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Introduction

It is our goal in this article to present a current and uniform treatment of

flag and Ricci curvatures in Finsler geometry, highlighting recent developments.

(The flag curvature is a natural extension of the Riemannian sectional curvature

to Finsler manifolds.) Of particular interest are the Einstein metrics, constant

Ricci curvature metrics and, as a special case, constant flag curvature metrics.

Our understanding of Einstein spaces is inchoate. Much insight may be gained

by considering the examples that have recently proliferated in the literature.

This motivates us to discuss many of these metrics.

Happily, the theory is developing as well. The Einstein and constant flag

curvature metrics of spaces of Randers type, a fecund class of Finsler spaces,

are now properly understood. Enlightenment comes from being able to identify

the class as solutions to Zermelo’s problem of navigation, a perspective that

allows a very apt characterisation of the Einstein spaces. When specialised to

flag curvature, the navigation description yields a complete classification of the

constant flag curvature Randers metrics.

We hope to bring out the rich variety of behaviour displayed by these metrics.

For example, Finsler metrics of constant flag curvature exhibit qualities not found

in their constant sectional curvature Riemannian counterparts.

• Beltrami’s theorem guarantees that a Riemannian metric is projectively flat

if and only if it has constant sectional curvature. On the other hand, there

are many Finsler metrics of constant flag curvature which are not projectively

flat. See Section 3.2.3 and [Shen 2004].

• Every Riemannian metric of constant sectional curvature K is locally isometric

to a round sphere, Euclidean space, or a hyperbolic space, depending on K.

Hence, for each K, there is only one Riemannian standard model, up to

isometry. By contrast, on Sn, R
n, and the unit ball Bn, there are numerous

nonisometric Randers metrics of constant flag curvature K. In fact, isometry

classes of Randers type standard models make up a moduli space MK whose

dimension is linear in n. See the table on page 242 and [Bryant 2002].

A roadmap. This article is written with a variety of readers in mind, ranging

from the geometric neophyte to the Finsler aficionado. We anticipate that these

users will approach the manuscript with distinct aims. The outline below is

intended to help readers navigate the article efficiently.

Section 1 introduces Finsler metrics and their curvatures, as well as tools

and constructions that are endemic to non-Riemannian Finsler geometry. The

reader conversant with Finsler metrics might only skim this section to glean our

notation and conventions.

In Section 2 we develop a useful characterisation of the Einstein spaces among

a ubiquitous class of Finsler metrics. This description generalises a charac-

terisation of constant flag curvature Randers metrics ([Bao–Robles 2003] and
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[Matsumoto–Shimada 2002]) to the Einstein realm. The resulting conditions

form a tensorial, coupled system of nonlinear second order partial differential

equations, whose unknowns consist of Riemannian metrics a and 1-forms b.

These equations provide a substantial step forward in computational efficiency

over the defining Einstein criterion (which stipulates that the ‘average flag cur-

vature’ is to be a function of position only). Indeed, study of these equations

has led to the construction of the Finslerian Poincaré metric ([Okada 1983] and

[Bao et al. 2000]), as well as the S3 metric [Bao–Shen 2002]. However, while the

characterisation improves the computational accessibility of Einstein metrics, it

does little to advance our understanding of their geometry. It is in the following

section that we pursue this geometric insight.

The sine qua non here is Shen’s observation that Randers metrics may be

identified with solutions to Zermelo’s problem of navigation on Riemannian man-

ifolds. This navigation structure establishes a bijection between Randers spaces

(M, F = α+β) and pairs (h,W ) of Riemannian metrics h and vector fields W on

the manifold M . From this perspective, the characterisation of Section 2 is par-

layed into a breviloquent geometric description of Einstein metrics. Explicitly,

the Randers metric F with navigation data (h,W ) is Einstein if and only if h is

Einstein and W is an infinitesimal homothety of h. (In particular, these h and W

solve the system of partial differential equations in Section 2.) The transparent

nature of the navigation description immediately yields a Schur lemma for the

Ricci scalar, together with a certain rigidity in three dimensions.

The variety of examples in the article may be categorised as follows.

• Metrics in their defining form: Sections 1.1.1, 1.2.1, 2.1.1, 2.3.2, 3.1.2

• Solutions to Zermelo navigation: Sections 1.1.1, 3.1.1, 3.1.2, 3.2.3

• Of constant flag curvature: Sections 1.2.1, 2.3.2, 3.1.2, 3.2.3, 4.1.1

• Einstein but not of const. flag curvature: Sections 4.1.1, 4.1.2, 4.2.3, 4.3.3

• Ricci-flat Berwald: Sections 3.1.1 (locally Minkowski), 4.3.3 (not loc. Mink.)

In Section 4, the emphasis is on Einstein metrics of nonconstant flag curvature,

especially those on compact boundaryless manifolds. The spaces studied include

Finsler surfaces with Ricci scalar a function on M alone (the scalar is a pri-

ori a function on the tangent bundle), as well as non-Riemannian Ricci-constant

solutions of Zermelo navigation on Cartesian products and Kähler–Einstein man-

ifolds. Section 5 discusses open problems.

1. Flag and Ricci Curvatures

1.1. Finsler metrics

1.1.1. Definition and examples. A Finsler metric is a continuous function

F : TM → [0,∞)

with the following properties:
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(i) Regularity : F is smooth on uniformized in favor of : TM r 0 := {(x, y) ∈
TM : y 6= 0}.

(ii) Positive homogeneity : F (x, cy) = cF (x, y) for all c > 0.

(iii) Strong convexity : the fundamental tensor

gij(x, y) :=
(

1
2F 2

)
yiyj

is positive definite for all (x, y) ∈ TM r 0. Here the subscript yi denotes

partial differentiation by yi.

Strong convexity implies that {y ∈ TxM : F (x, y) 6 1} is a strictly convex set,

but not vice versa; see [Bao et al. 2000].

The function F for a Riemannian metric a is F (x, y) :=
√

aij(x)yiyj . In

this case, one finds that gij := ( 1
2F 2)yiyj is simply aij . Thus the fundamental

tensor for general Finsler metrics may be thought of as a direction-dependent

Riemannian metric. This viewpoint is treated more carefully in Section 1.1.2.

Many calculations in Finsler geometry are simplified, or magically facilitated,

by Euler’s theorem for homogeneous functions:

Let φ be a real valued function on R
n, differentiable at all y 6= 0. The

following two statements are equivalent.

• φ(cy) = crφ(y) for all c > 0 (positive homogeneity of degree r).

• yiφyi = rφ; that is, the radial derivative of φ is r times φ.

(See, for example, [Bao et al. 2000] for a proof.) This theorem, for instance, lets

us invert the defining relation of the fundamental tensor given above to get

F 2(x, y) = gij(x, y)yiyj .

Consequently, strong convexity implies that F must be positive at all y 6= 0. The

converse, however, is false; positivity does not in general imply strong convexity.

This is because while gij(x, y)yiyj = F 2(x, y) may be positive for y 6= 0, the

quadratic gij(x, y) ỹiỹj could still be 6 0 for some nonzero ỹ.

Here are some 2-dimensional examples. Being in two dimensions, we revert

to the common notation of denoting position coordinates by x, y rather than x1,

x2, and components of tangent vectors by u, v rather than y1, y2.

Example (Quartic metric). Let

F (x, y;u, v) := (u4 + v4)1/4.

Positivity is manifest. However, det(gij) = 3u2v2/(u4 + v4) along the tangent

vector u∂x + v∂y based at the point (x, y). Thus (gij) fails to be a positive

definite matrix when u or v vanishes. For instance, if u = 0 but v 6= 0, we have

gij(x, y; 0, v) =
(

1
0

0
0

)
, which is not positive definite. It is shown in [Bao et al.

2000] that F can be regularised to restore strong convexity. ♦
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We shall see in Section 2.1.2 that, surprisingly, positivity of F does imply strong

convexity for Randers metrics.

Next, consider a surface S given by the graph of a smooth function f(x, y).

Parametrise S via (x, y) 7→ (x, y, f). By a slight abuse of notation, set ∂x :=

(1, 0, fx) and ∂y := (0, 1, fy), and denote the natural dual of this basis by dx, dy.

The Euclidean metric of R
3 induces a Riemannian metric on S:

h :=
(
1+ f2

x

)
dx⊗ dx+ fxfy (dx⊗ dy + dy⊗ dx)+

(
1+ f2

y

)
dy⊗ dy.

If Y := u∂x + v∂y is an arbitrary tangent vector on S, we have

|Y |2 := h(Y, Y ) = u2 + v2 +(ufx + vfy)2.

We note for later use that the contravariant description of df = fx dx + fy dy is

the vector field

(df)] =
1

1+ f2
x + f2

y

(fx∂x + fy ∂y), with |(df)]|2 =
f2

x + f2
y

1+ f2
x + f2

y

.

Example (Metric from Zermelo navigation). If we assume that gravity

acts perpendicular to S, a person’s weight does not affect his motion along the

surface. Now introduce a wind W = W x∂x + W y∂y blowing tangentially to S.

The norm function F that measures travel time on S can be derived using a

procedure (Section 3.1) due to Zermelo and generalised by Shen. With

|W |2 = (W x)2 +(W y)2 +(W xfx +W yfy)2,

h(W,Y ) = uW x + vW y +(ufx + vfy)(W xfx +W yfy),

and λ := 1− |W |2, the formula for F reads

F (x, y;u, v) =

√
h(W,Y )2 + |Y |2λ

λ
− h(W,Y )

λ
.

This Zermelo navigation metric F is strongly convex if and only if |W | < 1. The

unit circle of h in each tangent plane represents the destinations reachable in

one unit of time when there is no wind. It will be explained (Section 3.1) that

the effect of the wind is to take this unit circle and translate it rigidly by the

amount W . The resulting figure is off-centered and represents the locus of unit

time destinations under windy conditions, namely the indicatrix of F . Since the

latter lacks central symmetry, F could not possibly be Riemannian; the above

formula makes explicit this fact. ♦

Example (Matsumoto’s slope-of-a-mountain metric). Take the same

surface S, but without the wind. View S as the slope of a mountain resting

on level ground, with gravity pointing down instead of perpendicular to S. A

person who can walk with speed c on level ground navigates this hillside S along

a path that makes an angle θ with the steepest downhill direction. The accel-

eration of gravity (of magnitude g), being perpendicular to level ground, has a
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component of magnitude g‖ = g
√

(f2
x + f2

y )/(1+ f2
x + f2

y ) along the steepest

downhill direction. The hiker then experiences an acceleration g‖ cos θ along her

path, and compensates against the g‖ sin θ which tries to drag her off-course. Un-

der suitable assumptions about frictional forces, the acceleration g‖ cos θ rapidly

effects a terminal addition 1
2g‖ cos θ to the pace c generated by her leg muscles.

