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1. Introduction

A Finsler metric of a manifold or vector bundle is defined as a smooth as-

signment for each base point a norm on each fibre space, and thus the class

of Finsler metrics contains Riemannian metrics as a special sub-class. For this

reason, Finsler geometry is usually treated as a generalization of Riemannian ge-

ometry. In fact, there are many contributions to Finsler geometry which contain

Riemannian geometry as a special case (see e.g., [Bao et al. 2000], [Matsumoto

1986], and references therein).

On the other hand, we can treat Finsler geometry as a special case of Riemann-

ian geometry in the sense that Finsler geometry may be developed as differential

geometry of fibred manifolds (e.g., [Aikou 2002]). In fact, if a Finsler metric in

the usual sense is given on a vector bundle, then it induces a Riemannian inner

product on the vertical subbundle of the total space, and thus, Finsler geometry

is translated to the geometry of this Riemannian vector bundle.

It is natural to question why we need Finsler geometry at all. To answer this

question, we shall describe a few applications of complex Finsler geometry to

some subjects which are impossible to study via Hermitian geometry.
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The notion of complex Finsler metric is old and goes back at least to Cara-

théodory who introduced the so-called Carathéodory metric. The geometry of

complex Finsler manifold, via tensor analysis, was started by [Rizza 1963], and

afterwards, the connection theory on complex Finsler manifolds has been de-

veloped by [Rund 1972], [Icijyō 1994], [Fukui 1989], and [Cao and Wong 2003],

etc..

Recently, from the viewpoint of the geometric theory of several complex vari-

ables, complex Finsler metric has become an interesting subject. In particular,

an intrinsic metric on a complex manifold, namely the Kobayashi metric, is a

holomorphic invariant metric on a complex manifold. The Kobayashi metric is,

by its definition, a pseudo Finsler metric. However, by the fundamental work

of [Lempert 1981], the Kobayashi metric on a smoothly bounded strictly convex

domain in Cn is a smooth pseudoconvex Finsler metric.

The interest in complex Finsler geometry also arises from the study of holo-

morphic vector bundles. The characterization of ample (or negative) vector

bundles due to Kobayashi [Kobayashi 1975] shows the importance of Finsler ge-

ometry. In fact, he has proved that E is ample if and only if its dual E∗ admits

a “negatively curved” pseudoconvex Finsler metric (Theorem 3.2). The meaning

of the term “negatively curved” is defined by using the curvature tensor of the

Finsler connection on a Finsler bundle (E,F ).

Another example of interest in complex Finsler geometry arises from the ge-

ometry of geometrically ruled surfaces X . A geometrically ruled surface X is, by

definition (see [Yang 1991]), an algebraic surface with a holomorphic projection

φ : X → M , M a compact Riemann surface, such that each fibre is isomorphic to

the complex projective line P1. Every geometrically ruled surface is isomorphic

to P(E) for some holomorphic vector bundle π : E → M of rank(E) = 2. Then,

every geometrically ruled surface X = P(E) is also a compact Kähler manifold

by Lemma 6.37 in [Shiffmann and Sommese 1985], and any Kähler metric gX
on X induces a Finsler metric F , which is not a Hermitian metric in general, on

the bundle E. Thus the geometry of (X , gX ) is translated to the geometry of

the Finsler bundle (E,F ).

In general, an algebraic curve (or polarized manifold) ϕ : X → PN has a

Kähler metric ωX = ϕ∗ωFS induced from the Fubini–Study metric ωFS on PN .

An interesting subject in complex geometry is to investigate how metrics of

this kind are related to constant curvature metrics, and moreover, it is inter-

esting to investigate how constant scalar curvature metrics should be related

to algebro-geometric stability. LeBrun [LeBrun 1995] has investigated minimal

ruled surfaces X = P(E) over a compact Riemann surface M of genus g(M) ≥ 2

with constant scalar curvature. He showed that, roughly speaking, X admits

such a Kähler metric gX if and only if the bundle E is semi-stable in the sense

of Mumford–Takemoto. By the statement above, an arbitrary Kähler metric on

a minimal ruled surface X determines a Finsler metric F on E by the identity

ωX =
√
−1 ∂∂̄ log F for the Kähler form ωX . The geometry of such a minimal
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ruled surface can also be investigated by the study of the Finsler bundle (E,F )

(see [Aikou 2003b]).

In this article, we shall report on the geometry of complex vector bundles with

Finsler metrics, i.e., Finsler bundles. Let F be a Finsler metric on a holomorphic

vector bundle π : E → M over a complex manifold M . The geometry of a Finsler

bundle (E,F ) is the study of the vertical bundle VE = kerπ∗ with a Hermitian

metric GVE
induced from the given Finsler metric.

The main tool of the investigation in Finsler geometry is the Finsler con-

nection. The connection is a unique one on the Hermitian bundle (VE , gVE
),

satisfying some geometric condition (see definition below). Although it is nat-

ural to investigate (VE , gVE
) by using the Hermitian connection of (VE , gVE

), it

is convenient to use the Finsler connection for investigating some special Finsler

metrics. For example, the flatness of the Hermitian connection of (VE , gVE
) im-

plies that the Finsler metric F is reduced to a flat Hermitian metric. However, if

the Finsler connection is flat, then the metric F belongs to an important class,

the so-called locally Minkowski metrics (we simply call these special metrics flat

Finsler metrics). If the Finsler connection is induced from a connection on E,

then the metric F belongs to another important class, the so-called Berwald

metrics (sometimes a Berwald metric is said to be modeled on a Minkowski

space). In this sense, the big difference between Hermitian geometry and Finsler

geometry is the connection used for the investigation of the bundle (VE , gVE
).

2. Ampleness

2.1. Ample line bundles. Let L be a holomorphic line bundle over a compact

complex manifold M . We denote by O(L) the sheaf of germs of holomorphic

sections of L. Since M is compact, dimC H0(M,O(L)) is finite. Let {f 0, . . . , fN}
be a set of linearly independent sections of L, from the complex vector space of

global sections. The vector space spanned by these sections is called a linear

system on M . If the vector space consists of all global sections of L, it is called

a complete linear system on M . Using these sections {f 0, . . . , fN}, a rational

map ϕ|L| : M → PN is defined by

ϕ|L|(z) = [f0(z) : · · · : fN (z)]. (2.1)

This rational map is defined on the open set in M which is complementary to

the common zero-set of the sections f i (0 ≤ i ≤ N). It is verified that the

rational map ϕ̃|L| obtained from another basis {f̃0, . . . , f̃N} is transformed by

an automorphism of PN .

