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Introduction

A complex manifold X is Brody hyperbolic if every holomorphic map f :

C → X is constant. For compact complex manifolds this is equivalent to the

condition that the Kobayashi pseudometric κ1 (see (1.12)) is a positive definite

Finsler metric. One may verify the hyperbolicity of a manifold by exhibiting a

Finsler metric with negative holomorphic sectional curvature. The construction

of such a metric motivates the use of parametrized jet bundles, as defined by

Green–Griffiths. (The theory of these bundles goes back to [Ehresmann 1952].)

We examine the algebraic-geometric properties (ample, big, nef, spanned and

the dimension of the base locus) of these bundles that are relevant toward the

metric’s existence. To do this, we start by determining (and computing) basic

invariants of jet bundles. Then we apply Nevanlinna theory, via the construction

of an appropriate singular Finsler metric of logarithmic type, to obtain precise

extensions of the classical Schwarz Lemma on differential forms toward jets.

Particularly, this allows direct control over the analysis of the jets jkf of a

holomorphic map f : C → X; namely, the image of jkf must be contained

in the base locus of the jet differentials. For an algebraically nondegenerate

holomorphic map we show by means of reparametrization that the algebraic
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closure of jkf is quite large while, under appropriate conditions, the base locus

is relatively small. This contradiction shows that the map f must be algebraically

degenerate. We apply this method to verify that a generic smooth hypersurface

of P3, of degree d ≥ 5, is hyperbolic (see Corollary 7.21). Using this we show

also the existence of a smooth curve C of degree d = 5 in P2 such that P2 \C is

Kobayashi hyperbolic.

In the classical theory of curves (Riemann surfaces) the most important in-

variant is the genus. The genus g of a curve is the number of independent global

regular 1-forms: g = h0(KX) = dimH0(KX), where KX = T ∗X is the canonical

bundle (which in the case of curves is also the cotangent bundle). A curve is

hyperbolic if and only if g ≥ 2. One way to see this is to take a basis ω1, . . . , ωg

of regular 1-forms and define a metric ρ on the tangent bundle by setting

ρ(v) =

( g
∑

i=1

|ωi(v)|2
)1/2

, v ∈ TX. (∗)

For g = 1 the metric is flat, that is, the Gaussian or holomorphic sectional

curvature (hsc) is zero. Hence X is an elliptic curve. For g ≥ 2 the curvature of

this metric is strictly negative which, by the classical Poincaré–Schwarz Lemma,

implies that X is hyperbolic. Algebraic geometers take the dual approach by

interpreting ρ as defining a metric along the fibers of the dual T ∗X = KX and,

for g ≥ 2, the Chern form c1(KX , ρ) is positive, that is, the canonical bundle is

ample. Indeed the following four conditions are equivalent:

(i) g ≥ 2;

(ii) X is hyperbolic;

(iii) T ∗X is ample; and

(iv) There exists a negatively curved metric.

For a complex compact manifold of higher dimension the number of independent

1-forms g = h0(T ∗X) is known as the irregularity of the manifold. If g ≥ 1, we

may define ρ as in (∗). More generally, for each m, we may choose a basis

ω1, . . . , ωgm
of H0(

⊙m
T ∗X), where

⊙m
T ∗X is the m-fold symmetric product,

and define, if gm ≥ 1,

ρ(v) =

gm∑

i=1

|ωi(v)|1/m. (∗∗)

In dimension 2 or higher, ρ cannot, in general, be positive definite and it is only

a Finsler rather than a hermitian metric. However the holomorphic sectional

curvature may be defined for a Finsler metric and the condition that the curva-

ture is negative implies that X is hyperbolic. It is known [Cao and Wong 2003]

that the ampleness of T ∗X is equivalent to the existence of a Finsler metric with

negative holomorphic bisectional curvature (hbsc):
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Theorem [Aikou 1995; 1998; Cao and Wong 2003]. T ∗X is ample ⇐⇒ Finsler

metric has negative hbsc =⇒ Finsler metric has negative hsc =⇒ X is hyper-

bolic.

In our view the fundamental problems in hyperbolic geometry are the following.

Problem 1. Find an algebraic geometric characterization of the concept of

negative hsc.

Problem 2. Find an algebraic geometric and a differential geometric charac-

terization of hyperbolicity .

It is known that there are hyperbolic hypersurfaces in Pn (for each n). On the

other hand, there are no global regular 1-forms on hypersurfaces in Pn for n ≥ 3;

indeed h0(
⊙m

T ∗X) = 0 for all m. These hyperbolic hypersurfaces are discov-

ered using, in one form or another, the Second Main Theorem of Nevanlinna

Theory, which involves higher-order information; see for example [Wong 1989;

Stoll and Wong 1994; Fujimoto 2001].

This leads us to the concept of the (parametrized) jet bundles [Ehresmann

1952], formalized (for complex manifolds) and studied by Green and Griffiths

[1980]. Observe that a complex tangent v at a point x of a manifold may be

represented by the first order derivative f ′(0) of a local holomorphic map f :

∆r → X, f(0) = x for some disc ∆r of radius r in the complex plane C (more

precisely, v is the equivalence class of such maps, as different maps may have

the same derivative at the origin). A k-jet is defined as the equivalence class of

the first k-th order derivatives of local holomorphic maps and the k-jet bundle,

denoted JkX, is just the collection of all (equivalence classes of) k-jets. Note

that J1X = TX. For k ≥ 2 these bundles are C
∗ bundles but not vector bundles.

The nonlinear structure is reflected in reparametrization. Namely, given a k-jet

jkf(0) = (f(0), f ′(0), . . . , f (k)(0)) we obtain another k-jet by composing f with

another local holomorphic self map φ in C that preserves the origin, then taking

jk(f ◦φ)(0). In particular, if φ is given by multiplication by a complex number

λ we see that jk(f ◦φ)(0) = (f(0), λf ′(0), λ2f ′′(0), . . . , λkf (k)(0)). Equivalence

under this action is denoted by λ · jf (0) and this is the C
∗-action on JkX; in

general there is no vector bundle structure on JkX. We write:

λ · (v1, . . . , vk) = (λv1, λ
2v2, . . . , λ

kvk), (v1, . . . , vk) ∈ JkX (∗∗∗)

and assign the weight i to the variable vi. A 1-form ω may be regarded as a

holomorphic function on the tangent bundle ω : TX → C satisfying the condition

ω(λ · v) = λω(v), that is, linearity along the fibers. More generally, an element

ω ∈ H0(
⊙m

T ∗X) is a holomorphic function on the tangent bundle ω : TX → C

that is a homogeneous polynomial of degree m along the fibers. Analogously we

define a k-jet differential ω of weight m to be a holomorphic function on the k-jet

bundle ω : JkX → C which is a weighted homogeneous polynomial of degree m

along the fibers. The sheaf of k-jet differentials of weight m will be denoted by
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Jm
k X. Taking a basis ω1, . . . , ωN of H0(J m

k X) we define

ρ(v1, . . . , vk) =

N∑

i=1

∣
∣ωi(v1, . . . , vk)

∣
∣
1/m

,

and from (∗∗∗) we see (since each ωi is a weighted homogeneous polynomial of

degree m) that ρ is a Finsler pseudometric, that is,

ρ(λ · (v1, . . . , vk)) =

N∑

i=1

(
|λmωi(v1, . . . , vk)|

)1/m

= |λ|
N∑

i=1

(
|ωi(v1, . . . , vk)|

)1/m
= |λ| ρ(v1, . . . , vk).

The positive definiteness is a separate issue that one must deal with in higher

dimension. The algebraic geometric concept that is equivalent to the positive

definiteness of ρ is that the sheaf J m
k X is spanned (meaning that global sections

span the fiber at each point). Other relevant concepts here are whether such a

sheaf is ample, nef (numerically effective), or big. These concepts are intimately

related to the Chern numbers of the sheaf J m
k X and the dimensions of the

cohomology groups hi(J m
k X), 0 ≤ i ≤ n = dimX. The starting point here is

the computation of the Euler characteristic in the case of a manifold of general

type by the Riemann–Roch Formula. An asymptotic expansion of χ(J m
k X) was

given in [Green and Griffiths 1980] with a sketch of the proof. Often in articles

making reference to this result readers questioned the validity of the statement.

A detailed proof, in the case of general type surfaces (complex dimension 2),

of this formula was given in [Stoll and Wong 2002] using a different approach

to that given in by Green and Griffiths. Indeed explicit formulas, not merely

asymptotic expansions, were given for J m
k X, k = 2 and 3. The method of

computation also shows that J m
k X is not semistable (see Section 3, Remark 3.5)

in the sense of Mumford–Takemoto despite the fact (see [Maruyama 1981; Tsuji

1987; 1988]) that all tensor products ⊗T ∗X and symmetric products
⊙m

T ∗X
are semistable ifX is of general type. In this article we also introduce an analogue

of semistability in the sense of Gieseker–Maruyama (see [Okonek et al. 1980])

and show that J m
k X is not semistable (see Section 7) in this sense either.

We have (see Section 5 for the reason in choosing the weight k! below)

T ∗X is ample =⇒ J k!
k X is ample for all k

=⇒ J k!
k X is ample for some k

⇐⇒ there exists Finsler metric on JkX with negative hbsc

=⇒ there exists Finsler metric on JkX with negative hsc

=⇒ X is hyperbolic.
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The condition that J k!
k X is ample is much stronger than hyperbolicity of X.

A weaker condition is that J k!
k X is big ; this says that

h0(J k!m
k X) = dim(X,J k!m

k X) = O(mn(k+1)−1),

where n = dimX. From the differential geometric point of view, this means that

there is a pseudo-Finsler metric on JkX that is generically positive definite and

has generically negative hbsc (as defined wherever the metric is positive definite).

The condition that J k!
k X is big implies that, for any ample divisor D on X, there

exists m0 = m0(D) such that J k!m0

k X ⊗ [−D] (the sheaf of k-jet differentials of

weight k!m0 vanishing along D) is big. This, however, is not quite enough to

guarantee hyperbolicity; the problem is that the base locus of J k!
k X⊗ [−D] may

be “too big”. As a natural correction, we verify, using the Schwarz Lemma for

jet differentials (see Theorem 6.1, Corollaries 6.2 and 6.3), that the assumption

J k!m0

k X⊗ [−D] is big and spanned (that is, the base locus is empty) does imply

hyperbolicity.

However, the condition that a sheaf is big and spanned may be difficult to

verify (unless, perhaps, it is already ample and we know of no hypersurfaces in

P3 satisfying this condition). To alleviate this, we refine the form of Schwarz’s

Lemma (see Theorem 6.4 and Corollary 6.5) to establish the result that every

holomorphic map f : C → X is algebraically degenerate if the dimension of the

base locus of J k!m0

k X⊗ [−D] in the projectivized jet bundle P(JkX) is no more

than n+ k− 1. From this we show in Section 7, using the explicit computation

of the invariants of the jet bundles in the first 3 sections (see Theorem 3.9 and

Corollary 3.10), that the dimension of the base locus of a generic hypersurface

of degree ≥ 5 in P3 is, indeed, at most n+k−1 = k+1 (n = 2 in this case) and

consequently, hyperbolic. The key ingredient is the extension of the inductive

cutting procedure of the base locus, of [Lu and Yau 1990] and [Lu 1991] (see also

[Dethloff et al. 1995a; 1995b]) in the case of 1-jets, to k-jets. There is a delicate

point in the cutting procedure, namely that intersections of irreducible varieties

may not be irreducible. We show, again using the Schwarz Lemma, that under

the algebraically nondegenerate assumption on f , there is no loss of generality

in assuming that the intersection is irreducible (see the proof of Theorems 7.18

and 7.20).

The crucial analytic tools here are the Schwarz Lemma for jet differentials

and its refined form. These are established using Nevanlinna Theory. We remark

that jet differentials are used routinely in Nevanlinna Theory without a priori

knowledge of whether regular jet differentials exist at all. The main idea of the

proof of the Schwarz Lemma is to use jet differentials with logarithmic poles; to

determine conditions under which the sheaf of such jet differentials is spanned

and provides a singular Finsler metric that is positive definite in the extended

sense. The classical Nevanlinna Theory is seen to work well with nonhermitian

Finsler metrics with logarithmic poles on account of the fundamental principle
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(the Lemma of logarithmic derivatives of Nevanlinna) that logarithmic poles are

relatively harmless (see the proof of Theorem 6.1 in Section 6 for details).

The article is organized as follows. We describe the parametrized jet bundles

of Green–Griffiths, which differ from the usual jet bundles; for example, they

are C
∗ bundles but in general not vector bundles. The definitions are recalled

in Section 1. For the usual jet bundles there is the question of interpolation:

Find all varieties with prescribed jets, say, at a finite number of points. This

problem, for 1-jets, is equivalent to the Waring problem concerning when a

general homogeneous polynomial is the sum of powers of linear forms. The

Waring problem is related to the explicit construction (not merely existence) of

hyperbolic hypersurfaces in Pn for any n. Limitation of space does not allow

us to discuss this problem in this article. Solutions of the interpolation problem

for a collection of points can be found in [Alexander and Hirschowitz 1992a;

1992b; 1995; Chandler 1995; 1998a; 2002]. The analogous problem concerning

the Green–Griffiths jet bundles is still open.

In Section 2 we give a fairly detailed account of the jet bundles of curves.

We calculate the Chern number c1(J m
k X) and the invariants h0(J m

k X) and

h1(J m
k X). We show, by examples, how to construct jet differentials explicitly,

in terms of the defining polynomial, in the case of curves of degree d ≥ 4 in P2.

Jet bundles may also be defined for varieties defined over fairly general fields

(even in positive characteristic). The explicit construction of sections of powers

of the canonical bundle, Km
X , was useful in the solution of the “strong uniqueness

polynomial problem” (see Section 2 and the articles [An et al. 2004] in the

complex case and [An et al. 2003a; 2003b] in the case of positive characteristic).

The formulas for invariants of the jet differentials for surfaces (the Chern num-

bers, the index, the Euler characteristic, the dimensions of cohomology groups)

are given in Sections 3, 4 and 7. The calculations are similar to those over

curves, though combinatorially much more complicated. We provide compu-

tations in special cases; the details are given in [Stoll and Wong 2002]. For

example the explicit computation in Section 7 (see Theorem 7.7) shows that, for

a smooth hypersurface in P3 the Euler characteristic χ(J m
2 X) is big if and only

if the degree is ≥ 16.

In Section 6 we prove a Schwarz Lemma for jet differentials. This is the

generalization of the classical result for differential forms on curves: if

ω ∈ H0(X,KX ⊗ [−D]),

that is, if ω is a regular 1-form vanishing on an effective ample divisor D in the

curve X, then f∗(ω) ≡ 0 for any holomorphic map f : C → X. This says that

f ′ vanishes identically, that is, f is a constant. The proof given in Section 6 of

the Schwarz Lemma for jets jkf has been in circulation since 1994 but was never

formally published; it was used, for example, in the thesis of Jung [1995] and by

Cherry–Ru in the context of p-adic jet differentials.
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For surfaces of general type the fact that J k!
k X is big for k � 0 is equivalent

to the “hyperplane” line bundle Lk!
k being big on P(JkX). (Note that Lm

k is

locally free only if m is divisible by k!; see Section 5 for more details.) Schwarz’s

Lemma then implies that the lifting [jkf ] : C → P(JkX) of a holomorphic map

f : C → X must be contained in some divisor Y ⊂ P(JkX). The idea is to show

that Lk!
k |Y is again big so that the image of [jkf ] is contained in a divisor Z of Y .

Then we show that Lk!
k |Z is big and continue until we reach the critical dimension

n+ k− 1 = k+1. For surfaces of general type the sheaf of 1-jet differentials L1
1

is big if c21 > c2. In order for the restriction of L1
1 to subvarieties to be big, the

condition that the index c21 − 2c2 is positive is required. The proof is based on

the intersection theory of the projectivized tangent bundle P(TX) and the fact

that the cotangent bundle T ∗X of a surface of general type is semistable (in the

sense of Mumford–Takemoto) relative to the canonical class. As remarked earlier

the k-jet differentials are not semistable for any k ≥ 2. However, by our explicit

computation, for minimal surfaces of general type the index of J k!
k X is positive

for k � 0. Indeed, we may write the index as ι(J k!
k X) = c(αkc

2
1 −βkc2) where

c, αk and βk are positive and we show that limk→∞ αk/βk = ∞ (see Corollary

3.10). This is crucial in showing that Lk!
k |Z is big in the cutting procedure. For

example, for a smooth hypersurface of degree 5 in P3, ι(J k!
k X) is positive and

the ratio αk/βk must be greater than 11 in order to establish the degeneracy

of a map from C to X. Using the explicit expressions for αk and βk we show,

with the aid of computer, that this occurs precisely for k ≥ 199 (see the table at

the end of Section 3 and Example 7.6 in Section 7). However, in order for the

index of the restriction of the sheaf to subvarieties (in the cutting procedure)

to be positive (verifying the hyperbolicity of X), k must be even larger. Using

our formulas in the proof of Theorem 7.20, Professor B. Hu, using the computer,

checked that k ≥ 2283 is sufficient.

Note. Experts who are familiar with parametrized jet bundles and are interested

mainly in the proof of the Kobayashi conjecture may skip the first five sections

(with the exception of Theorem 3.9 and Corollary 3.10) and proceed directly to

Sections 6 and 7.

1. Holomorphic Jet Bundles

Summary. Two notions of jet bundles, the full and the parametrized bundles,

are introduced . The parametrized jet bundle is only a C
∗-bundle, not a vector

bundle in general . For the resolution of the Kobayashi conjecture, as dictated by

analysis, it is necessary to work with the parametrized jet bundle. (See Section 6

on the Schwarz Lemma.) Some basic facts are recalled here, all of which may be

found in [Green and Griffiths 1980; Stoll and Wong 2002].

There are, in the literature, two different concepts of jet bundles of a complex

manifold. The first is used by analysts (PDE), algebraic geometers [Chandler
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1995; 1998a; 2002] and also by number theorists (see Faltings’s work on rational

points of an ample subvariety of an abelian variety and integral points of the

complement of an ample divisor of an abelian variety [Faltings 1991]); it was used

implicitly in [Ru and Wong 1991] (see also [Wong 1993b]) for the proof that there

are only finitely many integral points in the complement of 2n+1 hyperplanes

in general position in Pn. The second is the jet bundles introduced by Green

and Griffiths [1980] (see also [Stoll and Wong 2002]). The first notion shall

henceforth be referred to as the full jet bundle and these bundles are holomorphic

vector bundles (locally free). The second notion of jet bundle shall be referred

to as the parametrized jet bundle. These bundles are coherent sheaves that are

holomorphic C
∗-bundles which, in general, are not locally free.

For a complex manifold X the (locally free) sheaf of germs of holomorphic

tangent vector fields (differential operators of order 1) of X shall be denoted by

T 1X or simply TX. An element of T 1X acts on the sheaf of germs of holomorphic

functions by differentiation:

(D, f) ∈ T 1X ×OX 7→ Df ∈ OX

and the action is linear over C; in symbols, D ∈ HomC(OX ,OX). This concept

may be extended as follows:

Definition 1.1. Let X be a complex manifold of dimension n. The sheaf of

germs of holomorphic k-jets (differential operators of order k), denoted T kX, is

the subsheaf of the sheaf of germs of homomorphisms HomC(OX ,OX) consisting

of elements (differential operators) of the form

k∑

j=1

∑

ij∈N

Di1 ◦ · · · ◦Dij
,

where Dij
∈ T 1X. In terms of holomorphic coordinates z1, . . . , zn an element of

T kX is expressed as

k∑

j=1

∑

1≤i1,...,ij≤n

ai1,...,ij

∂j

∂zi1 . . . ∂zij

,

where the coefficients ai1,...,ij
are symmetric in the indices i1, . . . , ij . The bundle

T kX is locally free. One may see this by observing that T k−1X injects into T kX

and there is an exact sequence of sheaves:

0 → T k−1X → T kX → T kX/T k−1X → 0, (1.1)

where T kX/T k−1X ∼=
⊙k

T 1X is the sheaf of germs of k-fold symmetric prod-

ucts of T 1X. These exact sequences imply, by induction, that T kX is locally

free as each sheaf
⊙k

T 1X, a symmetric product of the tangent sheaf, is locally

free. A proof of (1.1) can be found in [Stoll and Wong 2002].
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The parametrized k-jet bundles for complex manifolds are introduced by Green–

Griffiths. (These are special cases of the general theory of jets due to Ehresmann

[1952] for differentiable manifolds.) These bundles are defined as follows. Let

Hx, x ∈ X, be the sheaf of germs of holomorphic curves: {f : ∆r → X, f(0) = x}
where ∆r is the disc of radius r in C. For k ∈ N, define an equivalence relation

∼k by designating two elements f, g ∈ Hx as k-equivalent if f
(p)
j (0) = g

(p)
j (0) for

all 1 ≤ p ≤ k, where fi = zi ◦f and z1, . . . , zn are local holomorphic coordinates

near x. The sheaf of parametrized k-jets is defined by

JkX =
⋃

x∈X

Hx/ ∼k . (1.2)

Elements of JkX will be denoted by jkf(0) = (f(0), f ′(0), . . . , f (k)(0)). The fact

that JkX, k ≥ 2, is in general not locally free may be seen from the nonlinearity

of change of coordinates:

(wj ◦ f)′ =

n∑

i=1

∂wj

∂zi
(f)(zi ◦ f)′,

(wj ◦ f)′′ =

n∑

i=1

∂wj

∂zi
(f)(zi ◦ f)′′ +

n∑

i,k=1

∂2wj

∂zi∂zk
(f)(zi ◦ f)′(zk ◦ f)′

and for each k,

(wj ◦ f)(k) =

n∑

i=1

∂wj

∂zi
(f)(zi ◦ f)(k) +P

(
∂lwj

∂zi1 . . . ∂zil

(f), (wj ◦ f)(l)
)

,

where P is an integer-coefficient polynomial in ∂ lwj/∂zi1 . . . ∂zil
and (wj ◦ f)(l)

for j = 1, . . . , n and l = 1, . . . , k. There is, however, a natural C
∗-action on

JkX defined via parameterization. Namely, for λ ∈ C
∗ and f ∈ Hx a map fλ ∈

Hx is defined by fλ(t) = f(λt). Then jkfλ(0) = (fλ(0), f ′
λ(0), . . . , f

(k)
λ (0)) =

(f(0), λf ′(0), . . . , λkf (k)(0)). So the C∗-action is given by

λ · jkf(0) = (f(0), λf ′(0), . . . , λkf (k)(0)). (1.3)

Definition 1.2. The parametrized k-jet bundle is defined to be J kX together

with the C
∗-action defined by (1.3) and shall simply be denoted by J kX.

It is clear that, for a complex manifold of (complex) dimension n, J kX is a

holomorphic C
∗-bundle of rank r = kn and T kX is a holomorphic vector bundle

of rank r =
∑k

i=1 C
n+i−1
i where Cj

i are the usual binomial coefficients. Although

J1X = T 1X = TX these bundles differ for k ≥ 2. The nonlinearity of the change

of coordinates formulas above shows that there is in general no natural way of

injecting Jk−1X into JkX as opposed to the case of T kX (see (1.1)). There is

however a natural projection map (the forgetting map) pkl : JkX → J lX for any

l ≤ k defined simply by

pkl(j
kf(0)) = jlf(0), (1.4)
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which then respects the C
∗-action defined by (1.3) and so is a C

∗-bundle mor-

phism. If Φ : X → Y is a holomorphic map between the complex manifolds X

and Y then the usual differential Φ∗ : T 1X → T 1Y is defined. More generally,

the k-th order differential Φk∗ : T kX → T kY is given by

Φk∗ = (D1 ◦ · · · ◦Dk)(g)
def
= D1 ◦ · · · ◦Dk(g ◦Φ) (1.5)

for any g ∈ OY . The k-th order induced map for the parametrized jet bundle,

denoted JkΦ : JkX → JkY , can also be defined:

JkΦ(jkf(0))
def
= (Φ ◦ f)(k)(0) (1.6)

for any jkf(0) ∈ JkX. For the parametrized jet bundle JkX there is another

notion closely related to the differential: the natural lifting of a holomorphic

curve. Namely, given any holomorphic map f : ∆r → X(0 < r ≤ ∞), the lifting

jkf : ∆r/2 → JkX is defined by

jkf(ζ) = jkg(0), ζ ∈ ∆r/2 (1.7)

where g(ξ) = f(ζ + ξ) is holomorphic for ξ ∈ ∆r/2.

Definition 1.3. The dual of the full jet bundles T kX shall be called the sheaf

of germs of k-jet forms and shall be denoted by T ∗
kX. For m ∈ N the m-fold

symmetric product shall be denoted by
⊙m

T ∗
kX and its global sections shall be

called k-jet forms of weight m.

In this article we shall focus on the dual of the parametrized jet bundles defined

as follows.

Definition 1.4. The dual of JkX (i.e., the sheaf associated to the presheaf

consisting of holomorphic maps ω : jkX|U → C such that ω(λ ·jkf) = λmω(jkf)

for all λ ∈ C
∗ and positive integer m) shall be referred to as the sheaf of germs

of k-jet differentials of weight m and shall be denoted by J m
k X.

It follows from the definition of the C
∗-action on JkX that a k-jet differential ω

of weight m is of the form:

ω(jkf) =
∑

|I1|+2|I2|+···+k|Ik|=m

aI1,...,Ik
(z)(f ′)I1 . . . (f (k))Ik , (1.8)

where aI1,...Ik
are holomorphic functions, Ij = (i1j , . . . , inj), n = dimX are the

multi-indices with each ilj being a nonnegative integer and |Ij | = i1j + · · ·+ inj .

In terms of local coordinates (z1, . . . , zn),

(f ′)I1 . . . (f (k))Ik = (f ′1)
i11 . . . (f ′

n)in1 . . . (f
(k)
1 )i1k . . . (f (k)

n )ink .

Further, the coefficients aI1,...Ik
(z) are symmetric with respect to the indices in

each Ij . More precisely,

a(iσ1(1)1,...,iσ1(n)1),...,(iσk(1)k,...,iσk(n)k) = a(i11,...,in1),...,(i1k,...,ink),
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where each σj , j = 1, . . . , n, is a permutation on n elements. For example,

(f ′1)
2(f ′′2 )2 + f ′′′1 f

′
2f

′′
2 + f ′′′′1 f ′′2 + f ′′′′′1 f ′2 is a 5-jet differential of weight 6.

There are several important naturally defined operators on jet differentials;

the first is a derivation δ : J m
k X → J m+1

k+1 X defined by

δω(jk+1f)
def
= (ω(jkf))′. (1.9)

Note that in contrast to the exterior differentiation of differential forms δ ◦δ 6= 0

on jet differentials. In particular, given a holomorphic function φ defined on

some open neighborhood U in X, the k-th iteration δ(k) of δ,

δ(k)φ(jkf) = (φ ◦ f)(k), (1.10)

is a k-jet differential of weight k.

Another difference between jet differentials and exterior differential forms is

that a lower order jet differential can be naturally associated to a jet differential

of higher order. The natural projection pkl : JkX → J lX defined by pkl(j
kf) =

jlf , for k ≥ l, induces an injection p∗kl : Jm
l X → J m

k X defined by “forgetting”

those derivatives higher than l:

p∗klω(jkf)
def
= ω(pkl(j

kf)) = ω(jlf). (1.11)

We shall simply write ω(jkf) = ω(jlf) if no confusion arises.

The wedge (exterior) product of differential forms is replaced by taking sym-

metric product; the symmetric product of a k-jet differential of weight m and a

k′-jet differential of weight m′ is a max{k, k′}-jet differential of weight m+m′.

Example 1.5. A 1-jet differential is a differential 1-form ω =
∑n

i=1 ai(z)dzi.

Let f = (f1, . . . , fn) : ∆r → X be a holomorphic map. Then

ω(j1f) =

n∑

i=1

ai(f)dzi(f
′) =

n∑

i=1

ai(f)f ′
i

and δω is a 2-jet differential of weight 2, given by

δω(j2f) = (ω(j1f))′ =

( n∑

i=1

ai(f)f ′
i

)′

=

n∑

i,j=1

∂ai

∂zj
(f)f ′

if
′
j +

n∑

i=1

ai(f)f ′′
i .

Analogously, δ2ω is a 3-jet differential of weight 3, given by

δ2ω(j3f) =

n∑

i,j=1

∂2ai

∂zj∂zk
(f)f ′

if
′
jf

′
k +3

n∑

ij=1

∂ai

∂zj
(f)f ′′

i f
′
j +

n∑

i=1

ai(f)f ′′′
i .