In other words, her speed is effectively of the form c + a cos θ, where a is inde-

pendent of θ. Thus the locus of unit time destinations is a limaçon. The unit

circle of h, instead of undergoing a rigid translation as in Zermelo navigation,

has now experienced a direction-dependent deformation. The norm function F

with this limaçon as indicatrix measures travel time on S. It was worked out by

Matsumoto, after being inspired by a letter from P. Finsler, and reads

|Y |2
c |Y | − (g/2)(ufx + vfy)

;

see [Matsumoto 1989] and [Antonelli et al. 1993].

For simplicity, specialise to the case c = g/2. Multiplication by c then converts

this norm function to

F (x, y;u, v) :=
|Y |2

|Y | − (ufx + vfy)
= |Y |ϕ

(
(df)(Y )

|Y |
)
,

with ϕ(s) := 1/(1− s). We see from [Shen 2004] in this volume that metrics

of the type αϕ(β/α) are strongly convex whenever the function ϕ(s) satisfies

ϕ(s) > 0, ϕ(s)−sϕ′(s) > 0, and ϕ′′(s) > 0. For the ϕ at hand, this is equivalent

to (df)(Y ) < 1
2 |Y |, which is in turn equivalent to |(df)]| < 1

2 . (In one direction,

set Y = (df)]; the converse follows from a Cauchy–Schwarz inequality.) Using

the formula for |(df)]|2 presented earlier, this criterion produces

f2
x + f2

y < 1
3 .

Whenever this holds, F defines a Finsler metric. Such is the case for f(x, y) := 1
2x

but not for f(x, y) := x, even though the surface S is an inclined plane in

both instances. As for the elliptic paraboloid given by the graph of f(x, y) :=

100−x2−y2, we have strong convexity only in a circular vicinity of the hilltop. ♦

The functions F in these two examples are not absolutely homogeneous (and

therefore non-Riemannian) because at any given juncture, the speed with which

one could move forward typically depends on the direction of travel. Our dis-

cussion also raises a tantalising question: if the wind were blowing on the slope

of a mountain, would the indicatrix of the resulting F be a rigid translate of the

limaçon?

1.1.2. The pulled-back bundle and the fundamental tensor. The matrix gij

involved in the definition of strong convexity is known as the fundamental tensor,

and has a geometric meaning, which is most transparent through the use of the

pulled-back bundle introduced by Chern.
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TM r 0 M

(x,y)

TxM(π∗TM)(x,y)

π
x

Figure 1. The pulled-back tangent bundle π∗TM is a vector bundle over the

“parameter space” TM r 0. The fiber over any point (x, y) is a copy of TxM .

The dotted part is the deleted zero section.

The gij depend on both x and y ∈ TxM . Over each fixed point (x, y) ∈
TM r 0, the bundle π∗TM provides a copy of TxM . Endow this TxM with the

symmetric bilinear form

g := gij(x, y) dxi ⊗ dxj .

Since the Finsler metric is strongly convex, this bilinear form is positive definite,

which renders it an inner product. Thus, every Finsler metric endows the fibres

of the pulled-back bundle with a Riemannian metric. Two facts stand out:

(1) The fundamental tensor gij(x, y) is invariant under y 7→ λy for all λ >

0. This invariance directly follows from the hypothesis that F is positively

homogeneous of degree 1 in y. Thus, over the points {(x, λy) : λ > 0} in

the parameter space TM r 0, not only the fibres are identical, but the inner

products are too.

(2) That gij arises as the y-Hessian of 1
2F 2 imposes a stringent symmetry con-

dition. Namely, (gij)yk must be totally symmetric in its three indices i, j, k.

For this reason, not every Riemannian metric on the fibres of the pulled-back

bundle comes from a Finsler metric.

Property (1) is a redundancy that will be given a geometrical interpretation

below. We will also explain why the symmetry criterion (2) is an integrability

condition in disguise.

Let’s switch our perspective from the pulled-back bundle π∗TM to the tangent

bundle TM itself. Recall that a Riemannian metric on M is a smooth assignment

of inner products, one for each tangent space TxM . By contrast, a Finsler metric

F gives rise to a family of inner products gij(x, y) dxi ⊗ dxj on each tangent

space TxM . Item (1) above means that there is exactly one inner product for

each direction. This sphere’s worth of inner products on each tangent space has

to satisfy the symmetry condition described in (2).

The converse is also true. Suppose we are given a family of inner products

gij(x, y) on each tangent space TxM , smoothly dependent on x and nonzero
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y ∈ TxM , invariant under positive rescaling of y (that is, maps y 7→ λy, for

λ > 0) and such that (gij)yk is totally symmetric in i, j, and k. We construct a

Finsler function as follows:

F (x, y) :=
√

gpq(x, y)ypyq.

This F is smooth on the entire slit tangent bundle TM r 0. It is positively ho-

mogeneous of degree 1 in y because gpq(x, y) is invariant under positive rescaling

in y. Also, with the total symmetry of (gij)yk , we have

(F 2)yiyj = (gpq ypyq)yiyj =
(
(gpq)yi ypyq + giq yq + gpiy

p
)
yj

= (giq)yj yq + gij +(gpi)yj yp + gji = 2gij .

Thus F is strongly convex because, for each nonzero y, the matrix gij(x, y) is

positive definite.

In the calculation above, the quantity (gpq)yi yp on the first line and the terms

(giq)yj yq and (gpi)yj yp on the second line are all zero because of the hypothesis

that (grs)yt is totally symmetric in r, s, t. For instance,

(gpq)yi yp = (giq)yp yp = 0,

where the last equality follows from Euler’s theorem, and the assumption that

giq(x, y) is positive homogeneous of degree 0 in y. The symmetry hypothesis

therefore plays the role of an integrability condition.

We conclude that the concept of a Finsler metric on M is equivalent to an

assignment of a sphere’s worth of inner products gij(x, y) on each tangent space

TxM , such that (gij)yk is totally symmetric in i, j, k and appropriate smooth-

ness holds. Similarly , a Finsler metric on M is also equivalent to a smooth

Riemannian metric on the fibres of the pulled-back bundle π∗TM , satisfying the

above redundancy (1) and integrability condition (2).

The pulled-back bundle π∗TM and its natural dual π∗T ∗M each contains an

important global section. They are

` :=
yi

F (x, y)
∂xi ,

the distinguished section, and

ω := Fyi dxi,

the Hilbert form. As another application of the integrability condition, we dif-

ferentiate the statement F 2 = gij yiyj to find

Fyi =
gyi

F
= gij `j =: `i, with gyi := gij yj .

This readily gives

`i `i = 1 and `i;j = gij − `i`j ,

where the semicolon abbreviates the differential operator F∂yi .
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1.1.3. Geodesic spray coefficients and the Chern connection. We have seen

in Section 1.1.1 that if F is the Finsler function of a Riemannian metric, its

fundamental tensor has no y-dependence. The converse follows from the fact

that gij yiyj reconstructs F 2 for us, thanks to Euler’s theorem. Thus, the y

derivative of gij measures the extent to which F fails to be Riemannian. More

formally, we define the Cartan tensor

Aijk := 1
2F (gij)yk = 1

4F (F 2)yiyjyk ,

which is totally symmetric in all its indices. As an illustration of Euler’s theorem,

note that since g is homogeneous of degree zero in y, we have yiAijk = 0.

Besides the Cartan tensor, we can also associate to g its formal Christoffel

symbols of the second kind ,

γi
jk := 1

2gis(gsj,xk − gjk,xs + gks,xj ),

and the geodesic spray coefficients

Gi := 1
2 γi

jk yjyk.

The latter are so named because the (constant speed) geodesics of F are the

solutions of the differential equation ẍi + ẋj ẋk γi
jk(x, ẋ) = 0, which may be

abbreviated as ẍi +2Gi(x, ẋ) = 0.

Caution: the Gi defined here is equal to half the Gi in [Bao et al. 2000].

Covariant differentiation of local sections of the pulled-back bundle π∗TM

requires a connection, for which there are many name-brand ones. All of them

have their genesis in the nonlinear connection

N i
j := (Gi)yj .

This N i
j is a connection in the Ehresmann sense, because it specifies a distribu-

tion of horizontal vectors on the manifold TM r 0, with basis

δ

δxj
:= ∂xj −N i

j ∂yi .

As another application of Euler’s theorem, note that N i
j yj = 2Gi, since Gi

is homogeneous of degree 2 in y. We also digress to observe that the Finsler

function F is constant along such horizontal vector fields:

F|j :=
δ

δxj
F = 0.

The key lies in the following sketch of a computation:

N i
j `i = (Gi `i)yj − 1

F
Gi `i;j = Fxj ,

in which establishing (`iGi)yj = 1
2 (Fxj +yk Fxkyj ) and its companion statement

−(1/F )Gi `i;j = 1
2 (Fxj − yk Fxkyj ) takes up the bulk of the work.
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Using A, γ, and N , we can now state the formula of the Chern connection in

natural coordinates [Bao et al. 2000]:

Γi
jk = γi

jk −
1

F
gis(AsjtN

t
k −AjktN

t
s +AkstN

t
j),

with associated connection 1-forms ωj
i := Γi

jk dxk. These ωj
i represent the

unique, torsion-free (Γi
kj = Γi

jk) connection which is almost g-compatible:

dgij − gkj ωi
k − gik ωj

k =
2

F
Aijk (dyk +Nk

ldxl).

As yet another application of Euler’s Theorem, we shall show that the nonlinear

connection N can be recovered from the Chern connection Γ as follows:

Γi
jk yk = N i

j .

A crucial ingredient in the derivation is (γi
st)yj ysyt = 2(gip)yj Gp. Indeed,

(γi
st)yj ysyt = (gipγpst)yj ysyt

= (gip)yj γpsty
syt + gip

((
1

F
Apsj

)
xt
−

(
1

F
Astj

)
xp

+
(

1

F
Atpj

)
xs

)
ysyt

= 2(gip)yj Gp +0.

Whence, with the help of Aijk yk = 0 and N t
k yk = 2Gt, we have

Γi
jk yk = γi

jk yk − 2

F
gisAstj Gt = γi

jk yk − gis(gst)yj Gt

= γi
jk yk +(gis)yj gstG

t

= γi
jk yk + 1

2 (γi
st)yj ysyt

= ( 1
2γi

sty
syt)yj = (Gi)yj = N i

j ,

as claimed.

It is now possible to covariantly differentiate sections of π∗TM (and its tensor

products) along the horizontal vector fields δ/δxk of the manifold TM r 0. For

example,

T i
j|k :=

δ

δxk
T i

j +T s
j Γi

sk −T i
sΓs

jk.