Definition 2.1. A line bundle L over M is said to be very ample if the rational

map ϕ|L| : M → PN determined by its complete linear system |L| is an embed-

ding. L is said to be ample if there exists some integer m > 0 such that L⊗m is

very ample.
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Let L be a very ample line bundle over a compact complex manifold M , and

{f0, . . . , fN} a basis of H0(M,O(L)) which defines an embedding ϕ|L| : M →
PN . Embedding M into PN , we may consider the line bundle as the hyperplane

bundle over M ⊂ PN . We define an open covering {U(j)} of M by U(j) =
{

z ∈ M : f j(z) 6= 0
}

. With respect to this covering, the local trivialization ϕj

over U(j) × C is given by ϕj(f
i) = (zα

(j), f
i
(j)). The transition cocycle {ljk :

U(j) ∩ U(k) → C∗} is given by

ljk(z) =
f i
(k)

f i
(j)

. (2.2)

Let {hjk} be the transition cocycle of the hyperplane bundle H with respect to

the standard covering {U(j)} of PN . Then, {hjk} is given by hjk = ξk/ξj in

terms of the homogeneous coordinate system [ξ0 : · · · : ξN ] of PN . Since (2.2)

implies

hjk ◦ ϕ|L| =
f i
(k)

f i
(j)

= ljk,

we obtain L = ϕ∗
|L|H.

Lemma 2.1. Let L be a very ample line bundle over a complex manifold M .

Then L is isomorphic to the pullback bundle ϕ∗
|L|H of the hyperplane bundle H

over the target space PN of ϕ|L|.

Example 2.1. (1) The hyperplane bundle H over PN is very ample.

(2) Let E be a holomorphic line bundle and L an ample line bundle over a

compact complex manifold M . For some sufficiently large integer k, the line

bundle E ⊕ L⊗k is very ample (see [Griffith and Harris 1978, p. 192]).

As we can see from the above, it is an algebro-geometric issue to determine

whether a holomorphic line bundle is ample or not. However, the Kodaira em-

bedding theorem provides a differential geometric way to check ampleness; see

Theorem 2.1 and Proposition 2.1 below. The key idea is to relate ampleness to

the notion of positivity, defined as follows.

Definition 2.2. A holomorphic line bundle L is said to be positive if its Chern

class c1(L) ∈ H2(M, R) is represented by a positive real (1, 1)-form. A holo-

morphic line bundle L is said to be negative if its dual L∗ is positive. Since

c1(L
∗) = −c1(L), the holomorphic line bundle L is negative if c1(L) is repre-

sented by a negative real (1, 1)-form.

A Hermitian metric g on L is given by the family
{

g(j)

}

of local positive functions

g(j) : U(j) → R, satisfying g(k) = |ljk|2g(j) on U(j)∩U(k) for the transition cocycle

{ljk} of L. Since ljk are holomorphic, we have ∂̄∂ log g(j) = ∂̄∂ log g(k), and thus

{∂̄∂ log g(j)} defines a global (1, 1)-form on M , which will be denoted by ∂̄∂ log g,

and is just the curvature form of (L, g). The Chern form c1(L, g) defined by

c1(L, g) =
√
−1 ∂̄∂ log g is a representative of the Chern class c1(L).
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By the definition above, a holomorphic line bundle L is positive if and only

if L admits a Hermitian metric g whose Chern form c1(L, g) is positive-definite.

A compact complex manifold M is called a Hodge manifold if there exists a

positive line bundle L over M . If M is a Hodge manifold, then there exists a

Hermitian line bundle (L, g) whose Chern form c1(L, g) is positive-definite, and

thus c1(L, g) defines a Kähler metric on M . Consequently, every Hodge manifold

is Kähler.

The hyperplane bundle H over PN is positive. In fact, if we define a function

g(j) on V(j) =
{

[ξ0 : · · · : ξN ] ∈ PN : ξj 6= 0
}

by

g(j) =
|ξj |2

∑

|ξk|2 , (2.3)

the family {g(j)}j=0,...,N satisfies g(k) = |hjk|2g(j) on V(j) ∩ V(k), and thus it

determines a Hermitian metric gH on H. Then we have

c1(H) =

[
√
−1

2π
∂̄∂ log gH

]

> 0. (2.4)

The closed real (1, 1)-form representing c1(H) induces a Kähler metric on PN ,

which is called the Fubini–Study metric gFS with the Kähler form

ωFS =
√
−1 ∂∂̄ log ‖ξ‖2

,

where we put ‖ξ‖2
=

∑

|ξi|2.
The following well-known theorem shows that every Hodge manifold M is

algebraic, i.e., M is holomorphically embedded in a projective space PN .

Theorem 2.1 (Kodaira’s embedding theorem). Let L be a holomorphic

line bundle over a compact complex manifold M . If L is positive, then it is

ample, i .e., there exists some integer n0 > 0 such that for all m ≥ n0 the map

ϕ|L⊗m| : M → PN is a holomorphic embedding .

Conversely, we suppose that L is ample. Then, by definition, there exists a basis

{f0, . . . , fN} of H0(M,O(L⊗m)) such that ϕ|L⊗m| : M → PN defined by (2.1) is

an embedding. By Lemma 2.1, the line bundle L⊗m is identified with ϕ∗
|L⊗m|H.

Thus L⊗m admits a Hermitian metric g = ϕ∗
|L⊗m|gH, and c1(L

⊗m) is given by

c1(L
⊗m) = mc1(L) =

[
√
−1

2π
∂̄∂ log g

]

.

Since H is positive, the (1, 1)-form
√
−1 ∂̄∂ log g is positive, and thus

c1(L) =
1

m

[
√
−1

2π
∂̄∂ log g

]

is positive. Consequently:

Proposition 2.1. A holomorphic line bundle L over a compact complex mani-

fold M is ample if and only if L is positive.
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Let M be a compact Riemann surface. The integer g(M) defined by

g(M) := dimC H1 (M,OM ) = dimC H0 (M,O(KM ))

is called the genus of M , where KM = T ∗
M is the canonical line bundle over M ,

and OM is the sheaf of germs of holomorphic functions on M . The degree of a

line bundle L is defined by

deg L =

∫

M

c1(L) ∈ Z.