The concept of jet bundles extends also to singular spaces. Let us remark on how

this may be defined. One may locally embed an open set U of X as a subvariety

in a smooth variety U ⊂ Y . At a point x ∈ U the stalk jet (J kY )x is then

defined, as Y is smooth. The stalk (JkX)x is defined as the subset
{
jkf(0) ∈ (JkY )x | f : ∆r → Y is holomorphic, f(0) = x and f(∆r) ⊂ U

}
.
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From the differential geometric point of view, properties of the full jet bundle

T ∗
kX, as a vector bundle, are reflected by the curvatures of hermitian metrics

along its fibers. The parametrized jet bundles, however, are only C
∗-bundles

hence can only be equipped with Finsler metrics. A Finsler pseudometric (or a

k-jet pseudometric) on X is a map ρ = ρk : JkX → R≥0 satisfying the condition

ρ(λ · jk) = |λ|ρ(jk)

for all λ ∈ C and jk ∈ JkX. It is said to be a Finsler metric if it is positive

outside of the zero section. A (k− 1)-jet (pseudo)-metric (k ≥ 2) ρk−1 can be

considered as a k-jet (pseudo)-metric by the forgetting map:

ρk−1(jk) := ρk−1(jk−1).

where jk = jkf(0) and jk−1 = jk−1f(0). Define, for jk ∈ JkM,k ≥ 1,

κk(jk) = inf {1/r}, (1.12)

where the infimum is taken over all r such that

Hk
r (ζ) = {f : ∆r → X | f is holomorphic and jkf(0) = jk}

is nonempty. For k = 1 this is the usual Kobayashi–Royden pseudometric

on J1X = TX. Henceforth we shall refer to κk as the k-th infinitesimal

Kobayashi–Royden pseudometric. We shall also say that X is k-jet hyperbolic

if κk is indeed a Finsler metric; that is, κk(jk) > 0 for each nonzero k-jet

jk. Thus 1-jet hyperbolicity is the same as Kobayashi hyperbolicity. Since a

holomorphic map f : ∆r → X such that jkf(0) = (z, ζ1, . . . , ζk) also satisfies

jk−1f(0) = (z, ζ1, . . . , ζk−1), we obtain:

κk(z, ζ1, . . . , ζk) ≥ κk−1(z, ζ1, . . . , ζk−1). (1.13)

From this we see that (k− 1)-jet hyperbolicity implies k-jet hyperbolicity.

Remark 1.6. The notion introduced above is not to be confused with the k-

dimensional (1 ≤ k ≤ n = dimX) Kobayashi pseudometric in the literature

(see [Lang 1987], for example); n-dimensional Kobayashi hyperbolicity is more

commonly known as measure hyperbolicity.

In general the k-th Kobayashi–Royden metric does not have a good regularity

property. It is well-known that κ1 is upper-semicontinuous (see [Royden 1971] or

[Kobayashi 1970]); a similar proof shows that the same is true for κk for any k. It

is also known that κ1, in general, is not continuous; however it is continuous if X

is complete hyperbolic (that is, the distance function associated to the metric κ1

is complete). In particular, κ1 is continuous on a compact hyperbolic manifold

X. On the other hand, using a partition of unity one may construct k-jet metrics
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that are continuous everywhere and smooth outside of the zero section. Consider

first the space

C
n
k = C

n × . . .×C
n

︸ ︷︷ ︸

k

with C
∗-action λ · (z1,z2, . . . ,zk) 7→ (λz1, λ

2z2, . . . , λ
kzk). Define, for Z =

(z1, . . . ,zk) ∈ C
n
k :

rk(Z) = (|z1|2k! + |z2|2k!/2 + · · ·+ |zk|2k!/k)1/2k! (1.14)

where |zi| is the usual Euclidean norm on C
n. Observe that rk(λ ·Z) = |λ| rk(Z)

and that rk is continuous on C
n
k , smooth outside of the origin. Indeed r2k!

k is

smooth on all of C
n
k . Alternatively we can take

rk(Z) = |z1|+ |z2|1/2 + · · ·+ |zk|1/k, (1.15)

which also satisfies rk(λ·Z) = |λ| rk(Z) and is continuous on C
n
k , smooth outside

of the set [z1 ·zk =0]. On a local trivialization JkX|U ∼= U ×C
n
k we define

simply ρk(z, Z) = rk(Z) on JkX|U so that a global k-jet metric is defined via a

partition of unity subordinate to a locally finite trivialization cover. This general

construction is of limited use as it does not take into account the geometry of

the manifold.

In the case of a compact manifold a more useful construction can be carried out

by taking a basis ω1, . . . , ωN of global holomorphic k-jet differentials (provided

that these exist), and defining

ρk(jkf) =

( N∑

i=1

|ωi(j
kf)|2

)1/2

. (1.16)

Then, since a jet differential is a linear functional on the k-jet bundle (that is,

ω(λ·jkf) = λω(jkf)), we see readily that ρk(λ·jkf) = |λ|ρk(jkf). It is clear from

the definition that ρk is continuous on JkX, real analytic on JkX\{zero section};
indeed, ρ2

k is real analytic on JkX. For k = 1 use a basis of global holomorphic

1-forms. The number N = h0(T ∗X) is the irregularity of X (for a Riemann

surface this is just the genus of X). Thus the invariants h0(J m
k X) play an

important role in the determination of hyperbolicity.

The jet bundles may be defined, in an analogous way, over fairly general fields.

We conclude this section by introducing a very interesting problem:

Interpolation Problem. Find all subvarieties in Pn = Pn(K) (where K is

an infinite field) of a given degree d with prescribed jet spaces at a finite number

of points. More precisely , given subspaces V1 ⊂ T k
x1

Pn, . . . , VN ⊂ T k
xN

Pn (or

V1 ⊂ Jk
x1

Pn, . . . , VN ⊂ Jk
xN

Pn), find all varieties X of degree d such that

V1 = T k
x1
X, . . . , VN ⊂ T k

xN
X.

At this time little is known about the problem for the bundle J kX however much

is known in the case of T kX. For example, the following is known (see [Chandler
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1998a; 2002] or else [Alexander 1988; Alexander and Hirschowitz 1992a; 1992b;

1995]).

Theorem 1.7. Let Ψ be a general collection of d points in Pn. The codimension

in H0(OPn(3)) of the space of sections singular on Ψ is min{(n+1)d, (n+3)!/3!n!}
unless n = 4 and d = 7. More generally , the codimension in H0(OPn(m)) of the

space of sections singular on Ψ is equal to min{(n+1)d, (n+m)!/m!n!} unless

(n,m, d) = (2, 4, 5), (3, 4, 9), (4, 3, 7) or (4, 4, 14).

The problem is related also to the Waring problem for linear forms: when can a

general degree m form in n+1 variables be expressed as a sum of m-th powers of

linear forms? Let PS(n,m, d) be the space of homogeneous polynomials in n+1

variables expressible as Lm
1 + · · ·+Lm

d , where L1, . . . , Ld are linear forms. Then:

Theorem 1.8. With the notation above, we have

dimPS(n,m, d) = min{(n+1)d, (n+m)!/m!n!}

unless (n,m, d) = (2, 4, 5), (3, 4, 9), (4, 3, 7) and (4, 4, 14).

For details, see the articles by Chandler and by Alexander and Hirschowitz in

the references, as well as [Iarrobino and Kanev 1999].

2. Chern Classes and Cohomology Groups

The Case of Curves

Summary. The theory of parametrized jet bundles is complicated by their not

being vector bundles. This section discusses the case of curves to acquaint readers

with the theory in the simplest situation. The theory is based on the fundamental

result of Green and Griffiths on the filtration of the parametrized jet bundles (see

Theorem 2.3 and Corollary 2.4). The explicit computations of this section have

numerous applications (see for example [An et al. 2003a; 2004; 2003b]).

In this section we compute the Chern numbers and the invariants hi(J m
k X),

i = 0, 1, of the jet bundles for curves. In the case of curves in P2 we are inter-

ested in finding an explicit expression of a basis for h0(J m
k X). The procedure

introduced here for the construction works as well for singular curves and in

varieties defined over general differential fields. For applications in this direction

to the strong uniqueness polynomial problem and the unique range set problem;

see [An et al. 2004] in the complex case and [An et al. 2003a; 2003b] in the case

of fields of positive characteristic.

For the full jet bundles the computation of Chern classes and cohomology

groups is straightforward. Dualizing the defining sequence (1.1) we get an exact

sequence

0 →
⊙k

T ∗
1X → T ∗

kX → T ∗
k−1X → 0. (2.1)
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For example, for k = 3 the exact sequences

0 →
⊙3

T ∗
1X → T ∗

3X → T ∗
2X → 0,

0 →
⊙2

T ∗
1X → T ∗

2X → T ∗
1X → 0

and Whitney’s Formula yields

c1(T
∗
3X) = c1(T

∗
2X)+ c1(

⊙3
T ∗

1X) = c1(T
∗
1X)+ c1(

⊙2
T ∗

1X)+ c1(
⊙3

T ∗
1X).

In general, we have, by induction:

Theorem 2.1. The first Chern number of the bundle T ∗
kX is given by

c1(T
∗
kX) =

k∑

j=1

c1(
⊙j

T ∗
1X).

In particular , if X is a Riemann surface,

c1(T
∗
kX) =

k∑

j=1

jc1(T
∗
1X) =

k(k+1)

2
c1(KX) = k(k+1)(g− 1)

where KX = T ∗
1X is the canonical bundle of X and g is the genus.

For a line bundle L and nonnegative integer i the i-fold tensor product is denoted

by Li and L−i is the dual of Li. (Recall that tensor product and symmetric

product on line bundles are equivalent.)

Theorem 2.2. Let X be a smooth curve of genus g ≥ 2. Then h0(T ∗
kX) =

k2(g− 1)+1 and h1(T ∗
kX) = 1.

Proof. By Riemann–Roch for curves,

h0(Ki
X)−h1(Ki

X) = χ(Ki
X) = χ(OX)+ c1(Ki

X)

= h0(OX)−h1(OX)+ 2(g− 1)i = 1− g+2(g− 1)i

for any nonnegative integer i. Thus h0(Ki
X) = h1(Ki

X)+ (2i− 1)(g− 1) =

h0(K1−i
X )+ (2i− 1)(g− 1). As h0(K1−i

X ) = 1 for i = 1 and h0(K1−i
X ) = 0 for

i ≥ 2 we get

h0(Ki
X) =







0, i < 0,

1, i = 0,

g, i = 1,

(2i− 1)(g− 1), i ≥ 2.

(2.2a)

By duality, h1(Ki
X) = h0(K1−i

X ); hence

h1(Ki
X) =







0, i ≥ 2,

1, i = 1,

g, i = 0,

(1− 2i)(g− 1), i < 0.

(2.2b)
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From the short exact sequence (2.1) we get the exact sequence

0 → H0(Kk
X) → H0(T ∗

kX) → H0(T ∗
k−1X) → H1(Kk

X) →
→ H1(T ∗

kX) → H1(T ∗
k−1X) → 0.

From (2.2a,b) we deduce that, for k ≥ 2, H1(T ∗
kX) = H1(T ∗

k−1X) and that

h0(T ∗
kX) = h0(T ∗

k−1X)+h0(Kk
X).

These imply that

h1(T ∗
kX) = h1(T ∗X) = h1(KX) = h0(OX) = 1

for all k ≥ 1 and that

h0(T ∗
kX) =

k∑

i=1

h0(Ki
X) = g+

k∑

i=2

(2i− 1)(g− 1) = k2(g− 1)+1. ˜

The computation of Chern classes and cohomology groups for the parametrized

jet bundles is somewhat more complicated. This depends on the fundamental

filtration for these bundles due to Green–Griffiths. Let

0 → S ′ → S → S ′′ → 0

be an exact sequence of sheaves. Then for any m there is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm ⊂ Fm+1 =
⊙m S

of the symmetric product
⊙m S, such that F i/F i−1 ∼=

⊙i S ′⊗
⊙m−i S ′′. Anal-

ogously, for the exterior product
∧m S we have a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm ⊂ Fm+1 =
∧m S

such that F i/F i−1 ∼=
∧i S ′⊗

∧m−i S ′′. These filtrations connect the cohomology

groups of higher symmetric (resp. exterior) products to the cohomology groups of

lower symmetric (resp. exterior) products. The analogue of these is the following

theorem of Green and Griffiths (the proof can be found in [Stoll and Wong 2002]):

Theorem 2.3. There exists a filtration of J m
k X:

Jm
k−1X = F0

k ⊂ F1
k ⊂ · · · ⊂ F [m/k]

k = Jm
k X

(where [m/k] is the greatest integer smaller than or equal to m/k) such that

F i
k/F i−1

k
∼= Jm−ki

k−1 X ⊗ (
⊙i

T ∗X).

As an immediate consequence [Green and Griffiths 1980], we have:
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Corollary 2.4. Let X be a smooth projective variety . Then J m
k X admits

a composition series whose factors consist precisely of all bundles of the form:

(
⊙i1 T ∗X)⊗· · ·⊗ (

⊙ik T ∗X) where ij ranges over all nonnegative integers sat-

isfying i1 +2i2 + · · ·+ kik = m. The first Chern number of J m
k X is given by

c1(J m
k X) =

∑

i1+2i2+···+kik=m
ij∈Z≥0

c1
(
(
⊙i1 T ∗X)⊗ · · · ⊗ (

⊙ik T ∗X)
)
.

In particular , if X is a curve then

c1(J m
k X) =

∑

i1+2i2+···+kik=m
ij∈Z≥0

(i1 + i2 + · · ·+ ik)c1(T
∗X).

Example 2.5 [Stoll and Wong 2002]. It is clear that for m < k the filtration

degenerates and we have J m
k X = J m

k−1X = . . . = J m
m X. In particular, J 1

2 X =

J 1
1 X = T ∗X. For m = k = 2, the filtration is given by

⊙2
T ∗X = J 2

1 X = S0
2 ⊂ S1

2 = J 2
2 X, S1

2/S0
2
∼= T ∗X,

so we have the exact sequence

0 →
⊙2

T ∗X → J 2
2 X → T ∗X → 0.

Thus the first Chern numbers are related by the formula

c1(J 2
2 X) = c1(

⊙2
T ∗X)+ c1(T

∗X).

Analogously, J 1
3 X = J 1

2 X = J 1
1 X = T ∗X and J 2

3 X = J 2
2 X. The filtration of

J 3
3 X is as follows:

J 3
3 X = S1

3 ⊃ S0
3 = J 3

2 X, J 3
3 X/J 3

2 X = S1
3/S0

3
∼= T ∗X.

Hence we have an exact sequence

0 → J 3
2 X → J 3

3 X → T ∗X → 0.

Now the filtration of J 3
2 X is

J 3
2 X = S1

2 ⊃ S0
2 = J 3

1 X, J 3
2 X/J 3

1 X
∼= T ∗X ⊗T ∗X

and, since J 3
1 X =

⊙3
T ∗X, we have an exact sequence

0 →
⊙3

T ∗X → J 3
2 X → T ∗X ⊗T ∗X → 0.

From these two exact sequences we get

c1(J 3
3 X) = c1(T

∗X)+ c1(T
∗X ⊗T ∗X)+ c1(

⊙3
T ∗X).

From basic representation theory (or linear algebra in this special case) we have

T ∗X ⊗T ∗X =
⊙2

T ∗X ⊕
∧2

T ∗X hence

c1(J 3
3 X) = c1(T

∗X)+ c1(
⊙2

T ∗X)+ c1(
⊙3

T ∗X)+ c1(
∧2

T ∗X).
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In representation theory
∧2

T ∗X is the Weyl module W ∗
1,1X associated to the

partition {1, 1} (see [Fulton and Harris 1991]). Thus we have

c1(J 3
3 X) =

3∑

j=1

c1(
⊙j

T ∗X)+ c1(W
∗
1,1X).

In the special case of a Riemann surface
∧2

T ∗X is the zero-sheaf. Thus for a

curve we have

c1(J 3
3 X) = (1+2+3)c1(T

∗X) = 6c1(T
∗X).

For m= k = 4, we have the filtrations J 4
4 X = S1

4 ⊃ S0
4 =J 4

3 X, J 4
4 X/J 4

3 X =

S1
4/S

0
4
∼=T ∗X, J 4

3 X =S1
3 ⊃S0

3 =J 4
2 X, J 4

3 X/J 4
2X =S1

3/S
0
3
∼=T ∗X⊗T ∗X, and

J 4
2 X = S2

2 ⊃ S1
2 ⊃ S0

2 = J 4
1 X, with

J 4
2 X/S1

2 =
⊙2

T ∗X, S1
2/S

0
2
∼= T ∗X ⊗ (

⊙2
T ∗X).

Thus the Chern number is given by

c1(J 4
4 X) = c1(T

∗X)+ c1(T
∗X ⊗T ∗X)+ c1(

⊙2
T ∗X)

+ c1(T
∗X ⊗ (

⊙2
T ∗X))+ c1(

⊙4
T ∗X).

From elementary representation theory we obtain

T ∗X ⊗ (
⊙k

T ∗X) = W ∗
k,1X ⊕ (

⊙k+1
T ∗X)

where W ∗
k,1 is the Weyl module associated to the partition {k, 1} so that

c1(J 4
4 X) = c1(

⊙2
T ∗X)+

∑4
i=1 c1(

⊙i
T ∗X)+

∑2
i=1 c1(W

∗
j,1X).

In particular, if X is a curve,

c1(J 4
4 X) = (1+2+2+3+4)c1(T

∗X) = 12c1(T
∗X).

The procedure can be carried out further; for instance,

c1(J 5
5 X) =

∑3
j=2 c1(

⊙j
T ∗X)

+
∑5

j=1 c1(
⊙j

T ∗X)+
∑2

j=1 c1(W
∗
j,1X)+

∑3
j=1 c1(W

∗
j,1X),

c1(J 6
6 X) = c1(T

∗X)+ 3c1(T
∗X ⊗T ∗X)+ 2c1

(
T ∗X ⊗ (

⊙3
T ∗X)

)

+ c1(
⊙2

T ∗X)+ c1(
⊙3

T ∗X)+ c1
(
(
⊙2

T ∗X)⊗ (
⊙2

T ∗X)
)

+ c1
(
T ∗X ⊗ (

⊙4
T ∗X)

)
+ c1(

⊙6
T ∗X).

So if X is a curve we have

c1(J 5
5 X) = (1+2+3+2+3+4+5)c1(T

∗X) = 20c1(T
∗X),

c1(J 6
6 X) = (1+6+8+2+3+4+5+6)c1(T

∗X) = 35c1(T
∗X).
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The calculation of the sum
∑

i1+2i2+···+kik=m

i1 + · · ·+ ik (2.3)

can be carried out using standard combinatorial results which we now describe.

Definition 2.6. (i) A maximal set of mutually conjugate elements of Sm (the

symmetric group on m elements) is said to be a class of Sm.

(ii) A partition of a natural number m is a set of positive integers i1, . . . , iq such

that m = i1 + · · ·+ iq.

The following asymptotic result concerning the number of partitions of a positive

integer m is well-known in representation theory and in combinatorics [Hardy

and Wright 1970]:

Theorem 2.7. The number of partitions of m, the number of classes of Sm

and the number of (inequivalent) irreducible representations of Sm are equal .

This common number p(m) is asymptotically approximated by the formula of

Hardy–Ramanujan:

p(m) ∼ eπ
√

2m/3

4m
√

3
.

The first few partition numbers are p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,

p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22, p(9) = 30, p(10) = 42, p(11) = 56,

p(12) = 77, p(13) = 101. Consider first the case of partitioning a number by

partitions of a fixed length k. Denote by pk(m) the number of positive integral

solutions of the equation

x1 + · · ·+xk = m

with the condition that 1 ≤ xk ≤ xk−1 ≤ . . . ≤ x1. This number is equal to the

number of integer solutions of the equation

y1 + · · ·+ yk = m− k

with the condition that the solutions be nonnegative and 0 ≤ yk ≤ yk−1 ≤
. . . ≤ y1. If exactly i of the integers {y1, . . . , yk} are positive then these are the

solutions of x1 + · · ·+xi = m− k and so there are pi(m− k) of such solutions.

Consequently we have (see [Stoll and Wong 2002] for more details):

Lemma 2.8. With the notation above we have: p(m) =
∑m

k=1 pk(m), where

pk(m) =
k∑

i=0

pi(m− k),

for 1 ≤ k ≤ m and with the convention that p0(0) = 1, p0(m) = 0 if m > 0

and pk(m) = 0 if k > m. Moreover , the number pk(m) satisfies the following

recursive relation:

pk(m) = pk−1(m− 1)+ pk(m− k).



126 KAREN CHANDLER AND PIT-MANN WONG

Example 2.9. We shall compute p(6) and p(7) using the preceding lemma. We

have p1(m) = pm(m) = 1 and p2(m) = m/2 or (m− 1)/2 according to m being

even or odd; thus p1(6) = 1, p2(6) = 3, p6(6) = 1. Analogously, we have:

p3(m) = p2(m− 1)+ p3(m− 3),

p4(m) = p3(m− 1)+ p4(m− 4),

p5(m) = p4(m− 1)+ p5(m− 5),

so that, for example:

p3(6) = p2(5)+ p3(3) = 2+1 = 3,

p4(6) = p3(5)+ p4(2) = p2(4) = 2,

p5(6) = p4(5) = p3(4) = p2(3) = 1.

Since p(m) =
∑m

k=1 pk(m) we have

p(6) =

6∑

k=1

pk(6) = 1+3+3+2+1+1 = 11.

For m = 7 we have p1(7) = 1, p2(7) = 3, p7(7) = 1, p3(7) = p2(6)+ p3(4) =

p2(6)+ p2(3) = 4, p4(7) = p3(6) = 3, p5(7) = p4(6) = 2, p6(7) = p5(6) = 1; hence

p(7) =

7∑

k=1

pk(7) = 1+3+4+3+2+1+1 = 15.

For k ≤ m denote by Lk(m) the sum of the lengths of all partitions λ of m whose

length lλ is at most k:

Lk(m) =
∑

λ, lλ≤k

lλ.

The next lemma follows from the definitions [Wong 1999; Stoll and Wong 2002]:

Lemma 2.10. With notation as above we have

Lk(m) =
∑

λ,lλ≤k

lλ =

k∑

j=1

jpj(m) =
∑

λ, lλ≤k

k∑

j=1

ij ,

where the sum on the right is taken over all partitions λ = (λ1, . . . , λρλ
) of m,

1 ≤ λlλ ≤ . . . ≤ λ2 ≤ λ1, lλ ≤ k and ij is the number of j’s in {λ1, . . . , λlλ}.

For k = m,L(m) = Lm(m) is the total length of all possible partitions of m. For

example if m = 6 then L(6) = 1+6+9+8+5+6 = 35 and for m = 7, L(7) =

1+6+12+12+10+6+7 = 54. Indeed we have:

Theorem 2.11. If X is a nonsingular projective curve, the Chern number of

Jm
m X is

c1(J m
m X) = Lm(m)c1(KX) =

m∑

j=1

jpj(m)c1(KX),
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where KX is the canonical bundle of X.

There is a formula for the asymptotic behavior of pk(m):

Theorem 2.12. For k fixed and m→ ∞ the number pk(m) is asymptotically

pk(m) ∼ mk−1

(k−1)! k!
.

We give below the explicit calculation of the above in the first few cases. For

m = k = 3, we have p(3) = 3 and the possible indices are

λ lλ dλ i1 i2 i3
∑k

j=1 ij

1 (1, 1, 1) 3 1 3 0 0 3

2 (2, 1) 2 2 1 1 0 2

3 (3) 1 1 0 0 1 1

The cases cases correspond to the possible partitions of 3: 1+1+1 = 3, 2+1 = 3

and 3 = 3, of respective lengths 3, 2, and 1. The Chern number c1(J 3
3 X) of

a curve X is obtained by summing the last column: c1(J 3
3 X) = (1+2+3)×

c1(T
∗X) = 6c1(T

∗X).

For m = k = 4 the number of partitions is p(4) = 5 and we have

λ lλ dλ i1 i2 i3 i4
∑k

j=1 ij

1 (1, 1, 1, 1) 4 1 4 0 0 0 4

2 (2, 1, 1) 3 3 2 1 0 0 3

3 (3, 1) 2 3 1 0 1 0 2

4 (2, 2) 2 2 0 2 0 0 2

5 (4) 1 1 0 0 0 1 1

and c1(J 4
4 X) = 12c1(T

∗X).

For m = k = 5, p(5) = 7,

λ ρλ dλ i1 i2 i3 i4 i5
∑k

j=1 ij

1 (1, 1, 1, 1, 1) 5 1 5 0 0 0 0 5

2 (2, 1, 1, 1) 4 4 3 1 0 0 0 4

3 (3, 1, 1) 3 6 2 0 1 0 0 3

4 (2, 2, 1) 3 5 1 2 0 0 0 3

5 (4, 1) 2 4 1 0 0 1 0 2

6 (3, 2) 2 15 0 1 1 0 0 2

7 (5) 1 1 0 0 0 0 1 1

and c1(J 5
5 X) = 20c1(T

∗X).

For m = k = 6, p(6) = 11,
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λ lλ dλ i1 i2 i3 i4 i5 i6
∑k

j=1 ij

1 (1, 1, 1, 1, 1, 1) 6 1 6 0 0 0 0 0 6

2 (2, 1, 1, 1, 1) 5 5 4 1 0 0 0 0 5

3 (3, 1, 1, 1) 4 10 3 0 1 0 0 0 4

4 (2, 2, 1, 1) 4 9 2 2 0 0 0 0 4

5 (4, 1, 1) 3 10 2 0 0 1 0 0 3

6 (3, 2, 1) 3 36 1 1 1 0 0 0 3

7 (2, 2, 2) 3 5 0 3 0 0 0 0 3

8 (5, 1) 2 30 1 0 0 0 1 0 2

9 (4, 2) 2 9 0 1 0 1 0 0 2

10 (3, 3) 2 5 0 0 2 0 0 0 2

11 (6) 1 1 0 0 0 0 0 1 1

and c1(J 6
6 X) = 35c1(T

∗X).

The next few values of Lk(k) are L7(7) = 54, L8(8) = 86, L9(9) = 128,

L10(10) = 192, L11(11) = 275, L12(12) = 399, L13(13) = 556, L14(14) = 780,

L15(15) = 1068, L16(16) = 1463.

Next we deal with the problem of computing the invariants: hi(J m
k X) =

dimHi(J m
k X) for a curve X of genus g ≥ 2. We have

h0(J 1
1 X) = h0(KX) = g,

h1(J 1
1 X) = h0(OX) = 1.

For curves the filtration of Green–Griffiths takes the form

Jm
k X = S [m/k]

k ⊃ · · · ⊃ S0
k = J m

k−1X, Si
k/Si−1

k = Ki
X ⊗J m−ki

k−1 (X).

Hence, for k = 2, Si
2/Si+1

2 = Ki
X ⊗J m−2i

1 = Ki
X ⊗Km−2i

X = Km−i
X . It is clear

from the filtration that J 1
1 X

∼= J 1
2 X (the isomorphism is given by the forgetting

map (1.11)). For J 2
2 X the filtration yields the short exact sequence

0 → K2
X =

⊙2
T ∗X → J 2

2 X → T ∗X = KX → 0,

from which we get the exact sequence

0 →H0(K2
X) →H0(J 2

2 X) →H0(KX) →H1(K2
X) →H1(J 2

2 X) →H1(KX) → 0.

By (2.2b) we have h1(KX) = 1 and h1(K2
X) = 0 if d ≥ 2. Hence, as KX =

OX(3− d),

h0(J 2
2 X) = h0(KX)+h0(K2

X) = 4g− 3,

h1(J 2
2 X) = h1(T ∗X) = h0(OX) = 1.

For J 3
2 X we obtain the short exact sequence from the filtration,

0 → K3
X → J 3

2 X → K2
X → 0,
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and the exact cohomology sequence

0 →H0(K3
X) →H0(J 3

2 X) →H0(K2
X) →H1(K3

X) →H1(J 3
2 X) →H1(K2

X) → 0.

Since h1(K2
X) = h1(K3

X) = 0 for g ≥ 2 we find

h1(J 3
2 X) = 0,

h0(J 3
2 X) = h0(K2

X)+h0(K3
X) = 8(g− 1).

For J 4
2 X the filtration is given by

J 4
2 X = S2

2 ⊃ S1
2 ⊃ S0

2 = J 4
1 X = K4

X

with S2
2/S1

2 = K2
X ,S1

2/S0
2 = K3

X . From the filtration we have two short exact

sequences,

0 → S1
2 → J 4

2 X → K2
X → 0 and 0 → K4

X → S1
2 → K3

X → 0.