If F arises from a Riemannian metric a, then A = 1
2F (aij)yk = 0 because a has

no y-dependence. In that case, Γ is given by the Christoffel symbols of a. If

the tensor T also has no y-dependence, T i
j|k reduces to the familiar covariant

derivative in Riemannian geometry.

Let’s return to the Finsler setting. Using the symmetry Γi
sk = Γi

ks and the

recovery property ys Γi
ks = N i

k, we have

yi
|k =

δ

δxk
yi + ysΓi

ks = 0, hence `i
|k = 0.
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Also, the covariant derivative of the Cartan tensor A along the special horizontal

vector field `s δ/δxs gives the Landsberg tensor, which makes frequent appear-

ances in Finsler geometry:

Ȧijk := Aijk|s `s.

Note that Ȧ is totally symmetric, and its contraction with y vanishes.

The Chern connection gives rise to two curvature tensors:

Rj
i
kl =

δ

δxk
Γi

jl −
δ

δxl
Γi

jk +Γi
sk Γs

jl −Γi
sl Γ

s
jk,

Pj
i
kl = −F

∂

∂yl
Γi

jk (note the symmetry: Pj
i
kl = Pk

i
jl),

both invariant under positive rescaling in y. In the case of Riemannian metrics,

Γ reduces to the standard Levi-Civita (Christoffel) connection, which is indepen-

dent of y; hence δ
δxΓ becomes ∂

∂xΓ. The curvature R is then the usual Riemann

tensor, and P is zero.

In Finsler geometry, there are many Bianchi identities. A leisurely account of

their derivation can be found in [Bao et al. 2000].

1.2. Flag curvature. This is a generalisation of the sectional curvature of

Riemannian geometry. Alternatively, flag curvatures can be treated as Jacobi

endomorphisms [Foulon 2002]. The flag curvature has also led to a pinching

(sphere) theorem for Finsler metrics; see [Rademacher 2004] in this volume.

1.2.1. The flag curvature versus the sectional curvature. Installing a flag on a

Finsler manifold (M,F ) implies choosing

◦ a basepoint x ∈ M at which the flag will be planted,

◦ a flagpole given by a nonzero y ∈ TxM , and

◦ an edge V ∈ TxM transverse to the flagpole.

See Figure 2. Note that the flagpole y 6= 0 singles out an inner product

g
y

:= gij(x, y) dxi ⊗ dxj

from among the sphere’s worth of inner products described in Section 1.1.2. This

g
y

allows us to measure the angle between V and y. It also enables us to calculate

the area of the parallelogram formed by V and ` := y/F (x, y).

The flag curvature is defined as

K(x, y, V ) :=
V i (yj Rjikly

l)V k

g
y
(y, y)g

y
(V, V )− g

y
(y, V )2

,

where the index i on Rj
i
kl has been lowered by g

y
. When the Finsler function

F comes from a Riemannian metric, g
y

is simply the Riemannian metric, Rjikl

is the usual Riemann tensor, and K(x, y, V ) reduces to the familiar sectional

curvature of the 2-plane spanned by {y, V }.
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Finsler
manifold M

transverse
edge V

basepoint x
flagpole y

`

flag

TxM

Figure 2. A typical flag, based at the point x on a Finsler manifold M . The

flagpole is y, and the “cloth” part of the flag is `∧V . The entire flag lies in the

tangent space TxM .

Since g
y
(y, y) = F 2(x, y), the flag curvature can be reexpressed as

K(x, y, V ) =
V i (`j Rjikl `

l)V k

g
y
(V, V )− g

y
(`, V )2

.

The denominator here is the area-squared of the parallelogram formed by V and

the g
y

unit vector ` = y/F .

The tensor Rik := `j Rjikl `
l is called the predecessor of the flag curvature. It

is proved in [Bao et al. 2000] that Rki = Rik.

We also note that `iRik = 0 = Rik `k. The second equality is immediate

because Rj
i
kl is manifestly skew-symmetric (Section 1.1.3) in k and l. The first

equality follows from the symmetry of Rik.

One can use yiRik = 0 = Rik yk to show that if {y, V1} and {y, V2} have the

same span, then K(x, y, V1) = K(x, y, V2). In other words, K depends on x, y,

and span{y, V }.
A Finsler metric is of scalar curvature if K(x, y, V ) does not depend on V ,

that is, if Rik V iV k = K(x, y)(gik − `i`k)V iV k. This says that two symmetric

bilinear forms generate the same quadratic form. A polarisation identity then

tells us that the bilinear forms in question must be equal. So, Finsler metrics of

scalar curvature are described by

Rik = K(x, y)(gik − `i`k),

where `i = Fyi = gyi/F (see Section 1.1.2).
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Example (Numata metrics). Numata [1978] has shown that the Finsler

metrics

F (x, y) =
√

qij(y)yiyj + bi(x)yi,

where q is positive definite and b is closed, are of scalar curvature. Note that the

first term of F is a locally Minkowski norm, Riemannian only when the qij are

constant.

Consider the case that qij = δij and b = df , where f is a smooth function on

R
n. If necessary, scale f so that the open set M :=

{
x ∈ R

n :
√

δijfxifxj < 1
}

is nonempty. Then a straightforward calculation reveals that F is of scalar

curvature on M with

K(x, y) =
3

4

1

F 4
(fxixj yiyj)2 − 1

2

1

F 3
(fxixjxkyiyjyk).

The computation in [Bao et al. 2000] utilises the spray curvature and Berwald’s

formula, to be discussed in Section 1.2.3. The Numata metrics are projectively

flat. For Finsler metrics of (nonconstant) scalar curvature but not projectively

flat, see [Shen 2004] in this volume. ♦
The flag curvature is an important geometric invariant because its sign governs

the growth of Jacobi fields, which in turn gives qualitative information about

short geodesic rays with close initial data. See [Bao et al. 2000]. To bring

out the essential difference between the Finslerian and Riemannian settings, we

consider the case of surfaces. There, once the basepoint x and the flagpole y are

chosen, span{y, V } is equal to the tangent plane TxM for all transverse edges V .

Thus every Finsler surface is of scalar curvature K(x, y).

Remark. It is evident from the Numata metrics that the sign of K(x, y) can

depend on the direction of the flagpole y ∈ TxM . By contrast, when the surface

is Riemannian, this K(x, y) reduces to the usual Gaussian curvature K(x), which

does not depend on y. The implication of this difference is profound when we

survey the immediate vicinity of any fixed x. If the landscape is Riemannian,

the sign of K(x) creates only one type of geometry near x: hyperbolic, flat,

or spherical. If the landscape is Finslerian, the sign of K(x, y) can depend on

the direction y of our line of sight, making it possible to encounter all three

geometries during the survey!

If K is a constant (namely, it depends neither on V , nor y, nor x), the Finsler

metric F is said to be of constant flag curvature. The tensorial criterion is

Rik = K (gik − `i`k), with K constant. For later purposes, we rewrite it as

F 2Ri
k = K (F 2 δi

k − yi gyk),

where gyk := gksys (see Section 1.1.2).

Example (Bryant’s metrics). Bryant discovered an interesting 2-parameter

family of projectively flat Finsler metrics on the sphere S2, with constant flag
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curvature K = 1. Here we single out one metric from this family for presentation;

see [Bryant 1997] for the geometry behind the construction.

Parametrise the hemispheres of S2 via the map (x, y) 7→
(
x, y, s

√
1−x2−y2

)
,

with s = ±1. Denote tangent vectors by (u, v) = u∂x + v∂y ∈ T(x,y)S
2, and

introduce the following abbreviations:

r2 := x2 + y2, P 2 := 1− r2, B := 2r2 − 1;

R2 := u2 + v2, C := xu+ yv;

a := (1+B2)
(
(P 2R2 +C2)+B(P 2R2 −C2)

)
+8(1+B)C2P 4;

b := (1+B2)
(
(P 2R2 −C2)−B (P 2R2 +C2)

)
− 8(0+B)C2P 2.

We emphasise that in b, the very last term contains C2P 2 and not C2P 4.

The formula for the Finsler function is then

F (x, y;u, v) =
1

1+B2

(
1

P

√
a+

√
a2 + b2

2
+2C

)
.

Note that a is a quadratic and a2 + b2 is a quartic. All the geodesics of F

are arcs of great circles with Finslerian length 2π. As a comparison, the corre-

sponding Finsler function for the standard Riemannian metric on S2 is simply

(1/P )
√

P 2R2 +C2. For additional discussions, see [Bao et al. 2000; Sabau 2003;

Shen 2004]. ♦

In dimension greater than two, a Schur lemma says that if K does not depend

on V and y, it must be constant. This was proved in [del Riego 1973], then in

[Matsumoto 1986]; see also [Berwald 1947].

In two dimensions, K can be a function of position x only without being

constant. All Riemannian surfaces with nonconstant Gaussian curvature belong

to this category; for non-Riemannian examples, see Section 4.1.1.

1.2.2. Rapscák’s identity. We now prepare to relate the flag curvature to one of

Berwald’s spray curvatures. Suppose F and F are two arbitrary Finsler metrics,

with geodesic spray coefficients Gi and Gi. We think of F as a “background”

metric, and use a colon to denote horizontal covariant differentiation with respect

to the Chern connection of F . (Note that F:j vanishes by Section 1.1.3, but not

F:j .) Finally, let gij denote the inverse of the fundamental tensor of F , and let

the subscript 0 abbreviate contraction with y: for instance, F:0 = F:j yj .

Then Rapcsák’s identity [Rapcsák 1961] reads

Gi = Gi + yi
(

1

2F
F:0

)
+ 1

2Fgij
(
(F:0)yj − 2F:j

)
.

Since Finsler metrics generally involve square roots, another form of Rapcsák’s

identity is more user-friendly:

Gi = Gi + 1
4 gij

(
(F 2

:0)yj − 2F 2
:j

)
.
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The derivation of the identity involves three key steps, in which the basic fact

FFyi = gij yj will be used repeatedly without mention.

We first verify that 2Gi = (FFxk)yi yk −FFxi .

2Gi = γijk yjyk = 1
2 (gij,xk − gjk,xi + gki,xj )yjyk

= (gij yj)xk yk − 1
2 (gjk yjyk)xi = ( 1

2F 2)yixk yk − ( 1
2F 2)xi , (†)

where grs := ( 1
2F 2)yrys , and the last displayed equality follows from two appli-

cations of Euler’s theorem.

Next, observe that FFxr = FF:r +N j
r

gyj , where gyj := gjsys and N is the

nonlinear connection of F . Indeed, horizontal differentiation with respect to F
is given by ( · · · ):r = ( · · · )xr −N j

r ( · · · )yj . Thus

FFxr = F (F:r +N j
r Fyj ) = FF:r +N j

r (gjs ys). (‡)

Here we have chosen to reexpress Fxr using the nonlinear connection of F rather

than that of F , thereby opening the door for G to enter the picture.