Applying the Riemann–Roch theorem

dimC H0(M,O(L)) − dimC H1(M,O(L)) = deg L + 1 − g(M)

to the case of L = KM , we have

dimC H1(M,O(KM )) = dimC H0(M,Ω1(K∗
M )) = dimC H0(M,OM ) = 1,

since M is compact. Consequently we have deg KM = 2g(M)− 2, and the Euler

characteristic χ(M) is given by

χ(M) =

∫

M

c1(TM ) = −deg KM = 2 − 2g(M).

By the uniformisation theorem (e.g., Theorem 4.41 in [Jost 1997]), any com-

pact Riemann surface M is determined completely by its genus g(M). If g(M) =

0, then M is isomorphic to the Riemannian sphere S2 ∼= P1 and its holomorphic

tangent bundle TM is ample. In the case of g(M) = 1, then M is isomorphic to

a torus T = C/Λ, where Λ is a module over Z of rank two, and TM is trivial.

In the last case of g(M) ≥ 2, it is well-known that M is hyperbolic, i.e., M

admits a Kähler metric of negative constant curvature, and TM is negative since

c1(TM ) < 0.

In the case of dimC M ≥ 2, Hartshone’s conjecture (“If the tangent bundle

TM is ample, then M is bi-holomorphic to the projective space Pn”) was solved

affirmatively by an algebro-geometric method ([Mori 1979]). Then, it is natural

to investigate complex manifolds with negative tangent bundles. We next discuss

the negativity and ampleness of holomorphic vector bundles.

2.2. Ample vector bundles. Let π : E → M be a holomorphic vector

bundle of rank(E) = r + 1 (≥ 2) over a compact complex manifold M , and

φ : P(E) = E×/C× → M the projective bundle associated with E. Here and in

the sequel, we put E× = E − {0} and C× = C − {0}. We also denote by L(E)

the tautological line bundle over P(E), i.e.,

L(E) = {(V, v) ∈ P(E) × E | v ∈ V } .

The dual line bundle H(E) = L(E)∗ is called the hyperplane bundle over P(E).
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Since L(E) is obtained from E by blowing up the zero section of E to P(E),

the manifold L(E)× is biholomorphic to E×. This biholomorphism is given by

the holomorphic map

τ : E× 3 v → ([v], v) ∈ P(E) × E×. (2.5)

Then, for a arbitrary Hermitian metric gL(E) on L(E), we define the norm ‖v‖E

of v ∈ E× by

‖v‖E =
√

gL(E)(τ(v)). (2.6)

Extending this definition to the whole of E continuously, we obtain a function

F : E → R by

F (v) = ‖v‖2
E (2.7)

for every v ∈ E. This function satisfies the following conditions.

(F.1) F (v) ≥ 0, and F (v) = 0 if and only if v = 0,

(F.2) F (λv) = |λ|2F (v) for any λ ∈ C× = C\{0},
(F.3) F (v) is smooth outside of the zero-section.

Definition 2.3. Let π : E → M be a holomorphic vector bundle over a

complex manifold M . A real valued function F : E → R satisfying the conditions

(F1) ∼ (F3) is called a Finsler metric on E, and the pair (E,F ) is called a

Finsler bundle. If a Finsler metric F satisfies, in addition,

(F.4) the real (1, 1)-form
√
−1 ∂∂̄F is positive-definite on each fibre Ez,

then F is said to be pseudoconvex . (Note: it’s
√
−1 ∂∂̄F , not

√
−1 ∂∂̄ log F .)

This discussion shows that any Hermitian metric on L(E) defines a Finsler metric

on E. Conversely, an arbitrary Finsler metric F on E determines a Hermitian

metric gL(E) on L(E), i.e., we obtain

Proposition 2.2 [Kobayashi 1975]. There exists a one-to-one correspondence

between the set of Hermitian metrics on L(E) and the set of Finsler metrics

on E.

Definition 2.4 [Kobayashi 1975]. A holomorphic vector bundle π : E → M

over a compact complex manifold M is said to be negative if its tautological line

bundle L(E) → P(E) is negative, and E is said to be ample if its dual E∗ is

negative.

The Chern class c1(L(E)) is represented by the closed real (1, 1)-form

c1 (L(E), F ) =

√
−1

2π
∂̄∂ log F

for a Finsler metric F on E. Thus, E is negative if and only if E admits a Finsler

metric F satisfying c1(L(E), F ) < 0. Consequently:
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Proposition 2.3. Let E be a holomorphic vector bundle over a compact complex

manifold M . Then E is negative if and only if E admits a Finsler metric F

satisfying
√
−1 ∂̄∂ log F < 0.

Given any negative holomorphic vector bundle E over M , we shall construct

a pseudoconvex Finsler metric F on E, with c1 (L(E), F ) < 0 (see [Aikou

1999] and [Wong 1984]). By definition the line bundle L(E) is negative, and

so L(E)∗ is ample. Hence there exists a sufficiently large positive m ∈ Z such

that L := L(E)∗⊗m is very ample. By the definition of very ampleness, we can

take f0, . . . , fN ∈ H0(P(E), L) such that

ϕ|L| : P(E) 3 [v] →
[

f0([v]) : · · · : fN ([v])
]

∈ P
N

defines a holomorphic embedding ϕ|L| : P(E) → PN . Then, by Lemma 2.1, we

have L ∼= ϕ∗
|L|H for the hyperplane bundle H → PN . Since c1(H) is given by (2.4),

we have c1(L) = c1(ϕ
∗
|L|H) = ϕ∗

|L|c1(H) > 0, and the induced metric gL is given

by gL = ϕ∗
|L|gH for the metric gH on H defined by (2.3). Since L = (L(E)∗)

⊗m
,

we have gL = g−m
L(E), and thus the induced metric gL(E) on L(E) is given by

gL(E) =
[

ϕ∗
|L|gH

]−1/m

=

[

1

ϕ∗
|L|gH

]1/m

.

Because of (2.3), the metric gL is locally given by

g(j) =
|f j |2

∑

|fk|2 ,

and the Finsler metric F on E corresponding to gL(E) is given by

F (v) =
[

(ϕ∗
|L|gH) (τ(v))

]−1/m

=

[∑

|fk([v])|2
|f j([v])|2

]1/m

|vj |2 (2.8)

for v = (v1, . . . , vr+1) ∈ Ez. The Finsler metric F obtained as above satisfies the

condition c1 (L(E), F ) < 0. The pseudoconvexity of F will be shown by more

local computations (see Theorem 3.2).

