausdorff measure Hn
dφ

with respect to dφ is invariant and

the tubular neighborhoods are computed with respect to the distance dφ). On

the other hand cn,φ is not invariant (recall that ωn is a normalizing constant).

We recall that, in the generic (finite dimensional) normed space (Rn, φ), there

are other meaningful notions of surface measure, such as for instance the (n−1)-

dimensional Hausdorff measure Hn−1
dφ

with respect to dφ, the Holmes–Thompson

measure and the measure considered in [De Giorgi 1995]. Even in n = 2 dimen-

sions, there are examples of norms φ on R
2 for which M1

dφ
and H1

dφ
are different.

Roughly speaking, this can be explained as follows. Mn−1
dφ

(∂E) is constructed

by taking the projections of Bφ := {φ ≤ 1} onto the (one-dimensional) normal

spaces to ∂E. On the other hand, Hn−1
dφ

(∂E) is constructed by taking the inter-

sections of Bφ with the ((n−1)-dimensional) tangent spaces to ∂E. We notice

that, in any case, Hn−1
dφ

can be seen as the Minkowski content with respect to

another norm ψ.

Beside its geometric interest, our choice of working with Mn−1
dφ

is motivated

also by the physics of phase transitions, where it happens that some relevant

phenomena are concentrated in a very thin tubular neighborhood of the inter-

face (sometimes called diffuse interface), and lead in the limit to the Minkowski

content.

The next step in our approach consists in the definition of the φ-mean curva-

ture κEφ of ∂E. This concept, which as usual depends also on the immersion of

the manifold, is obtained by computing the first variation of Mn−1
dφ

on ∂E, and

is identified with the normal velocity of the initial datum ∂E = ∂E(0) under the

anisotropic mean curvature flow.

The computation of the first variation of Mn−1
dφ

is rather direct when ∂Bφ is

smooth and all its principal curvatures are strictly positive (regular case), but

becomes more involved in the crystalline case (that is, when Bφ a polytope). In
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this latter situation, assuming that ∂E is polyhedral and has a geometry locally

resembling the geometry of ∂Bφ, we compute κEφ on its facets, by applying a

suitable minimization principle. We then discuss the problem of characterizing

φ-calibrable facets of ∂E in n = 3 dimensions, that is, those facets F ⊂ ∂E for

which κEφ is constant on the relative interior int(F ) of F .

We conclude by recalling that (a scalar multiple of) Bφ is a solution of the

so-called isoperimetric problem, that is, the problem of minimizing Mn−1
dφ

(∂E)

among all finite perimeter sets E with Hn
dφ

(E) fixed. This is in agreement with

the fact that ∂Bφ has constant φ-mean curvature, precisely equal to n− 1.

References

[Allen and Cahn 1979] S. M. Allen and J. W. Cahn, “A macroscopic theory for
antiphase boundary motion and its application to antiphase domain coarsening”,
Acta Metall. Mater. 27 (1979), 1085–1095.

[Almgren and Taylor 1995] F. J. Almgren and J. E. Taylor, “Flat flow is motion by
crystalline curvature for curves with crystalline energies”, J. Differential Geom. 42

(1995), 1–22.

[Almgren et al. 1993] F. J. Almgren, J. E. Taylor and L. Wang, “Curvature-driven
flows: a variational approach”, SIAM J. Control Optim. 31 (1993), 387–437.

[Altschuler et al. 1995] S. Altschuler, S. Angenent and Y. Giga, “Mean curvature flow
through singularities for surfaces of rotation”, J. Geom. Anal. 5 (1995), 293–358.

[Amar et al. 1998] M. Amar, G. Bellettini and S. Venturini, “Integral representation
of functionals defined on curves of W 1,p”, Proc. Roy. Soc. Edinb. 128A (1998),
193–217.

[Ambrosio 1999] L. Ambrosio, “Lecture notes on geometric evolution problems, dis-
tance function and viscosity solutions”, pp. 5–94 in Calculus of variations and partial

differential equations: topics on geometrical evolution problems and degree theory,
edited by G. Buttazzo et al., Springer, Berlin, 1999.

[Ambrosio et al. 2000] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded

variation and free discontinuity problems, Clarendon Press, Oxford, 2000.

[Ambrosio and Kirchheim 2000] L. Ambrosio and B. Kirchheim, “Currents in metric
spaces”, Acta Math. 185 (2000), 1–80.

[Ambrosio et al. 2002] L. Ambrosio, M. Novaga and E. Paolini, “Some regularity results
for minimal crystals”, ESAIM Control Optim. Calc. Var. 8 (2002), 69–103.

[Angenent 1991a] S. Angenent, “On the formation of singularities in the curve short-
ening flow”, J. Differential Geom. 33 (1991) 601–633.

[Angenent 1991b] S. Angenent, “Parabolic equations for curves and surfaces Part II.
Intersections, blow-up and generalized solutions”, Ann. of Math. 133 (1991), 171–
215.

[Angenent et al. 1995] S. Angenent, D. L. Chopp and T. Ilmanen, “A computed
example of nonuniqueness of mean curvature flow in R

3”, Comm. Partial Differential

Equations 20 (1995), 1937–1958.



78 GIOVANNI BELLETTINI

[Anzellotti 1983] G. Anzellotti, “Pairings between measures and bounded functions and
compensated compactness”, Ann. Mat. Pura Appl. 135 (1983), 293–318.

[Bao et al. 2000] D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann–Finsler

geometry, Graduate Texts in Mathematics 200, Springer, New York, 2000.

[Barles et al. 1993] G. Barles, H.-M. Soner and P. E. Souganidis, “Front propagation
and phase field theory”, SIAM J. Control Optim. 31 (1993), 439–469.
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[Brezis 1973] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contrac-

tions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.

[Busemann 1947] H. Busemann, “Intrinsic area”, Ann. Math. 48 (1947), 234–267.

[Busemann 1949] H. Busemann, “A theorem on convex bodies of the Brunn–Minkowski
type”, Proc. Nat. Acad. Sci. USA 35 (1949), 27–31.

[Cahn and Hoffman 1974] J. W. Cahn and D. W. Hoffman, “A vector thermodynamics
for anisotropic interfaces, 2: curved and faceted surfaces”, Acta Metall. Mater. 22

(1974), 1205–1214.

[Cahn et al. 1992] J. W. Cahn, C. A. Handwerker and J. E. Taylor, “Geometric models
of crystal growth”, Acta Metall. Mater. 40 (1992), 1443–1474.

[Cahn et al. 1993] J. W. Cahn and C. A. Handwerker, “Equilibrium geometries of
anisotropic surfaces and interfaces”, Mat. Sci. Eng. A162 (1993), 83–95.

[Chen et al. 1991] Y.-G. Chen, Y. Giga and S. Goto, “Uniqueness and existence of
viscosity solutions of generalized mean curvature flow equations”, J. Differential

Geom. 3 (1991), 749–786.

[De Cecco and Palmieri 1993] G. De Cecco and G. Palmieri, “Distanza intrinseca su
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