For g ≥ 2 we get from the second exact sequence and the fact that h1(K3
X) =

h1(K4
X) = 0 that h1(S1

2 ) = 0. This and the first exact sequence imply that

h1(J 4
2 X) = h1(K2

X) = 0 and

h0(J 4
2 X) = h0(K2

X)+h0(K3
X)+h0(K4

X) = 15(g− 1).

We get, inductively:

Theorem 2.13. For a smooth curve with genus g ≥ 2 the following equalities

hold :

(i) J 1
2 X = KX ; hence h1(J 1

2 X) = 1, h0(J 1
2 X) = genus of X;

(ii) h1(J 2
2 X) = 1, h0(J 2

2 X) = h0(KX)+h0(K2
X) = 4g− 3;

(iii) h1(J m
2 X) = 0, and for m ≥ 3,

h0(J m
2 X) =

∑[m/2]
j=0 h0(Km−j

X ) = (2m− [m
2 ]− 1)([m

2 ] + 1)(g− 1);

(iv) for i ≥ 1,

h0(J 1
2 X ⊗Ki

X) = h0(Ki+1
X ) = (2i+1)(g− 1),

h0(J 2
2 X ⊗Ki

X) = h0(Ki+1
X )+h0(Ki+2

X ) = 4(i+1)(g− 1),

and for m ≥ 3,

h0(J m
2 X ⊗Ki

X) =
∑[m/2]

j=0 h0(Km+i−j
X ) = (2m+2i− [m

2 ]− 1)([m
2 ] + 1)(g− 1).

Proof. Parts (i), (ii) and (iii) are clear. For part (iv), tensoring the exact

sequence 0 → K2
X → J 2

2 X → KX → 0 by Ki
X yields the exact sequence 0 →

Ki+2
X → J 2

2 X ⊗Ki
X → Ki+1

X → 0. From the associated long exact cohomology
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sequence one sees that h0(J 2
2 X⊗Ki

X) = h0(Ki+1
X )+h0(Ki+2

X ) as claimed. From

the exact sequences

0 → S [m/2]−1
m,2 → Jm

2 X → K[m/2]⊗J m−2[m/2]
1 X = Km−[m/2]

X → 0,

0 → S [m/2]−2
m,2 →S [m/2]−1

m,2 →K[m/2]−1
X ⊗Jm−2([m/2]−1)

1 X = Km−[m/2]+1
X → 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 →J m
1 X = Km

X → S1
m,2 → KX⊗Jm−2

1 X = Km−1
X → 0,

we obtain, by tensoring with Ki
X , i ≥ 0, the exact sequences

0 →S [m/2]−1
m,2 ⊗Ki

X → J m
2 X⊗Ki

X → Km+i−[m/2]
X → 0,

0 →S [m/2]−2
m,2 ⊗Ki

X →S [m/2]−1
m,2 ⊗Ki

X →Km+i−[m/2]+1
X → 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → Km+i
X → S1

m,2⊗Ki
X → Km+i−1

X → 0,

from which we deduce that h1(J m
2 X ⊗Ki

X) = h1(S [m/2]−j
m,2 ⊗Ki

X) = 0 for 0 ≤
j ≤ [m/2] and that

h0(Jm
2 X ⊗Ki

X) =

[m/2]
∑

j=0

h0(Km+i−j
X ),

as claimed. ˜

The coefficient of (g− 1) in part (iv) of the preceding lemma may be expressed

as

α(m, i, 2) =

{
1
4 (3m2+4m(i+1)+8i−4) = 1

4 (m+2)(3m+4i−2), m even,
1
4 (3m2+2m(2i+1)+4i−1) = 1

4 (m+1)(3m+4i−1)4, m odd.

The coefficient of (g− 1) in part (iii) is α(m, 2) = α(m, 0, 2).

Corollary 2.14. For a smooth curve of genus g ≥ 2 we have, for m ≥ 3,

h0(J m
2 X) =

{
1
4 (3m2 +4m− 4)(g− 1), m even,
1
4 (3m2 +2m− 1)(g− 1), m odd ,

and

c1(J m
2 X) =

{
1
4 (3m2 +6m)(g− 1), m even,
1
4 (3m2 +4m+1)(g− 1), m odd .

Proof. The first formula is given by part (iii) of Theorem 2.13. The second

formula is a consequence of the Riemann–Roch for curves:

h0(J m
2 X)−h1(J m

2 X) = c1(J m
2 X)− (rkJ m

2 X)(g− 1),

using the fact that rkJ m
2 X = [m/2]+ 1 and that h1(J m

2 X) = 0 if m ≥ 3. ˜
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We now deal with the case of general k. We shall be content with asymptotic

formulas as the general formulas become complicated by the fact that the general

formula for sums of powers is only given recursively. However the highest order

term is quite simple:

m∑

i=1

id =
md+1

d+1
+O(md). (2.4)

The filtration theorem of Green–Griffiths implies that

rk J m
k X =

∑

I∈Ik,m

rk SI .

For a curve, SI =
⊙i1 T ∗X ⊗ · · ·⊗

⊙ik−1 T ∗X ⊗
⊙ik T ∗X = K|I|

X = Ki1+···+ik

X .

Hence

rk Jm
k X = #Ik,m, Ik,m =

{
I = (i1, . . . , ik) |

∑k
j=1 jij = m

}
.

Alternatively, since SI = SI′⊗
⊙ik T ∗X, where I ′ = (i1, . . . , ik−1) ∈ Ik−1,m−kik

,

we have

rk J m
k X =

[m/k]
∑

ik=0

rk (J m−kik

k−1 X ⊗Kik

X ) =

[m/k]
∑

ik=0

rk Jm−kik

k−1 X;

equivalently,

#Ik,m =

[m/k]
∑

ik=0

#Ik−1,m−kik
.

Theorem 2.15. Let Ik,m =
{
I = (i1, . . . , ik) |

∑k
j=1 jij = m

}
. Then, for a

curve X,

rk J m
k X = #Ik,m =

mk−1

k!(k− 1)!
+O(mk−2).

Proof. It is clear that rk J m
1 X = 1 and we have seen that rk J m

2 X = [m/2]+1,

thus writing rk J m
k X = akm

k−1 +O(mk−2) we get, via (2.4),

akm
k−1 +O(mk−2) = ak−1

[m/k]
∑

ik=0

(m− kik)k−2 +O(mk−2)

= ak−1

[m/k]
∑

ik=0

(m− kik)k−2 +O(mk−2)
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= ak−1

k−2∑

j=0

(−1)j (k− 2)!

j!(k− 2− j)!
mk−2−jkj

[m/k]
∑

ik=0

ijk +O(mk−2)

= ak−1

k−2∑

j=0

(−1)j (k− 2)!

j!(k− 2− j)!
mk−2−jkj mj+1

(j+1)kj+1
+O(mk−2)

=
ak−1

k

k−2∑

j=0

(−1)j

j+1

(k− 2)!

j!(k− 2− j)!
mk−1 +O(mk−2).

The following formula is easily verified by double induction:

Lemma 2.16. For any positive integers 1 ≤ l ≤ k, we have

k∑

j=0

(−1)j

j+ l

(
k

j

)

=
(l− 1)! k!

(k+ l)!
.

Using this lemma we obtain a recursive formula for k ≥ 2:

ak =
ak−1

k(k− 1)
, a1 = 1.

The first few values of ak are a1 = 1, a2 = 1/2, a3 = 1/223, a4 = 1/(2432),

a5 = 1/(26325), a6 = 1/(273352). The recursive formula also yields the general

formula for ak:

ak =
1

∏k
l=2(l− 1)l

=
1

(k− 1)! k!
. ˜

The filtration also yields a formula for a curve of genus g:

c1(J m
k X) =

∑

I∈Ik,m

c1(SI) =
∑

I∈Ik,m

|I|c1(KX) = 2
∑

I∈Ik,m

|I|(g− 1),

where |I| = i1 + · · ·+ ik. On the other hand we have

c1(J m
k X) =

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−kik

(c1(SI′)+ ikc1(KX))

= 2

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−kik

(|I ′|+ ik)(g− 1).

It is clear that c1(J m
1 X) = 2m(g− 1) and we have seen that

c1(J m
2 X) =

{
1
4 (3m2 +6m)(g− 1), m even,
1
4 (3m2 +4m+1)(g− 1), m odd.

Theorem 2.17. For a curve of genus g ≥ 2 we have, for each k ≥ 2,

c1(J m
k X) =

(
2(g− 1)

(k!)2

k∑

i=1

1

i

)

mk +O(mk−1).



FINSLER GEOMETRY OF HOLOMORPHIC JET BUNDLES 133

Proof. It is clear that asymptotically c1(J m
k X) = O(mk). Hhence, writing

c1(J m
k X) = 2bkm

k(g− 1)+O(mk−1) ,

we get via Theorem 2.15 that, for k ≥ 3,

2bkm
k(g− 1)+O(mk−1)

= 2

m/k
∑

ik=0

∑

I′∈Ik−1,m−kik

(bk−1(m− kik)k−1 + ik)(g− 1)+O(mk−1)

= 2(g− 1)

m/k
∑

ik=0

(
ak−1ik(m− kik)k−2 + bk−1(m− kik)k−1

)
+O(mk−1).

By Lemma 2.16 we have

m/k
∑

ik=0

ik(m− kik)k−2 =
1

k2

k−2∑

j=0

(−1)j

j+2

(k− 2)!

j!(k− 2− j)!
mk =

1

k3(k− 1)

and

m/k
∑

ik=0

(m− kik)k−1 =
1

k

k−1∑

j=0

(−1)j

j+1

(k− 1)!

j!(k− 1− j)!
mk =

1

k

(k− 1)!

k!
=

1

k2
.

From these we obtain

2bkm
k(g− 1)+O(mk−1) = 2(g− 1)

(
ak−1

k3(k− 1)
+
bk−1

k2

)

+O(mk−1)

and hence the recursive relation:

bk =
ak−1

k3(k− 1)
+
bk−1

k2
=

1

k2k!(k− 1)!
+
bk−1

k2
=

1

k2
(bk−1 +

1

k!(k− 1)!
)

with a1 = 1 and b1 = 1. An explicit formula is obtained by repeatedly using the

recursion. More precisely, we first apply the recursive formula to bk−1:

bk−1 =
1

(k− 1)2

(

bk−2 +
1

(k− 1)!(k− 2)!

)

and substitution yields

bk =
1

k2

(
1

(k− 1)2

(

bk−2 +
1

(k− 1)!(k− 2)!

)

+
1

k!(k− 1)!

)

.

The procedure above may be repeated until we reach b1 = 1. Induction shows

that

bk =
1

(k!)2

k∑

i=1

1

i
. ˜
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For general m > k ≥ 2 we get from the filtrations the following [m/k] exact

sequences:

0 →S [m/k]−1
m,k → J m

k X → K[m/k]
X ⊗J m−k[m/k]

k−1 X → 0

0 →S [m/k]−2
m,k →S [m/k]−1

m,k →K[m/k]−1
X ⊗Jm−k([m/k]−1)

k−1 X → 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → J m
k−1X → S1

m,k → KX⊗Jm−k
k−1 X → 0.

(2.5)

Observe that m− k[m/k] = 0 or 1 depending on whether m is divisible by k.

By induction, we see that h1(Ki
X ⊗Jm−ki

k−1 X) = 0 implies that h1(Si
m,k) = 0, for

0 ≤ i ≤ [m/k]. Hence h1(J m
k X) = 0 for any k ≥ 2, and as a result we also have

h0(J m
k X) = h0(J m

k−1X)+

[m/k]
∑

i=1

h0(Ki
X ⊗Jm−ki

k−1 X) if m > k. (2.6)

Corollary 2.18. Let X be a curve of genus g ≥ 2. Then, h1(J m
k X) = 0 if

m ≥ k, and for all k ≥ 2 we have

h0(J m
k X) =

(
2(g− 1)

(k!)2

k∑

i=1

1

i

)

mk +O(mk−1).

Proof. By Riemann–Roch for curves, we have

h0(J m
k X)−h1(J m

k X) = c1(J m
k X)− (rk J m

k X)(g− 1).

As observed, h1(J m
k X) vanishes. By Theorem 2.15, (rk J m

k X)(g−1) is of lower

order, so h0(J m
k X) = c1(Jm

k X) and the result follows from Theorem 2.17. ˜

By induction we get from (2.6)

h0(J m
k X)

= h0(J m
2 X)+

[m/3]
∑

i=1

h0(Ki
X ⊗J m−3i

2 X)+ · · ·+
[m/k]
∑

i=1

h0(Ki
X ⊗Jm−ki

k−1 X)

=

[m/2]
∑

i=0

h0(Km−i
X )+

[m/3]
∑

i=1

h0(Ki
X ⊗J m−3i

2 X)+ · · ·+
[m/k]
∑

i=1

h0(Ki
X ⊗J m−ki

k−1 X).

Tensoring (2.5) with Ki
X yields exact sequences

0 →S [m/k]−1
m,k ⊗Ki

X → Jm
k X⊗Ki

X → K[m/k]+i
X ⊗J m−k[m/k]

k−1 X → 0,

0 →S [m/k]−2
m,k ⊗Ki

X →S [m/k]−1
m,k ⊗Ki

X →K[m/k]+i−1
X ⊗J m−k([m/k]−1)

k−1 X → 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → J m
k−1X⊗Ki

X → S1
m,k → Ki+1

X ⊗J m−k
k−1 X → 0.
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These imply that

h0(J m
k X ⊗Ki

X) =

[m/k]
∑

j=0

h0(Ki+j
X ⊗J m−kj

k−1 X).

Thus, for k = 3 we get by Theorem 2.13:

h0(J m
3 X) =

[m/2]
∑

i=0

h0(Km−i
X )+

[m/3]
∑

i=1

h0(Ki
X ⊗J m−3i

2 X)

=

[m/2]
∑

i=0

h0(Km−i
X )+

[m/3]
∑

i=1

[(m−3i)/2]
∑

j=0

h0(Km−2i−j
X ).

With this it is possible to write down the explicit formulas. In the case of J m
2 X

there are only two cases depending on the parity of m. For 3-jets there are the

following cases: (1a) m = 3q, q even; (1b) m = 3q, q odd; (2a) m = 3q+1, q

even; (2b) m = 3q+1, q odd; (3a) m = 3q+1, q even; and (3b) m = 3q+2, q

odd. For simplicity we shall only do this for case (1a). First we observe that the

rank of J m
3 X is given by the number

rk J m
3 X =

[m

2

]

+1+

[m/3]
∑

i=1

([
m− 3i

2

]

+1
)

= O(m2).

If m is divisible by 3! then

rk Jm
3 X =

m

2
+1+

m

3
+

m/6
∑

l=1

m− 3(2l− 1)

2
+

m/6
∑

l=1

m− 3(2l)

2

= 1
12 (m+3)(m+4). (2.7)

For k = 3 we get, by Theorem 2.13,

h0(J m
3 X)

=

[m/2]
∑

i=0

h0(Km−i
X )+

[m/3]
∑

i=1

h0(Ki
X ⊗Jm−3i

2 X)

=

[m/2]
∑

i=0

h0(Km−i
X )+

[m/3]
∑

i=1

[(m−3i)/2]
∑

j=0

h0(Km−2i−j
X )

= (g− 1)×
((

2m−1−
[
m

2

])([
m

2

]

+1
)

+

[m/3]
∑

i=1

(

2m−4i−1−
[
m−3i

2

])([
m−3i

2

]

+1
))

.
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If m is divisible by 3!, both m and [m/3] are even. Then, denoting the second

sum above by S,

S =

m/6
∑

l=1

(

2m− 4(2l− 1)− 1− m− 1− 3(2l− 1)

2

)(
m− 1− 3(2l− 1)

2
+1
)

+

m/6
∑

l=1

(

2m− 8l− 1− m− 6l

2

)(
m− 6l

2
+1
)

=
1

2

m/6
∑

l=1

(3m2 +10m+6+60l2 − (28m+36)l) =
1

2233
m(11m2 − 18m− 18).

Thus for m divisible by 3! we have

h0(Jm
3 X) =

(
1

2233
m(11m2 − 18m− 18)+

1

22
(m+2)(3m− 2)

)

(g− 1),

and, by Riemann–Roch and (2.7),

c1(J m
3 X) = (g− 1)×
(

1

2233
m(11m2 − 18m− 18)+

1

22
(m+2)(3m− 2)+

1

223
(m+3)(m+4)

)

.

Example 2.19. The filtration of J 6
3 X is given by J 6

3 X = S2 ⊃ S1 ⊃ S0 =

J 6
2 X, and the associated exact sequences are 0 → S1 → J 6

3 X → K2
X → 0 and

0 → J 6
2 X → S1 → KX ⊗J 3

2 X → 0.

Hence h0(J 6
3 X) = 0 and h0(J 6

3 X) = h0(J 6
2 X)+h0(K2

X)+h0(KX⊗J 3
2 X). From

the exact sequence 0 → K3
X → J 3

2 X → K2
X → 0 we obtain the exact sequence

0 → K4
X → KX ⊗J 3

2 X → K3
X → 0

from which we conclude that

h0(J 6
3 X) = h0(J 6

2 X)+h0(K2
X)+h0(K3

X)+h0(K4
X)

= h0(K2
X)+ 2(h0(K3

X)+h0(K4
X))+h0(K5

X)+h0(K6
X)

= (3+2(5+7)+9+11)(g− 1) = 47(g− 1).

Next we consider the problem of constructing an explicit basis for H 0(J m
k X).

First we recall the construction of a basis for H0(J 1
1 X) = H0(KX). The proce-

dure of this construction works in any algebraically closed field and has been used

toward resolving the uniqueness problem for rational and meromorphic functions.

(The reader is referred to [An et al. 2003a; 2004; 2003b] for details.) Let z0, z1, z2
be the homogeneous coordinates on P2. Then

d
(
zi

zj

)

=
zjdzi − zidzj

z2
j

=

∣
∣
∣
∣

z1 z2
dz1 dz2

∣
∣
∣
∣

z2
j

(2.8)



FINSLER GEOMETRY OF HOLOMORPHIC JET BUNDLES 137

is a well-defined rational 1-form on Pn. Let P (z0, z1, z2) be a homogeneous

polynomial of degree d and

X = {[z0, z1, z2] ∈ P
2(C) | P (z0, z1, z2) = 0}.

Then, by Euler’s Theorem, for [z0, z1, z2] ∈ X, we have

z0
∂P

∂z0
(z0, z1, z2)+ z1

∂P

∂z1
(z0, z1, z2)+ z2

∂P

∂z2
(z0, z1, z2) = 0.

The tangent space of X is defined by the equation P (z0, z1, z2) = 0 and

dz0
∂P

∂z0
(z0, z1, z2)+ dz1

∂P

∂z1
(z0, z1, z2)+ dz2

∂P

∂z2
(z0, z1, z2) = 0.

These may be expressed as

z0
∂P

∂z0
(z0, z1, z2)+ z1

∂P

∂z1
(z0, z1, z2) = −z2

∂P

∂z2
(z0, z1, z2),

dz0
∂P

∂z0
(z0, z1, z2)+ dz1

∂P

∂z1
(z0, z1, z2) = −dz2

∂P

∂z2
(z0, z1, z2).

Then by Cramer’s rule, we have on X

∂P

∂z0
=
W (z1, z2)

W (z0, z1)

∂P

∂z2
,
∂P

∂z1
=
W (z2, z0)

W (z0, z1)

∂P

∂z2

provided that the Wronskian W (z0, z1) = z0dz1 − z1dz0 6≡ 0 on any component

of X; that is, the defining homogeneous polynomial of X has no linear factor of

the form az0 + bz1. Thus

W (z1, z2)

∂P
∂z0

(z0, z1, z2)
=

W (z2, z0)

∂P
∂z1

(z0, z1, z2)
=

W (z0, z1)

∂P
∂z2

(z0, z1, z2)
(2.9)

is a globally well-defined rational 1-form on any component of π−1(X) ⊂ C
3\{0},

where (π : C
3 \{0} → P2(C) is the Hopf fibration), provided that the expressions

make sense (that is, the denominators are not identically zero when restricted to

a component of ψ−1(X)). For our purpose, we also require that the form given

by (2.9) is not identically trivial when restricted to a component of π−1(X). This

is equivalent to the condition that the Wronskians in the formula above are not

identically zero; in other words, the defining homogeneous polynomial of X has

no linear factor of the form azi + bzj where a, b ∈ C, 0 ≤ i, j ≤ 2 and i 6= j.

If P , ∂P/∂z0, ∂P/∂z1, ∂P/∂z2 never vanish all at once (that is, X is smooth)

then, at each point, one of the expressions in (2.9) is regular at the point. Hence

so are the other expressions. This means that

η =

∣
∣
∣
∣

z1 z2
dz1 dz2

∣
∣
∣
∣

∂P/∂z0
(2.10)
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is regular on π−1(X). (Note that the form η is not well-defined on X unless

n = 3; see (2.8)). The form

ω =

∣
∣
∣
∣

z1 z2
dz1 dz2

∣
∣
∣
∣

z2
0

zn−1
0 ∂P/∂z0 =

∣
∣
∣
∣

z1 z2
dz1 dz2

∣
∣
∣
∣

∂P/∂z0
zn−3
0 = zn−3

0 η,

with n = degP , is a well-defined (again by (2.8)) rational 1-form on X. More-

over, as η is regular on X, the 1-form ω is also regular if n ≥ 3. If n = 3

then ω = η and if n ≥ 4 then ω is regular and vanishes along the ample divisor

[zn−3
0 =0]∩X. Thus for any homogeneous polynomial Q = Q(z0, z1, z2) of degree

n− 3, the 1-form

Q

zn−3
0

ω = Qη

is regular on C and vanishes along [Q=0]. Note that the dimension of the vector

space of homogeneous polynomials of degree n−3 (a basis is given by all possible

monomials) is
1
2 (n− 1)(n− 2) = genus of X.

We summarize these observations:

Proposition 2.20. Let X =
{
[z0, z1, z2] ∈ P2(C) | P (z0, z1, z2) = 0

}
be a

nonsingular curve of degree d ≥ 3. If d = 3 then the space of regular 1-forms on

X is {cη | c ∈ C}, where η is defined by (2.2). If d ≥ 4 take the set

{
Qi | Qi is a monomial of degree d− 3 for 1 ≤ i ≤ 1

2 (d− 1)(d− 2)
}

as an ordered basis of homogeneous polynomials of degree d− 3. Then

{
ωi = Qiη | 1 ≤ i ≤ 1

2 (d− 1)(d− 2)
}

is a basis of the space of regular 1-forms on X.

Using the preceding we may write down explicitly a basis for H0(J m
k X). We

demonstrate via examples. For d = 4, h0(J 2
2 X) = h0(K2

X)+h0(KX) = 6+3 = 9

and, since the genus is 3, there are 3 linearly independent 1-forms ω1, ω2, ω3

which, as shown above, may be taken as

ω1 =
z0(z0 dz1 − z1dz0)

∂P/∂z2
, ω2 =

z1(z0 dz1 − z1dz0)

∂P/∂z2
, ω3 =

z2(z0 dz1 − z1dz0)

∂P/∂z3
.

A basis for H0(J 2
2 X) is given by

ω⊗2
1 , ω⊗2

2 , ω⊗2
3 , ω1 ⊗ω2, ω1 ⊗ω3, ω2 ⊗ω3, δω1, δω2, δω3,

where δ is the derivation defined in (1.9). The first six of these provide a basis

of H0(K2
X) and the last three may be identified with a basis of H0(KX). For
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J 3
2 X we have

h0(J 3
2 X) = h0(K2

X)+h0(K3
X)

= h0
(
OX(2(d− 3))

)
+h0

(
OX(3(d− 3))

)

= C2d−4
2 −Cd−4

2 +C3d−7
2 −C2d−7

2 .

In particular, for d = 4, h0(J 3
2 X) = h0(K2

X)+h0(K3
X) = 6+10 = 16. A basis

for H0(J 3
2 X) is given by the six elements (identified with a basis of H0(K2

X))

δω⊗2
1 , δω⊗2

2 , δω⊗2
3 , δ(ω1 ⊗ω2), δ(ω1 ⊗ω3), δ(ω2 ⊗ω3)

and the 10 elements (a basis of H0(K3
X)):

ω⊗3
1 , ω⊗3

2 , ω⊗3
3 , ω1 ⊗ω2 ⊗ω3,

ω⊗2
1 ⊗ω2, ω

⊗2
1 ⊗ω3, ω

⊗2
2 ⊗ω1, ω

⊗2
2 ⊗ω3, ω

⊗2
3 ⊗ω1, ω

⊗2
3 ⊗ω2.

3. Computation of Chern Classes

The Case of Surfaces

Summary. We exhibit here the explicit formulas due to [Stoll and Wong 2002]

(see also [Green and Griffiths 1980]) for the Chern numbers of the projectivized

parametrized jet bundles of a compact complex surface. The most important is

the index formula given in Theorem 3.9:

ι(J m
k X) = (αkc

2
1 −βkc2)m

2k+1 +O(m2k)

where ci = ci(X), αk = βk + γk and

βk =
2

(k!)2(2k+1)!

k∑

i=1

1

i2
, γk =

2

(k!)2(2k+1)!

k∑

i=1

1

i

i−1∑

j=1

1

j
.

This implies that αk/βk → ∞ hence αk/βk > c2/c
2
1 for k sufficiently large

provided that c21 > 0. For example, c2/c
2
1 = 11 for a smooth hypersurface of

degree d = 5 and the explicit formula shows that αk/βk > 11 for all k ≥ 199.

(See the table at the end of this section). The explicit formulas for αk and βk

are crucial in the proof of the Kobayashi conjecture in Section 7.

We now treat the case of a complex surface (complex dimension 2). The com-

putations here are more complicated than those of Section 2 as we must deal

with the second Chern number. The computation of the first Chern class

is relatively easy since the Whitney formula is linear in this case; that is, if

0 → S ′ → S → S ′′ → 0 is exact, then c1(S) = c1(S ′)+ c1(S ′′). The Whitney

formula for the second Chern classes on the other hand is nonlinear: c2(S) =

c2(S ′)+ c2(S ′′)+ c1(S ′)c1(S ′′). The (minor) nonlinearity may seem harmless

at first but for filtrations the nonlinearity carries over at each step and the

complexity increases rapidly. Thus the correct way to deal with the prob-

lem is not to calculate the second Chern class directly but to calculate the
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index ι(J m
k X) = c21(J m

k X)− 2c2(J m
k X) which does behave linearly, that is,

ι(S) = ι(S ′)+ ι(S ′′). We then recover the second Chern class from the for-

mula c2(J m
k X) = (c21(J m

k X)− ι(J m
k X))/2. In order to compute the jet dif-

ferentials we must first calculate the Chern classes and indices of the sheaves

SI =
⊙i1 T ∗X ⊗ · · ·⊗

⊙ik T ∗X where I = (i1, . . . , ik). For details of the com-

putations see [Stoll and Wong 2002].

By results from [Tsuji 1987; 1988; Maruyama 1981], the exterior, symmetric

and tensor products of the cotangent sheaf of a manifold of general type are

semistable in the sense of Mumford–Takemoto. For a coherent sheaf S on a

variety of dimension n the index of stability relative to the canonical class is

defined to be

µ(S) =
cn−1
1 (S) c1(T

∗X)

(rk S)cn1 (T ∗X)
.

A sheaf S is said to be semistable in the sense of Mumford–Takemoto (relative

to the canonical class) if µ(S ′) ≤ µ(S) for all coherent subsheaves S ′ of S.

For a nonsemistable sheaf a subsheaf S ′ satisfying µ(S ′) > µ(S) is said to be

a destabilizing subsheaf . In view of Tsuji’s result it would seem reasonable to

expect that the sheaves of jet differentials are also semistable. However using

the explicit formulas for the Chern classes computed below we shall see that this

is not the case. Tsuji’s result is used in [Lu and Yau 1990] (see also [Lu 1991])

to show that a projective surface X satisfying the conditions that KX is nef and

c21(T
∗X)−2c2(T

∗X) > 0 contains no rational nor elliptic curves. The instability

of the jet differentials implies that the analogous result of Lu–Yau requires a

different argument.

We list below some basic but very useful formulas (see [Wong 1999; Stoll and

Wong 2002]):

Lemma 3.1. Let X be a nonsingular complex surface and E be a vector bundle

of rank 2 over X. Then rk (
⊙m

E) = m+1 and

c1(
⊙m

E) = 1
2m(m+1)c1(E),

c2(
⊙m

E) = 1
24m(m2 − 1)(3m+2)c21(E)+ 1

6m(m+1)(m+2)c2(E).