Finally, we substitute equality (‡) into the purpose of (†), getting

2Gi = Fyi F:k yk +F (F:k)yi yk−FF:i+(N j
k)yi

gyj yk +N j
k(gyj)yi yk−N j

i
gyj .

Note that (F:k)yi yk = (F:0)yi −F:i. Also, since N j
k = (Gj)yk , Euler’s theorem

gives

(N j
k)yi

gyj yk = (Gj)yi
gyj = N j

i
gyj ,

N j
k (gyj)yi yk = (2Gj)

(
( 1
2F 2)yjysyi ys + gjs δs

i

)
= (2Gj)(0+ gji).

These two statements constitute the heart of the entire derivation. After using

them to simplify the above expression for 2Gi, and relabelling i as r, we have

2Gr = 2Gj gjr +
1

F
gyr F:0 +F

(
(F:0)yr − 2F:r

)
.

Contracting with 1
2 gir yields Rapcsák’s identity in its original form. The user-

friendly version follows without much trouble.

1.2.3. Spray curvatures and Berwald’s formulae. The definition of the flag

curvature through a connection (for example, Chern’s) has theoretical appeal,

but is not practical if one wants to compute it. Even for relatively simple Finsler

metrics, the machine computation of any name-brand connection is already a

daunting and often insurmountable task, let alone the curvature. This is where

Berwald’s spray curvatures come to the rescue. They originate from his study of

systems of coupled second order differential equations, and are defined entirely

in terms of the geodesic spray coefficients [Berwald 1929].

Ki
k := 2(Gi)xk − (Gi)yj (Gj)yk − yj(Gi)xjyk +2Gj(Gi)yjyk ,

Gj
i
kl := (Gi)yjykyl .
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These spray curvatures are related to the predecessor of the flag curvature, and

to the P curvature of Chern’s, in the following manner:

F 2Ri
k = yj Rj

i
kly

l = Ki
k,

1

F
Pj

i
kl = −Gj

i
kl +(Ȧi

jk)yl .

The statement about P follows from the fact that the Berwald connection (G)yy

can be obtained from the Chern connection Γ by adding Ȧ. This, together with

a companion formula, is discussed in the reference [Bao et al. 2000] (whose Gi is

twice the Gi in the present article). Explicitly,

Ȧi
jk = (Gi)yjyk −Γi

jk and Ȧijk = − 1
2

gys(G
s)yiyjyk ,

where gys := gsty
t. The key that helps establish the first claim is the realisation

that Gi = 1
2 Γi

pq ypyq, which holds because contracting A with y gives zero.

When calculating the y-Hessian of Gi, we need the latter part of Section 1.1.3

and the Bianchi identity `j Pj
i
kl = −Ȧi

kl. As for the second claim, here is a

sketch of the derivation:

◦ Start with Ȧs
jk = (Gs)yjyk − Γs

jk, apply ∂yi , contract with gys, and use

P = −F ∂yΓ (Section 1.1.3). We get gys (Ȧs
jk)yi = gys (Gs)yiyjyk + `sPjski.

◦ With the two Bianchi identities (3.4.8) and (3.4.9) of [Bao et al. 2000], it can

be shown that `sPjski = −`sPsjki = Ȧjki.

◦ The term gys (Ȧs
jk)yi on the left is equal to `s (Ȧs

jk);i, which in turn =

(`s Ȧs
jk);i − `s;i Ȧ

s
jk = 0− (gsi − `i`s)Ȧ

s
jk = −Ȧijk.

◦ These manoeuvres produce Ȧijk = − 1
2

gys(G
s)yiyjyk as stated.

We are now in a position to express the Chern curvatures in terms of the

Berwald spray curvatures. Note that applying ∂yl to Ȧi
jk = (Gi)yjyk − Γi

jk

immediately yields the statement involving P . The derivation of the formula

F 2Ri
k = Ki

k makes frequent use of the relationship

yk Γi
jk = N i

j , (∗)

from Section 1.1.3. We first demonstrate that

yr δT

δxs
=

δ

δxs
(yr T )+Nr

sT. (∗∗)

This arises from 0 = yr
|s = δ

δxs yr + yk Γr
ks; see Section 1.1.3. Property (∗)

gives yk Γr
ks = yk Γr

sk = Nr
s. Thus δ

δxs yr = −Nr
s, and (∗∗) follows from the

product rule.

Using (∗∗) and (∗), we ascertain that

F 2Ri
k = yj

(
δ

δxk
N i

j −
δ

δxj
N i

k

)
. (∗∗∗)

Indeed, F 2Ri
k is obtained by contracting with yjyl the explicit formula for Rj

i
kl

(Section 1.1.3). After several uses of (∗), we get the intermediate expression
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yj(yl δxkΓi
jl)− yl(yj δxlΓi

jk) + yj Γi
hk Nh

j −N i
hNh

k. Now apply (∗∗) to the

first two sets of parentheses, and use (∗) again. The result simplifies to (∗∗∗).
Finally, recall from Section 1.1.3 that N i

j := (Gi)yj , so Euler’s theorem gives

yjN i
j = 2Gi. Consequently,

yj δ

δxk
N i

j =
δ

δxk
(2Gi)+N i

j N j
k by (∗∗)

= (2Gi)xk −N j
k (2Gi)yj +N i

j N j
k = (2Gi)xk − (Gi)yj (Gj)yk ,

−yj δ

δxj
N i

k = −yj(N i
k)xj +(yjNh

j)(N
i
k)yh = −yj(Gi)ykxj +2Gj(Gi)ykyj .

Summing these two conclusions gives Berwald’s formula for K i
k. (For ease of

exposition, we shall refer to K i
k simply as the spray curvature.)

We now return to the setting of two arbitrary Finsler metrics F and F , as

discussed in the previous subsection. Denote their respective spray curvatures

by Ki
k and Ki

k. According to Rapcsák’s identity, the geodesic coefficients of F

and F are related by Gi = Gi +ζi. Inspired by Shibata–Kitayama, we now show

that substituting this decomposition into Berwald’s formula for K i
k allows us to

rewrite the latter in a split and covariantised form

Ki
k = Ki

k +2(ζi):k − (ζi)yj (ζj)yk − yj(ζi
:j)yk +2ζj(ζi)yjyk +3ζjȦi

jk,

where the colon refers to horizontal covariant differentiation with respect to the

Chern connection of F , and Ȧ is associated to F as well.

Remarks. 1. Had we used the Berwald connection (which equals the Chern

connection plus Ȧ), that 3ζȦ term in the above formula would have been

absorbed away.

2. If the background metric were Riemannian, F 2 = aij(x)yiyj , then Aijk =
1
2F(aij)yk would be zero because a is independent of y. Hence Ȧ = 0 as well.

Since A = 0, the Chern connection is given by the usual Christoffel sym-

bols of a. Also, the Chern and Berwald connections coincide for Riemannian

metrics because they differ merely by Ȧ.

Here is a sketch of the derivation of the split and covariantised formula. First

we replace G by G + ζ in Berwald’s original formula, obtaining

Ki
k = Ki

k +2(ζi)xk − (ζi)yj (ζj)yk − yj(ζi)xjyk +2ζj(ζi)yjyk

−N i
j(ζ

j)yk − (ζi)yjN j
k +2Gj(ζi)yjyk +2ζj(Gi)yjyk . (†)

Next, let Γ̃ denote the Chern connection of F . Then horizontal covariant

differentiation of ζ is

ζi
:j =

(
(ζi)xj −N l

j(ζ
i)yl

)
+ ζlΓ̃i

lj ,
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from which we solve for (ζ i)xj in terms of ζi
:j . The result is used to replace

(“covariantise”) all the x-derivatives in (†). The outcome reads

Ki
k = Ki

k +2(ζi):k − (ζi)yj (ζj)yk − yj(ζi
:j)yk +2ζj(ζi)yjyk

− 2ζ lΓ̃i
lk +2(ζi)ylN l

k + yj(ζ l)yk Γ̃i
lj + yjζl(Γ̃i

lj)yk

− yj(N l
j)yk(ζi)yl − yjN l

j(ζ
i)ylyk −N i

j(ζ
j)yk − (ζi)yjN j

k

+2Gj(ζi)yjyk +2ζj(Gi)yjyk .

It remains to check that the last ten terms on the above right-hand side

actually coalesce into the single term 3ζ jȦi
jk. To that end, homogeneity and

Euler’s theorem enable us to make the substitutions

yj(N l
j)yk = (N l

j yj)yk −N l
k = 2(Gl)yk −N l

k = N l
k,

yj(Γ̃i
lj)yk = (Γ̃i

lj yj)yk − Γ̃i
lk = (N i

l)yk − Γ̃i
lk,

yj Γ̃i
lj = yj Γ̃i

jl = N i
j ,

yjN l
j = 2Gl.

After some cancellations, those final ten terms consolidate into

3ζjyl(Γ̃i
jl)yk = 3ζj

(
(Gi)yjyk − Γ̃i

jk

)
= 3ζjȦi

jk.

1.3. Ricci curvature. The importance of Ricci curvatures (defined below, in

Section 1.3.1) can be seen from the following Bonnet–Myers theorem:

Let (M,F ) be a forward-complete connected Finsler manifold of dimension n.

Suppose its Ricci curvature has the uniform positive lower bound

Ric > (n− 1)λ > 0;

equivalently , yiyj Ricij(x, y) > (n− 1)λF 2(x, y), with λ > 0. Then:

(i) Every geodesic of length at least π/
√

λ contains conjugate points.

(ii) The diameter of M is at most π/
√

λ.

(iii) M is in fact compact .

(iv) The fundamental group π(M,x) is finite.

The Riemannian version of this result is one of the most useful comparison

theorems in differential geometry; see [Cheeger–Ebin 1975]. It was first extended

to Finsler manifolds in [Auslander 1955]. See [Bao et al. 2000] for a leisurely

exposition and references.

1.3.1. Ricci scalar and Ricci tensor. Our geometric definition of the Ricci cur-

vature begins with K(x, y, V ) = V iRik V k/
(
g

y
(V, V )− g

y
(`, V )2

)
, a formula for

the flag curvature (Section 1.2.1). If, with respect to g
y
, the transverse edge V

has unit length and is orthogonal to the flagpole y, that formula simplifies to

K(x, y, V ) = V iRik V k.
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Using g
y

to measure angles and length, we take any collection of n−1 orthonormal

transverse edges {eν : ν = 1, . . . , n− 1} perpendicular to the flagpole. They

give rise to n− 1 flags whose flag curvatures are K(x, y, eν) = (eν)iRik (eν)k.