Remark 2.1. Every pseudoconvex Finsler metric on a holomorphic vector

bundle E is obtained from a pseudo-Kähler metric on P(E) (Propositions 4.1

and 4.2).

In a later section, we shall show a theorem of Kobayashi’s (Theorem 3.2) which

characterizes negative vector bundles in terms of the curvature of Finsler metrics.

For this purpose, in the next section, we shall discuss the theory of Finsler

connections on (E,F ).
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3. Finsler Connections

Let π : E → M be a holomorphic vector bundle of rank(E) = r + 1 over

a complex manifold M . We denote by TM the holomorphic tangent bundle of

M . We also denote by TE the holomorphic tangent bundle of the total space E.

Then we have an exact sequence of holomorphic vector bundles

0 −→ VE
i−→ TE

π∗−→ π∗TM −→ 0, (3.1)

where VE = ker π∗ is the vertical subbundle of TE . A connection of the bundle

π : E → M is a smooth splitting of this sequence.

Definition 3.1. A connection of a fibre bundle π : E → M is a smooth

VE-valued (1, 0)-form θE ∈ Ω1,0(VE) satisfying

θE(Z) = Z (3.2)

for all Z ∈ VE . A connection θE defines a smooth splitting

TE = VE ⊕ HE (3.3)

of the sequence (3.1), where HE ⊂ TE is a the horizontal subbundle defined by

HE = ker θE .

The complex general linear group GL(r + 1, C) acts on E in a natural way. A

connection θE is called a linear connection if the horizontal subspace at each

point is GL(r+1, C)-invariant. A Hermitian metric on E defines a unique linear

connection θE .

On the other hand, the multiplier group C× = C\{0} ∼= {c · I | c ∈ C×} ⊂
GL(r + 1, C) also acts on the total space E by multiplication Lλ : E 3 v →
λv ∈ E on the fibres for all v ∈ E and λ ∈ C×. In this paper, we assume that

a connection θE is C×-invariant. We denote by E ∈ OE(VE) the tautological

section of VE generated by the action of C×, i.e., E is defined by

E(v) = (v, v)

for all v ∈ E. The invariance of θE under the action of C× is equivalent to

LEHE ⊂ HE , (3.4)

where LE denotes the Lie derivative by E . In this sense, a C×-invariant connec-

tion θE is called a non-linear connection.

Example 3.1. Let E be a holomorphic vector bundle with a Hermitian metric

h. Let ∇̄ be the Hermitian connection of h, and ∇ = π∗∇̄ the induced connection

on VE . If we define θ ∈ Ω1,0(VE) by

θE = ∇̄E , (3.5)

then θE defines a linear connection on the bundle π : E → M .
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If a pseudoconvex Finsler metric F is given on E, then it defines a canonical

non-linear connection θE (see below).

If a connection θE is given on E, we put

XV = θE(X), XH = X − XV ,

and

(dV f)(X) = df
(

XV
)

, (dHf)(X) = df
(

XH
)

for every X ∈ TE and f ∈ C∞(E). These operators can be decomposed as

dV = ∂V + ∂̄V and dH = ∂H + ∂̄H . Furthermore the partial derivatives are also

decomposed as ∂ = ∂H + ∂V and ∂̄ = ∂̄H + ∂̄V .

3.1. Finsler connection. We define a partial connection ∇H : VE → Ω1(VE)

on VE by

∇H
Y Z = θE

(

[Y H , Z]
)

(3.6)

for all Y ∈ TE and Z ∈ VE , where [ · , · ] denotes the Lie bracket on TE . This

operator ∇H is linear in X and satisfies the Leibnitz rule

∇H(fZ) = (dHf) ⊗ Z + f∇HZ

for all f ∈ C∞(E).

On the other hand, since E is a fibre bundle over M , the projection map

π : E → M can be used to pullback the said fibre bundle, generating a π∗E

which sits over E. Note that VE
∼= π∗E. Thus VE admits a canonical relatively

flat connection ∇V : VE → Ω1(VE) defined by ∇V
X (π∗s) = 0 for every local

holomorphic section s of E, i.e.,

∇V = dV . (3.7)

Then a connection ∇ : VE → Ω1(VE) is defined by

∇Z = ∇HZ + dV Z (3.8)

for every Y ∈ TE and Z ∈ VE . We note here that the connection ∇ is determined

uniquely from the connection θE on the bundle π : E → M .

Proposition 3.1. Let ∇ : VE → Ω1(VE) be the connection on VE defined by

(3.8), from a connection θE on the bundle π : E → M . Then ∇ satisfies

∇E = θE . (3.9)

Proof. Since θE is invariant by the action of C×, we have ∇HE = 0. In fact,

∇H
XE = θE

(

[XH , E ]
)

= −θE

(

LEXH ]
)

= 0.

Furthermore, since
(

dV E
)

(X) = XV , we obtain

∇XE = ∇H
XE +

(

dV E
)

(X) = XV = θE(X)

for every X ∈ TE . Hence we have (3.9). ˜
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For the rest of this paper, we shall use the following local coordinate system on

M and E. Let U be an open set in M with local coordinates (z1, . . . , zn), and s =

(s0, . . . , sr) a holomorphic local frame field on U . By setting v =
∑

ξisi(z) on for

each v ∈ π−1(U), we take (z, ξ) =
(

z1, . . . , zn, ξ0, . . . , ξr
)

as a local coordinate

system on π−1(U) ⊂ E. We use the notation

∂α =
∂

∂zα
and ∂j =

∂

∂ξj
.

We also denote by ∂ᾱ and ∂j̄ their conjugates.

We suppose that a pseudoconvex Finsler metric F is given on E. Then, by

definition in the previous section, the form ωE =
√
−1 ∂∂̄F is a closed real (1, 1)-

form on the total space E such that the restriction ωz on each fibre Ez = π−1(z)

defines a Kähler metric Gz on Ez, and ωE defines a Hermitian metric GVE
on

the bundle VE . Thus we shall investigate the geometry of the Hermitian bundle

{VE , GVE
}.