Consequently the index is given by the formula:

ι(
⊙m

E) = 1
6m(m+1)(2m+1)c21(E)− 1

3m(m+1)(m+2)c2(E).

Moreover , if c21(E) 6= 0 then

δ∞(E)
def
= lim

m→∞
c2(
⊙m

E)

c21(
⊙m

E)
=

1

2
.

Note that δ∞(E) is independent of c2(E)/c21(E). The next formula gives the

Chern numbers for tensor products of different bundles.

Lemma 3.2. Let Ei, i = 1, . . . , k, be holomorphic vector bundles, of respective

rank ri, over a nonsingular complex surface X. Let R =
∏k

l=1 rl. Then:
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(i) c1

( k⊗

i=1

Ei

)

=
k∑

i=1

(r1 . . . ri−1ri+1 . . . rk)c1(Ei) = Rri

k∑

i=1

c1(Ei)

ri
.

(ii) c2

( k⊗

i=1

Ei

)

= R

( k∑

i=1

c2(Ei)

ri
+(R− 1)

∑

1≤i<j≤k

c1(Ei)c1(Ej)

rirj

)

+

k∑

i=1

(∏k
l=1,l 6=i rj

2

)

c21(Ei).

In particular :

(iii) c2(E1 ⊗E2) =

(
r2
2

)

c21(E1)+ (r1r2 − 1)c1(E1)c1(E2)+

(
r1
2

)

c21(E2)

+r2c2(E1)+ r1c2(E2);

(iv) c2

( 3⊗

i=1

Ei

)

= r1r2r3

( 3∑

i=1

c2(Ei)

ri
+(r1r2r3 − 1)

∑

1≤i<j≤3

c1(Ei)c1(Ej)

rirj

)

+
3∑

i=1

(
r1r2r3/ri

2

)

c21(Ei);

and the index ι(E1 ⊗E2) = c21(E1 ⊗E2)− 2c2(E1 ⊗E2) is given by

(v) ι(E1 ⊗E2) = r2c
2
1(E1)+ r1c

2
1(E2)+ 2c1(E1)c1(E2)− 2r2c2(E1)− 2r1c2(E2).

With the preceding formulas the computation of the Chern numbers for J m
k X

can now be carried out by using the filtration given in Theorem 2.3, reducing

the calculation to the Chern numbers of bundles of the form

SI =
⊙i1 T ∗X ⊗ · · ·⊗⊙ik T ∗X,

where the indices I = (i1, . . . , ik) satisfy the condition i1 +2i2 + · · ·+ kik = m.

More precisely, take

Ikm =
{
I = (i1, . . . , ik) | ij ∈ N ∪{0}, i1 +2i2 + · · ·+ kik = m

}

together with a fixed ordering of Ikm (say, the lexicographical ordering). Then a

brute force computation, applying Lemma 3.2 and Lemma 3.3 repeatedly yields

the following formulas:

Theorem 3.3. Let X be a nonsingular complex surface and let Sm−2i,i =
⊙m−2i

T ∗X ⊗
⊙i

T ∗X. Denote by c1 = c1(T
∗X), c2 = c2(T

∗X). Then

rk (Sm−2i,i) = (m−2i+1)(i+1) = (m+1)+(m−1)i−2i2,

c1(Sm−2i,i) = 1
2 (m−i)(m−2i+1)(i+1)c1

= 1
2m(m+1)+(m2−2m−1)i− (3m−1)i2+2i3c1,

c2(Sm−2i,i) = 1
24{m(m2−1)(3m+2)+2(3m4−5m3−3m2+4m+1)i

+(3m4−30m3+12m2+6m−7)i2−2(9m3−27m2+5m+1)i3

+(39m2−42m+7)i4−4(3m−1)i5+4i6}c21 + 1
6bm−2i,ic2,
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where ci = ci(T
∗X). The index is given by

ι(Sm−2i,i) = 1
6 (am−2i,ic

2
1 − 2bm−2i,ic2),

where am−2i,i and bm−2i,i are polynomials given by

am−2i,i = m(m+1)(2m+1)+(2m3−6m2−7m−1)i− (9m2−6m−5)i2

+(14m−2)i3−8i4,

bm−2i,i = m(m+1)(m+2)+(m3−3m2−8m−2)i− (6m2−3m−7)i2

+(13m−1)i3−10i4.

The rank rk J m
2 X of the sheaf of J m

2 X is given by

1

24
(m+1)(m+3)(m+5) =

1

233
(m3 +9m2 +23m+15), if m is odd,

1

24
(m+2)(m+3)(m+4) =

1

233
(m3 +9m2 +26m+24), if m is even;

and the first Chern class of same sheaf , c1(J m
2 X), is

(m+1)(m+3)(m+5)(3m+1)

192
c1 =

3m4+28m3+78m2+68m+15

263
c1, m odd,

m(m+2)(m+4)(3m+10)

192
c1 =

3m4+28m3+84m2+80m

263
c1, m even.

The index of J m
2 X is given by

ι(J m
2 X) = c21(J m

2 X)− 2c2(J m
2 X) = amc

2
1 − bmc2,

where the coefficients am and bm are polynomials in m given by

am =

{
1

2615 (7m5 +75m4 +270m3 +390m2 +203m+15) if m is odd ,
1

2615 (7m5 +75m4 +280m3 +420m2 +208m) if m is even;

bm =

{
1

2615 (5m5 +75m4 +390m3 +810m2 +565m+75) if m is odd ,
1

2615 (5m5 +75m4 +400m3 +900m2 +720m) if m is even.

The formula for the index also yields the formula for c2(J m
2 X):

c2(J m
2 X) =

1

2
{c21(J m

2 X)− (amc
2
1 − bmc2)} =

1

2
{λmc

2
1 + bmc2} (3.1)

where the coefficients am and bm are given by Theorem 3.3, and the coefficient

λm is given by

λm =

{(
1

192 (m+1)(m+3)(3m2 +16m+5)
)2 − am, m odd,

(
1

192m(m+2)(m+4)(3m+10)
)2 − am, m even.

In particular:
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Corollary 3.4. Let X be a nonsingular complex surface and assume that

c21(T
∗X) > 0. Then

δ(J m
2 X) = lim

m→∞
c2(J m

2 X)

c21(J m
2 X)

=
1

2
.

For simplicity, set c1 = c1(T
∗X), c2 = c2(T

∗X). For any sheaf S, define

ι(S) = c21(S)− 2c2(S), µ(S) =
c1(S) c1
(rk S)c21

, δ(S) =
c2(S)

c21(S)
, (3.2)

provided that the denominators are not zero. Denote for simplicity δ = δ(TX)

= c2/c
2
1. It is well known that c21 ≤ 3c2 and c2 ≤ 5c21 +36 for a surface of general

type with c21 > 0 [Barth et al. 1984, p. 228]. Thus, for such surfaces, δ satisfies

the estimate
1

3
≤ δ ≤ 5+

36

c21
≤ 41. (3.3)

We give the precise numbers for a few special cases:

• J 2
2 X. In this case k = 2, m = 2 and there are two weighted partitions

(i1, i2) corresponding to the two solutions of i1 +2i2 = 2 (Example 2.9), namely

I1 = (2, 0) and I2 = (0, 1). The corresponding sheaves are SI1 =
⊙2

T ∗X,

SI2 = T ∗X. The various invariants of these sheaves are as follows:

I S rank c1(S) c2(S) ι(S) µ(S) δ(S)

(2, 0)
⊙2

T ∗X 3 3c1 2c21 +4c2 5c21 − 8c2 1 1
9 (2+4δ)

(0, 1) T ∗X 2 c1 c2 c21 − 2c2
1
2 δ

J 2
2 X 5 4c1 5c21 +5c2 6c21 − 10c2

4
5

5
16 (1+ δ)

The Chern numbers are calculated using Lemma 3.1 and Lemma 3.2. Note that
⊙2

T ∗X is a subsheaf of J 2
2 X (by Example 2.5, 0 →

⊙2
T ∗X → J 2

2 X →
T ∗X → 0 is an exact sequence) with µ(

⊙2
T ∗X) > µ(J 2

2 X). A subsheaf with

such a property is said to be a destabilizing subsheaf. On the other hand T ∗X is

a quotient sheaf of J 2
2 X with µ(T ∗X) < µ(J 2

2 X). A quotient sheaf with such a

property is said to be a destabilizing quotient sheaf.

• J 3
2 X. In this case k = 2, m = 3 and there are two weighted partitions

I1 = (3, 0) and I2 = (1, 1) corresponding to the two solutions of i1 +2i2 = 3.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(3, 0)
⊙3

T ∗X 4 6c1 11c21 +10c2 14c21 − 20c2
3
2

1
36 (11+10δ)

(1, 1)
⊗2

T ∗X 4 4c1 5c21 +4c2 6c21 − 8c2 1 1
16 (5+ δ)

J 3
2 X 8 10c1 40c21 +14c2 20c21 − 28c2

5
4

1
50 (20+7δ)

The sheaves
⊙3

T ∗X and
⊗2

T ∗X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 3
2 X. The sequence 0 →

⊙3
T ∗X → J 3

2 X →
⊗2

T ∗X → 0 is exact, by Example 2.5.
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• J 4
2 X. In this case k = 2, m = 4 and there are 3 weighted partitions

I1 = (4, 0), I2 = (2, 1) and I3 = (0, 2) corresponding to the 3 solutions of

i1 +2i2 = 4.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(4, 0)
⊙4

T ∗X 5 10c1 35c21 +20c2 30c21−40c2 2 7
20 + 1

5δ

(2, 1)
⊙2

T ∗X⊗T ∗X 6 9c1 31c21 +11c2 19c21−22c2
3
2

31
81 + 11

81δ

(0, 2)
⊙2

T ∗X 3 3c1 2c21 +4c2 5c21−8c2 1 2
9 + 4

9δ

J 4
2 X 14 22c1 215c21 +35c2 54c21−70c2

11
7

215
484 + 35

484δ

The sheaves
⊙4

T ∗X and
⊙2

T ∗X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 4
2 X. Note that

⊙2
T ∗X ⊗T ∗X is neither a

subsheaf nor a quotient sheaf of J 4
2 X. We have two exact sequences:

0 → F1
2 → J 4

2 X →
⊙2

T ∗X → 0,

0 →
⊙4

T ∗X → F1
2 →

⊙2
T ∗X ⊗T ∗X → 0.

• J 5
2 X. In this case k = 2, m = 5 and there are 3 weighted partitions

I1 = (5, 0), I2 = (3, 1) and I3 = (1, 2) corresponding to the 3 solutions of

i1 +2i25.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(5, 0)
⊙5

T ∗X 6 15c1 85c21 +35c2 55c21−70c2
5
2

17
45 + 7

45δ

(3, 1)
⊙3

T ∗X⊗T ∗X 8 16c1 106c21 +24c2 44c21−48c2 2 53
128 + 3

32δ

(1, 2) T ∗X⊗
⊙2

T ∗X 6 9c1 31c21 +11c2 19c21−22c2
3
2

31
81 + 11

81δ

J 5
2 X 20 40c1 741c21 +70c2 118c21−140c2 2 741

1600 + 7
160δ

The sheaves
⊙5

T ∗X and
⊙2

T ∗X ⊗T ∗X are respectively a destabilizing sub-

sheaf and a destabilizing quotient sheaf of J 5
2 X. Note that

⊙3
T ∗X ⊗T ∗X is

neither a subsheaf nor a quotient sheaf of J 5
2 X. We have two exact sequences:

0 → F1
2 → J 5

2 X → T ∗X ⊗⊙2
T ∗X → 0,

0 →
⊙5

T ∗X → F1
2 →

⊙3
T ∗X ⊗T ∗X → 0.

• J 6
2 X. In this case k = 2, m = 6 and there are 4 weighted partitions

I1 = (6, 0), I2 = (4, 1), I3 = (2, 1) and I4 = (0, 3) corresponding to the 3

solutions of i1 +2i2 = 6.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(6, 0)
J6 T ∗X 7 21c1 175c2

1+56c2 91c2
1−112c2 3 25

63
+ 8

63
δ

(4, 1)
J4 T ∗X⊗T ∗X 10 25c1 270c2

1+45c2 85c2
1−90c2

5
2

54
125

+ 9
125

δ

(2, 2)
J2 T ∗X⊗

J2 T ∗X 9 18c1 138c2
1+24c2 48c2

1−48c2 2 23
54

+ 2
27

δ

(0, 3)
J3 T ∗X 4 6c1 11c2

1+10c2 14c2
1−20c2

3
2

11
36

+ 5
18

δ

J 6
2 X 30 70c1 2331c2

1+135c2 238c2
1−270c2

7
3

333
700

+ 27
980

δ
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We have three exact sequences:

0 → F2
2 → J 6

2 X →
⊙3

T ∗X → 0,

0 → F1
2 → F2

2 →
⊙2

T ∗X ⊗
⊙2

T ∗X → 0,

0 →
⊙6

T ∗X → F1
2 →

⊙4
T ∗X ⊗

⊙2
T ∗X → 0.

The sheaves
⊙6

T ∗X and
⊙3

T ∗X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 6
2 X.

Remark 3.5. For each partition I = (i1, i2) satisfying i1+2i2 = m we associate

the (nonweighted) sum |I| = i1+i2. Let Imax = maxI{|I|} and Imin = maxI{|I|}.
Then the sheaf SImax

is a destabilizing subsheaf and the sheaf SImin
is a destabi-

lizing quotient sheaf.

We now deal with the case of general k. We shall be content with asymptotic

formulas as the general formulas become complicated since the general formula

for sums of powers can only be given recursively. However the highest order term

is quite simple; indeed, we have

m∑

i=1

id =
md+1

d+1
+O(md). (3.4)

Before dealing with the jet bundles J m
k X we must first find the formulas for the

sheaves SI =
⊙i1 T ∗X ⊗ · · · ⊗

⊙ik T ∗X. This is easier due to the symmetry of

the sheaves and we know, a priori, that the formulas can be expressed in terms of

the symmetric functions in the exponents i1, . . . , ik. For general k we introduce

some notation for the j-th symmetric functions on k indices:

s0;k = 1, s1;k =

k∑

p=1

ip, s2;k =

k∑

1≤p<q≤k

ipiq, . . . , sk;k =

k∏

p=1

ip. (3.5)

We have

µk =

k∏

p=1

(ip +1) =

k∑

p=0

sp;k. (3.6)

Let I = (i1, . . . , ik) and I ′ = (i1, . . . , ik−1), so that

SI =
⊙i1 T ∗X ⊗ · · ·⊗

⊙ik−1 T ∗X ⊗
⊙ik T ∗X = SI′ ⊗

⊙ik T ∗X.

By Lemma 3.1, Lemma 3.2 and induction we obtain the following result, where

we abbreviate ci = ci(T
∗X):

Lemma 3.6. Let X be a nonsingular complex surface and SI = Si1,i2,...,ik
=

⊙i1 T ∗X⊗
⊙i2 T ∗X⊗· · ·⊗

⊙ik T ∗X where i1, i2, . . . , ik are nonnegative integers.
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Then rk SI = µk,

c1(SI) =
1

2

k∑

j=1

ij

k∏

j=1

(ij +1)c1 = 1
2s1;kµkc1(T

∗X) = 1
2s1;k

k∑

p=0

sp;k,

ι(SI) = 1
6µk

(
(2s21;k +s1;k−s2;k)c21−2(s21;k +2s1;k−2s2;k)c2

)
,

c2(SI) = 1
24µksj;k

(
(3s21;kµk−4s21;k−2s1;k +2s2;k)c21 +4(s21;k +2s1;k−2s2;k)c2

)
,

where sj;k, 1 ≤ j ≤ k are the symmetric functions in i1, . . . , ik as defined in (3.5)

and µk =
∑k

j=0 sj;k.

These formulas, together with the filtrations of Green–Griffiths, are now used to

get the formulas for J m
k X. First we have the formula for the rank (the proof is

similar to that of Theorem 2.15 though somewhat more complicated):

Theorem 3.7. For any positive integer k ≥ 2 we have

rk J m
k X =

∑

(i1,...,ik)∈Ik,m

k∏

j=1

(ij +1) = Akm
2k−1 +O(m2k−2)

where the coefficient is given by

Ak =
1

∏k
l=2 l

2(2l− 2)(2l− 1)
=

1

(k!)2(2k− 1)!
.

Next we derive the formulas for c1(Jm
k X) from the formulas for c1(SI), for

I ∈ Ik,k. By Whitney’s formula, we see that c1(Jm
k X) is given by

c1(J m
k X) =

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−kik

(
c1(SI′) rk

⊙ik T ∗X + c1(
⊙ik T ∗X) rkSI′

)
, (3.7)

where i1 + · · ·+kik = m and Ik−1,m−kik
consists of all indices I ′ = (i1, . . . , ik−1)

satisfying i1 +2i2 + · · ·+(k− 1)ik−1 = m− kik. We have already seen that

c1(J m
1 X) =

(
1
2m

2 +O(m)
)
c1,

c1(J m
2 X) =

(
1
26m

4 +O(m3)
)
c1,

where c1 = c1(T
∗X). For general k we have (using (3.7) and along the lines of

the proof of Theorem 2.16):

Theorem 3.8. Let X be a nonsingular complex surface. Then, for any positive

integer k ≥ 2,

c1(J m
k X) =

(
Bkm

2k +O(m2k−1)
)
c1,

where the coefficient Bk is given by

Bk =
1

(k!)2(2k)!

k∑

i=1

1

i
=
Ak

2k

k∑

i=1

1

i
.
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We now compute the index of J m
k X for general k. As in the case of the first

Chern number, the filtration theorem implies that

ι(J m
k X) =

∑

I∈Ik,m

ι(SI).

Since ι(SI) = (rk
⊙ik T ∗X) ι(SI′)+(rk SI′) ι(

⊙ik T ∗X)+2c1(SI′) c1(
⊙ik T ∗X),

where I = (i1, . . . , ik) and I ′ = (i1, . . . , ik−1), we get

ι(J m
k X) =

[m/k]
∑

ik=0

(
(ik +1)

∑

I′ ι(SI′)+ ι(
⊙ik T ∗X)

∑

I′ rk (SI′)

+ ik(ik +1)
∑

I′ c1(SI′)
)
,

where we abbreviate
∑

I′∈Ik−1,m−kik

by
∑

I′ . Using the formulas for ι(SI′) and

rk (SI′) obtained previously (Lemma 3.6) and induction we get:

Theorem 3.9. Let X be a nonsingular complex surface. For any positive integer

k ≥ 2,

ι(J m
k X) = (αkc

2
1 −βkc2)m

2k+1 +O(m2k),

where the coefficients αk and βk satisfy the respective recursive relations:

αk =
αk−1

2k3(2k+1)
+

Bk−1

k4(4k2 − 1)
+

Ak−1

2k5(k− 1)(4k2 − 1)
,

βk =
βk−1

2k3(2k+1)
+

Ak−1

2k5(k− 1)(4k2 − 1)

with α1 = β1 = 1
3 and Ai, Bi are the numbers given in Theorems 3.7 and 3.8

respectively . The coefficients are given explicitly as αk = βk + γk, where γ1 = 0

and for k ≥ 2

βk =
2

(k!)2(2k+1)!

k∑

i=1

1

i2
, γk =

2

(k!)2(2k+1)!

k∑

i=1

1

i

i−1∑

j=1

1

j
.

Corollary 3.10. With the assumptions and notations of Theorem 3.9,

lim
k→∞

αk

βk
= lim

k→∞

γk

βk
= ∞.

Consequently if c21 > 0 then ι(J m
k X) = cm2k+1c21 +O(m2k) for some positive

constant c.

The asymptotic expansion for c2(J m
k X) now follows readily from Corollary 3.10

along with Theorems 3.8 and 3.9:

Theorem 3.11. Let X be a nonsingular complex surface. For any positive

integer k,

c2(J m
k X) = 1

2 (c21(J m
k X)− ι(J m

k X)) = 1
2c

2
1(J m

k X) = 1
2A

2
kc

2
1m

4k +O(m4k−1).



148 KAREN CHANDLER AND PIT-MANN WONG

We tabulate the ratios αk/βk on the next page (they can be checked readily

using Mathematica or Maple):

k αk βk αk/βk

2
7

2615

5

2615
1.40000

3
17

27367

7

27365
1.73469

4
83

216387

41

216387
2.02439

5
1717

217385611

479

21738567
2.28108

6
1927

2213115611 13

59

2213115611
2.51239

7
726301

222312577611 13

266681

222312577611 13
2.72348

8
3144919

234312577611 13 17

63397

234312577611 13
2.91804

9
2754581

235320577613 17 19

514639

235320577611 13 17
3.09879

10
2923673

2393215107713 17 19

178939

2393215977 13 17 19
3.26779

11
315566191

2403215107711617 19 23

10410343

2403215977116 13 17 19
3.42666

12
330851461

2473245127711617 19 23

18500393

24732451177116 17 19 23
3.57670

197 10.9808

198 10.9987

199 11.0165

200 11.0345

4. Finsler Geometry of Projectivized Vector Bundles

Summary. Our use of projectivized jet bundles is initiated by the recognition

that , for projectivized vector bundles, the algebraic geometric concept of ample-

ness is equivalent to the existence of a Finsler (not hermitian in general) metric

with negative mixed holomorphic bisectional curvature. It is known, at least in

the case of the tangent bundle that , even for Finsler metrics, negative holomor-

phic bisectional curvature implies hyperbolicity . We provide in this section some

of the basic notions from Finsler geometry . For more details see [Cao and Wong

2003; Chandler and Wong 2004] and the references there.

Many questions concerning a complex vector bundle E of rank greater than 1

may be reduced to problems about the tautological line bundle (or its dual)

over the projectivization P(E). For example the algebraic geometric concept

of ampleness (and the numerical effectiveness) of a holomorphic vector bundle
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E may be interpreted in terms of Finsler geometry (see [Cao and Wong 2003],

and also [Aikou 1995; 1998]; for general theory on Finsler geometry we refer

to [Bao and Chern 1991; Bao et al. 1996; Abate and Patrizio 1994]). For the

relationship with the Monge–Ampère equation see [Wong 1982]. We also provide

some implications of this reformulation. For applications of the formulation using

projectivized bundles to complex analysis see [Dethloff et al 1995a, b]. The dual

of a vector bundle E will be denoted by E∗. For any positive integer k, denote

by
⊙k

E the k-fold symmetric product. The dual vector bundle E∗ is said to

be ample if and only if the line bundle LP(E) is ample.

By a Finsler metric along the fibers of E we mean a function h : E → R≥0

with the following properties:

(FM1) h is of class C0 on E and is of class C∞ on E \ {zero section}.
(FM2) h(z, λv) = |λ|h(z, v) for all λ ∈ C.

(FM3) h(z, v) > 0 on E \ {zero section}.
(FM4) For z and v fixed, the function ηz,v(λ) = h2(z, λv) is smooth even at

λ = 0.

(FM5) h|Ez
is a strictly pseudoconvex function on Ez \ {0} for all z ∈M .

Denote by π : TE → E the projection and V = ker π ⊂ TE the vertical sub-

bundle. A Finsler metric F defines naturally a hermitian inner product on the

vertical bundle V ⊂ TE by

〈V,W 〉V =
r∑

i,j=1

gij̄(z, v)V
iW

j
, gij̄(z, v) =

∂2F 2(z, v)

∂vi∂v̄j
(4.1)

for horizontal vector fields V =
∑

i V
i∂/∂vi,W =

∑

iW
i∂/∂vi ∈ V on E where

v1, . . . , vr are the fiber coordinates. (The difference between a Finsler metric

and a hermitian metric is that, for a hermitian metric, the components (gij̄) of

the hermitian inner product on the vertical bundle are independent of the fiber

coordinates). The hermitian inner product defines uniquely a hermitian con-

nection (known as the Chern connection) θ = (θk
i ) and the associate hermitian

curvature Θ = (Θk
i ). If (gij̄) comes from a hermitian metric then the curvature

forms depend only on the base coordinates; however if it comes from a general

Finsler metric then the curvature forms will have horizontal, vertical and mixed

components:

Θk
i =

n∑

α,β=1

Kk
iαβ̄ dz

α ∧ dz̄β +

r∑

j,l=1

κk
ijl̄ dv

j ∧ dv̄l +

n∑

α=1

r∑

l=1

µk
iαl̄ dz

α ∧ dv̄l

+

r∑

j=1

n∑

β=1

νk
ijβ̄ dv

j ∧ dz̄β .

Denote by P =
∑r

i=1 v
i∂/∂vi the position vector field on E. The mixed holo-

morphic bisectional curvature of the Finsler metric is defined, for any nonzero
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vector field X ∈ Γ(M,TM), to be

〈
Θ(X,X)P, P

〉

V =

r∑

i,j,k=1

n∑

α,β=1

gkj̄K
k
iαβ̄v

iv̄jXαX
β
, (4.2)

where the inner product is defined by (4.1). The following result can be found

in [Cao and Wong 2003].

Theorem 4.1. Let E be a rank r ≥ 2 holomorphic vector bundle over a compact

complex manifold X. The following statements are equivalent :

(1) E∗ is ample (resp. nef ).

(2)
⊙k

E∗ is ample (resp. nef ) for some positive integer k.

(3) The dual L
P(

J

k E) of the tautological line bundle over the projectivized bundle

P(
⊙k

E) is ample (resp. nef ) for some positive integer k.

(4) There exists a Finsler metric along the fibers of E with negative (resp. non-

positive) mixed holomorphic bisectional curvature.

(5) For some positive integer k there exists a Finsler metric along the fibers of
⊙k

E with negative (resp. nonpositive) mixed holomorphic bisectional curva-

ture.

From the algebraic geometric point of view the key relationship between a vector

bundle and its projectivization is the Fundamental Theorem of Grothendieck

[Grothendieck 1958]:

Theorem 4.2. Let p : E → X be a holomorphic vector bundle of rank r ≥ 2

over a complex manifold X of dimension n. Then for any analytic sheaf S on

X and any m ≥ 1,

pi
∗Lm

P(E)
∼=
{⊙m

E∗, if i = 0,

0, if i > 0,

where pi
∗Lm

P(E) is the i-th direct image of Lm
P(E). Consequently ,

Hi(X,
⊙m

E∗ ⊗S) ∼= Hi(P(E),Lm
P(E) ⊗ p∗S) for all i ≥ 0.

The theorem implies that the cohomology groups vanish beyond the dimension n

of X although the dimension of P(E) is n+r−1 > n; moreover, χ(
⊙m

E∗⊗S) =

χ(Lm
P(E) ⊗ p∗S). For a vector bundle F over a smooth surface X, the Chern

character and the Todd class are defined by

ch(F ) = rk(F )+ c1(F )+ 1
2 (c21(F )− 2c2(F )),

td(F ) = 1+ 1
2c1(F )+ 1

12 (c21(F )+ c2(F )).
(4.3)

The Riemann–Roch formula is

χ(F ) = ch(F ) · td(TX)[X] =
(

1
2 (ι(F )− c1(F ) c1)+ 1

12 rk(F )(c21 + c2)
)
[X], (4.4)
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where ci = ci(T
∗X) = −ci(TX). The notation ω[X] indicates the evaluation of

a form of top degree on the fundamental cycle [X], that is,

ω[X] =

∫

X

ω.

Assume rank F = 2 over a nonsingular complex surface X. Then, by Lemma

3.1,

ι(
⊙m

F ) = 1
6m(m+1)(2m+1)c21(F )− 1

3m(m+1)(m+2)c2(F ),

ch(
⊙m

F ) = m+1+ 1
2m(m+1)c1(F )+ 1

12m(m+1)
(
(2m+1)c21(F )

− 2(m+2)c2(F )
)
,

χ(
⊙m

F ) = 1
12m(m+1)

(
(2m+1)c21(F )− 2(m+2)c2(F )

)

− 1
4m(m+1)c1(F ) c1 + 1

12 (m+1)(c21 + c2).

For example, taking F = T ∗X,

χ(
⊙m

T ∗X) = 1
12 (m+1)

(
(2m2 − 2m+1)c21 − (2m2 +4m− 1)c2)

)
;

in particular,

χ(T ∗X) = 1
6 (c21 − 5c2), χ(

⊙2
T ∗X) = 1

4 (5c21 − 15c2).

In any case we have:

Theorem 4.3. Let p : E → X be a holomorphic vector bundle of rank r = 2

over a complex surface X. Then dim P(E) = 3 and for any positive integer m,

χ(
⊙m

E∗) = χ(Lm
P(E)) =

m3

3!
(c21(E

∗)−c2(E∗))+O(m2) =
m3

3!
c31(Lm

P(E))+O(m2).