The inclusion of en := ` = y/F completes our collection into a g
y

orthonormal

basis B for TxM . Note that K(x, y, eν) is simply Rνν (no sum), the (ν, ν)

component of the tensor Rik with respect to B. Also, as mentioned in Section

1.2.1, `iRik `k = 0. Thus Rnn = 0 with respect to the orthonormal basis B.

Define, geometrically, the Ricci scalar Ric(x, y) as the sum of those n−1 flag

curvatures K(x, y, eν). Then

Ric(x, y) :=

n−1∑

ν=1

Rνν =

n∑

a=1

Raa = Ra
a = Ri

i =
1

F 2
(yj Rj

i
ily

l) =
1

F 2
Ki

i,

where the last equality follows from Section 1.2.3.

Remarks. 1. The indices on R are to be manipulated by the fundamental

tensor, and the latter is the Kronecker delta in the g
y

orthonormal basis B.

Thus each component Raa has the same numerical value as Ra
a (no sum).

2. The fact that Rik is a tensor ensures that its trace is independent of the basis

used to carry that out. Hence Ra
a = Ri

i. Consequently, the definition of the

Ricci scalar is independent of the choice of those n−1 orthonormal transverse

edges.

3. The invariance of Rj
i
kl under positive rescaling in y makes clear that Ric(x, y)

has the same property. It is therefore meant to be a function on the projec-

tivised sphere bundle of (M,F ), but could just as well live on the slit tangent

bundle TM r 0. In any case, being a function justifies the name scalar.

We obtain the Ricci tensor from the Ricci scalar as follows:

Ricij := ( 1
2F 2 Ric)yiyj = 1

2 (yk Rk
s
sl y

l)yiyj .

This definition, due to Akbar-Zadeh, is motivated by the fact that, when F arises

from any Riemannian metric a, the curvature tensor depends on x alone and the

y-Hessian in question reduces to the familiar expression aRi
s
sj , which is aRicij .

The Ricci tensor has the same geometrical content as the Ricci scalar. It can

be shown that

Ric = `i`k Ricik,

Ricik = gik Ric + 3
4 (`i Ric ;k + `k Ric ;i)+ 1

4 (Ric ;i;k +Ric ;k;i),

where the semicolon means F∂y. See [Bao et al. 2000].

1.3.2. Einstein metrics. We defined the Ricci scalar Ric as the sum of n− 1

appropriately chosen flag curvatures. We showed in the last section that this

sum depends only on the position x and the flagpole y, not on the specific n−1

flags with transverse edges orthogonal to y. Thus it is legitimate to think of Ric

as n−1 times the average flag curvature at x in the direction y. In Riemannian
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geometry this is the average sectional curvature among sections spanned by y

and a vector orthogonal to y; so generically the result again depends on both x

and y.

Using the above perspective, it would seem quite remarkable if the said average

does not depend on the flagpole y. Finsler metrics F with such a property,

namely Ric = (n − 1)K(x) for some function K on M , are called Einstein

metrics. This nomenclature is due to Akbar-Zadeh. The reciprocal relationship

(Section 1.3.1) between the Ricci scalar and the Ricci tensor tells us that

Ric = (n− 1)K(x) ⇐⇒ Ricij = (n− 1)K(x)gij .

Going one step further, if that average does not depend on the location x either,

F is said to be Ricci-constant ; in this case, the function K is constant.

Remarks. 1. Every Riemannian surface is Einstein (because Ric equals the

familiar Gaussian curvature K(x)), but not necessarily Ricci-constant. On the

other hand, Finsler surfaces are typically not Einstein, with counterexamples

provided by the Numata metrics in Section 1.2.1.

2. In dimension at least 3, a Schur type lemma ensures that every Riemann-

ian Einstein metric is necessarily Ricci-constant. The proof uses the second

Bianchi identity for the Riemann curvature tensor.

3. It is not known at the moment whether such a Schur lemma holds for Finsler

Einstein metrics in general. However, if we restrict our Finsler metrics to

those of Randers type, then there is indeed a Schur lemma for dimM > 3; see

[Robles 2003] and Section 3.3.1.

A good number of non-Riemannian Einstein metrics and Ricci-constant metrics

are presented in Section 4.

It follows immediately from our geometric definition of Ric that every Finsler

metric of constant flag curvature K must be Einstein with constant Ricci scalar

(n−1)K. As a consistency check, we derive the same fact from the constant flag

curvature criterion in Section 1.2.1, Ri
k = K(δi

k − yi gyk/F 2). Indeed, tracing

on i and k, and noting that yi gyi = yiyj gij = F 2, we get Ric = Ri
i = (n−1)K.

1.3.3. Known rigidity results and topological obstructions. We summarise a few

basic results on Riemannian Einstein manifolds. References for this material

include [Besse 1987; LeBrun–Wang 1999].

In two dimensions: Every 2-dimensional manifold M admits a complete Rie-

mannian metric of constant (Gaussian) curvature, which is therefore Einstein.

The construction involves gluing together manifolds with boundary, and is due

to Thurston; see [Besse 1987] for a summary. If M is compact, there is a vari-

ational approach. In [Berger 1971], existence was established by starting with

any Riemannian metric on M and deforming it conformally to one with constant

curvature. For an exposition of the hard analysis behind this so-called (Melvyn)

Berger problem, see [Aubin 1998].
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In three dimensions: For 3-dimensional Riemannian manifolds (M,h), the

Weyl conformal curvature tensor is automatically zero. This has the immediate

consequence that h is Einstein if and only if it is of constant sectional curvature.

Though such rigidity extends to Finsler metrics of Randers type (Section 3.3.2),

it is not known whether the same holds for arbitrary Finsler metrics. The said

rigidity in the Riemannian setting precludes some topological manifolds from

admitting Einstein metrics. Take, for example, M = S2 × S1. Were M to

admit an Einstein metric h, the latter would perforce be of constant sectional

curvature. Now M is compact, so h is complete and Hopf’s classification of

Riemannian space forms implies that the universal cover of M is either compact

or contractible. This is a contradiction because the universal cover of M is S2×R.

In four dimensions: The basic result is the Hitchin–Thorpe Inequality [Hitchin

1974; Thorpe 1969; LeBrun 1999]: If a smooth compact oriented 4-dimensional

manifold M admits an Einstein metric, then

χ(M) > 3
2 |τ(M)|.

Here χ(M) is the Euler characteristic, τ(M) = 1
3 p1(M) is the signature, and

p1(M) is the first Pontryagin number. The key lies in the following formulae

peculiar to four dimensions [Besse 1987]:

τ(M) =
1

12π2

∫

M

(|W+|2 − |W−|2)
√

h dx,

χ(M) =
1

8π2

∫

M

(|S|2 + |W+|2 + |W−|2)
√

h dx,

where S and W are respectively the scalar curvature part and the Weyl part

of the Riemann curvature tensor of h. In the second formula, the fact that h

is Einstein has already been used to zero out an otherwise negative term from

the integrand. The complex projective space CP 2 has the Fubini–Study metric,

which is Einstein; there, τ = 1 and χ = 3. On the other hand, the connected

sum of 4 or more copies of CP 2 fails the inequality and hence cannot admit any

Einstein metric. Finally, the said inequality is not sufficient. See [LeBrun 1999]

for compact simply connected 4-manifolds which satisfy χ > 3
2 |τ |, but which do

not admit Einstein metrics.

In three dimensions, rigidity equips us with all the tools available to space

forms. In particular, there are well-understood universal models. Without this

structure in dimensions at least 4, the analysis of Einstein metrics becomes con-

siderably more difficult. The saving grace in four dimensions may be attributed

to the fact [Singer–Thorpe 1969] that a 4-manifold is Einstein if and only if its

curvature operator (as a self-adjoint linear operator on 2-forms) commutes with

the Hodge star operator. This is the property which leads us to the Hitchin–

Thorpe Inequality. The tools above do not apply in dimensions greater than

four, where there are no known topological obstructions.
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2. Randers Metrics in Their Defining Form

2.1. Basics

2.1.1. Definition and examples. Randers metrics were introduced by Randers

[1941] in the context of general relativity, and later named by Ingarden [1957].

In the positive definite category, they are Finsler spaces built from

• a Riemannian metric a := aij dxi ⊗ dxj , and

• a 1-form b := bi dxi, with equivalent description b] := bi∂xi ,

both living globally on the smooth n-dimensional manifold M . The Finsler

function of a Randers metric has the simple form F = α +β, where

α(x, y) :=
√

aij(x)yiyj , β(x, y) := bi(x)yi.

Generic Randers metrics are only positively homogeneous. No Randers metric

can satisfy absolute homogeneity F (x, cy) = |c|F (x, y) unless b = 0, in which

case it is Riemannian.

Examples. The Zermelo navigation metric (page 201) is a Randers metric with

defining data

aij =
λhij +WiWj

λ2
and bi =

−Wi

λ
, where λ := 1−h(W,W ).

Matsumoto’s slope-of-a-mountain metric (page 201) is not of Randers type.

This is because it has the form F = α2/(α− β), where α comes from the Rie-

mannian metric on the graph of a certain function f , and β = df .

Of the examples in Section 1.2.1, a subclass of the Numata metrics — those

with constant qij (which serves as our aij) and closed 1-forms b —is Randers,

while Bryant’s metrics are manifestly not Randers. ♦
2.1.2. Criterion for strong convexity. In order that F = α + β : TM → R be a

Finsler function, it must be nonnegative, regular, positively homogeneous, and

strongly convex (Section 1.1.1). Regularity and positive homogeneity can be

established by inspection. Strong convexity concerns the positive definiteness of

the fundamental tensor, which for Randers metrics is

gij =
F

α

(
aij −

ayi

α

ayj

α

)
+

(ayi

α
+ bi

)(ayj

α
+ bj

)
, where ayi := aij yj .

It turns out that the following three criteria are equivalent:

(1) The a-norm ‖b‖ of b is strictly less than 1 on M .

(2) F (x, y) is positive for all y 6= 0.

(3) The fundamental tensor gij(x, y) is positive definite at all y 6= 0.

Proof: (1) =⇒ (2). Suppose ‖b‖ < 1. A Cauchy–Schwarz type argument gives

±β 6 |β| = |biy
i| 6 ‖b‖‖y‖ < 1 ·

√
aij yiyj = α.



RICCI AND FLAG CURVATURES IN FINSLER GEOMETRY 219

In particular, F = α +β is positive.

(2) =⇒ (3). (As stressed in Section 1.1.1, this is false for general Finsler metrics.)

Suppose F = α + β is positive. Then so is Ft := α + tβ, where |t| 6 1. Let gt

denote the fundamental tensor of Ft. Starting with the cited formula for the

fundamental tensor of Randers metrics, a standard matrix identity gives

det(gt) =
(

Ft

α

)n+1

det(a).