A Finsler metric F on E is pseudoconvex if and only if the Hermitian matrix
(

Gij̄

)

defined by

Gij̄(z, ξ) = ∂i∂j̄F (3.10)

is positive-definite. Each fibre Ez may be considered as a Kähler manifold with

Kähler form ωz =
√
−1

∑

Gij̄dξi ∧ dξ̄j . The family {Ez, ωz}z∈M is considered

as a family of Kähler manifolds and the bundle is considered as the associated

fibred manifold. The Hermitian metric GVE
on VE is defined by

GVE
(si, sj) = Gij̄ , (3.11)

where we consider s = (s0, . . . , sr) as a local holomorphic frame field for VE
∼=

π∗E. We denote by ‖ · ‖E the norm defined by the Hermitian metric GVE
. Then,

because of the homogeneity (F2), we have

‖E‖2
E = GVE

(E , E) = F (z, ξ) (3.12)

and

LEGVE
= GVE

(3.13)

for the tautological section E(z, ξ) =
∑

ξisi(z).

Let θ =
(

θ1, . . . , θr
)

be the dual frame field for the dual bundle V ∗
E , i.e.,

θi (sj) = δi
j . A connection θE for the bundle π : E → M is written as

θE = s ⊗ θ =
∑

si ⊗ θi.

Proposition 3.2. Let F be a pseudoconvex Finsler metric on a holomorphic

vector bundle E. Then there exists a unique connection θE such that (3.3) is the

orthogonal splitting with respect to ωE .
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Proof. We can easily show that the required (1, 0)-form θi is defined by θi =

dξi +
∑

N i
α dzα, where the local functions N i

α(z, ξ) are given by

N i
α =

∑

Gim̄∂α∂m̄F

for the inverse matrix
(

Gim̄
)

of (Gim̄). By the homogeneity (F2), these functions

satisfy N i
α(z, λξ) = λN i

α(z, ξ) for every λ ∈ C×, which implies that θE is C×-

invariant. ˜

For the rest of this paper, we shall adopt the connection θE obtained in Propo-

sition 3.2 on a pseudoconvex Finsler bundle (E,F ).

Proposition 3.3 [Aikou 1998]. The connection θE satisfies

∂H ◦ ∂H ≡ 0. (3.14)

Such a connection θE determines a unique connection ∇ on VE .

Definition 3.2. The connection ∇ : VE → Ω1(VE) on (VE , GVE
) defined by

(3.8) is called the Finsler connection of (E,F ).

The connection ∇ defined by (3.8) is canonical in the following sense.

Proposition 3.4 [Aikou 1998]. Let ∇ be the Finsler connection on a pseudo-

convex Finsler bundle (E,F ). Then ∇ = ∇H +dV satisfies the following metrical

condition.

dHGVE
(Y,Z) = GVE

(∇HY,Z) + GVE
(Y,∇HZ) (3.15)

for all Y,Z ∈ VE .

The connection form ω =
(

ωi
j

)

of ∇ with respect to a local holomorphic frame

field s = (s0, . . . , sr) is defined by ∇sj =
∑

si ⊗ ωi
j . By the identity (3.15), ω is

given by

ω = G−1∂HG. (3.16)

3.2. Curvature. Let ∇ be the Finsler connection on (E,F ). We also denote

by ∇ : Ωk(VE) → Ωk+1(VE) the covariant exterior derivative defined by ∇.

Definition 3.3. The section R = ∇◦∇ ∈ Ω2 (End(VE)) is called the curvature

of ∇.

With respect to the local frame field s = (s0, . . . , sr), we put

R(sj) =
∑

si ⊗ Ωi
j .

In matrix notation, the curvature form Ω =
(

Ωi
j

)

of ∇ is given by

Ω = dω + ω ∧ ω. (3.17)

The curvature form Ω is decomposed as Ω = dHω + ω ∧ ω + dV ω, which can be

simplified to

Ω = ∂̄Hω + dV ω. (3.18)

This is made possible by
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Proposition 3.5. The horizontal (2, 0)-part of Ω vanishes, i .e.,

∂Hω + ω ∧ ω ≡ 0. (3.19)

Proof. Since ω = G−1∂HG, (3.14) implies

∂Hω + ω ∧ ω = ∂H
(

G−1∂HG
)

+ ω ∧ ω

= −G−1∂HG ∧ G−1∂HG + G−1∂H ◦ ∂HG + ω ∧ ω

= G−1∂H ◦ ∂HG = 0. ˜

We give the definition of flat Finsler metrics.

Definition 3.4. A Finsler metric F is said to be flat if there exists a holo-

morphic local frame field s = (s0, . . . , sr) around every point of M such that

F = F (ξ), i.e., F is independent of the base point z ∈ M .

Theorem 3.1 [Aikou 1999]. A Finsler metric F is flat if and only if the curva-

ture R vanishing identically .

Let RH be the curvature of the partial connection ∇H , i.e., RH = ∇H ◦ ∇H .

From (3.18), the curvature form ΩH of RH is given by ΩH = ∂̄Hω. If we put

∂̄Hωi
j =

∑

Ri
jαβ̄ dzα ∧ dz̄β ,

the curvature RH is given by

RH (sj) =
∑

si ⊗
(

Ri
jαβ̄ dzα ∧ dz̄β

)

.

For the curvature form ΩH of ∇H , we define a horizontal (1, 1)-form Ψ by

Ψ(X,Y ) =
GVE

(

RH
XY (E), E

)

‖E‖2
E

=
1

F

∑

Rij̄αβ̄(z, ξ)ξiξ̄jXαȲ β

for any horizontal vector fields X,Y at (z, ξ) ∈ E, where we put Rij̄αβ̄ =
∑

Gmj̄R
m
iαβ̄

. We set

Ψαβ̄(z, ξ) =
1

F

∑

Rij̄αβ̄ξiξ̄j . (3.20)

In [Kobayashi 1975], this (1, 1)-form Ψ =
∑

Ψαβ̄ dzα ∧ dz̄β is also called the

curvature of F .

Definition 3.5. If the curvature form Ψ satisfies the negativity condition, i.e.,

Ψ(Y,Z) < 0 for all Y,Z ∈ HE , then we say that (E,F ) is negatively curved .

Direct computation gives:

Proposition 3.6 [Aikou 1998]. For a pseudoconvex Finsler metric F on a

holomorphic vector bundle E, the real (1, 1) form
√
−1 ∂∂̄ log F = −c1 (L(E), F )

is given by
√
−1 ∂∂̄ log F =

√
−1

(

−Ψαβ̄ O

O ∂i∂j̄ log F

)
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with respect to the orthogonal decomposition (3.3), i .e.,

√
−1 ∂∂̄ log F =

√
−1

(

−
∑

Ψαβ̄ dzα ∧ dz̄β +
∑

∂i∂j̄ (log F )θi ∧ θ̄j

)

. (3.21)

Analyzing the negativity of the form c1 (L(E), F ), we have the following theorem

of Kobayashi.