Suppose that h2(Lm
P(E)) (= h2(

⊙m
E)) = O(m2) and that c31(Lm

P(E)) > 0 (equiva-

lently, c21(E)−c2(E) > 0). The preceding theorem implies that E (or equivalently

LP(E)) is big, that is,

h0(Lm
P(E)) = h0(

⊙m
E) ≥ Cm3

for some constant C > 0. Recall the following fact (from [Cao and Wong 2003]

or [Kobayashi and Ochiai 1970], for example):

Theorem 4.4. Let E be a holomorphic vector bundle of rank r ≥ 2 over a

complex manifold X. Then the canonical bundles of X and P(E) are related by

the formula

KP(E)
∼= [pE ]∗(KX ⊗detE∗)⊗L−r

P(E)

where L−r
P(E) is the dual of the r-fold tensor product of LP(E). In particular , we

have

KP(TX)
∼= [pTX ]∗K2

X ⊗L−n
P(TX) and KP(T∗X)

∼= L−n
P(T∗X)

where n = dimX.
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Corollary 4.5. Let X be a complex manifold of dimension n.

(i) TX is ample (resp. nef) if and only if K−1
P(T∗X) is ample (resp. nef).

(ii) If KX is nef then KP(TX) ⊗Ln
P(TX) is nef .

(iii) If T ∗X is ample then KP(TX)⊗Ln
P(TX) is nef and KP(TX)⊗Ln+1

P(TX) is ample.

We have the following vanishing theorem [Cao and Wong 2003] (for variants see

[Chandler and Wong 2004]):

Corollary 4.6. Let E be a nef holomorphic vector bundle of rank r ≥ 2 over

a compact complex manifold M of dimension n. Then

Hi
(
X,
⊙m

E⊗detE⊗KX

)
= 0,

Hi
(
X,
⊙m

(
⊗k

E)⊗det(
⊗k

E)⊗KX

)
= 0,

for all i,m, k ≥ 1. Consequently , if E = TX then H i(X,
⊙m

TX) = 0 for all

i,m ≥ 1.

For a holomorphic line bundle L over a compact complex manifold Y with

h0(Lm) > 0,m a positive integer, define a meromorphic map

Φm = [σ0, . . . , σN ] : Y → P
N

where σ0, . . . , σN is a basis of H0(Lm). The Kodaira–Iitaka dimension of L is

defined to be

κ(L) =

{−∞, if h0(Lm) = 0 for all m,

max{dimΦm(X) | h0(Lm) > 0}, otherwise.

The line bundle L is said to be big if k(L) = dimY . This is equivalent to saying

that, for m� 0

h0(Lm) ≥ Cmdim Y

for some positive constant C; in other words, the dimension of the space of sec-

tions h0(Lm) has maximum possible growth rate. See [Chandler and Wong 2004]

for a discussion of the differential geometric meaning of big bundles. Riemann–

Roch asserts that if cdim Y
1 (L) > 0 the Euler characteristic is big:

χ(Lm) =
cdim Y
1 (L)

(dimY )!
mdim Y +O(mdim Y −1).

This, in general, is not enough to conclude that L is big. However, Corollary 4.6

implies that if T ∗X is nef then the cohomology groups H i(X,T ∗X) = 0 for all

i ≥ 1. Hence T ∗X is big if the Euler characteristic is big. In fact, for surfaces

the weaker condition that KX is nef suffices:

Corollary 4.7. Suppose that the canonical bundle KX of a nonsingular surface

is nef and that c
dim P(TX)
1 (LP(TX)) > 0. Then LP(TX) is big .
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A vector bundle E of rank > 1 is said to be big if the line bundle LP(E) is big. By

Theorem 4.3, for a surface X the condition c
dim P(TX)
1 (LP(TX)) > 0 is equivalent

to the condition that c21(TX)− c2(TX) = c21(T
∗X)− c2(T

∗X) is positive. Thus

we may restate Corollary 4.7 as follows:

Corollary 4.8. Let X be a nonsingular compact surface such that c21(T
∗X)−

c2(T
∗X) > 0 and KX is nef . Then T ∗X is big .

The preceding corollary implies the following theorem which may be viewed as

an analogue, for surfaces, of the classical theorem that a curve of positive genus

is hyperbolic [Lu and Yau 1990; Lu 1991; Dethloff et al. 1995a; 1995b]:

Theorem 4.9. Let X be a nonsingular surface such that c21(T
∗X)−2c2(T

∗X) >

0 and KX is nef . Then X is hyperbolic.

We refer the readers to [Dethloff et al. 1995a; 1995b] for further information and

refinements of the preceding theorem. The condition c21(T
∗X)− c2(T

∗X) > 0 is

not satisfied by hypersurfaces in P3 which is the main reason that jet differentials

are introduced. The computations in the previous section will provide conditions

(on the Chern numbers c21(T
∗X) and c2(T

∗X)) under which the sheaves of jet

differentials J m
k X must be big.

5. Weighted Projective Spaces and Projectivized Jet Bundles

Summary. The fibers of the k-jet bundles P(JkX) are special types of weighted

projective spaces. We collect some of the known facts of these spaces in this

section. The main point is that these spaces are, in general , not smooth but with

very mild singularities and we show that the usual theory of fiber integration for

smooth manifolds extends to P(JkX). This will be used in later sections.

We follow the approach of the previous section by reducing questions concerning

k-jet differentials to questions about the line bundle over the projectivization

P(JkX). Since JkX is only a C
∗-bundle rather than a vector bundle the fibers of

the projectivized bundle P(JkX) is not the usual projective space but a special

type of weighted projective space. We give below a brief account concerning

these spaces; see [Beltrametti and Robbiano 1986; Dolgachev 1982; Dimca 1992]

for more detailed discussions and further references. The general theory of the

projectivization of coherent sheaves can be found in [Banica and Stanasila 1976].

Consider C
r+1 together with a vector Q = (q0, . . . , qr) of positive integers.

The space C
r+1 is then denoted (Cr+1, Q) and we say that each coordinate zi,

0 ≤ i ≤ r, has weight (or degree) qi. A C
∗-action is defined on (Cr+1, Q) by

λ.(z0, . . . , zr) = (λq0z0, . . . , λ
qrzr) for λ ∈ C

∗.

The quotient space P(Q) = (Cr+1, Q)/C
∗ is the weighted projective space of type

Q. The equivalence class of an element (z0, . . . , zr) is denoted by [z0, . . . , zr]Q.



154 KAREN CHANDLER AND PIT-MANN WONG

For Q = (1, . . . , 1) = 1, P(Q) = Pr is the usual complex projective space of

dimension r and an element of Pr is denoted simply by [z0, . . . , zr]. The case

r = 1 is special as it can be shown that P(q0, q1) ∼= P1 for any tuple (q0, q1).

This is not so if r ≥ 2. For a tuple Q define a map ψQ : (Cr+1,1) → (Cr+1, Q)

by

ψQ(z0, . . . , zr) = (zq0

0 , . . . , z
qr
r ).

It is easily seen that ρQ is compatible with the respective C
∗-actions and hence

descends to a well-defined morphism:

[ψQ] : Pr → P(Q), [ψQ]([z0, . . . , zr]) = [zq0

0 , . . . , z
qr
r ]Q. (5.1)

The weighted projective space can also be described as follows. Denote by Θqi

the group consisting of all qi-th roots of unity. The group ΘQ =
⊕r

i=0 Θqi
acts

on Pr by coordinatewise multiplication:

(θ0, . . . , θr).[z0, . . . , zr] = [θ0z0, . . . , θrzr], θi ∈ Θqi
,

and the quotient space is denoted by Pr/ΘQ. The next result is easily verified

[Dimca 1992]:

Theorem 5.1. The weighted projective space P(Q) is isomorphic to the quotient

Pr/ΘQ. In particular , P(Q) is irreducible and normal (the singularities are cyclic

quotients and hence rational).

Given a tupleQ we assign the degree (or weight) qi to the variable zi (i = 1, . . . , q)

and denote by SQ(m) the space of homogeneous polynomials of degree m. In

other words, a polynomial P is in S(Q)(m) if and only if P (λ · (z0, . . . , zr)) =

λmP (z0, . . . , zr). We may express such a polynomial explicitly as

P =
∑

(i0,...,ir)∈IQ,m

ai0...ir
zi0
0 . . . zir

r ,

where the index set IQ,m is defined by

IQ,m =
{
(i0, . . . , ir)

∣
∣
∑r

j=0 qjij = m, il ∈ N ∪{0}
}
.

The sheaf OP(Q)(m), m ∈ N, is by definition the sheaf over P(Q) whose global

regular sections are precisely the elements of SQ(m), i.e., H0(P(Q),OP(Q)(m)) =

SQ(m). For a negative integer −m the sheaf OP(Q)(−m) is defined to be the

dual of OP(Q)(m) and OP(Q)(0) is the structure sheaf OP(Q) of P(Q). Here are

some basic properties of these sheaves (see [Beltrametti and Robbiano 1986]):

Theorem 5.2. Let Q = (q0, . . . , qr) be an r+1-tuple of positive integers.

(i) For any for any m ∈ Z, the line sheaf OP(Q)(m) is a reflexive coherent sheaf .

(ii) OP(Q)(m) is locally free if m is divisible by each qi (hence by the least common

multiple).

(iii) Let mQ be the least common multiple of {q0, . . . , qr}. Then OP(Q)(mQ) is

ample.
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(iv) There exists an integer n0 depending only on Q such that OP(Q)(nmQ) is

very ample for all n ≥ n0.

(v) OP(Q)(αmQ)⊗OP(Q)(β) ∼= OP(Q)(αmQ +β) for any α, β ∈ Z.

For Q = 1 the assertions of the preceding theorem reduce to well-known prop-

erties of the usual twisted structure sheaves of the projective space. For any

subset J ⊂ {0, 1, . . . , r} denote by mJ the least common multiple of {qj , j ∈ J}
and define

m(Q) = −
q
∑

i=0

qi +
1

r

r+1∑

i=2

∑

#J=imJ
(
r−1
i−2

) ,

where #J is the number of elements in the set J . It is known that we may take

n0 = m(Q)+ 1 in assertion (iv) above. In general the line sheaf OP(Q)(m) is

not invertible if m is not an integral multiple of mQ. It can be shown that

for Q = (1, 1, 2) the sheaf OP(Q)(1) is not invertible and hence, neither is

OP(Q)(1)⊗OP(Q)(1). On the other hand, by part (ii) of the preceding theo-

rem we know that OP(Q)(2) is invertible, thus OP(Q)(1)⊗OP(Q)(1) 6∼= OP(Q)(2).

The following theorem on the cohomologies of the sheaf OP(Q)(p) is similar to

the case of standard projective space (see [Beltrametti and Robbiano 1986] or

[Dolgachev 1982]):

Theorem 5.3. If Q = (q0, . . . , qr) is an (r+1)-tuple of positive integers then

for p ∈ Z,

Hi(P(Q),OP(Q)(p)) =







{0}, i 6= 0, r

SQ(p), i = 0,

S(Q)(−p− |Q|), i = r,

where |Q| = q0 + · · ·+ qr.

The cohomology group H i(P(Q),OP(Q)(p)) vanishes provided that i 6= 0, r. Let

Q = (q0, . . . , qr) be a (r+1)-tuple of positive integers and define, for k = 1, . . . , r,

lQ,k = lcm
{

qi0 . . . qik

gcd (q0, . . . , qik
)

∣
∣
∣ 0 ≤ i0 < · · · < ik ≤ r

}

.

For integral cohomology we have:

Theorem 5.4. Let Q be an (r+1)-tuple of positive integers. Then

Hi(P(Q); Z) ∼=
{

Z, if i is even,

0, if i is odd .

Further , take [ψQ] : Pr → P(Q) as the quotient map defined by (5.1). Then the

diagram

H2k(P(Q); Z)
[ψQ]∗

- H2k(Pr; Z)

Z

∼=
? lQ,k

- Z

∼=
?
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commutes, where the lower map is given by multiplication by the number lQ,k.

Note that the number lQ,r is precisely the number of preimages of a point in P(Q)

under the quotient map [ψQ] (see (5.1)). The proof of the preceding Theorem

for k = r is easy; the reader is referred to [Kawasaki 1973] for the general case.

Let Q = (q0, q1, . . . , qr), r ≥ 1, be an (r+1)-tuple of positive integers. The tu-

ple Q is said to be reduced if the greatest common divisor (gcd) of (q0, q1, . . . , qr)

is 1. In general, if the gcd is d, the tuple

Qred = Q/d = (q0/d, . . . , qr/d)

is called the reduction of Q. Let

d0 = gcd(q1, . . . , qr),

di = gcd(q0, q1, . . . , qi−1, qi+1, . . . , qr), 1 ≤ i ≤ r− 1,

dr = gcd(q0, . . . , qr−1)

and define

a0 = lcm(d1, . . . , dr),

ai = lcm(d0, d1, . . . , di−1, di+1, . . . , dr), 1 ≤ i ≤ r− 1,

ar = lcm(d0, . . . , dr−1),

where “lcm” is short for “least common multiple”. Define the normalization of

Q by

Qnorm = (q0/a0, . . . , qr/ar).

A tuple Q is said to be normalized if Q = Qnorm.

Theorem 5.5. Let Q be a normalized (r+1)-tuple of positive integers. Then the

Picard group Pic(P(Q)) and the divisor class group Cl(P(Q)) are both isomorphic

to Z, and are generated , respectively , by

[
LmQ

P(Q) = OP(Q)(mQ)
]

and
[
LP(Q) = OP(Q)(1)

]
.

Note that the generators of the two groups are different in general. For the

standard projective space we have mQ = 1 and so the generators are the same.

For the k-jet bundles the fibers of their projectivization are weighted projective

spaces with mQ = k!, so we shall only be concerned with the case where n, k ≥ 1

are positive integers and

Q =
(
(1, . . . , 1
︸ ︷︷ ︸

n

), (2, . . . , 2
︸ ︷︷ ︸

n

), . . . , (k, . . . , k
︸ ︷︷ ︸

n

)
)
,

which is normalized. In this case we shall write Pn,k for P(Q). Note that

r = dim Pn,k = nk− 1; the least common multiple of Q is

mQ = k! and lQ,r = (k!)n. (5.2)
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Define a positive function

ρQ(z0, . . . , zr) =

r∑

i=0

|zi|2/qi (5.3)

on (Cr+1, Q) \ {0}. Then

ρQ(λq0z0, . . . , λ
qrzr) = |λ|2

r∑

i=0

|zi|2/qi = |λ|2ρQ(z0, . . . , zr)

and

ψ∗(ρQ)(z0, . . . , zr) =
r∑

i=0

|zqi

i |2/qi =
r∑

i=0

|zi|2 = ρ1(z0, . . . , zr)

is the standard Euclidean norm function on (Cr+1,1). The function ρQ is not

differentiable along Z =
⋃
{[zqi

=0], qi 6= 1}. However, on C
r+1 \Z, we deduce

from the above that

∂∂̄ log ρQ(λq0z0, . . . , λ
qrzr) = ∂∂̄ log ρQ(z0, . . . , zr)

and that

ψ∗
Q(∂∂̄ log ρQ) = ∂∂̄ log ρ1.

The first identity shows that ∂∂̄ log ρQ is invariant under the C
∗-action hence

descends to a well-defined (1, 1)-form ωQ on P(Q)\πQ(Z). The second identity

says that ψ∗
Q(ωQ) is the Fubini–Study metric ωFS on the standard projective

space Pr \π(Z) (hence actually extends smoothly across π(Z)). The Fubini–

Study metric [ωFS ] is the first Chern form of OPr (1) which is the (positive)

generator of Pic Pr = Cl Pr. Hence [ωFS ] is the positive generator of H2(Pr,Z).

Theorem 5.4 implies that [lQ,1ωQ] is the generator of H2(P(Q),Z).

Consider the function
(∑r

i=0 |zi|2κ
)1/κ

, for κ a positive integer, defined on

C
r+1. It clearly satisfies

(∑r
i=0 |λzi|2κ

)1/κ
= |λ|2(

∑r
i=0 |zi|2κ)1/κ;

hence is a metric along the fibers of the tautological line bundle over Pr. More-

over, the form

∂∂̄ log
(∑r

i=0 |zi|2κ
)1/κ

descends to a well-defined form on the standard projective space Pr, indeed

a Chern form, denoted by ηκ, for the hyperplane bundle of Pr; moreover it is

cohomologous to the Fubini–Study form. With this we may define an alternative

to ρQ,

τQ(z0, . . . , zr) =

( r∑

i=0

|zi|2κ/qi

)1/κ

, κ =

r∏

i=0

qi. (5.4)
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It is of class C∞ on C
r+1 \ {0}. Just like ρQ, the function τQ satisfies

τQ(λq0z0, . . . , λ
qrzr) =

( r∑

i=0

|λ|2κ|zi|2κ/qi

)1/κ

= |λ|2
( r∑

i=0

|zi|2κ/qi

)1/κ

and

(ψ∗τQ)(z0, . . . , zr) = τQ(zq0

0 , . . . , z
qr
r ) =

( r∑

i=0

|zi|2κ

)1/κ

.

These equalities imply that ∂∂̄ log τQ descends to a well-defined form γQ on P(Q)

with the property that ψ∗
QγQ = ηk, and consequently is cohomologous to ωQ.

Let π : JkX → X be the parametrized k-jet bundle of a complex manifold X

and denote by p : P(JkX) → X and pr : p∗JkX → P(JkX) the corresponding

projection maps. The following diagram is commutative:

p∗JkX
p∗

- JkX

P(JkX)

pr
?

p
- X

π

?

and the tautological subsheaf of p∗JkX is the line sheaf defined by

{([ξ], η) ∈ p∗JkX | [ξ] ∈ P(JkX), p([ξ]) = π(η) = x, [η] = [ξ]}

where, for ξ (resp. η) in JkX, its equivalence class in P(JkX) is denoted by [ξ]

(resp. [η]). The “hyperplane sheaf ”, denoted L = Lk, is defined to be the dual of

the tautological line sheaf. The fiber P(Jk
xX) over a point x ∈ X is the weighted

projective space of type Q = ((1, . . . , 1); . . . ; (k, . . . , k)) and the restriction of Lk

to P(Jk
xX) is the line sheaf OP(Q)(1) as defined in Theorem 5.2. The next result

follows readily from Theorem 5.2:

Theorem 5.6. Let X be a complex manifold .

(i) For any m ∈ Z,Lm
P(JkX) is a reflexive coherent sheaf .

(ii) Lk!
P(JkX) is the generator of Pic(P(JkX)), that is, Lm

P(JkX) is locally free if

m is divisible by k!.

(iii) For any α, β ∈ Z, Lk!α
P(JkX) ⊗Lβ

P(JkX)
∼= Lk!α+β

P(JkX)
.

The Chern class of the bundle Lk!
P(JkX) is k!ωQ = lQ,1ωQ, where ωQ is con-

structed after Theorem 5.5. By (5.3) the function ρk!
Q is a Finsler metric along

the fibers of Lk!
P(JkX). The same is of course also true if we use γQ and τQ instead.

Just as in the case of projectivized vector bundles we still have the identification

of the spaces L−1
P(JkX)

\{0} with JkX \{0}, which is compatible with the respec-

tive C
∗ action. Thus, as in the case of vector bundles, we conclude that a metric

along the fibers of L−1
P(JkX)

is identified with a Finsler metric along the fibers of
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JkX. As JkX, in general, is only a C
∗-bundle and not a vector bundle, we see

that Finsler geometry is indispensable.

Note that, for k ≥ 2, the sheaf LP(JkX) is not locally free and, in general,

La
P(JkX) ⊗Lb

P(JkX)(a) 6∼= La+b
P(JkX)

.

Hence some of the proofs of the results that are valid for projectivized vector

bundles require modifications. Basically, things work well if we use integer multi-

ples of k! (that is, J mk!
k X); for example, Grothendieck’s Theorem (Theorem 4.2)

remains valid:

Theorem 5.7. Let X be a complex manifold and p : P(JkX) → X the k-th

parametrized jet bundle and let S be an analytic sheaf on X. For any m ≥ 1,

pi
∗Lmk!

P(JkX)
∼=
{

J mk!
k X, if i = 0,

0, if i > 0,

where pi
∗Lmk!

P(JkX) is the i-th direct image of Lmk!
P(JkX). Consequently , we have

Hi(X,J mk!
k X ⊗S) ∼= Hi(P(JkX),Lmk!

P(JkX) ⊗ p∗S)

for all i.

In the case of vector bundles, Theorem 4.3 provides a relation between the Chern

numbers of the bundle and that of the line bundle over the projectivization. The-

orem 4.3 may be proved directly via fiber integration. Although the projectivized

k-jet bundles are not smooth for k ≥ 2 this correspondence is still valid. These

technicalities are needed when we deal with problem of degeneration; as we shall

see in Sections 6 and 7, under the condition that Lk!
k is big, k-jets of holomorphic

maps into X are algebraically degenerate, that is, the images are contained in

some (special type of) subvarieties of P(JkX) which may be very singular. In

order to calculate the Euler characteristic of Lk!
k X of these subvarieties it is nec-

essary to compute the intersection numbers, as usual, via Chern classes and this

is best handled by going down, via fiber integration, to the base variety X which

is nonsingular. We take this opportunity to formulate a criterion for certain type

of singular spaces on which fiber integration works well. The purpose here is not

to exhibit the most general results but results general enough for our purpose.

First we recall some basic facts concerning fiber integration. Let P and X be

complex manifolds and p : P → X be a holomorphic surjection. The map p is

said to be regular at a point y ∈ P if the Jacobian of p at y is of maximal rank.

The set of regular points is an open subset of P and p is said to be regular if

every point of P is a regular point. The following statements concerning fiber

integration are well-known (see [Stoll 1965], for example):

Theorem 5.8. Let P and X be connected complex manifolds of dimension N

and n respectively . Let p : P → X be a regular holomorphic surjection. Let r, s

be integers with r, s ≥ N −n = q. Then for any (r, s)-form ω of class Ck on
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P that is integrable along the fibers of p, the fiber integral p∗ω is a well defined

(r− q, s− q) form of class Ck on X. Moreover :

(i) For any (N − r, N − s)-form on X such that ω∧ p∗η is integrable on P , we

have ∫

P

ω ∧ p∗η =

∫

X

p∗ω ∧ η.

(ii) If ω is of class C1 and if ω and dω are integrable along the fibers p then

dp∗ω = p∗dω, ∂p∗ω = p∗∂ω and ∂p∗ω = p∗∂ω.

(iii) If ω is nonnegative and integrable along the fibers of p then p∗ω is also

nonnegative.

(iv) Suppose that Y is another connected complex manifold of dimension n′ with

a regular holomorphic surjection π : X → Y . Assume that ω is a (r, s)-form

such that r, s ≥ q+q′ where q = N−n and q′ = n−n′. If ω is integrable along

the fibers of p and p∗ω is integrable along the fibers of π then π∗p∗ω = (π◦p)∗ω.

If ω is a form of bidegree (r, s) so that either r < q or s < q, where q is the fiber

dimension, then we set p∗ω = 0. If p : P → X is a holomorphic fiber bundle

with smooth fiber S, then p is a regular surjection and the preceding Theorem is

applicable. Consider now P , an irreducible complex space of complex dimension

N , with a holomorphic surjection p : P → X where X is nonsingular and of

complex dimension n. The map p is said to be regular if there exists a connected

complex manifold P̃ of the same dimension as P and a surjective morphism

τ : P̃ → P such that the composite map p̃ = p ◦ τ : P̃ → X is regular. Let

U ⊂ P be an open set and ι : U → V ⊂ C
N ′

a local embedding, where V is

an open set of C
N ′

for some N ′. If η is a differential form on V then ι∗η is a

differential form on U . Conversely, a differential form ω on U is of the form ι∗η
for some embedding ι : U → V and some differential form η on V . Suppose that

ω is a differential form on P of bidegree (r, s); hence τ ∗ω is a differential form

on P̃ of bidegree (r, s). If either r or s is less than the fiber dimension q = N−n
then p∗ω is defined to be zero. For the case r, s ≥ q and assuming that τ ∗ω is

integrable along the fibers of p̃ (for example, this is the case if ω is integrable

along the fibers of p), we are in the nonsingular situation; hence p̃∗τ∗ω is defined.

The pushforward p∗ω is naturally defined by

p∗ω
def
= p̃∗τ

∗ω. (5.5)

From this definition it is clear (since p̃ = p ◦ τ) that the basic properties of fiber

integrals remain valid in the more general situation:

Theorem 5.9. Let τ̃ : P̃ → P, p : P → X and p̃ : P̃ → X be as above and

let ω be a form of bidegree (r, s) on P with r, s ≥ N −n where n = dimX,N =

dimP = dim P̃ . Then:

(i) If τ∗ω is integrable along the fibers P̃y = p̃−1(x) for almost all x ∈ X then

for any (N − r,N − s)-form on X such that ω∧ p∗η is integrable on P and
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τ∗ω ∧ p̃∗η is integrable on P̃ ,
∫

P

ω ∧ p∗η =

∫

X

p∗ω ∧ η =

∫

P̃

p̃∗τ
∗ω ∧ τ∗η.

(ii) If ω is of class C1 and if τ∗ω and τ∗dω are integrable along the fibers P̃x for

all x ∈ X then dp∗ω = p∗dω, ∂p∗ω = p∗∂ω and ∂p∗ω = p∗∂ω.

(iii) If τ∗ω is integrable along M̃x for all x ∈ X then p∗ω is a form of type

(p−N +n, q−N +n) on X.

(iv) If ω is a continuous nonnegative form and τ ∗ω is integrable along P̃x for

all x ∈ X then p∗ω is also nonnegative.

The converse of part (iv) is not true in general.

The next theorem shows that the preceding theorem is applicable to the pro-

jectivized k-jet bundles (we refer the readers to [Stoll and Wong 2002] for details).

Theorem 5.10. Let X be a complex manifold of complex dimension n and let

p : P = P(JkX) → X be the projectivized k-jet bundle of X. Then there exists a

complex manifold P̃ of the same dimension as P and a surjective finite morphism

τ̃ : P̃ → P such that p̃ = p ◦ τ : P̃ → X is a regular holomorphic surjection.

Moreover , P̃ can be chosen so that each of the fibers of p̃ is the complex projective

space Pq where q = nk− 1.

A similar argument (see [Stoll and Wong 2002]) shows that in general we have:

Theorem 5.11. Let X be a connected complex manifold of complex dimension

n. Suppose that P is an irreducible complex space for which there exists a holo-

morphic surjective morphism p : P → X that is locally trivial ; that is, for any

x ∈ X there exists an open neighborhood V of X, a complex space Y and a

biholomorphic map αV : p−1V → V ×Y such that the diagram

p−1(V )
αV

∼=
- V ×Y

V

p

?

========= V

pV

?

commutes, where pV is the projection onto the first factor . Then there exists

a complex manifold P̃ of the same dimension as P and a surjective morphism

τ : P̃ → P such that p̃ = p ◦ τ : P̃ → X is a regular holomorphic surjection.

Next we extend the definition of pushforward of forms to subvarieties of a com-

plex space P with a projection map p : P → X satisfying the local triviality

condition of the preceding theorem. In general the pushforwards exist only as

currents. Suppose that Y ⊂ P is an irreducible subvariety of dimension ν of P

and assume that p|Y : Y → X is surjective. Let Σ ⊂ Y be the set of singu-

lar points of Y ; so the set S1 = {z ∈ X | (p|Y )−1(z) ⊂ Σ} is a subvariety of
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codimension at least one in X. Note that

p|Y \Σ : Y \Σ → X \S1

is surjective, hence generically regular; that is, there exists a subvariety S2 ⊂ X

of codimension at least 1 such that

p|Y \(Σ∪(p|Y )−1(S2)) : Y1 = Y \ (Σ∪ (p|Y )−1(S2)) → X1 = X \ (S1 ∪S2)

is a regular surjection. Let ω be a smooth (r, s)-form on Y , r, s ≥ N −n =

generic fiber dimension of p|Y1
, which is integrable along the fibers of p|Y1

. Then

(p|Y1
)∗ω is a (p−N +n, q−N +n)-form on X1. Meanwhile, the pushforward

(p|Y )∗ω exists as a current on X, that is,

(p|Y )∗ω((p|Y )∗φ)
def
= ω(φ) =

∫

Y

(p|Y )∗φ∧ω (5.6)

for any (N−r,N−s)-form φ with compact support on X. Clearly, (p|Y )∗ω|X1
=

(p|Y )∗ω. Note that as a current the pushforward commutes with exterior dif-

ferentiation, that is, d(p|Y )∗ω = p∗dω, ∂(p|Y )∗ω = (p|Y )∗∂ω and ∂(p|Y )∗ω =

(p|Y )∗∂ω. Also, by definition, the pushforward preserves nonnegativity.