For a leisurely treatment, see [Bao et al. 2000]. This tells us that gt has positive

determinant, hence none of its eigenvalues can vanish. These eigenvalues depend

continuously on t. At t = 0, they are all positive because g0 = a is Riemannian.

If any eigenvalue were to become nonpositive, it would have to go through zero

at some t, in which case det(gt) could not possibly remain positive. Thus all

eigenvalues stay positive; in particular, g = g1 is positive definite.

(3) =⇒ (2). As in Section 1.1.1, this follows from F 2(x, y) = gij(x, y)yiyj .

(2) =⇒ (1). Suppose F is positive. Then F (x,−b(x)) = ‖b‖(1 − ‖b‖) forces

‖b‖ < 1 wherever b(x) 6= 0. At points where b(x) vanishes, the said inequality

certainly holds.

2.1.3. Explicit formula of the spray curvature. Let aKi
k denote the spray curva-

ture tensor of the Riemannian metric a. Then the spray curvature tensor K i
k of

the Randers metric F (x, y) := α + β =
√

aij(x)yiyj + bi(x)yi can be expressed

in terms of aKi
j and the quantities

lieij := bi|j + bj|i,

ayi := aij yj ,

curlij := bi|j − bj|i,

ξ := 1
2 lie00 −αθ0,

θj := bi curlij ,

ξ|0 := 1
2 lie00|0 −αθ0|0,

through the use of Berwald’s formula (Section 1.2.3) in a split and covariantised

form. When applying Section 1.2.3, set the background metric F to be the

Riemannian a, with Christoffel symbols aγi
jk, and let | instead of : denote the

corresponding covariant differentiation. We also need the fact, derived in [Bao

et al. 2000], that Gi = aGi + ζi with 2ζi = (yi/F )ξ + α curli0. The resulting

formula for the spray curvature (also independently obtained by Shen) reads

Ki
k = aKi

k +yy-Coeff yi ayk +yb-Coeff yi bk +δ-Coeff δi
k

+ 1
4 curlij curlj0

ayk− 1
4 α2 curlij curljk + 3

4 curli0 curlk0

+ 1
4 (α2/F )yiθj curljk− 3

4 (1/F )yiθ0 curlk0

+ 1
2 (α/F )yi curlj0 liejk− 1

4 (α/F )yi liej0 curljk

+α curli0|k− 1
2 α curlik|0− 1

2 (1/α) curli0|0
ayk

+ 1
2 (α/F )yi θk|0−(α/F )yiθ0|k + 1

2 (1/F )yi lie00|k− 1
2 (1/F )yi liek0|0.
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The three suppressed coefficients are

yy-Coeff :=
(
α/(2F 2)− 1/(4F )

)
curlj0θj −

(
1/(2F 2)+ 1/(4Fα)

)
curlj0 liej0

+ 1
2 θ0|0/(Fα)− 3

4 ξ2/(F 3α)+ 1
2 ξ|0/(F 2α),

yb-Coeff := 1
2 (α2/F 2) curlj0θj − 1

2 (α/F 2) curlj0 liej0 − 3
4 (1/F 3)ξ2 + 1

2 (1/F 2)ξ|0,

δ-Coeff := − 1
2 (α2/F ) curlj0θj + 1

2 (α/F ) curlj0 liej0 + 3
4 (1/F 2)ξ2 − 1

2 (1/F )ξ|0.

Remark. Covariant differentiation with respect to the Riemannian metric a,

indicated by our vertical slash, can be lifted horizontally to TM r 0, using the

nonlinear connection and the Christoffel symbols of a. The section y of π∗TM

then satisfies yi
|k = 0; see Section 1.1.3. So, in the above expressions, we can

interpret the subscript 0 as contraction with y either before or after the vertical

slash has been carried out, with no difference in the outcome.

2.2. Characterising Einstein–Randers metrics. In this section we derive

necessary and sufficient conditions on a and b for the Randers metric to be

Einstein. Recall that F is Einstein with Ricci scalar Ric(x) if and only if K i
i =

Ric(x)F 2 (Section 1.3.2). We begin by assuming that this equality holds, and

deduce the necessary conditions for the metric to be Einstein. Then we show

that these necessary conditions are also sufficient.

Compute Ki
i by tracing the expression for K i

k in Section 2.1.3 to arrive at

0 = Ki
i −F 2 Ric(x)

= aRic00 +α curli0|i + 1
2 (n− 1)

α

F
θ0|0 − 1

4 (n− 1)
1

F
lie00|0

+ 1
2 (n− 1)

α

F
curli0 liei0 − 1

2 (n− 1)
α2

F
θi curli0 + 1

2 curli0 curli0

+ 1
4α2 curlij curlij + 3

16 (n− 1)
1

F 2
(lie00)

2 − 3
4 (n− 1)

α

F 2
lie00θ0

+ 3
4 (n− 1)

α2

F 2
(θ0)

2 − F 2 Ric(x).

Here, we have used the fact that aKi
k, the spray curvature of the Riemannian

metric a, is related to the latter’s Riemann tensor via aKi
k = yj aRj

i
kly

l, as

shown in Section 1.2.3. Hence aKi
i = yj aRj

i
ily

l = yj aRicjl yl = aRic00.

Multiplying this displayed equation by F 2 removes y from the denominators.

The criterion for a Randers metric to be Einstein then takes the form

Rat +αIrrat = 0, where α :=
√

aij(x)yiyj .

Here Rat and Irrat are homogeneous polynomials in y, of degree 4 and 3 respec-

tively, whose coefficients are functions of x. Their formulae are given below.

As observed by Crampin, the displayed equation becomes Rat−αIrrat = 0

if we replace y by −y. The two equations then effect Rat = 0 and αIrrat = 0.
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Being homogeneous in y, Irrat certainly vanishes at y = 0. At nonzero y, we

have α > 0 because aij is positive-definite. Hence Irrat = 0.

Lemma 1. Let F (x, y) :=
√

aij(x)yiyj + bi(x)yi be a Randers metric with posi-

tive definite (i .e., Riemannian) aij . Then F is Einstein if and only if Rat = 0

and Irrat = 0.

The formulae for Rat and Irrat are

Rat = (α2 +β2)aRic00 +2α2β curli0|i + 1
2 (α2 +β2) curli0 curli0

+ 1
4α2(α2 +β2) curlij curlij − (α4 +6α2β2 +β4)Ric(x)

+ 1
2 (n− 1)

(
α2θ0|0 − 1

2β lie00|0 +α2 curli0 liei0

−α2βθi curli0 + 3
8 (lie00)

2 + 3
2α2(θ0)

2
)
,

Irrat = 2β aRic00 +(α2 +β2) curli0|i +β curli0 curli0

+ 1
2α2β curlij curlij − 4β(α2 +β2)Ric(x)

+ 1
2 (n− 1)

(
βθ0|0 − 1

2 lie00|0 +β curli0 liei0 −α2θi curli0 − 3
2 lie00θ0

)
.

From these two expressions we will derive the preliminary form of three necessary

and sufficient conditions for a Randers metric to be Einstein.

2.2.1. Preliminary form of the characterisation. Assume F is Einstein, so that

Rat = 0 and Irrat = 0. For convenience abbreviate Ric(x) by Ric. Then the

weaker statement Rat−β Irrat = 0 certainly holds, and reads

0= (α2−β2)
(

aRic00 +β curli0|i+
1
2 curli0 curli0+ 1

4α2 curlij curlij−(α2+3β2)Ric

+ 1
2 (n− 1)(curli0 liei0 + 3

2 (θ0)
2 + θ0|0)

)

+ 3
16 (n− 1)

(
lie00 +2βθ0

)2
.

Fix x. Considering the right-hand side as a polynomial in y, we see that α2−β2

divides (lie00+2βθ0)
2. The polynomial α2−β2 is irreducible, because if it were to

factor—necessarily into two linear terms — its zero set would contain a hyper-

plane, contradicting the strong convexity condition (‖b‖ < 1), which requires

that it be positive at all y 6= 0 (Section 2.1.2).

Being irreducible, α2 − β2 must divide not just the square but lie00 + 2βθ0

itself. Thus there exists a scalar function σ(x) on M such that

lie00 +2βθ0 = σ(x)(α2 −β2).

This is our Basic Equation, the first necessary condition for a Randers metric to

be Einstein. Differentiating with respect to yi and yk gives an equivalent version:

lieik + biθk + bk θi = σ(x)(aik − bibk).

To recover the original version, just contract this with yiyk. The Basic Equation

is equivalent to the statement that the S-curvature of the Randers metric F is

given by S = 1
4 (n+1)σ(x)F ; see [Chen–Shen 2003].



222 DAVID BAO AND COLLEEN ROBLES

Now return to the expression for 0 = Rat−β Irrat. We use the Basic Equation

to replace lie00+2βθ0 with σ(x)(α2−β2), and then divide off by a uniform factor

of α2 −β2. The result reads

aRic00 = (α2 +3β2)Ric −β curlj0|j − 1
4α2 curlhj curlhj − 1

2 curlj0 curlj0

− 1
2 (n− 1)

(
3
8σ2(x)(α2 −β2)+ curlj0 liej0 + 3

2 (θ0)
2 + θ0|0

)
.

This is the Ricci Curvature Equation, so named because it describes the Ricci

tensor of a. We obtain the indexed version by differentiating with respect to yi

and yk, and making use of the symmetry aRicik = aRicki.

aRicik = (aik +3bibk)Ric − 1
2 (bi curljk|j + bk curlji|j)

− 1
4 aik curlhj curlhj − 1

2 curlji curljk

− 1
2 (n− 1)

(
3
8σ2(x)(aik − bibk)+ 1

2 (curlji liejk +curljk lieji)

+ 3
2 θiθk + 1

2 (θi|k + θk|i)
)
.

From the Basic and Ricci Curvature Equations we derive the final character-

ising condition, which we call the E23 Equation (the number 23 being of some

chronological significance in our research notes). Two pieces of information from

the Basic Equation are required. To reduce clutter, abbreviate σ(x) as σ. First,

differentiate to obtain

lie00|0 = σ|0(α
2 −β2)− lie00(σβ + θ0)− 2βθ0|0.

Next, contract the indexed form of the Basic Equation with yi curlk0 to get

curlj0 liej0 = −βθj curlj0 − (θ0)
2 −σβθ0.

Return to the equation 0 = Irrat. Replace the term aRic00 by the right-hand side

of the Ricci Curvature Equation. Then, wherever possible, insert the expressions

for lie00, lie00|0 and curlj0 liej0 given by the Basic Equation. After dividing off a

factor of α2 −β2, we obtain the E23 Equation:

curlj0|j = 2Ric β +(n− 1)
(

1
8σ2β + 1

2σθ0 + 1
2θj curlj0 + 1

4σ|0

)
. (E23)

Again, differentiating by yi produces the indexed version

curlj i|j = 2Ric bi +(n− 1)
(

1
8σ2bi + 1

2σθi + 1
2θj curlji + 1

4σ|i

)
.