Theorem 3.2 [Kobayashi 1975]. A holomorphic vector bundle π : E → M over

a compact complex manifold M is negative if and only if E admits a negatively

curved pseudoconvex Finsler metric.

Proof. By Proposition 2.3, E is negative if and only if there exists a Finsler

metric F such that
√
−1 ∂̄∂ log F < 0. Since ∂ and ∂̄ anti-commute, this char-

acterization is equivalent to
√
−1 ∂∂̄ log F > 0. Thus, E is negative if and only

if the right hand side of (3.21) is positive.

Denote by Fz the restriction of F to each fibre Ez = π−1(z). Then, we have
√
−1 ∂∂̄Fz =

√
−1Fz

(

∂∂̄ log Fz + ∂ log Fz ∧ ∂̄ log Fz

)

.

If (3.21) has positive right hand side, then
√
−1Ψ must be negative, and√

−1 ∂∂̄ log Fz must be positive. The latter, in conjunction with the displayed

formula, implies the positivity of
√
−1 ∂∂̄Fz. Thus F is pseudoconvex and neg-

atively curved.

Conversely, suppose F is pseudoconvex and negatively curved. That is, we

have
√
−1 ∂∂̄Fz > 0 and

√
−1Ψ < 0. Now, the pseudoconvexity of F implies

that the second term on the right hand side of (3.21) is positive-definite (see

section 4.1 for details). Thus the entire right hand side of (3.21) is positive. ˜

Remark 3.1. In this section, the horizontal (1, 1)-part RH of R plays an impor-

tant role. In Finsler geometry, there are other important tensors. The VE-valued

2-form TE defined by

TE = ∇θE (3.22)

is called the torsion form of ∇, which is expressed by

TE = s ⊗ (dθ + ω ∧ θ) =
∑

si ⊗
(

dθi +
∑

ωi
j ∧ θj

)

.

Because of (3.9), the torsion form TE is also given by

TE = R(E).

The torsion form TE vanishes if and only if the horizontal subbundle HE defined

by θE is holomorphic and integrable (see [Aikou 2003b]).

On the other hand, the mixed part RHV of R defined by

RHV (sj) =
∑

si ⊗ dV ωi
j

is also an important curvature form. The vanishing of RHV shows that (E,F ) is

modeled on a complex Minkowski space, i.e., there exists a Hermitian metric hF
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on E such that the Finsler connection ∇ on (E,F ) is obtained by ∇ = π∗∇̄ for

the Hermitian metric ∇̄ of (E, hF ) (see [Aikou 1995]). Hence a Finsler metric F

is flat if and only if (E,F ) is modeled on a complex Minkowski space and the

associated Hermitian metric hF is flat.

3.3. Holomorphic sectional curvature. We now study the holomorphic

tangent bundle TM of a complex manifold with a pseudoconvex Finsler metric

F : TM → R. The pair (M,F ) is called a complex Finsler manifold . This is the

special case of E = TM in Definition 2.3, and we have the natural identifications

VE
∼= HE

∼= π∗TM .

Let ∆(r) = {ζ ∈ C : |ζ| < r} be the disk of radius r in C with the Poincaré

metric

gr =
4r2

(r2 − |ζ|2)2 dζ ⊗ dζ̄.

For every point (z, ξ) ∈ TM , there exists a holomorphic map ϕ : ∆(r) → M

satisfying ϕ(0) = z and

ϕ∗(0) := ϕ∗

(

(

∂

∂ζ

)

ζ=0

)

= ξ. (3.23)

Then, the pullback ϕ∗F defines a Hermitian metric on ∆(r) by

ϕ∗F = E(ζ) dζ ⊗ dζ̄,

where we put E(ζ) = F (ϕ(ζ), ϕ∗(ζ)). The Gauss curvature Kϕ∗F (z, ξ) is defined

by

Kϕ∗F (z, ξ) = −
(

1

E

∂2 log E

∂ζ ∂ζ̄

)

ζ=0

.

Definition 3.6 [Royden 1986]. The holomorphic sectional curvature KF of

(M,F ) at (z, ξ) ∈ TM is defined by

KF (z, ξ) = sup
ϕ

{Kϕ∗F (z, ξ) : ϕ(0) = z, ϕ∗(0) = ξ} ,

where ϕ ranges over all holomorphic maps from a small disk into M satisfying

ϕ(0) = z and (3.23).

Then KF has a computable expression in terms of the curvature tensor of the

Finsler connection ∇.

Proposition 3.7 [Aikou 1991]. The holomorphic sectional curvature KF of a

complex Finsler manifold (M,F ) is given by

KF (z, ξ) =
Ψ(E , E)

‖E‖2
E

=
1

F 2

∑

Rij̄kl̄(z, ξ)ξiξ̄jξkξ̄l, (3.24)

where Rij̄kl̄ =
∑

Gmj̄R
m
ikl̄

is the curvature tensor of the Finsler connection ∇
on (TM , F ).

Then we have a Schwarz-type lemma:
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Proposition 3.8 [Aikou 1991]. Let F be a pseudoconvex Finsler metric on

the holomorphic tangent bundle of a complex manifold M . Suppose that its

holomorphic sectional curvature KF (z, ξ) at every point (z, ξ) ∈ TM is bounded

above by a negative constant −k. Then, for every holomorphic map ϕ : ∆(r) →
M satisfying ϕ(0) = z and (3.23), we have

gr ≥ kϕ∗F. (3.25)

The Kobayashi metric FM on a complex manifold M is a positive semidefinite

pseudo metric defined by

FM (z, ξ) = inf
ϕ

{

1
r : ϕ(0) = z, ϕ∗(0) = ξ

}

. (3.26)

In general, FM is not smooth. FM is only upper semi-continuous, i.e., for every

X ∈ TM and every ε > 0 there exists a neighborhood U of X such that FM (Y ) <

FM (X)+ε for all Y ∈ U (see [Kobayashi 1998], [Lang 1987]). Even though FM is

not a Finsler metric in our sense, the decreasing principle shows the importance

of the Kobayashi metric, i.e., for every holomorphic map ϕ : N → M , we have

the inequality

FN (X) ≥ FM (ϕ∗(X)). (3.27)

This principle shows that FM is holomorphically invariant, i.e., if ϕ : N → M

is biholomorphic, then we have FN = ϕ∗FM . In this sense, FM is an intrinsic

metric on complex manifolds.