The Riemann–Roch formulas for jet differentials follow from those of the

bundles
⊙i1 T ∗X ⊗ · · ·⊗⊙ik T ∗X, given below (see [Stoll and Wong 2002] for

details):

Theorem 5.12. Let X be a smooth compact complex surface. Set I = (i1, . . . , ik)

and SI =
⊙i1 T ∗X⊗· · ·⊗

⊙ik T ∗X, where each ij is a nonnegative integer . Then

χ(X;SI) = 1
12µk(2s21;k − 2s1;k − s2;k +1)c21(T

∗X)

− 1
12µk(2s21;k +4s1;k − 4s2;k − 1)c2(T

∗X),

where sj;k, for 1 ≤ j ≤ k, is the degree-j symmetric function in i1, . . . , ik and

µk =
∑k

j=0 sj;k is as in (3.6).

Given an exact sequence of coherent sheaves 0 → E1 → E2 → E3 → 0 the

ranks, the first Chern classes, the Chern characters, the indices and the Euler

characteristics are additive in the sense that rkE2 = rkE1 +rkE3, c1(E2) =

c1(E1)+ c1(E3), ι(E2) = ι(E1)+ ι(E3), ch(E2) = ch(E1)+ ch(E3) and χ(X;E2)

= χ(X;E1)+χ(X;E3). The Euler characteristic of J k!
k X is given thus:

Theorem 5.13. Let X be a nonsingular surface. We have, for m� k,

χ(J k!m
k X) = 1

2 ι(J
k!m
k X)+O(m2k) = 1

2 (k!)2k+1(αkc
2
1 −βkc2)m

2k+1 +O(m2k),

where αk and βk are constants given in Theorem 3.9.
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Example 5.14. We record below explicit formulas for the sheaves that occur in

the preceding computations:

S ch(S) χ(S)

T ∗X 2+ c1 + 1
2
(c2

1 − 2c2)
1
6
(c2

1 − 5c2)
J2 T ∗X 3+ 3c1 + 1

2
(5c2

1 − 8c2)
1
4
(5c2

1 − 15c2)
J3 T ∗X 4+ 6c1 + 7c2

1 − 10c2
1
3
(13c2

1 − 29c2)
J4 T ∗X 5+ 10c1 + 15c2

1 − 20c2
1
12

(125c2
1 − 235c2)

J5 T ∗X 6+ 15c1 + 1
2
(55c2

1 − 70c2)
1
2
(41c2

1 − 84c2)
J6 T ∗X 7+ 21c1 + 1

2
(91c2

1 − 112c2)
1
12

(427c2
1 − 665c2)

J7 T ∗X 7+ 21c1 + 1
2
(91c2

1 − 112c2)
1
3
(170c2

1 − 250c2)

T ∗X ⊗T ∗X 4+ 4c1 + 3c2
1 − 4c2

1
3
(4c2

1 − 11c2)

(
J2 T ∗X)⊗T ∗X 6+ 9c1 + 1

2
(19c2

1 − 22c2)
1
2
(11c2

1 − 21c2)

(
J3 T ∗X)⊗T ∗X 8+ 16c1 + 22c2

1 − 24c2
1
3
(44c2

1 − 70c2)

(
J2 T ∗X)⊗ (

J2 T ∗X) 9+ 18c1 + 24c2
1 − 24c2

1
4
(63c2

1 − 93c2)

(
J4 T ∗X)⊗T ∗X 10+ 25c1 + 1

2
(85c2

1 − 90c2)
1
6
(185c2

1 − 265c2)

(
J3 T ∗X)⊗ (

J2 T ∗X) 12+ 30c1 + 49c2
1 − 46c2 35c2

1 − 45c2

(
J5 T ∗X)⊗T ∗X 12+ 36c1 + 73c2

1 − 76c2 56c2
1 − 75c2

J 2
2 X 5+ 4c1 + 3c2

1 − 5c2
1
12

(17c2
1 − 55c2)

J 3
2 X 8+ 10c1 + 10c2

1 − 14c2
1
4
(23c2

1 − 53c2)

J 4
2 X 14+ 22c1 + 27c2

1 − 35c2
1
6
(103c2

1 − 207c2)

J 5
2 X 20+ 40c1 + 59c2

1 − 70c2
1
3
(122c2

1 − 205c2)

J 6
2 X 30+ 70c1 + 119c2

1 − 135c2
1
2
(173c2

1 − 265c2)

J 7
2 X 40+ 110c1 + 214c2

1 − 200c2
1
3
(487c2

1 − 590c2)

Although the space P(JkX) is not smooth, the following Riemann–Roch Theo-

rem is still valid, by Theorems 5.7 and 5.13:

Theorem 5.15. Let X be a nonsingular surface and p : P(JkX) → X the k-jet

bundle. Then

χ(Lm
P(JkX)) = ch(Lm) . td(P(JkX))[P(JkX)]

= ch(Lm) . td(Tp) . p
∗td(X)[P(JkX)]

= p∗
(
ch(Lm) . td(Tp)

)
.td(X)[X],

where Tp is the relative tangent sheaf of the projection p : P(JkX) → X, that

is, the restriction of Tp to each fiber of p is the tangent sheaf of the weighted

projective space P(Q).



164 KAREN CHANDLER AND PIT-MANN WONG

On P(JkX) we have

ch(Lm) =

2k+1∑

i=0

ci1(Lm)

i!
=

2k+1∑

i=0

ci1(L)

i!
mi

which implies that

χ(Lm) =
c2k+1
1 (L)

(2k+1)!
m2k+1 +O(m2k).

Theorems 5.13 and 5.15 imply:

Corollary 5.16. Let X be a nonsingular surface and p : P(JkX) → X the

k-jet bundle. Then

p∗

(
c2k+1
1 (L)

(2k+1)!

)

=
1

2
ι(JkX) =

1

2
(αkc

2
1 −βkc2)

where αk and βk are constants given in Theorem 3.9.

6. The Lemma of Logarithmic Derivatives and the Schwarz

Lemma

Summary. In this section we use Nevanlinna Theory to show (Corollary 6.2)

that if ω is a holomorphic k-jet differential of weight m vanishing on an effec-

tive divisor of a projective manifold X then f ∗ω ≡ 0 for any holomorphic map

f : C → X. (For our application in Section 7 it is enough to assume that the divi-

sor is a hyperplane section.) This implies (see Theorem 6.4) that if f : C → X is

an algebraically nondegenerate holomorphic map then the irreducible component

of the base locus containing [jkf ] is of codimension at most (n−1)k; equivalently

the dimension is at least n+k−1, n = dimX. This result is crucial in the proof

of our main result in Section 7. We must point out that the method of this section

works only for the parametrized jet bundles but not the full jet bundles. (Other-

wise we could have avoided the complicated computations of the Chern numbers

of the parametrized jet bundles; computing the Chern numbers of the full jet

bundles, as honest vector bundles, is much simpler !) The idea of the proof is

relatively standard from the point of view of Nevanlinna Theory . The main step

is to construct , using a standard algebraic geometric argument , a Finsler metric

of logarithmic type, reducing the problem to a situation in which the Lemma of

Logarithmic Derivatives is applicable. If f ∗ω 6≡ 0 this lemma implies that the

integral of log |f∗ω| is small . On the other hand , the first Crofton formula in

Nevanlinna Theory asserts that the integral of log |f ∗ω| (as the counting function

of the zeros of f∗ω by the Poincaré–Lelong formula ) is not small . This contra-

diction establishes Theorem 6.1 and Corollary 6.2. Theorem 6.4 and Corollary

6.5 then follow from the Schwarz Lemma via a reparametrization argument often

used in Nevanlinna Theory . The main point is that a reparametrization does
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not change, as a set , the (algebraic closure of the) image of the map f but does

change the image of f∗ω if ω is a k-jet differential and k ≥ 2.

The classical Schwarz Lemma in one complex variable asserts that a holomorphic

map f : C → X is constant for a compact Riemann surface X of genus ≥ 2; that

is, there are at least 2 independent regular 1-forms on X. Further, there is a

noncompact version; namely, let X be a compact Riemann surface and let D be a

finite number of points in X. Then a holomorphic map f : C → X\D is constant

if the logarithmic genus is at least 2, that is, there are at least 2 independent

1-forms regular on X \D and with no worse than logarithmic singularity at each

of the points in D. There are of course many proofs of this classical result, one

of which is to find a nontrivial holomorphic 1-form (or, logarithmic 1-form) on

X such that f∗ω ≡ 0 for any entire holomorphic map f : C → X. This is

not so difficult to do because g ≥ 2 implies that T ∗X is ample (and a priori,

spanned). The main difficulty of proving the preceding comes from the fact that

a big bundle is not necessary spanned. A coherent sheaf S is said to be spanned

(by global regular sections) if, for every v ∈ Sx there is a global regular section

σ ∈ H0(S) such that σ(x) = v. However, it is easily seen that a coherent sheaf

S is spanned by global rational sections. For example, the complex projective

space has no global regular 1-form. Hence it cannot span any of the fibers of

T ∗Pn. However take any point x ∈ Pn, assuming without loss of generality that

x = [x0, . . . , xn] with x0 6= 0, then T ∗
x P

n is spanned by dti, i = 1, . . . , n, where

ti = xi/x0. Now dti is a global rational one-form since ti is a global rational

function; in fact

dti =
x0dxi −xidx0

x2
0

has a pole of order 2 along the “hyperplane at infinity”, [x0=0]. This shows that

T ∗Pn is spanned by global rational one-forms. In fact we can do better, namely,

we may replace dti by d log ti

d log ti =
dti
ti

=
dxi

xi
− dx0

x0
.

A simple argument shows that there is a finite set of logarithmic one-forms

{dLi/Li} where each Li is a rational function which span T ∗Pn at every point.

The mild singularity can be dealt with using the classical Lemma of Logarith-

mic Derivatives in Nevanlinna Theory and a weak form of the analytic Bézout

Theorem known as Crofton’s Formula.

It is not hard to see that the preceding procedure can be extended to deal with

jet differentials. The details are given in the next theorem. The most convenient

way to get to the Schwarz Lemma is via Nevanlinna Theory. First we recall some

standard terminology. The characteristic function of a map f : C → X is

Tf (r) =

∫ r

0

1

t

∫

∆t

f∗c1(H),
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where H is a hyperplane section in X and the characteristic function of a non-

trivial holomorphic function F : C → C is

TF (r) =

∫ 2π

0

log+ |F (re
√
−1θ)| dθ

2π
.

Note that ω(jkf) is a holomorphic function if f is a holomorphic map and ω is

a k-jet differential of weight m.

Theorem 6.1 (Lemma of Logarithmic Derivatives). Let X be a projec-

tive variety and let (i) D be an effective divisor with simple normal crossings,

or (ii) D be the trivial divisor in X (that is, the support of D is empty or

equivalently , the line bundle associated to D is trivial). Let f : C → X be an al-

gebraically nondegenerate holomorphic map and ω ∈ H0(X,J m
k X(logD)) (resp.

H0(X,J m
k X) in case (ii)) a jet differential such that ω ◦ jkf is not identically

zero. Then

Tω◦jkf (r) =

∫ 2π

0

log+
∣
∣ω(jkf(re

√
−1θ))

∣
∣
dθ

2π
≤ O(log Tf (r))+O(log r).

Proof. We claim that there exist a finite number of rational functions t1, . . . , tq
on X such that

(†) the logarithmic jet differentials {(d(j)ti/ti)
m/j | 1 ≤ i ≤ q, 1 ≤ j ≤ k}

span the fibers of J m
k X(logD) (resp.J m

k X) over every point of X.

Note that rational jet differentials span the fibers of J m
k X(logD) (resp.J m

k X);

the claim here is that this can be achieved by those of logarithmic type. Without

loss of generality we may assume that D is ample; otherwise we may replace D

by D+D′ so that D+D′ is ample. (This is so because a section of J m
k X(logD)

is a priori a section of J m
k X(log(D+D′)).) Observe that if s is a function that

is holomorphic on a neighborhood U such that [s=0] = D∩U then [sτ = 0] =

τD∩U for any rational number τ . Thus δ(j)(log sτ ) = τδ(j)(log s) is still a jet

differential with logarithmic singularity along D∩U so the multiplicity causes

no problem. This implies that we may assume without loss of generality that D

is very ample (after perhaps replacing D with τD for some τ for which τD is

very ample).

Let u ∈ H0(X, [D]) be a section such that D = [u = 0]. At a point x ∈ D

choose a section v1 ∈ H0(X, [D]) so that E1 = [v1 =0] is smooth, D+E1 is of

simple normal crossings and v1 is nonvanishing at x. (This is possible because the

line bundle [D] is very ample.) The rational function t1 = u1/v1 is regular on the

affine open neighborhoodX\E1 of x and (X\E1)∩[t1=0] = (X\E1)∩D. Choose

rational functions t2 = u2/v2, . . . , tn = un/vn where ui and vi are sections of

a very ample bundle L so that t2, . . . , tn are regular at x, the divisors Di =

[ui=0], Ei = [vi=0] are smooth and the divisor D+D2+ · · ·+Dn+E1+ · · ·+En

is of simple normal crossings. Further, since the bundles involved are very ample

the sections can be chosen so that dt1∧· · ·∧dtn is nonvanishing at x; the complete
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system of sections provides an embedding. Hence at each point there are n+1

sections with the property that n of the quotients of these n+1 sections form a

local coordinate system on some open neighborhood Ux of x. This implies that

(†) is satisfied over Ux. SinceD is compact it is covered by a finite number of such

open neighborhoods, say U1, . . . , Up, and a finite number of rational functions

(constructed as above for each Ui) on X so that (†) is satisfied on
⋃

1≤i≤p Ui.

Moreover, there exist relatively compact open subsets U ′
i of Ui (1 ≤ i ≤ p) such

that
⋃

1≤i≤p U
′
i still covers D.

Next we consider a point x in the compact set X \
⋂

1≤i≤p U
′
i . Repeating the

procedure as above we may find rational functions s1 = a1/b1, . . . , sn = an/bn
where ai and bi are sections of some very ample line bundle so that s1, . . . , sn form

a holomorphic local coordinate system on some open neighborhood Vx of x. Thus

(†) is satisfied on Vx by the rational functions s1, . . . , sn. Note that we must also

choose these sections so that the divisor H = [s1 . . . sn =0] together with those

divisors (finite in number), which have been already constructed above, is still a

divisor with simple normal crossings (this is possible by the very ampleness of the

line bundle L.) Since X \
⋂

1≤i≤p U
′
i is compact, it is covered by a finite number

of such coordinate neighborhoods. The coordinates are rational functions and

finite in number and by construction it is clear that the condition (†) is satisfied

on X \
⋂

1≤i≤p U
′
i . Since

⋃

1≤i≤p Ui together with X \
⋂

1≤i≤p U
′
i covers X, the

condition (†) is satisfied on X. If D is the trivial divisor, then it is enough to

use only the second part of the construction above and again (†) is verified with

Jm
k X(logD) = J m

k X. To obtain the estimate of the theorem observe that the

function ρ : JkX(− logD) → [0,∞] defined by

ρ(ξ) =

q
∑

i=1

k∑

j=1

∣
∣(d(j)ti/ti)

m/j(ξ)
∣
∣
2
, ξ ∈ JkX(− logD), (6.1)

{ti} being the family of rational functions satisfying condition (†), is continuous

in the extended sense; it is continuous in the usual sense outside the fibers

over the divisor E (the sum of the divisors associated to the rational func-

tions {ti}; note that E contains D). Over the fiber of each point x ∈ X −E,
∣
∣(d(j)ti/ti)

m/j(ξ)
∣
∣
2

is finite for ξ ∈ JkX(− logD)x, thus ρ is not identically infi-

nite. Moreover, since
{
(d(j)ti/ti)

m/j | 1 ≤ i ≤ q, 1 ≤ j ≤ k
}

span the fiber of J m
k X(logD) over every point of X, ρ is strictly positive (pos-

sibly +∞) outside the zero section of JkX(− logD). The quotient

|ω|2/ρ : JkX(− logD) → [0,∞]

does not take on the extended value ∞ when restricted to J kX(− logD)\ {zero
section} because, as we have just observed, ρ is nonvanishing (although it does

blow up along the fibers over E so that the reciprocal 1/ρ is zero there) and the
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singularity of |ω| is no worse than that of ρ since the singularity of ω occurs only

along D (which is contained in E) and is of log type. Thus the restriction to

JkX(− logD) \ {zero section},

|ω|2/ρ : JkX(− logD) \ {zero section} → [0,∞),

is a continuous nonnegative function. Moreover, |ω| and ρ have the same homo-

geneity,

|ω(λ.ξ)|2 = |λ|2m|ω(λ.ξ)|2 and ρ(λ.ξ) = |λ|2mρ(ξ),

for all λ ∈ C
∗ and ξ ∈ JkX(− logD); therefore |ω|2/ρ descends to a well-defined

function on P(Ek,D) = (JkX(− logD) \ {zero section})/C
∗, that is,

|ω|2/ρ : P(Ek,D) → [0,∞)

is a well-defined continuous function and so, by compactness, there exists a

constant c with the property that |ω|2 ≤ cρ. This implies that

Tω◦jkf (r) =

∫ 2π

0

log+
∣
∣ω(jkf(re

√
−1θ))

∣
∣
dθ

2π

≤
∫ 2π

0

log+
∣
∣ρ(jkf(re

√
−1θ))

∣
∣
dθ

2π
+O(1).

Since ti is a rational function on X, the function

(d(j)ti/ti)
m/j(jkf) =

(
(ti◦f)(j)/ti◦f

)m/j

(m is divisible by k!) is meromorphic on C and so, by the definition of ρ,

log+ |ρ(jkf)| ≤ O
(
max1≤i≤q, 1≤j≤k log+ |(ti◦f)(j)/ti◦f |

)
+O(1).

Now by the classical lemma of logarithmic derivatives for meromorphic functions,
∫ 2π

0

log+
∣
∣(ti◦f)(j)/ti◦f

∣
∣
dθ

2π
·≤· O(log r)+O(log Tti◦f (r)),

where ·≤· indicates that the estimate holds outside a set of finite Lebesgue mea-

sure in R+. Since ti is a rational function,

log Tti◦f (r) ≤ O(log Tf (r))+O(log r)

and we arrive at the estimate
∫ 2π

0

log+
∣
∣ρ(jkf(re

√
−1θ))

∣
∣
θ

2π
≤ O

(∫ 2π

0

log+ |(ti◦f)(j)/ti◦f |
dθ

2π

)

+O(1)

·≤· O(log Tf (r))+O(log r).

This implies that Tω◦jkf (r) ·≤· O(log Tf (r))+O(log r), as claimed. ˜

We obtain as a consequence the following Schwarz type lemma for logarithmic

jet differentials.
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Corollary 6.2. Let X be a projective variety and D be an effective divisor

(possibly the trivial divisor) with simple normal crossings. Let f : C → X \D be

a holomorphic map. Then

ω(jkf) ≡ 0 for all ω ∈ H0(X,J m
k X(logD)⊗ [−H]),

where H is a generic hyperplane section (and hence any hyperplane section).

Proof. If f is constant the corollary holds trivially, so we may assume that f

is nonconstant. Now suppose that ω ◦ jkf 6≡ 0. Since f is nonconstant, we may

assume without loss of generality that log r = o(Tf (r)) (after perhaps replacing

f with f ◦φ, where φ is a transcendental function on C). By Theorem 6.1, we

have
∫ 2π

0

log+ |ω ◦ jkf | dθ
2π

= Tω◦jkf (r) ·≤· O
(
log(rTf (r))

)
.

On the other hand, since ω vanishes on H and H is generic, we obtain via

Jensen’s Formula ,

Tf (r) ≤ Nf (H; r)+O
(
log(rTf (r))

)

=

∫ 2π

0

log |ω ◦ jkf | dθ
2π

+O(log
(
rTf (r))

)
,

which, together with the preceding estimate, implies that

Tf (r) ≤ O
(
log(rTf (r))

)
.

This is impossible; hence we must have ω ◦ jkf ≡ 0. If H1 = [s1 =0] is any

hyperplane section then it is linearly equivalent to a generic hyperplane section

H = [s=0]. If ω vanishes alongH ′ then (s/s1)ω vanishes alongH. The preceding

discussion implies that (s/s1)ω(jkf) ≡ 0. Further, this implies that ω(jkf) ≡ 0

as we may choose a generic section H so that the image of f is not entirely

contained in H. ˜

Interpreting this corollary via Grothendieck’s isomorphism we may restate the

result in terms of sections of Lm
P(JkX)|Y ⊗ p|∗Y [−D] on the projectivized bundle:

Corollary 6.3. Let Y ⊂ P(JkX) be a subvariety and suppose that there exists

a nontrivial section

σ ∈ H0
(
Y, Lm

P(JkX)|Y ⊗ p|∗Y [−D]
)
,

where D is an ample divisor in X and p : P(JkX) → X is the projection map. If

the image of the lifting [jkf ] : C → P(JkX) of a holomorphic curve f : C → X

is contained in Y , then σ([jkf ]) ≡ 0.

Theorem 6.1 and Corollaries 6.2 and 6.3 tell us about the base locus Bm
k (D) of

the line sheaves Lm
k ⊗ p∗[−D], where we write for simplicity Lm

k = Lm
P(JkX) and
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D is an ample divisor in X; by that we mean the (geometric) intersection of all

possible sections of powers of Lk:

Bm
k (D) =

⋂

σ∈H0(P(JkX),Lm
k

)

[σ=0]. (6.2)

Indeed, Corollary 6.3 implies that the image of the (projectivized k-jet) [jkf ] :

C → P(JkX) of a nonconstant holomorphic map f : C → X must be contained

in Bm
k (D) for all m ∈ N and D ∈ A = the cone of all ample divisors; that is, the

image [jkf ](C) is contained in

Bk(Lk) =
⋂

m∈N

⋂

D∈A
Bm

k (D), (6.3)

which is a subvariety of P(JkX). Moreover, the image [jkf ](C), being a con-

nected set, must be contained in an irreducible component of Bk(L). If f is alge-

braically nondegenerate then dim f(C) = dimX = n. Since p∗[jkf(C)] = f(C)

and [jkf(C)] ⊂ Bk(L) (where p : P(JkX) → X is the projection) we conclude

that the dimension of the base locus is at least n = dimX if f is algebraically

nondegenerate. We shall show that the dimension is actually higher, for k ≥ 2,

by considering a reparametrization of the curve f .

Define

A = {φ | φ : C → C is a nonconstant holomorphic map},
Aζ0

= {φ ∈ A | φ(ζ0) = ζ0, φ
′(ζ0) 6= 0},

Aζ0,ζ1
= {φ ∈ A | φ(ζ0) = ζ1, φ

′(ζ0) 6= 0}.

By a reparametrization of f we mean the composite map f ◦φ : C → X, where

φ ∈ A. It is clear that, as a set, the algebraic closure of the image of f is invariant

by reparametrization. Moreover, since a reparametrization is again a curve in X,

the Schwarz Lemma implies that its k-jet is contained in the base locus Bk(L).

As remarked earlier, if f is algebraically nondegenerate the dimension of the base

locus is at least n.

The first order jet of a reparametrization is given by

j1(f ◦φ) = (f(ζ), f ′(φ)φ′).

Thus, if φ ∈ A0 (that is, φ(0) = 0), then

j1(f ◦φ)(0) =
(
f(φ(0)), f ′(φ(0))φ′(0)

)
=
(
f(0), f ′(0)φ′(0)

)
,

which implies that the projectivization satisfies

[j1(f ◦φ)(0)] = [f ′(0)φ′(0)] = [f ′(0)] = [j1f(0)];

that is, the fiber Pf(ζ0)(J
1X) is invariant by φ ∈ Aζ0

.
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Assume from here on that the map f is algebraically nondegenerate. For k ≥ 2

we have

j2(f(φ)) =
(
f(φ), f ′(φ)φ′, f ′(φ)φ′′ + f ′′(φ)(φ′)2

)
.

Moreover, φ ∈ A0 implies

j2(f ◦φ)(0) =
(
(f ◦φ)(0), (f ◦φ)′(0), (f ◦φ)′′(0)

)

=
(
f(0), sφf

′(0), tφf
′(0)+ s2φf

′′(0)
)
,

where sφ = φ′(0) and tφ = φ′′(0). We are free to prescribe the complex numbers

sφ and tφ. The bundle P(J2X) is algebraic and locally trivial, hence locally

algebraically trivial (as a C
∗-bundle). In particular, we have a C

∗-isomorphism

J2
f(0)X

∼= C
n ⊕C

n, where λ(z,w) = (λz, λ2w) for (z,w) ∈ C
n ⊕C

n. The

Jacobian matrix of the map

(sφ, tφ) 7→ (sφf
′(0), tφf

′(0)+ s2φf
′′(0))

is given by






∂(f ◦φ)′(0)

∂sφ

∂(f ◦φ)′′(0)

∂sφ

∂(f ◦φ)′(0)

∂tφ

∂(f ◦φ)′′(0)

∂tφ







=

(
f ′(0) 2sφf

′′(0)

0 f ′(0)

)

.

It is clear that the rank is 2 if f ′(0) 6= 0 (which we may assume without loss of

generality because f ′ 6≡ 0 so f ′(ζ) 6= 0 for generic ζ). Thus, as φ varies through

the space A0, j
2(f ◦φ)(0) sweeps out a complex 2-dimensional set in the fiber

J2
f(0)X over the point f(0) ∈ X, and the projectivization is a set of dimension

at least 1 in P(J2
f(0)X). If f is algebraically nondegenerate, the algebraic closure

of [j2f(C)] is of dimension n = dimX, as remarked earlier. The preceding

argument shows that
⋃

φ∈A
[j2(f ◦φ)(C)]

is of dimension at least n+1. By Schwarz’s Lemma the set
⋃

φ∈A [j2(f ◦φ)(C)] is

contained in the base locus B2(L) thus dimB2(L) ≥ n+1. Since dim P(J2X) =

n(2+1)− 1, the codimension of B2(L) in P(J2X) is at most 3n− 1− (n+1) =

2(n− 1).

For k = 3 we get

j3(f(φ)) =
(
f(φ), f ′(φ)φ′, f ′(φ)φ′′ + f ′′(φ)(φ′)2, f ′(φ)φ′′′ +3f ′′(φ)φ′φ′′ + f ′′′(φ)(φ′)3

)
.

Hence, for φ ∈ A0,

j3(f◦φ)(0) =
(
f(0), sφf

′(0), tφf
′(0)+s2φf

′′(0), uφf
′(0)+3sφtφf

′′(0)+s3φf
′′′(0)

)
,

where sφ = φ′(0), tφ = φ′′(0), and uφ = φ′′′(0). The Jacobian matrix of the map

(sφ, tφ, uφ) 7→
(
sφf

′(0), tφf
′(0)+ s2φf

′′(0), uφf
′(0)+ 3sφtφf

′′(0)+ s3φf
′′′(0)

)
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is










∂(f ◦φ)′(0)

∂sφ

∂(f ◦φ)′′(0)

∂sφ

∂(f ◦φ)′′′(0)

∂sφ

∂(f ◦φ)′(0)

∂tφ

∂(f ◦φ)′′(0)

∂tφ

∂(f ◦φ)′′′(0)

∂tφ

∂(f ◦φ)′(0)

∂uφ

∂(f ◦φ)′′(0)

∂uφ

∂(f ◦φ)′′′(0)

∂uφ











=






f ′(0) 2sφf
′′(0) 3tφf

′′(0)+ 3s2φf
′′′(0)

0 f ′(0) 3tφf
′′(0)

0 0 f ′(0)




 .

It is clear that the rank is 3 if f ′(0) 6= 0 (which we may assume without loss of

generality). Thus, as φ varies through the space A0, j
3(f ◦φ)(0) sweeps out a

complex 3-dimensional set in the fiber J 3
f(0)X over the point f(0) ∈ X and the

projectivization is a set of dimension at least 2 in P(J 3
f(0)X). If f is algebraically

nondegenerate then the set
⋃

φ∈A [j3(f ◦φ)(C)] is of dimension at least n+2 in

P(J3X). By Schwarz’s Lemma this same set is contained in the base locus B3(L)

thus dimB3(L) ≥ n+2. Since dim P(J3X) = n(3+1)− 1, the codimension of

B3(L) in P(J3X) is at most 4n− 1− (n+2) = 3(n− 1).