The Basic, Ricci Curvature and E23 Equations are all necessary conditions for

the Randers metric F to be Einstein. Together, they are also sufficient. In view

of Lemma 1 (page 221), we can demonstrate this by showing that they imply

Rat = 0 = Irrat.

Recall that we deduced the E23 Equation from Irrat = 0 by

◦ expressing aRic00 via the Ricci Curvature Equation,

◦ computing lie00, lie00|0 and curlj0 liej0 with the Basic Equation, and

◦ dividing by a uniform factor of α2 −β2.
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Reversing these three algebraic steps allows us to recover Irrat = 0 from the E23

Equation.

Likewise, the Ricci Curvature Equation came from Rat−β Irrat = 0 by

◦ using the Basic Equation to replace lie00 +2βθ0 with σ(α2 −β2), and

◦ dividing by α2 −β2.

Again, reversing the two steps above will give us Rat − β Irrat = 0, whence

Rat = 0 because Irrat = 0.

To summarise, the Basic Equation, the Ricci Curvature Equation and the E23

Equation characterise strongly convex Einstein Randers metrics.

In the next section we will refine the three characterising equations by showing

that σ must be constant.

2.2.2. Constancy of the S-curvature. In the previous section we commented

that the S-curvature of any Randers metric F satisfying the Basic Equation is

given by S = 1
4 (n + 1)σ(x)F [Chen–Shen 2003]. The S-curvature is positively

homogeneous of degree 1 in y. In Section 1 we demonstrated a strong preference

for working with objects that are positively homogeneous of degree zero in y.

That is because such objects naturally live on the projectivised sphere bundle

SM as well as the larger slit tangent bundle TM r 0. The compact parameter

space provided by the sphere bundle is generally better suited for global and

analytic considerations. So the object we are really interested in is not S, but

S/F , which is homogeneous of degree zero in y. In this context, when we say that

the S-curvature of any Randers metric satisfying the Basic Equation is isotropic,

we mean that the quotient S
F is a function of x alone. Similarly, when σ(x) is

constant, F is said to be a metric of constant S-curvature.

The following lemma plays a crucial role in establishing the constancy of the

S-curvature for Einstein Randers metrics.

Lemma 2. The covariant derivative of the tensor curl associated to any Randers

metric is given by

curlij|k = −2bs aRksij + lieik|j − liekj|i.

Proof. Using Ricci identities and the definition of lieij we have

bi|j|k − bi|k|j = bs aRisjk,

bi|k|j + bk|i|j = lieik|j ,

−bk|i|j + bk|j|i = −bs aRksij ,

−bk|j|i − bj|k|i = −liekj|i,

bj|k|i − bj|i|k = bs aRjski.

Summing these five equalities and applying the first Bianchi identity produces

the desired formula. �
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Proposition 3. Let F be a strongly convex Randers metric on a connected

manifold , satisfying the Basic Equation (with σ a function of x) and the Ricci

Curvature Equation. Then F is of constant S-curvature (i .e., σ is constant) if

and only if the E23 Equation holds.

In practice, the E23 Equation has proved to be remarkably useful. Proposition 3

shows us that such efficacy is attributable to the constancy of the S-curvature.

Also, since strongly convex Einstein Randers metrics satisfy the Basic, Ricci

Curvature and E23 Equations, the following corollary is immediate.

Corollary 4. Any strongly convex Einstein Randers metric on a connected

manifold is necessarily of constant S-curvature.

Proof of Proposition. The key is to compute a formula for the tensor curli0|i.

Lemma 2 plays a pivotal role. We first contract that lemma with aikyj to obtain

curli0|i = 2bi aRici0 + liei
i|0 − liei

0|i, (∗)
a preliminary formula around which all further analysis is centered. Another

contracted version of Lemma 2 will be needed when we calculate a certain term

in 2bi aRici0 and − liei
0|i. Before plunging into details, here is an outline:

If σ is constant, we use the Basic and Ricci Curvature Equations to finish

calculating the right-hand side of (∗). A third contracted version of Lemma 2

will come into play. The outcome is none other than the E23 Equation.

Conversely, if the E23 Equation is presumed to hold, we immediately get one

formula for curli0|i. We use the Basic, Ricci Curvature, and E23 Equations to

finish calculating the right-hand side of (∗), thereby deducing a second formula

for curli0|i. A comparison of the two then tells us that σ is constant.

Now for the calculations. We first reexpress the terms in the right-hand side

of (∗). The last two terms are handled using the Basic Equation:

liei
i|0 = (n−‖b‖2)σ|0 −σ (1−‖b‖2)(σβ + θ0),

liei
0|i = σ|0 −βbiσ|i − 1

2σ2(n− 2‖b‖2 +1)β + 1
2σ(2‖b‖2 −n)θ0

+ 1
2βθiθ

i + 1
2θi curli0 −βθi

|i − biθ0|i.

The remaining term, 2bi aRici0, is handled by the Ricci Curvature Equation:

2bi aRici0 = θi curli0 − (n−1)
(

1
4 ‖b‖2σ|0 + 1

2 bi(θi|0 + θ0|i)
)

+β(2(1+ ‖b‖2)Ric − 1
2 curlij curlij − (n−1)

(
1
8 σ2(3−‖b‖2)+ 1

4 biσ|i

)
).

Next we compute the quantities biθi|0, biθ0|i, and θi
|i that occur in these

formulae. We will use without explicit mention the equalities

bi|j = 1
2 (lieij +curlij) and bi|j curlij = 1

2 curlij curlij .

For biθi|0, notice that biθi = bibj curlij = 0, because curlij is skew-symmetric.

Differentiating biθi = 0 and using the Basic Equation gives

biθi|0 = 1
2θiθ

iβ − 1
2σθ0 − 1

2θi curli0. (∗∗)



RICCI AND FLAG CURVATURES IN FINSLER GEOMETRY 225

To compute biθ0|i, expand it as 1
2bi(lieik − curlik) curlk0 + bibk curli0|k. By

Lemma 2, bibk curli0|k = bibk(−2bj aRijk0 + lieik|0 + liei0|k). However, bibj aRijk0

vanishes because aR is skew-symmetric in the first two indices. Hence

biθ0|i = 1
2bi(lieik − curlik) curlk0 + bibk(lieik|0 + liei0|k).

Our calculation of biθ0|i can now be completed in three steps as follows.

◦ Use the Basic Equation to remove all occurrences of the tensor lie and its

covariant derivatives.

◦ Replace the biθi|0 term, which resurfaces twice, by the right-hand side of (∗∗).
◦ Simplification leads to an expression of the form (1−‖b‖2)( · · · ) for the quan-

tity (1−‖b‖2)biθ0|i. Strong convexity (Section 2.1.2) allows us to divide both

sides by 1−‖b‖2 to obtain

biθ0|i = 1
2θiθ

iβ + 1
2σθ0 − 1

2θi curli0 + ‖b‖2σ|0 − biσ|iβ.

The last term of interest, θi
|i, is computed separately for each direction of

the proof. First, if we assume that F is of constant S-curvature (σ is constant),

the Ricci Curvature Equation simplifies. Carrying out an appropriate trace on

Lemma 2, followed by contracting with b and rearranging, we find that

θi
|i = 1

2 curlij curlij − bi(2bj aRicij + liej
j|i − liej

i|j).

Now replace the Ricci tensor by the right-hand side of the Ricci Curvature Equa-

tion, and use the Basic Equation (with σ constant) to remove all occurrences

of lie and its covariant derivatives. After simplifying we find that each term

contains a factor of 1 + ‖b‖2 (not the 1−‖b‖2 occurring previously). Dividing

out by that factor gives

θi
|i = 1

2 curlij curlij −
(
2Ric + 1

8 (n− 1)σ2
)
‖b‖2 + 1

2 (n− 1)θi θ
i. (†)

Conversely, assume that the E23 Equation holds. Without the constancy of σ

it is not possible to compute θi
|i via Lemma 2. Happily, the hypothesised E23

Equation saves the day:

θi
|i = (bi curlij)|j = 1

2 curlij curlij − bi curlji|j

= 1
2 curlij curlij −

(
2Ric + 1

8 (n−1)σ2
)
‖b‖2 + 1

2 (n−1)θiθ
i − 1

4 (n−1)biσ|i. (‡)

Remark. This is the only place where the E23 Equation gets used in the proof.

We are now ready to complete the proof. Consider the expressions for 2bi aRici0,

liei
i|0, and − liei

0|i found on the previous page. By (∗), the sum of the three is

curli0|i. Now substitute into this sum the formulae for biθi|0, biθ0|i, and θi
|i just

found, and simplify.

Under the hypothesis that F is of constant S-curvature, using (†) for the value

of θi
|i, we get

curli0|i = 2Ric β +(n− 1)
(

1
8σ2β + 1

2σθ0 + 1
2θi curli0

)
.
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This is the E23 Equation (with σ constant, i.e. σ|i = 0).

If instead we assume that F satisfies the E23 Equation, and use (‡) as the

value of θi
|i, we obtain

curli0|i = 2Ric β +(n− 1)
(

1
8σ2β + 1

2σθ0 + 1
2θi curli0 +σ|0 − 3

4 ‖b‖2σ|0

)
.

Comparing this formula for curli0|i with the one given by the E23 Equation indi-

cates that 3
4 (1−‖b‖2)σ|0 = 0. Since ‖b‖ < 1, we must have σ|0 = 0; equivalently,

all covariant derivatives σ|i vanish. But σ is a function of x, so all its partial

derivatives are zero. Therefore σ is constant on the connected M . �

2.2.3. Final characterisation of Einstein–Randers metrics. In Section 2.2.1 we

showed that strongly convex Einstein Randers metrics are characterised by the

preliminary form of the Basic, Ricci Curvature and E23 Equations. The con-

stancy of σ, established in Corollary 4, can now be used to refine these conditions

to their final form.

Let’s begin with the final form of the Basic Equation. Since the equation

involves no derivatives of σ, it undergoes little cosmetic alteration. We simply

write σ instead of σ(x) to emphasise the constancy of the function:

lie00 +2βθ0 = σ (α2 −β2).

Equivalently, the indexed form reads

lieik + biθk + bk θi = σ (aik − bibk).