A typical example of Kobayashi metrics is the one on a domain in Cn. It is

well-known that, if M is a strongly convex domain with smooth boundary in Cn,

then FM is a pseudoconvex Finsler metric in our sense (see [Lempert 1981]).

A complex manifold M is said to be Kobayashi hyperbolic if its Kobayashi

metric FM is a metric in the usual sense. If M admits a pseudoconvex Finsler

metric F whose holomorphic sectional curvature KF is bounded above by a

negative constant −k, then (3.25) implies the inequality

F 2
M ≥ kF, (3.28)

and thus M is Kobayashi hyperbolic.

Theorem 3.3 [Kobayashi 1975]. Let M be a compact complex manifold . If its

holomorphic tangent bundle TM is negative, then M is Kobayashi hyperbolic.

Proof. We suppose that TM is negative. Then, Theorem 3.2 implies that there

exists a pseudoconvex Finsler metric F on TM with negative-definite Ψ . By the

definition (3.20), the negativity of Ψ and (3.24) imply

KF (z, ξ) =
Ψ(E , E)

‖E‖2
E

< 0.

Since M is compact, P(E) is also compact. Moreover, since KF is a function on

P(E), the negativity of KF shows that KF is bounded by a negative constant

−k. Hence we obtain (3.28), and M is Kobayashi hyperbolic. ˜
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Remark 3.2. Recently Cao and Wong [Cao and Wong 2003] have introduced the

notion of “mixed holomorphic bisectional curvature” for Finsler bundles (E,F ),

which equals the usual holomorphic bisectional curvature in the case of E =

TM . They also succeeded in showing that a holomorphic vector bundle E of

rank(E) ≥ 2 over a compact complex manifold M is ample if and only if E

admits a Finsler metric with positive mixed holomorphic bisectional curvature.

4. Ruled Manifolds

4.1. Projective bundle. Let φ : P(E) → M be the projective bundle associ-

ated with a holomorphic vector bundle E over M .

Definition 4.1. A locally ∂∂̄-exact real (1, 1)-form ωP(E) on the total space

P(E) is called a pseudo-Kähler metric on P(E) if its restriction to each fibre

defines a Kähler metric on P(Ez) ∼= Pr.

If a pseudo-Kähler metric ωP(E) is given on P(E), then its restriction to each fibre

φ−1(z) = P(Ez) is a Kähler form on P(Ez). We shall show that a pseudoconvex

Finsler metric on E defines a pseudo-Kähler metric on P(E). For this purpose,

we use the so-called Euler sequence (e.g., [Zheng 2000]).

We denote by ρ : E× → P(E) the natural projection. We also denote by

VP(E) := kerφ∗ the vertical subbundle of TP(E). Let s = (s0, . . . , sr) be a holo-

morphic local frame field of E on an open set U ⊂ M , which is naturally con-

sidered as a holomorphic local frame field of VE on π−1(U). Then, the vertical

subbundle VP(E) ⊂ TP(E) is locally spanned by {ρ∗s0, . . . , ρ∗sr} with the relation

ρ∗E = 0. (4.1)

Then the Euler sequence

0 −→ L(E)
i−→ φ∗E −→ L(E) ⊗ VP(E) −→ 0

implies the following exact sequence of vector bundles:

0 −→ 1P(E)
i−→ H(E) ⊗ φ∗E

P−→ VP(E) −→ 0, (4.2)

where H(E) = L(E)∗ is the hyperplane bundle over P(E) and the bundle mor-

phism P : H(E) ⊗ φ∗E → VP(E) is defined as follows. Since any section Z of

H(E) ⊗ φ∗E can be naturally identified with a section Z =
∑

Zjsj of VE sat-

isfying the homogeneity Zj(λv) = λZj(v), the definition ρ∗Z(v) = (ρ∗Z) ([v])

makes sense. Then P is defined by

P(Z) = ρ∗

(

∑

Zjsj

)

. (4.3)

Moreover, since ρ∗E = 0, 1P(E)(= kerP) is the trivial line bundle spanned by E .

Then, since kerP = 1P(E) is spanned by E , the morphism P is expressed as

P(Z) = Z − GVE
(Z, E)

‖E‖2
E

E
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for a Hermitian metric GVE
on VE . Since P is surjective, for any sections Z̃

and W̃ of VP(E), there exist sections Z and W of VE satisfying P(Z) = Z̃ and

P(W ) = W̃ . Then, a Hermitian metric GVP(E)
on VP(E) is defined by

GVP(E)
(Z̃, W̃ ) =

‖E‖2
E GVE

(Z,W ) − GVE
(Z, E)GVE

(E ,W )

‖E‖4
E

(4.4)

for the Hermitian metric GVE
on VE defined by (3.11), which induces the or-

thogonal decomposition

H(E) ⊗ φ∗E = 1P(E) ⊕ VP(E).

Because of (4.1) and (4.4), the components of the metric GVP(E)
with respect to

the local frame {ρ∗(sj)} is given by

GVP(E)
(ρ∗si, ρ∗sj) = ∂i∂j̄ (log F ). (4.5)

Consequently we have

Proposition 4.1. If F is a pseudoconvex Finsler metric on a holomorphic

vector bundle E, then the real (1, 1)-form
√
−1 ∂∂̄ log F defines a pseudo-Kähler

metric on P(E).

Conversely:

Proposition 4.2. If ωP(E) is a pseudo-Kähler metric on P(E), then ωP(E)

defines a pseudoconvex Finsler metric F on E such that ρ∗ωP(E) =
√
−1 ∂∂̄ log F .

Such a pseudoconvex Finsler metric F is unique up to a local positive function

σU on U ⊂ M .

Proof. On each open set U(j) = {[v] = (z, [ξ]) ∈ φ−1(U) : ξj 6= 0} of P(E), we

express the pseudo-Kähler metric ωP(E) by

ωP(E)|U(j)
=

√
−1 ∂∂̄g(j),

where {g(j)} is a family of local smooth functions g(j) : U(j) → R. Since the

restriction of this form to each fibre Pz ⊂ U(j) is a Kähler form ωz on Pz, we

may put

ωz =
√
−1 ∂∂̄gz,(j),

where the local functions gz,(j) = g(j)|Pz
depend on z ∈ U smoothly. Then we

define a function Fz : E×
z → R by

Fz(ξ) = |ξj |2 exp gz,(j).