The case for general k is argued in a similar fashion. Define polynomials Pij ,

1 ≤ j ≤ i, by setting P1,1 = φ′, P2,1 = φ′′, P2,2 = (φ′)2 and, for i ≥ 3,

Pi,1 = φ(i),

Pi,2 = Pi−1,1 +P ′
i−1,2, . . .

Pi−1,i−1 = Pi−1,i−2 +P ′
i−1,i−1,

Pi,i = (φ′)i.

In particular, Pi,1 is the only polynomial involving φ(i); each Pi,j , for j ≥ 2,

involves only derivatives of φ of order less than i. We get, by induction:

(f ◦φ)(i) =
i∑

j=1

f (j)(φ)Pi,j = f ′(φ)φ(i) +
i∑

j=2

f (j)(φ)Pi,j .

Thus the k-th jet jk(f ◦φ) is given by

(f ′(φ)φ′, · · · , f ′(φ)φ(i) +

i∑

j=2

f (j)(φ)Pi,j , · · · , f (k)(φ)φ(k) +

k∑

j=2

f (j)(φ)Pk,j),

and we have k parameters sφ,i = φ(i)(0), i = 1, . . . , k. The Jacobian matrix of

the map (with φ(0) = 0)

(sφ,1, . . . , sφ,k) 7→ (sφ,1f
′(0), sφ,2f

′(0)+s2φ,1f
′′(0), . . . , sφ,kf

′(0)+

k∑

j=2

f (j)(0)Pk,j)
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is given by the k×nk matrix











f ′(0) 2sφf
′′(0) 3tφf

′′(0)+ 3s2φf
′′′(0) . . . . .

0 f ′(0) 3tφf
′′(0) . . . . .

0 0 f ′(0) . . . . .

. . 0 . . . . .

. . . . . . f ′(0) .

0 0 . . . . 0 f ′(0)











.

It is clear that the rank is k if f ′(0) 6= 0 (which we may assume without loss

of generality). Thus, as φ varies through the space A0, j
k(f ◦φ)(0) sweeps out

a complex k-dimensional set in the fiber Jk
f(0)X over the point f(0) ∈ X, and

the projectivization is a set of dimension at least k− 1 in P(J k
f(0)X). If f is

algebraically nondegenerate then the set
⋃

φ∈A [jk(f ◦φ)(C)] is of dimension at

least n+k−1 in P(JkX). By Schwarz’s Lemma this same set is contained in the

base locus Bk(L) thus dimBk(L) ≥ n+k−1. Since dim P(JkX) = n(k+1)−1,

the codimension of Bk(L) in P(JkX) is at most (k+1)n−1−(n+k−1) = k(n−1).

This completes the proof of the following Theorem:

Theorem 6.4. Let X be a connected compact manifold of dimension n and

let Lk be the dual of the tautological line bundle over P(JkX), k ≥ 2. Suppose

that f : C → X is an algebraically nondegenerate holomorphic map. Then the

irreducible component of the base locus containing [jkf ] is of codimension at

most (n− 1)k; equivalently the dimension is at least n+ k− 1.

Corollary 6.5. Let X be a connected projective manifold of complex dimension

n and let Lk be the dual of the tautological line bundle over P(JkX). If the

dimension of the base locus Bk(Lk) ≤ n+ k− 2 then every holomorphic map

f : C → X is algebraically degenerate.

7. Surfaces of General Type

Summary. In this section we shall show that every holomorphic map f : C → X

is algebraically degenerate, where X is a minimal surface of general type such

that pg(X) > 0 and PicX ∼= Z. These conditions, together with the explicit

calculations in Section 3, imply that JkX is big (equivalently , the line bundle Lk

over P(JkX) is big) for k � 0. The Schwarz Lemma of the preceding section

implies that the image of the lifting [jkf ] : C → P(JkX) is contained in the

base locus Bk(Lk) (see (6.3)). (Note that the dimension of P(JkX) is 2k+1.)

Moreover , if f is algebraically nondegenerate, dimBk(Lk) ≥ k+1.

On the other hand , we show (Theorem 7.20) that the base locus is at most

of dimension k. This contradiction establishes the theorem. The result in The-

orem 7.20 is obtained by a cutting procedure (each cut lowers the dimension

of the base locus by one) pioneered by Lu and Yau and extended by Dethloff–

Schumacher–Wong (in which the condition PicX ∼= Z was first introduced).
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The starting point in the process is the explicit formulas obtained by Stoll

and Wong in Theorem 3.9 and Corollary 3.10, namely , the index ι(J m
k X) =

χ(Lm
k )+O(m2k) = (αkc

2
1 −βkc2)m

2k+1 +O(m2k) (here ci = ci(X)) is very big ;

indeed we have, limk→∞ αk/βk = ∞. Consequently if c21 > 0, which is the case

if X is minimal , then χ(Lm
k ) = cm2k+1c21 +O(m2k) for some positive constant

c (as, eventually , αk/βk > c2/c
2
1). If the base locus Y1 were of codimension one

(which we show that there is no loss of generality in assuming that it is irre-

ducible) then for k � 0, χ(Lk|Y1
) is still big and Schwarz Lemma implies that

the base locus must be of codimension 2. The computation is based on the inter-

section formulas obtained in Lemma 7.15 (requiring the assumption PicX ∼= Z)

and Theorem 7.16. The cutting procedure can be repeated and , as to be expected ,

each time with a loss which can be explicitly estimated using the intersection

formulas. These losses are compensated by taking a larger k. In the proof of

Theorem 7.20 we show that , after k cuts, the Euler characteristic is bounded

below by

µk

(

δkc
2
1 −
( k∑

i=1

1

i2

)

c2

)

,

where µk is a positive integer and

δk =

( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

− 1

4

( k∑

i=1

1

i

)2

+
(k+1)

4(k!)2

( k∑

i=1

1

i

)2

.

It remains to show that
δk

∑k
i=1

1
i2

>
c2
c21

for k sufficiently large. A little bit of combinatorics shows that

lim
k→∞

δk
∑k

i=1
1
i2

= ∞

(compare the proof of Corollary 3.10). This completes the proof of our main

result . Indeed , for a hypersurface of degree d ≥ 5 in P3, our colleague B . Hu

checked , using Maple, that k ≥ 2283 is sufficient . This, together with a result of

Xu implies that a generic hypersurface of degree d ≥ 5 in P3 is hyperbolic.

We recall first some well-known results on manifolds of general type. The fol-

lowing result can be found in [Barth et al. 1984]:

Theorem 7.1. Let X be a minimal surface of general type. The following

Chern-number inequalities hold :

(i) c21(T
∗X)[X] > 0.

(ii) c2(T
∗X)[X] > 0.

(iii) c21(T
∗X)[X] ≤ 3c2(T

∗X)[X].

(iv) 5c21(T
∗X)[X]− c2(T

∗X[X])+ 36 ≥ 0 if c21(T
∗X)[X] is even.

(v) 5c21(T
∗X)[X]− c2(T

∗X)[X] + 30 ≥ 0 if c21(T
∗X)[X] is odd.
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Let L0 be a nef line bundle on a variety X of complex dimension n. A coherent

sheaf E over X is said to be semistable (or semistable in the sense of Mumford–

Takemoto) with respect to L0 if c1(E) . cn−1
1 (L0) ≥ 0 and if, for any coherent

subsheaf S of E with 1 ≤ rkS < rkE, we have µS,L0
≤ µE,L0

, where

µS,L0

def
=

c1(S) . cn−1
1 (L0)

rk S [X] and µE,L0

def
=

c1(E) . cn−1
1 (L0)

rk E
[X]. (7.1)

It is said to be stable if the inequality is strict, that is, µS,L0
< µE,L0

.

The number µS,L0
shall be referred to as the normalized degree relative to L0.

We shall write µS for µS,L0
if L0 is the canonical bundle. If X is of general

type then (see [Maruyama 1981] in the case of surfaces and [Tsuji 1987, 1988]

for general dimensions):

Theorem 7.2. Let X be a smooth variety of general type. Then the bundles
⊗m

T ∗X,
⊙m

T ∗X are semistable with respect to the canonical bundle KX .

Recall from Section 2 that for a vector bundle E of rank r,

rk
⊙m

E =
(m+ r− 1)!

(r− 1)!m!
, c1(

⊙m
E) =

(m+ r− 1)!

r! (m− 1)!
c1(E).

Thus, for surfaces of general type, we have

µ�mT∗X = 1
2mc

2
1(T

∗X)[X]

with respect to the canonical bundle. More generally:

Theorem 7.3. Let X be a surface of general type. If D is a divisor in X

such that H0(X,SI ⊗ [−D]) 6= 0 where SI = (
⊙i1 T ∗X ⊗ · · ·⊗

⊙ik T ∗X) and

I = (i1, . . . , ik) is a k-tuple of positive integers satisfying m = i1+2i2+ · · ·+kik,

then

µ[D] ≤ µSI
=

∑k
j=1 ij

2
c21(T

∗X)[X] ≤ 1
2mc

2
1(T

∗X)[X],

where [D] is the line bundle associated to the divisor D.

The examples at the end of Section 2 show that the sheaves of k-jet differentials

are not semistable unless k = 1. However we do have (by Theorems 3.7 and 3.8):

Theorem 7.4. Let X be a surface of general type. Then

µJ m
k

X =

∑

I c1(SI) c1(T
∗X)

∑

I rkSI
=
∑

I

rkSI
∑

I rkSI
µSI

≤ m

2
c21(T

∗X),

and equality holds if and only if k = 1; moreover , asymptotically ,

µJ m
k

X =

(∑k
i=1

1
i

2k
m+O(1)

)

c21(T
∗X).
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A coherent sheaf E is said to be Euler semistable if for any coherent subsheaf S
of E with 1 ≤ rkS < rkE, we have

χ(S)

rkS ≤ χ(E)

rkE
(7.2)

It is said to be Euler stable if the inequality is strict.

There is a concept of semistability due to Gieseker–Maruyama (see [Okonek

et al. 1980]) for coherent sheaves on Pn in terms of the Euler characteristic that

differs from the concept introduced here.

Example 7.5. From the exact sequence

0 →
⊙2

T ∗X → J 2
2 X → T ∗X → 0,

we get, via the table on page 163,

χ(J 2
2 X) = χ(T ∗X)+χ(

⊙2
T ∗X) = 1

6 (c21−5c2)+
1
4 (5c21−15c2) = 1

12 (17c21−55c2).

Theorem 6.1 yields c21 − 3c2 ≤ 0, which implies that

χ(T ∗X) =
c21 − 5c2

6
< 0.

Thus χ(J 2
2 X) < χ(

⊙2
T ∗X), that is, J 2

2 X is not semistable in the sense of

(7.2).

Recall that the index of each of the sheaves SI and J m
k X of a surface X is of the

form ac21(T
∗X)+bc2(T

∗X). Thus the ratio γ(X) = γ(T ∗X) = c2(T
∗X)/c21(T

∗X)

is an important invariant. More generally, we define

γ(S) =
c2(S)

c21(S)
, (7.3)

provided that c21(S) 6= 0.

Let X be a smooth hypersurface in P3. Then

c1 = c1(TX) = −c1(T ∗X) = d− 4,

c2 = c2(TX) = c2(T
∗X) = d2 − 4d+6.

Hence the ratio of c21(T
∗X) and c2(T

∗X) is given by

γd(J1X) = γd(T
∗X) =

c2(T
∗X)

c21(T
∗X)

=
d2 − 4d+6

(d− 4)2
= 1+

4d− 10

(d− 4)2
, (7.4)

provided that d 6= 4. Note that γ∞(T ∗X) = limd→∞ γd(T
∗X) = 1. Table A on

the next page shows the first few values of γg = γd(J1X).

Recall from Theorem 5.12 that

χ(X;
⊙m

T ∗X) = 1
12 (m+1)

(
(2m2−2m+1)c21− (2m2+4m−1)c2

)

= 1
12 (m+1)

(
(2m2−2m+1)(d−4)2− (2m2+4m−1)(d2−4d+6)

)

= 1
3 (5−2d)3m3 +O(m2).
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d γd d γd d γd

5 11 12 51
32 ∼ 1.5937 19 97

75 ∼ 1.2934

6 9
2 = 4.5 13 14

27 ∼ 1.5175 20 163
128 ∼ 1.2735

7 3 14 73
50 = 1.46 21 363

289 ∼ 1.2561

8 19
8 = 2.375 15 171

121 ∼ 1.4132 22 67
54 ∼ 1.2408

9 51
25 = 2.04 16 11

8 = 1.375 23 443
361 ∼ 1.2244

10 11
6 = 1.83̄ 17 227

169 ∼ 1.3432 24 243
200 = 1.215

11 83
49 ∼ 1.6939 18 129

98 ∼ 1.3164 25 59
49 ∼ 1.2041

Table A. Values of γd(J1X) as a function of d.

It is clear that χ(X;
⊙m

T ∗X) < 0 for all m ≥ 1 if d ≥ 3. If d ≥ 5 it is well-

known that H0(X,
⊙m

T ∗X) = 0, whence the following nonvanishing theorem:

Theorem 7.6. Let X be a smooth hypersurface of degree d ≥ 5 in P3. Then

dimH1(X,
⊙m

T ∗X) ≥ dimH1(X,
⊙m

T ∗X)−dimH2(X,
⊙m

T ∗X)

= 1
6 (m+1)

(
2(2d−5)m2−(3d2−16d+28)m−(d2−6d+11)

)

= 1
3 (2d−5)3m3+O(m2)

for all m� 0.

Next we consider the case of 2-jets. We have, by Riemann–Roch:

χ(J m
2 X) =

1

2

(
ι(J m

2 X)− c1(J m
2 X) · c1

)
+

1

12
(rk J m

2 X)(c21 + c2).

(Here c1 = c1(T
∗X), c2 = c2(T

∗X) and, using the formulas for c1(J m
2 X),

rkJm
2 X and ι(J m

2 X) in Theorem 3.3 we get:

χ(J m
2 X) =

1

27325
(pmc

2
1 − qmc2)

with

pm =

{
21m5 +180m4 +410m3 +180m2 +49m+120, if m is odd,

21m5 +180m4 +420m3 +180m2 − 56m+480, if m is even;

qm =

{
15m5 +225m4 +1150m3 +2250m2 +1235m− 75, if m is odd,

15m5 +225m4 +1180m3 +2520m2 +1640m− 480, if m is even.

The index χ(J m
2 X) is positive if and only if pm/qm > c2/c

2
1, and taking the limit

as m→ ∞ yields the inequality c2/c
2
1 ≤ 7

5 . For a smooth hypersurface of degree

d in P3 the ratio c2/c
2
1 = 1+

(
(4d−10)/(d−4)2

)
and we arrive at the inequality

4d− 10

(d− 4)2
≤ 2

5
,
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which is equivalent to the inequality 0 ≤ d2−18d+41 = (d−9)2−40. We deduce:

Theorem 7.7. Let X be a smooth hypersurface in P3. Then χ(J m
2 X) is big if

and only if d = degX ≥ 16.

We use the terminology that the Euler characteristic is big if and only if there

is a constant c > 0 such that

χ(J m
2 X) ≥ cm5 +O(m4)

for all m � 0. In order to lower the degree in the preceding theorem we must

use jet differentials of higher order. We see from Table A on page 177 that the

ratio c2/c
2
1 of a hypersurface of degree d ≥ 5 in P3 is bounded above by 11. By

Theorem 3.7,

ι(J m
k X) = (αkc

2
1 −βkc2)m

2k+1 +O(m2k)

thus the index is positive if and only if

αk

βk
>
c2
c21
.

In the table on page 148 we see that the ratio αk/βk crosses the threshold 11 as

k increases from 198 to 199. Putting this together with Theorem 5.13, we get:

Theorem 7.8. Let X be a generic smooth hypersurface of degree d ≥ 5 in P3.

For each k ≥ 199,

χ(J m
k X) ≥ cm5 +O(m4)

for all m� k.

For a minimal surface of general type, Theorem 7.1 implies that

1

3
≤ γ(X) =

c2(X)

c21(X)
≤
{

5+36c−2
1 ≤ 41 if c21 is even,

5+30c−2
1 ≤ 34 if c21 is odd.

The ratio αk/βk was shown to tend to ∞ as k → ∞. Thus Theorem 7.8 extends

to any minimal surface of general type:

Theorem 7.9. Let X be a smooth minimal surface of general type. Then

χ(J m
k X) ≥ cm5 +O(m4) for all m� k � 0.

In [Green and Griffiths 1980] we find the following result:

Theorem 7.10. Let X be a smooth surface of general type. If i1+· · ·+ik is even

then a nontrivial section of the bundle
⊙i1 TX ⊗ · · · ⊗

⊙ik TX ⊗K(i1+···+ik)/2

is nonvanishing .

Using this, Green and Griffiths deduced the following vanishing Theorem. We

include their argument here, with minor modifications.

Theorem 7.11. Let X be a smooth surface of general type. Assume that the

canonical bundle KX admits a nontrivial section. Then H2(X,J m
k X) = 0 for

all k ≥ 1 and m > 2k.
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Proof. Let σ be a nontrivial section of KX , so that we have an exact sequence:

0 → SI ⊗K(/i1+···+ik)2−1 ⊗σ→ SI ⊗K(/i1+···+ik)2 → SI ⊗K(/i1+···+ik)2|D → 0

where D = [σ=0], SI =
⊙i1 TX⊗· · ·⊗

⊙ik TX and i1+ · · ·+ik is even. Hence,

0 → H0(X,SI ⊗K(/i1+···+ik)2−1)
⊗σ→ H0(X,SI ⊗K(/i1+···+ik)2)

is exact. By Theorem 7.10 the image of the map ⊗σ is 0; hence

H0(X,SI ⊗K(/i1+···+ik)2−1) = 0.

The argument applies also to the exact sequence:

0 → SI ⊗K(/i1+···+ik)2−l ⊗σ→ SI ⊗K(/i1+···+ik)2=l+1 → SI ⊗K(/i1+···+ik)2|D → 0

for any l ≥ 1 and we conclude via induction that

H0(X,SI ⊗Kq) = 0

for all q < (i1 + · · ·+ ik)/2. If i1 + · · ·+ ik is odd then taking ik+1 = 1 we have

H0(X,Si1,...,ik,ik+1
⊗Kq+1) = 0

provided that q+1 < (i1 + · · ·+ ik +1)/2 (equivalently q < (i1 + · · ·+ ik −1)/2).

Suppose that H0(X,SI ⊗Kq) 6= 0. Then there exists a nontrivial section ρ of

H0(X,SI ⊗Kq) and we obtain a nontrivial section ρ⊗σ of Si1,...,ik,ik+1
⊗Kq+1.

This shows that:

H0(X, SI ⊗Kq) =

{
0, for all q < 1

2 (i1 + · · ·+ ik − 1) if i1 + · · ·+ ik is odd,

0 for all q < 1
2 (i1 + · · ·+ ik) if i1 + · · ·+ ik is even.

By Serre duality,

H2(X,SI ⊗K1−q) =

{
0, for all q < 1

2 (i1 + · · ·+ ik − 1) if i1 + · · ·+ ik is odd,

0 for all q < 1
2 (i1 + · · ·+ ik) if i1 + · · ·+ ik is even,

where SI =
⊙i1 T ∗X ⊗ · · ·⊗

⊙ik T ∗X. If |I| = i1 + · · ·+ ik ≥ 3 then we may

take q = 1 in the formulas above. Thus we have: H2(X,SI) = 0, if |I| ≥ 3. Note

Jm
k X admits a composition series by SI satisfying the condition

∑k
j=1 jij = m.

Thus H2(X,J m
k X) = 0 if each of these SI satisfies the condition |I| ≥ 3. If

k = 2 we have:

i1 +2i2 = m ⇐⇒ i2 = (m− i1)/2 ⇐⇒ i1 + i2 = (m+ i1)/2.

Thus i1 + i2 ≥ 3 if and only if m ≥ 6− i1. Since i1 ≥ 0 we conclude that m ≥ 6

implies i1 + i2 ≥ 3. If k = 3 then

i1+2i2+3i3 = m ⇐⇒ (i1+i3)+2(i2+i3) = m ⇐⇒ i2+i3 = 1
2 (m−i1−i3)

⇐⇒ i1+i2+i3 = 1
2 (m+i1−i3).
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Thus i1 + i2 + i3 ≥ 3 if and only if m ≥ 6− i1 + i3 ≥ 6+ i3. Since i3 is at most

[m/3] we conclude that i1 + i2 + i3 ≥ 3 if m ≥ 9. The case of general k can be

established by an induction argument. ˜

For our purpose only the following weaker result is needed:

Theorem 7.12. Let E be a holomorphic vector bundle of rank r ≥ 2 over a

nonsingular projective surface X. Assume that

(i) KX is nef and not the trivial bundle;

(ii) PicX ∼= Z;

(iii) detE∗ is nef ;

(iv) there exists a positive integer s with the property that there is a nontrivial

global regular section ρ of (KX ⊗detE∗)s such that the zero divisor [ρ=0] is

smooth.

Then Hi(X,
⊙m

E∗) = 0 for all i ≥ 2 and for m sufficiently large.

The canonical bundle KX of a minimal surface X of general type is nef. If

PicX ∼= Z then KX is ample, so KX ⊗det
(⊙i1 T ∗X⊗· · ·⊗⊙ik T ∗X

)
is ample

for any nonnegative integers i1, . . . , ik. Hence:

Corollary 7.13. Let X be a nonsingular minimal surface of general type.

Assume that PicX ∼= Z and pg(X) > 0. Let I = (i1, . . . , ik) be a k-tuple of

nonnegative integers. Then H2
(
X,
⊙i1 T ∗X⊗· · ·⊗⊙ik T ∗X

)
= 0 if i1+· · ·+ik

is sufficiently large; consequently , H2(X,J m
k X) = 0 if m� k.

Corollary 7.14. Let X be a nonsingular minimal surface of general type with

PicX ∼= Z. Then

h0(X,J k!m
k X) ≥ cm2k+1 +O(m2k)

for some positive constant c; that is, J k!
k X is big .

A good source for the general theory of vanishing theorems is [Esnault and

Viehweg 1992].

Next we deal with the question of algebraic degeneration of holomorphic maps

and hyperbolicity of surfaces of general type. The condition that J k!
k X is big

implies that J k!
k X ⊗ [−D] is big for any ample divisor D on X. We may write

D = a0D0 for a0 > 0, with D0 as the positive generator of PicX. The Schwarz

Lemma for jet differentials implies that the image of [jkf ] is contained in the

zero set of all k-jet differentials vanishing along an ample divisor. Thus we may

assume that [jkf ](C) is contained in an effective irreducible divisor in P(J kX)

and is the zero set of a section

σ ∈ H0
(
P(JkX), Lk!mk

k ⊗ p∗[−νkD0]
)
, (7.5)

where we abbreviate Lk = LP(JkX) (note that Pic P(JkX) ∼= Z〈Lk!
k 〉⊕PicX).

Our aim is to show that the restriction Lk!
k |[σ=0] is big. First we need a lemma:
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Lemma 7.15. Let X be a nonsingular minimal surface of general type with

PicX ∼= Z. Suppose that H0(J k!m
k X ⊗ [−D]) 6= 0 for some divisor D in X.

Then for all m� 0,

c1([D]) ≤ Bk

Ak
k!mc1(T

∗X)+O(1)

where Ak and Bk are the constants defined in Theorems 3.7 and 3.8.

Proof. The assumption that PicX ∼= Z implies that c1(J k!
k X ⊗ [−D]) = qc1,

where c1 = c1(T
∗X) and q ∈ Q. Let σ be a nontrivial section of J k!

k X ⊗ [−D].

The Poincaré–Lelong formula implies that

0 =

∫

X

ddc log ||σ||2 ∧ c1 ≥
∫

[σ=0]

c1 −
∫

X

c1(J k!m
k X ⊗ [−D])∧ c1

=

∫

[σ=0]

c1 − q

∫

X

c21,

implying q > 0. On the other hand, the usual formula for Chern classes yields

0 < c1(J k!m
k X ⊗ [−D]) = c1(J k!m

k X)− (rkJ k!m
k X)c1([D]).

By the asymptotic formula in Section 3, we have

c1(J k!m
k X) = Bk(k!m)2kc1 +O((k!m)2k−1);

hence the preceding inequality may be written as

Akc1([D])(k!m)2k−1 = (rkJ k!m
k X)c1([D]) < Bk(k!m)2kc1 +O((k!m)2k−1),

where Ak and Bk are the constants defined in Theorems 3.7 and 3.8. Thus we

get the estimate

c1([D]) ≤ Bk

Ak
k!mc1 +O(1). ˜

Theorem 7.16. Let X be a smooth surface and Lk be the “hyperplane line

sheaf” over P(JkX). Then

p∗c
2k+1
1 (Lk!

k ) = (2k+1)!χ(Lk!
k ) = 1

2 (2k+1)!(k!)2k+1(αkc
2
1 −βkc2)

= (k!)2k−1

( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

c21 −
( k∑

i=1

1

i2

)

c2,

p∗
(
c2k
1 (Lk!

k )p∗c1
)

= 1
2 (k!)2k(2k!)Bkc

2
1 =

(
(k!)2k−2

2

k∑

i=1

1

i

)

c21,

p∗
(
c2k−1
1 (Lk!

k )p∗c21
)

= (k!)2k−1(2k− 1)!Akc
2
1 = (k!)2k−3c21.

Proof. Let E be a coherent sheaf of rank r and L be a line bundle. Then

ck(E⊗L) =

k∑

i=0

(r− i)!

(k− i)!(r− k)!
ci(E)c1(L)k−i.
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For a surface we have only two Chern classes, c1(E⊗L) = rc1(L)+ c1(E) and

c2(E⊗L) = 1
2r(r− 1)c21(L)+ (r− 1)c1(E)c1(L)+ c2(E). From this we get

ι(E⊗L) = r2c21(L)+ 2rc1(L)c1(E)+ c21(E)− r(r− 1)c21(L)

− 2(r− 1)c1(L)c1(E)− 2c2(E)

= c21(E)− 2c2(E)+ rc21(L)+ 2c1(L)c1(E)

= ι(E)+ rc21(L)+ 2c1(L)c1(E)

and the Euler characteristic (with ci = ci(T
∗X)):

χ(E⊗L) = 1
2

(
ι(E⊗L)− c1(E⊗L)c1

)
+

1

12
rk(E⊗L)(c21 + c2)

= 1
2

(
ι(E)+ rc21(L)+ 2c1(L)c1(E)− (rc1(L)+ c1(E))c1

)
+ 1

12r(c
2
1 + c2)

= χ(E)+ 1
2

(
rc21(L)+ 2c1(L)c1(E)− rc1(L) c1

)
.

For the sheaf of jet differentials we have the asymptotic expansions

c1(J m
k X) = Bkm

2kc1 +O(m2k−1),

rk Jm
k X = Akm

2k−1 +O(m2k−2)

χ(J m
k X) = χ(Lm) = 1

2 (αkc
2
1 −βkc2)m

2k+1 +O(m2k)′;

hence

c1(J k!m
k X) = (k!)2kBkm

2kc1 +O(m2k−1),

rk J k!m
k X = (k!)2k−1Akm

2k−1 +O(m2k−2)

χ(J k!m
k X) = χ(Lk!m) = 1

2 (k!)2k+1(αkc
2
1 −βkc2)m

2k+1 +O(m2k).

We get from these the asymptotic expansion for χ(J k!m
k X ⊗Lm):

χ(J k!m
k X ⊗Lm) = χ(J k!m

k X)+ 1
2m
(
m(rkJ k!m

k X)c21(L)+ c1(L)c1(J k!m
k X)

− (rkJ k!m
k X)c1(L)c1

)

= 1
2

(
(k!)2k+1(αkc

2
1 −βkc2)

+ (k!)2k−1Akc
2
1(L)+ (k!)2kBkc1(L)c1

)
m2k+1 +O(m2k).

If c1(L) = λc1 then

χ((Lk!
k ⊗ p∗L)m)

= χ((J k!m
k X ⊗Lm)

= 1
2

(
(k!)2k+1(αkc

2
1 −βkc2)+ (λ2(k!)2k−1Ak +λ(k!)2kBk)c21

)
m2k+1 +O(m2k)

= χ(J k!m
k X)+ 1

2λ
2(k!)2k−1Akc

2
1m

2k+1 + 1
2λ(k!)2kBkc

2
1m

2k+1 +O(m2k).

Since ci1(p
∗L) = 0 for all i ≥ 3, we have

c2k+1
1 (Lk!

k ⊗ p∗L)

= (c1(Lk!
k )+ c1(p

∗L))2k+1

= c2k+1
1 (Lk!

k )+ (2k+1)c2k
1 (Lk!

k )c1(p
∗L)+ k(2k+1)c2k−1

1 (Lk!
k )c21(p

∗L),
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and we get, up to O(m2k),

χ((Lk!
k ⊗ p∗L)m)

=
c2k+1
1 (Lk!

k ⊗ p∗L)

(2k+1)!
m2k+1

=
c2k+1
1 (Lk!

k )+ (2k+1)c2k
1 (Lk!

k )c1(p
∗L)+ k(2k+1)c2k−1

1 (Lk!
k )c21(p

∗L)

(2k+1)!
m2k+1

=
c2k+1
1 (Lk!

k )

(2k+1)!
m2k+1 +

c2k
1 (Lk!

k )c1(p
∗L)

(2k)!
m2k+1 +

1

2

c2k−1
1 (Lk!

k )c21(p
∗L)

(2k− 1)!
m2k+1

=
c2k+1
1 (Lk!

k )

(2k+1)!
m2k+1 +λ

c2k
1 (Lk!

k )p∗c1
(2k)!

m2k+1 +λ2 1

2

c2k−1
1 (Lk!

k )p∗c21
(2k− 1)!

m2k+1.

Comparing the two expressions for χ((Lk!
k ⊗ p∗L)m) we deduce that

p∗c
2k+1
1 (Lk!

k ) = (2k+1)!χ(Lk!
k ),

p∗c
2k
1 (Lk!

k )p∗c1 = 1
2 (k!)2k(2k!)Bkc

2
1,

p∗c
2k−1
1 (Lk!

k )p∗c21 = (k!)2k−1(2k− 1)!Akc
2
1.

The theorem follows from these by substituting the asymptotic expansions for

χ(Lk!
k ), Ak and Bk into the expressions above. ˜

As a means toward understanding the general case we treat the special case of

2-jets and 3-jets (for the case of P(TX), that is, 1-jets, see [Miyaoka 1977; Lu and

Yau 1990; Lu 1991; Dethloff et al. 1995b]). For 2-jets the intersection formulas

in Lemma 7.15 and Theorem 7.16 read as:

c1([D]) ≤ 3
4mc1,

p∗c
5
1(L2

2) = 14c21 − 10c2,

p∗c
4
1(L2

2)p
∗c1 = 3c21,

p∗c
3
1(L2

2)p
∗c21 = 2c21.

(7.6)

We shall use these formulas to deal with holomorphic maps from the complex

plane into a minimal surface X of general type satisfying the conditions that

PicX ∼= Z and KX is effective and nontrivial (for example X is a hypersurface

in P3 of degree d ≥ 5). The condition was first introduced in [Dethloff et al.

1995b] and is crucial in the rest of this article. We shall use the following

terminology. An irreducible subvariety Y in P(JkX) is said to be horizontal if

p(Y ) = X, where p : P(JkX) → X is the projection; otherwise it is said to be

vertical. A variety is said to be horizontal (resp. vertical) if every irreducible

component is horizontal (resp. vertical). A subvariety Y may be decomposed as

Y = Y hor +Y ver, where Y hor and Y ver consist respectively of the horizontal and

vertical components. Note that Y ver = (p−1C)∩Y , where C is a subvariety of

X; indeed C = p(Y ver). We shall need a lemma:
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Lemma 7.17. Let X be a surface such that pg(X) > 0 and PicX ∼= Z with ample

generator [D0]. There exist positive integers m and a and a nontrivial section σ ∈
H0
(
P(JkX), Lk!m

k ⊗ p∗[−aD0]
)

such that [σ = 0]hor is reduced and irreducible,

that is, there exists exactly one horizontal component with multiplicity 1.

For the proof of the case k = 1, see [Dethloff et al. 1995b, Lemmas 3.5 and

3.6]. The proof depends only on the assumption PicX ∼= Z, which implies that

Pic P(J1X) ∼= Z ⊕Z. This is of course also valid for Pic P(JkX) for any k.

Indeed the proof (with J1X replaced by JkX) is word for word the same.

Theorem 7.18. Let X be a minimal surface of general type with effective ample

canonical bundle such that PicX ∼= Z, pg(X) > 0, and

17c21(T
∗X)− 16c2(T

∗X) > 0.

(This is satisfied if X is a hypersurface of degree d ≥ 70.) Then every holomor-

phic map f : C → X is algebraically degenerate.

Proof. We start with the weaker assumption 7c21(T
∗X)− 5c2(T

∗X) > 0. (By

Theorem 7.7, this is satisfied for smooth hypersurfaces in P3 if and only if

degX ≥ 16.) Under this assumption the sheaf J 2
2 X is big. This implies that,

for any ample divisor D in X there is a section 0 6≡ σ1 ∈ H0(L2m
2 ⊗ p∗[−aK])

provided that m � 0 where a > 0 and K is the canonical divisor. By Schwarz

Lemma (Corollary 6.3) the image of [j2f ] (as f is algebraically nondegenerate) is

contained in the horizontal component of [σ1=0]. By Lemma 7.17 we may assume

that the horizontal component of [σ1 =0] is irreducible. The vertical component

of [σ1 =0] must be of the form p∗(bK) for some b ≥ 0 which admits a section sb.

Replacing σ1 with σ1 ⊗ s−b ∈ H0(L2m1
2 ⊗ p∗[−(a− b)K]), Y1 = [σ1 ⊗ s−b =0] is

horizontal, irreducible and contains the image of [j2f ]. Since dim P(J2X) = 5

the dimension of Y1 is 4. As remarked earlier we may assume that a1 = a−b ≥ 0.

We get from the first and third intersection formulas of (7.6):

c41(L2
2|Y1

) = c41(L2
2) . (c1(L2m1

2 )− a1p
∗c1) ≥ m1

(
c51(L2

2)− a1c
4
1(L2

2) . p
∗c1
)

≥ m1

(
(14c21 − 10c2)− 9

4c
2
1

)
=
m1

22
(47c21 − 40c2) > 0.

(For a hypersurface of degree d in Pn we have c21 = (d− 4)2, c2 = d2 − 4d+6.

Thus, for d = 16, 47c21 = 6768 and 40c2 = 7920, so χ(L2
2|Y ) < 0; however,

47c21 − 40c2 = 47(d2 − 8d+16)− 40(d2 − 4d+6) = 7d(d− 30)− 2(3d− 256)

is positive if and only if d ≥ 40.) We claim that L2
2|Y1

is big. It suffices to show

that H2(L2m1
2 ⊗ [−Y1]) = 0 for m� 0. To see this consider the exact sequence

0 → L2m1
2 ⊗ [−Y1]

⊗σ→ L2m1
2 → L2m1

2 |Y1
→ 0

and the induced exact sequence

· · · → H2(L2m1
2 ⊗ [−Y1])

⊗σ→ H2(L2m1
2 ) → H2(L2m1

2 |Y1
) → 0.
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The vanishing ofH2(L2m1
2 |Y1

) form1 � 0 follows from the vanishing ofH2(L2m
2 ).

By Schwarz’s Lemma, the image of [jkf ] is contained in the zero set of any

nontrivial section σ2 ∈ H0(Y1,L2m1
2 |Y1

⊗ p∗[−a2K]), a2 > 0 and m2 � 0. Since

Y1 is irreducible Y2 = [σ2 =0]∩Y1 is of codimension 2 (so dimY2 = 3) in P(J2X)

where σ2 ∈ H0(L2m2
2 |Y1

⊗ [−a2D]). By Schwarz’s Lemma the reparametrized

k-jets {[jk(f ◦φ)]} is contained in Y2.

We may assume that Y2 is irreducible. Otherwise Y2 =
∑n

i=1 Y2,i, where

n ≥ 2 and each Y2,i, is irreducible and hence effective. We have
⊗n

i=1[Y2,i] =

[Y2] = Lk!m2

k ⊗ p∗[−a2K]|Y1
(we use the notation [Z] to denote the line bundle

associated to a divisor Z). The image [jkf ](Pn) is contained in Y2,i0 for some

1 ≤ i0 ≤ n. Let si be the (regular) section such that [si =0] = Y2,i (an effective

divisor in Y1); then we have an exact sequence

0 → [Y2,i0 ]
ρi0→ Lk!m2

k ⊗ p∗[−a2K]|Y1
→ Lk!m2

k ⊗ p∗[−a2K]|Y2,i0
→ 0.

In particular, we have an injection

0 → [Y2,i0 ]
ρi0→ Lk!m2

k ⊗ p∗[−a2K]|Y1
,

where the map ρi0 is defined by multiplication with the section
⊗n

i=1,i6=i0
si. In

other words we may consider each [Y2,i0 ] as a subsheaf of Lk!m2

k ⊗ p∗[−a2K]|Y1

hence a section of [Y2,i0 ] is identified also as a section of Lk!m2

k ⊗ p∗[−a2K]|Y1
.

The Schwarz Lemma applies and we conclude that si0([j
kf ]) ≡ 0 for each i.

Thus we may assume that Y2 is irreducible by replacing Y2 with Y2,i0 .

We now repeat the previous calculation for Y1 to Y2 using again the intersec-

tion formulas listed above; we get

c31(L2
2|Y2

) = c31(L2
2) . (c1(L2m1

2 )− a1p
∗c1) . (c1(L2m2

2 )− a2p
∗c1)

≥
(
m1m2c

5
1(L2

2)− (a1m2 +m1a2)c
4
1(L2

2) . p
∗c1 + a1a2c

3
1(L2

2) . p
∗c21
)

= m1m2

(
c51(L2

2)− (l1 + l2)c
4
1(L2

2) . p
∗c1 + l1l2c

3
1(L2

2) . p
∗c21
)

= m1m2

(
(14c21 − 10c2)− 3(l1 + l2)c

2
1 +2l1l2c

2
1

)
,

where 0 ≤ li = ai/mi ≤ 3
4 , for i = 1, 2. Elementary calculus shows that the

function 14−3(l1+l2)+2l1l2 achieves its minimum value 14−3( 3
4+ 3

4 )+2( 3
4 )2 = 85

8

at l1 = l2 = 3
4 ; thus we get

c31(L2
2|Y2

) ≥ m1m2(
85
8 c

2
1 − 10c2) =

5m1m2

23
(17c21 − 16c2) > 0.

This shows that L2
2|Y2

is big and the image of [j2f ] is contained in

Y3 = Y2 ∩ [σ3 =0]

(where the intersection is taken over all global sections σ3 of L2m
2 |Y2

vanishing

on an ample divisor), which is of dimension 2. By Corollary 6.5 the dimension

of the base locus is at least 3 if f is algebraically nondegenerate. Thus f must
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be algebraically degenerate (and if X contains no rational or elliptic curve then

X is hyperbolic). ˜

Note that the intersection procedure was applied twice. For a smooth hypersur-

face X in P3, condition (iii) is satisfied if and only degree of X ≥ 70 (this is

easily checked from the formulas c21 = (d− 4)2, c2 = d2 − 4d+6). This can be

improved if we use 3-jets. For 3-jets the intersection formulas of Lemma 7.15

and Theorem 7.16 are given explicitly as follows:

c1([D]) ≤ 11m

3!
c1,

p∗c
7
1(L3!

3 ) =
7!(3!)7

2

(
17

27367
c21 −

7

27365
c2

)

= (3!)3(85c21 − 49c2),

p∗c
6
1(L3!

3 )p∗c1 =
(3!)311

2
c21,

p∗c
5
1(L3!

3 )p∗c21 = (3!)3c21.

Theorem 7.19. Let X be a minimal surface with PicX ∼= Z, pg(X) > 0, and

389c21(T
∗X)− 294c2(T

∗X) > 0. (∗)

Then every holomorphic map f : C → X is algebraically degenerate.

Proof. The sheaf J3X is big if and only if degree d ≥ 11. As in the case of

2-jets we know that the image of [j3f ] is contained in Y1 = [σ1 =0] for some

σ1 ∈ H0(L2m1
2 ⊗ p∗[−a1K]). Since dim P(J3X) = 7 the dimension of Y1 is 6.

From the intersection formulas listed above we get

c61(L2
2|Y1

) = c61(L3!
2 ) . (c1(L2m1

2 )− a1p
∗c1) ≥ m1

(
c71(L3!

2 )− a1c
6
1(L3!

2 ) . p∗c1
)

≥ (3!)3m1

(
(85c21 − 49c2)− 1

12112c21
)

= (3!)3 1
12m1(899c21 − 588c2) > 0.

For a smooth hypersurface in P3, 899c21 − 588c2 > 0 if and only if d ≥ 13.

Continuing as in the case of 2-jets, we see that the image of [j3f ] is contained

in the zero set of any nontrivial section σ2 ∈ H0
(
Y1,L(3!)m1

2 |Y1
⊗ p∗[−a2K]

)
,

a2 > 0 and m2 � 0. The dimension of Y2 = [σ2 =0]∩Y1 is 5. By Schwarz’s

Lemma the reparametrized 3-jet {[j3(f ◦φ)]} is contained in Y2. As in the case

of 2-jets we may assume that Y2 is irreducible. We now repeat the previous

calculation using the intersection formulas above:

c51(L3!
3 |Y2

) = c51(L3!
3 ) . (c1(L(3!)m1

3 )− a1p
∗c1) . (c1(L(3!)m2

3 )− a2p
∗c1)

≥
(
m1m2c

7
1(L3!

3 )− (a1m2 +m1a2)c
6
1(L3!

3 ) . p∗c1 + a1a2c
5
1(L3!

3 ) . p∗c21
)

= m1m2

(
c71(L3!

3 )− (l1 + l2)c
6
1(L3!

3 ) . p∗c1 + l1l2c
5
1(L3!

3 ) . p∗c21
)

= (3!)3m1m2

(
(85c21 − 49c2)− 11

2 (l1 + l2)c
2
1 + l1l2c

2
1

)

where 0 ≤ li = ai/mi ≤ 11
6 for i = 1, 2. Elementary calculus shows that the

function 85− 11
2 (l1 + l2)+ l1l2 achieves its minimum value at l1 = l2 = 11

6 ; thus
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we have

c51(L3!
3 |Y2

) ≥ (3!)3m1m2

(
2455
36 c21 − 49c2

)
> 0.

For a smooth hypersurface in P3 this occurs if and only if d ≥ 18.

Now the image of [j3f ] is contained in Y3 = [σ3 =0]∩Y2 and has dimension 4.

Moreover, an argument identical to the case of Y2 shows that we may assume Y3

irreducible. Continuing with the procedure we get

c41(L3!
3 |Y3

) = c41(L3!
3 )

3∏

i=1

(
c1(L(3!)mi

3 )− aip
∗c1
)
.

Expanding the right-hand side above yields (note that p∗c31 ≡ 0 because the

dimension of the base space is 2 hence c31 = c31(X) ≡ 0)

m1m2m3c
7
1(L3!

3 )− (a1m2m3 +m1a2m3 +m1m2a3)c
6
1(L3!

3 ) . p∗c1

+(a1a2m3 + a1m2a3 +m1a2a3)c
5
1(L3!

3 ) . p∗c21,
so we have

c41(L3!
3 |Y3

) ≥
(
m1m2m3c

7
1(L3!

3 )− (a1m2m3 +m1a2m3 +m1m2a3)c
6
1(L3!

3 ) . p∗c1

+(a1a2m3 + a1m2a3 +m1a2a3)c
5
1(L3!

3 ) . p∗c21
)

= m1m2m3

(
c71(L3!

3 )− (l1 + l2 + l3)c
6
1(L3!

3 ) . p∗c1

+(l1l2 + l2l3 + l3l1)c
5
1(L3!

3 ) . p∗c21
)

= (3!)3m1m2m3

(
(85c21 − 49c2)− 11

2 (l1 + l2 + l3)c
2
1

+(l1l2 + l2l3 + l3l1)c
2
1

)
,

where 0 ≤ li = ai/mi ≤ 11
6 for i = 1, 2, 3. Elementary calculus shows that the

function 85− 11
2 (l1 + l2 + l3)+ (l1l2 + l2l3 + l3l1) achieves its minimum value at

l1 = l2 = l3 = 11
6 ; thus we get

c41(L3!
3 |Y3

) ≥ (3!)3

6
m1m2m3(389c21 − 294c2) > 0.

For hypersurfaces in P3 this happens if and only if d ≥ 20. Thus the image of

[j3f ] is contained in a subvariety Y4 = Y3 ∩ [σ4 =0] which is of dimension 3. By

Corollary 6.5 the map f must be algebraically degenerate. ˜

Note that the intersection procedure was applied three times. In order to remove

condition (∗) in Theorem 7.19 we must use very high order jets, and if we use

k-jets then it is necessary to carry out the intersection procedure k times. The

preceding proof underscores the importance of the explicit formulas obtained in

Section 3.

Theorem 7.20. Let X be a smooth minimal surface of general type with

pg(X) > 0 and PicX ∼= Z. Then every holomorphic map f : C → X is al-

gebraically degenerate. If , in addition, the surface X contains no rational nor

elliptic curve then X is hyperbolic.
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Proof. As remarked earlier, we have to work with the k-jet bundles for k

sufficiently large. In the case of 2-jets the cutting procedure was applied twice

and for 3-jets, 3 times. Now we have to do this k-times, each time making sure

(by using the explicit formulas of section 3) that the bundle is still big.

The assumption implies that Lk!
k is big for k � 0 hence there exists m1 �

k and a1 > 0 such that h0(P(JkX),Lk!m1

k ⊗ p∗[−a1K]) > 0 where K is the

canonical divisor. As in the proof of Theorem 7.18 (and Theorem 7.19) we may,

by Lemma 7.17, assume that there exists σ1 ∈ H0(P(JkX),Lk!m
k ⊗ p∗[−a1K])

such that Y1 = [σ1 =0] is horizontal and irreducible. This implies that codim

Y1 = 1 (equivalently, dimYi = dim P(JkX)− 1 = 2k+1− 1 = 2k).

By the Schwarz Lemma of the preceding section, we conclude that the image

of [jkf ] is contained in Y1. The proof of Theorem 7.19 shows that LP(JkX)|Y1

is still big and so there exists σ2 ∈ H0(Y1,Lk!m2

k ⊗ p∗[−a2K]),m2, a2 > 0 and

(because Y1 is irreducible) that Y2 = [σ2 =0] is of codimension 2 in P(JkX).

Schwarz’s Lemma implies that the image of [jkf ] is contained in Y2. As was

shown earlier, we may assume that Y2 is irreducible. A calculation similar to

that of Theorem 7.19 shows that Lk!
k |Y2

is still big (see the calculation below).

The process can be continued k times, resulting in a sequence of reduced and

irreducible horizontal subvarieties,

P(JkX) = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yk ⊃ [jkf ](C),

where codim Yi = i (equivalently, dimYi = 2k+1− i as dim P(JkX) = 2k+1),

and each of the subvarieties is the zero set of a section σi:

Yi = [σi =0], σi ∈ H0
(
Yi−1, Lk!mi

k ⊗ p∗[−aiK]
)

for 1 ≤ i ≤ k.

We claim that Lk!
k |Yi

is big for 1 ≤ i ≤ k, by a calculation (to be carried out

below) analogous to that in Theorems 7.19 and 7.20.

Assuming this for the moment, we see that there exists a nontrivial section

σk+1 ∈ H0
(
Yk, Lk!mk

k ⊗p∗[−ak+1K]
)

and [jkf ](C) is contained in an irreducible

component of [σk+1 =0]∩Yk. Since Yk is irreducible this component, denoted

Yk+1, is of codimension k+1 (equivalently, dimYk+1 = 2k+1− (k+1) = k).

This however contradicts Corollary 6.5 that the component containing all the

reparametrization [jk(f ◦φ)](C) must be of codimension at most k (equivalently,

dimension at least k+1) if f is algebraically nondegenerate. Thus the map f

must be algebraically degenerate. Since the image of an algebraically degenerate

map must be contained in a rational or an elliptic curve inX, we conclude readily

that X is hyperbolic if it contains no rational nor elliptic curve.

It remains to verify the claim by carrying out the computations for k-jets—

more precisely, computations for the Chern numbers c2k+1−λ
1 (Lk!

k |Yλ
), for 1≤λ≤k

—using Theorem 7.16 the intersection formulas obtained in Lemma 7.15:

c2k+1−λ
1 (Lk!

k |Yλ
)
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= c2k+1−λ
1 (Lk!

k )
λ∏

i=1

(
mic1(Lk!

k )− aic1
)

=

( λ∏

i=1

mi

)

c2k+1
1 (Lk!

k )−
( λ∑

i=1

ai

∏

1≤j 6=i≤λ

mj

)

c2k
1 (Lk!

k X)c1

+

(
∑

1≤i<j≤l

aiaj

∏

1≤q 6=i,j≤λ

mqc
2k−1
1 (Lk!

k )

)

c21

= (k!)2k−3

( λ∏

i=1

mi

)(

(k!)2
( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

c21 − (k!)2
( k∑

i=1

1

i2

)

c2

−
( λ∑

i=1

li

)(
k!

2

k∑

i=1

1

i

)

c21 +

(
∑

1≤i<j≤λ

lilj

)

c21

)

for 1 ≤ lj = aj/mj ≤ (Bk/Ak)k! and 1 ≤ λ ≤ k. The coefficient of c21 is

Dk,λ = (k!)2
( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−
( λ∑

i=1

li

)(
k!

2

k∑

i=1

1

i

)

+
∑

1≤i<j≤λ

lilj .

The minimum occurs at

lj =
Bk

Ak
k! =

(k−1)!

2

k∑

i=1

1

i

for all 1 ≤ j ≤ λ ≤ k. By the intersection formulas in Lemma 7.15 and Theorem

7.16, we have:

Dk,λ ≥ (k!)2
( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−λ (k− 1)! k!

4

( k∑

i=1

1

i

)2

+
λ(λ+1)

4k

( k∑

i=1

1

i

)2

.

It is clear that the worst case occurs for λ = k, namely, Dk,λ ≥ Dk,k, and that

Dk,k ≥ (k!)2
( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

− (k!)2

4

( k∑

i=1

1

i

)2

+
(k!)2(k+1)

4(k!)2

( k∑

i=1

1

i

)2

.

In other words, denoting the expression on the right-hand side above by (k!)2δk,

we have

c2k+1−λ
1 (Lk!

k |Yλ
) = c2k+1−λ

1 (Lk!
k )

λ∏

i=1

(
mic1(Lk!

k X)− aic1
)

≥ (k!)2k−3

( λ∏

i=1

mi

)(

(k!)2δkc
2
1 − (k!)2

( k∑

i=1

1

i2

)

c2

)

= (k!)2k−1

( λ∏

i=1

mi

)(

δkc
2
1 −
( k∑

i=1

1

i2

)

c2

)
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for 1 ≤ λ ≤ k. It remains to show that

δkc
2
1 −
( k∑

i=1

1

i2

)

c2 > 0

or, equivalently,
δk

∑k
i=1 1/i2

>
c2
c21

(7.7)

for k sufficiently large. We claim that

lim
k→∞

δk
∑k

i=1 1/i2
= ∞, (7.8)

where

δk =

( k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

− 1

4

( k∑

i=1

1

i

)2

+
(k+1)

4(k!)2

( k∑

i=1

1

i

)2

.

Observe that

k∑

i=2

1

i

i−1∑

j=1

1

j
=

∑

1≤i<j≤k

1

ij
and

( k∑

i=1

1

i

)2

=

k∑

i=1

1

i2
+ 2

∑

1≤i<j≤k

1

ij
;

hence

δk ≥ 1

2

∑

1≤i<j≤k

1

ij
− 3

4

k∑

i=1

1

i2
,

and the ratio satisfies

δk
∑k

i=1 1/i2
≥ 1

2

∑

1≤i<j≤k 1/(ij)
∑k

i=1 1/i2
− 3

4
.

Since
∑

1≤i<j≤k

1

ij
=

k∑

i=2

1

i

i−1∑

j=1

1

j
,

we must show that

lim
k→∞

∑k
i=2 1/i

∑i−1
j=1 1/j

∑k
i=1 1/i2

= ∞,

just as in the limit in Corollary 3.10. But this is clear, because

lim
k→∞

k∑

i=2

1

i

i−1∑

j=1

1

j
≥ lim

k→∞

k∑

i=2

(i− 1)
1

i2
= ∞,

whereas limk→∞
∑k

i=1 1/i2 <∞. Thus (7.7) is verified.

We remark that c2/c
2
1 = 11 for a smooth hypersurface of degree d = 5 in P3.

Thus, by (7.7), it is enough to choose k so that

δk
∑k

i=1 1/i2
> 11.
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With the aid of a computer, we found that this occurs at k = 2283 (for k = 2282

the ratio on the left above is approximately 10.9998). By Theorem 7.1,
{

5c21 − c2 +36 ≥ 0, if c21 is even,

5c21 − c2 +30 ≥ 0, if c21 is odd,

which implies that
{

23 ≥ 5+ (36/c21) ≥ c2/c
2
1, if c21 is even,

35 ≥ 5+ (30/c21) ≥ c2/c
2
1, if c21 is odd.

Thus, by (7.7), we need k so that the ratio δk/
∑k

i=1 1/i2 is > 23 if c21 is even

and > 35 if it is odd. We did not find the explicit k satisfying these conditions;

this would take a lot of time, even for the computer. However we do know from

(7.8) that k exists. This shows that c2k+1−λ
1 (Lk!

k |Yλ
) > 0 hence

2∑

i=0

(−1)iHi(Yλ,Lk!
k |Yλ

) = χ(Lk!
k |Yλ

) > 0.

To show that Lk!
k |Yλ

is big it is sufficient to show that H2(Yλ,Lk!
k |Yλ

) = 0 for

0 ≤ λ ≤ k. This is done as in Theorems 7.18 and 7.19 by considering the exact

sequences

0 → Lk!mλ

k |Yλ−1
⊗ [−Yλ]

⊗σλ−→ Lk!mλ

k |Yλ−1
→ Lk!mλ

k |Yλ
→ 0

and the induced exact sequence

· · · → H2
(
Lk!mλ

k |Yλ−1
⊗ [−Yλ]

)
→ H2(Lk!mλ

k |Yλ−1
) → H2(Lk!mλ

k |Yλ
) → 0.

By induction H2(Lk!mλ

k |Yλ−1
) = 0 for mλ � 0 and the exact sequence above

implies the vanishing of H2(Lk!mλ

k |Yλ
). This completes the proof of the theorem.

˜

Corollary 7.21. A generic hypersurface surface of degree d ≥ 5 in P3 is

hyperbolic.

Proof. The assumptions of Theorem 7.19 are satisfied by a generic hypersurface

of degree d ≥ 5 in P3. Thus the image of a holomorphic map f : C → X is

contained in a curve, necessarily rational or elliptic curve. By a theorem of Xu

[1994] a generic hypersurface surface of degree d ≥ 5 in P3 contains no rational

nor elliptic curve. Hence f must be a constant. ˜

The generic condition in Xu means that the statement holds for all curves outside

a countable union of Zariski closed sets. A variety X satisfying the condition

that every holomorphic curve f : C → X is constant is usually referred to as

Brody hyperbolic. In general Kobayashi hyperbolic implies Brody hyperbolic.

For compact varieties Brody hyperbolic is equivalent to Kobayashi hyperbolic

but for open varieties this is not the case. As a consequence of Corollary 7.21

we have:
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Corollary 7.22. There exists a curve C of degree d = 5 in P2 such that P2\C
is Kobayashi hyperbolic.

Proof. It is well-known that the complement of 5 lines, in general position, in

P2 is Kobayashi hyperbolic. By a Theorem of Zaidenberg [1989] any sufficiently

small (in the sense of the classical topology, rather than the Zariski topology)

deformation of a Brody hyperbolic manifold is Brody hyperbolic. Thus, for

any curve C of degree 5 in a sufficiently small open (in the classical topology)

neighborhood U , of 5 lines in general position, the complement P2 \C is Brody

hyperbolic. Let
⋃
Zi be a countable union of Zariski closed sets in the space of

surfaces of degree 5 in P3 such that any surface S 6∈ ∪Zi is hyperbolic. Embed P2

in P3 as a linear subspace. Any curve C ∈ C = {S ∩P2 | S 6∈ ∪Zi} is a curve of

degree 5 and is hyperbolic. It is clear that C ∩U is nonempty. Thus there exists

a hyperbolic curve C of degree 5 in P2 such that P2 \C is Brody hyperbolic. It

is well-known that this implies that P2 \C is Kobayashi hyperbolic. ˜
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d’Horace différentiel: application aux singularités hyperquartiques de P

5”, J. Al-

gebraic Geom. 1 (1992), 411–426.

[Alexander and Hirschowitz 1992b] J. Alexander and A. Hirschowitz, “La métho-de
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