Since Fz also depends on z ∈ U smoothly, we extend this function to a smooth

function F : E× → R by F (z, ξ) = Fz(ξ). It is easily verified that F defines a

pseudoconvex Finsler metric on E.
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We note that another Kähler potential {g̃(j)} for ωP(E) which induces the

Kähler metric ωz on each Pz is given by

g̃(j)(z, [ξ]) = σU (z) + g(j)(z, [ξ]) (4.6)

for some functions σU (z) defined on U . Hence the Finsler metric F̃ determined

from the potential {g̃j} is connected to the function F by the relation F̃ =

eσU (z)F on each U . ˜

Similar to Definition 3.4, we say a pseudo-Kähler metric ωP(E) on P(E) is flat if

there exists an open cover {U, s} of E so that we can choose Kähler potentials

g(j) for ωP(E) which are independent of the base point z ∈ M . Now we define

the projective-flatness of Finsler metrics.

Definition 4.2. A Finsler metric on E is said to be projectively flat if it is

obtained from a flat pseudo-Kähler metric on P(E).

In a previous paper, we proved this result:

Theorem 4.1 [Aikou 2003a]. A pseudoconvex Finsler metric is projectively flat

if and only if the trace-free part of the curvature form Ω vanishes identically ,

i .e.,

Ω = A(z) ⊗ Id (4.7)

for some (1, 1)-form A on M .

Remark 4.1. A Finsler metric F is projectively flat if and only if there exists

a local function σU (z) on U such that F is of the form

F (z, ξ)|U = expσU (z) · |ξj |2 exp g(j)([ξ]) (4.8)

on each U . In other words, a Finsler metric F is projectively flat if and only if

there exists a local function σU (z) on U such that the local metric e−σU (z)F is

a flat Finsler metric on U . In the previous paper [Aikou 1997], such a Finsler

metric F is said to be conformally flat .

We suppose that a pseudoconvex Finsler metric F is projectively flat. Then,

since the curvature form Ω is given by (3.18), we have RHV ≡ 0, and thus

(E,F ) is modeled on a complex Minkowski space. We can easily show that the

associated Hermitian metric hF is also projectively flat. Hence:

Theorem 4.2. A holomorphic vector bundle E of rank(E) = r + 1 admits a

projectively flat Finsler metric if and only if P(E) is flat , i .e.,

P(E) = M̃ ×ρ P
r, (4.9)

where M̃ is the universal cover of M , and ρ : π1(M) → PU(r) is a representation

of the fundamental group π1(M) in the projective unitary group PU(r).
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4.2. Ruled manifolds. An algebraic surface X is said to be ruled if it is

birational to M ×P1, where M is a compact Riemann surface. An algebraic sur-

face X is said to be geometrically ruled if there exists a holomorphic projection

φ : X → M such that every fibre φ−1(z) = Xz is holomorphically isomorphic

to P1. As is well known, a geometrically ruled surface is ruled (see [Beauville

1983]), and every geometrically ruled surface X is holomorphically isomorphic

to P(E) for some holomorphic vector bundle π : E → M of rank(E) = 2 (see

[Yang 1991], for example).

An algebraic manifold X is said to be a ruled manifold if X is a holomorphic

Pr-bundle with structure group PGL(r + 1, C) = GL(r + 1, C)/C×. Any holo-

morphic Pr-bundle over M is classified by H1(M,PGL(r + 1,OM )), and any

rank r + 1 holomorphic vector bundle over M is classified by the elements of

H1(M,GL(r + 1,OM )). The exact sequence

0 → O∗
M → GL(r + 1,OM ) → PGL(r + 1,OM ) → 0

implies the sequence of cohomology groups:

· · · → H1(M,GL(r + 1,OM )) → H1(M,PGL(r + 1,OM )) → H2(M,O∗
M ) → · · ·

Since H2(M,O∗
M ) = 0, the following is obtained.

Proposition 4.3. Every ruled manifold X over a compact Riemann surface

M is holomorphically isomorphic to P(E) for some holomorphic vector bundle

π : E → M of rank(E) = r + 1. Such a bundle E is uniquely determined up to

tensor product with a holomorphic line bundle.

If E is a holomorphic vector bundle over a compact Kähler manifold M , then

P(E) is also a compact Kähler manifold. In fact, we can construct a Kähler

metric ωP(E) on P(E) of the form ωP(E) = φ∗ωM + εη. Here, ωM is a Kähler

metric on M , ε is a small positive constant, and η is a closed (1, 1)-form on

P(E) such that η is positive-definite on the fibres of φ (see Lemma (6.37) in

[Shiffmann and Sommese 1985]). Thus every ruled manifold X over a compact

Riemann surface M is a compact Kähler manifold, and φ : X = P(E) → M is

a holomorphic submersion from a compact Kähler manifold X to M . Then we

have

Theorem 4.3. Let X be a ruled manifold over a compact Riemann surface M

with a Kähler metric ωX . Then there exists a negative vector bundle π : E → M

such that X = P(E), and a negatively curved pseudoconvex Finsler metric F on

E satisfying ρ∗ωX =
√

1∂∂̄ log F .

Proof. Let ωX be a Kähler metric on X . Propositions 4.3 and 4.2 imply

that there exists a holomorphic vector bundle E satisfying X = P(E) with a

pseudoconvex Finsler metric F . Then, since
√
−1 ∂∂̄ log F = ωX > 0,
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F is negatively curved, and hence Theorem 2.3 implies that E is negative. ˜

LeBrun [LeBrun 1995] has investigated minimal ruled surfaces (i.e., geometrically

ruled surface) over a compact Riemann surface of genus g(M) ≥ 2 with constant

negative scalar curvature. Roughly speaking, he proved that such a minimal

ruled surface X is obtained by a semi-stable vector bundle over M so that X =

P(E). Since the semi-stability of vector bundles over a compact Riemann surface

is equivalent to the existence of a projectively flat Hermitian metric on E, such

a surface is written in the form (4.9).

On the other hand, by Theorem 4.3, the geometry of a minimal ruled surface

X is naturally translated to the geometry of a negative vector bundle E with

a negatively curved pseudoconvex Finsler metric F . From this viewpoint, we

have also investigated minimal ruled surfaces, and we have concluded that each

minimal ruled surface φ : X → M over a compact Riemann surface of genus

g(M) ≥ 2 with constant negative scalar curvature is a Kähler submersion with

isometric fibres (see [Aikou 2003b]).
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