The final form of the Ricci Curvature Equation is derived in two steps. First,

use the Basic Equation above to remove the tensor lie and its covariant deriva-

tives from the preliminary expression in Section 2.2.1. Then replace the curlj0|j

term with the formula given by the E23 Equation in Section 2.2.1. Keep in mind

that the covariant derivatives σ|i vanish because σ is constant. After simplifying,

the result is

aRic00 = (α2 +β2)Ric(x)− 1
4α2 curlhj curlhj − 1

2 curlj0 curlj0

−(n− 1)
(

1
16σ2(3α2 −β2)+ 1

4 (θ0)
2 + 1

2θ0|0

)
.

Differentiating by yi and yk and applying the symmetry of aRicik produces the

indexed version

aRicik = (aik + bibk)Ric(x)− 1
4aik curlhj curlhj − 1

2 curlji curljk

−(n− 1)
(

1
16σ2(3aik − bibk)+ 1

4θiθk + 1
4 (θi|k + θk|i)

)
.

The constancy of σ updates the E23 Equation to

curlj0|j = 2Ric(x)β +(n− 1)
(

1
8σ2β + 1

2σθ0 + 1
2θj curlj0

)
,

or

curlji|j = 2Ric(x)bi +(n− 1)
(

1
8σ2bi + 1

2σθi + 1
2θj curlji

)
.
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Remark. The final forms of the Basic, E23 and Ricci Curvature Equations are

equivalent to the preliminary forms. In the case of the Basic and E23 Equations,

this follows immediately from the constancy of σ. As for the Ricci Curvature

Equation, its final form was deduced from the preliminary form by replacing

the terms lie00, lie00|0, curlj0 liej0 and curlj0|j with the expressions given by the

Basic and E23 Equations. Reversing this algebraic substitution resurrects the

preliminary form of the Ricci Curvature Equation.

We saw in Section 2.2.1 that the preliminary forms characterise strongly convex

Einstein metrics. Therefore the final forms of the Basic, Ricci Curvature and E23

Equations are necessary and sufficient conditions for the metric to be Einstein.

Moreover, Proposition 3 assures us that, with σ constant, the Basic and Ricci

Curvature Equations alone do the trick.

Theorem 5 (Einstein Characterisation). Let F = α + β be a strongly

convex Randers metric on a smooth manifold M of dimension n > 2, with α2 =

aij(x)yiyj and β = bi(x)yi. Then (M,F ) is Einstein with Ricci scalar Ric(x) if

and only if the Basic Equation

lieik + biθk + bk θi = σ(aik − bibk)

and the Ricci Curvature Equation

aRicik = (aik + bibk)Ric(x)− 1
4 aik curlhj curlhj − 1

2 curlji curljk

−(n− 1)
(

1
16 σ2(3aik − bibk)+ 1

4 θiθk + 1
4 (θi|k + θk|i)

)

are satisfied for some constant σ.

Tracing the Basic Equation tells us that σ, besides being related to the S-

curvature (Section 2.2.2), also has the geometrically significant value

σ =
2divb]

n−‖b‖2
,

where divb] := bi
|i is the divergence of the vector field b] := bi∂xi .

Remark. The Basic Equation, Ricci Curvature Equation, and E23 Equation are

tensorial equations, and highly nonlinear due to the presence of aRicik. They

constitute a coupled system of second order partial differential equations.

Their redeeming feature is being polynomial in the tangent space coordinates

yi, whereas the original Einstein criterion is not (unless b = 0). This greatly

reduces computational complexity. While testing Randers metrics to see whether

they satisfy the Einstein criterion K i
i = F 2 Ric(x), we encountered cases in

which the software Maple was unable to complete computations of K i
i. So, for

those examples we could not directly verify the Einstein criterion. Maple was

able, however, to work efficiently with the three indirect characterising equations.
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2.3. Characterising constant flag curvature Randers metrics

2.3.1. The result. Recall from Section 1.3.1 that the Ricci scalar Ric is the

sum of n − 1 appropriately chosen flag curvatures. Thus, Finsler metrics of

constant flag curvature K necessarily have constant Ricci scalar (n− 1)K, and

are therefore Einstein. By Corollary 4, they must have constant S-curvature.

Computationally, the equation K i
k = KF 2(δi

k−`i`k) characterizing constant

flag curvature is even more challenging than the Einstein equation, which already

gives Maple trouble (see end of previous section). The need for machine-friendly

characterisation equations is acute.

Partly motivated by this, Randers metrics of constant flag curvature have been

characterised in [Bao–Robles 2003]. The same conclusion was simultaneously

obtained in [Matsumoto–Shimada 2002], albeit by a different method. The result

is similar to that described in Theorem 5.

Theorem 6 (Constant flag curvature characterisation). Let F =

α+β be a strongly convex Randers metric on a smooth manifold M of dimension

n > 2, with α2 = aij(x)yiyj and β = bi(x)yi. Then (M,F ) is of constant flag

curvature K if and only if there exists a constant σ such that the Basic Equation

lieik + biθk + bk θi = σ (aik − bibk)

holds and the Riemann tensor of a satisfies the Curvature Equation

aRhijk = ξ (aij ahk − aik ahj)− 1
4 aij curlth curltk + 1

4 aik curlth curltj

+ 1
4 ahj curlti curltk − 1

4 ahk curlti curltj

− 1
4 curlij curlhk + 1

4 curlik curlhj + 1
2 curlhi curljk,

with ξ := (K − 3
16σ2)+ (K + 1

16σ2)‖b‖2 − 1
4 θiθi.

2.3.2. Utility. Theorem 6 provides an indirect but efficient way for checking

whether a given Randers metric is of constant flag curvature.

As we mentioned in Section 2.2.3, tracing the Basic Equation reveals that the

constant σ, whenever it exists, is equal to 2 div b]/(n−‖b‖2). Hence, this quotient

is one of the first items we must compute. If the answer is not a constant, it is

pointless to proceed any further.

If the computed value for σ is constant, surviving the Basic Equation consti-

tutes the next checkpoint. After that, we solve the Curvature Equation for K,

and see whether it is constant.

Example (Finslerian Poincaré disc). This metric is implicit in [Okada

1983], and is extensively discussed in [Bao et al. 2000]. Let r and θ denote polar

coordinates on the open disc of radius 2 in R
2. The Randers metric in question

is defined by the following Riemannian metric a and 1-form b:

a =
dr⊗ dr + r2dθ⊗ dθ

(1− 1
4r2)2

, b =
r dr

(1+ 1
4r2)(1− 1

4r2)
.
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Note that a is the Riemannian Poincaré model of constant sectional curvature

−1, and b = d log
(
(4+r2)/(4−r2)

)
is exact.

This metric is interesting because its geodesic trajectories agree with those

of the Riemannian Poincaré model a. However, as shown in [Bao et al. 2000],

the travel time from the boundary to the center is finite (log 2 seconds), while

the return trip takes infinite time! We summarise below three key steps in

ascertaining that our Randers metric has constant flag curvature K = − 1
4 .

◦ The value of the S-curvature σ is computed to be 2.

◦ Since b is exact, it is closed and curl = 0. In particular, θ = 0 and lieik = 2bi|k.

The Basic Equation is shown to hold with σ = 2.

◦ Since curl = 0 and a has constant curvature −1, the Curvature Equation

reduces to (K + 1
4 )(1+ ‖b‖2) = 0, which gives K = − 1

4 . ♦
Another byproduct of Theorem 6 is the corrected Yasuda–Shimada theorem,

proved in [Bao–Robles 2003; Matsumoto–Shimada 2002], and discussed near the

end of [Bao et al. 2003]. That theorem characterises, within the family of Randers

metrics satisfying θ = 0, those that have constant flag curvature K. (Those with

K > 0 and θ = 0 were classified in [Bejancu–Farran 2002; 2003].)

Lastly, Theorem 6 provides an important link in the complete classification

of constant flag curvature Randers metrics; see [Bao et al. 2003].

2.3.3. Comparing with the Einstein case. In Sections 1.3.2 and 2.3.1, we pointed

out that Finsler metrics of constant flag curvature are necessarily Einstein. In

particular, Randers metrics characterised by Theorem 6 should satisfy the crite-

ria stipulated in Theorem 5. This is indeed the case. The two Basic Equations

are identical; and tracing the Curvature Equation of Theorem 6 produces the

Ricci Curvature Equation of Theorem 5.

In [Bao–Robles 2003], the characterisation result includes a third condition,

called the CC(23) Equation, which gives a formula for the covariant derivative

curlij|k of curl. We excluded this equation from our statement of Theorem 6

because, like the E23 Equation, it is automatically satisfied whenever the Basic

and Curvature Equations hold with constant σ.

Proposition 7. Suppose F is a strongly convex Randers metric on a connected

manifold , satisfying the preliminary form of the Basic and Curvature Equations

described in [Bao–Robles 2003]. Then F is of constant S-curvature (σ is con-

stant) if and only if the CC (23) Equation of [Bao–Robles 2003] holds.

We omit the proof because it is structurally similar to the one we gave for

Proposition 3. For constant σ, the CC(23) Equation reads:

curlij|k = aik

(
(2K + 1

8σ2)bj + 1
2 curlhj θh + 1

2 σθj

)

−ajk

(
(2K + 1

8σ2)bi + 1
2 curlhiθh + 1

2 σθi

)
.

Tracing the CC(23) Equation on its first and third indices gives the E23 Equation

(with σ constant) in Section 2.2.1.
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3. Randers Metrics Through Zermelo Navigation

3.1. Zermelo navigation. Zermelo [1931] posed and answered the following

question (see also [Carathéodory 1999]): Consider a ship sailing on the open sea

in calm waters. Suppose a mild breeze comes up. How must the ship be steered

in order to reach a given destination in the shortest time?

Zermelo assumed that the open sea was R
2 with the flat/Euclidean metric.

Recently, Shen generalised the problem to the setting where the sea is an ar-

bitrary Riemannian manifold (M,h). Shen [2002] finds that, when the wind is

time-independent, the paths of shortest time are the geodesics of a Randers met-

ric. This will be established in Section 3.1.1. For the remainder of this section,

we develop some intuition by considering the problem on the infinitesimal scale.

Given any Riemannian metric h on a differentiable manifold M , denote the

corresponding norm-squared of tangent vectors y ∈ TxM by

|y|2 := hij yiyj = h(y, y).

Think of |y| as measuring the time it takes, using an engine with a fixed power

output, to travel from the base-point of the vector y to its tip. Note the symmetry

property |−y| = |y|.
The unit tangent sphere in each TxM consists of all those tangent vectors u

such that |u| = 1. Now introduce a vector field W such that |W | < 1, the spatial

velocity vector of our mild wind on the Riemannian landscape (M,h). Before

W sets in, a journey from the base to the tip of any u would take 1 unit of time,

say, 1 second. The effect of the wind is to cause the journey to veer off course

(or merely off target if u is collinear with W ). Within the same 1 second, we

traverse not u but the resultant v = u+W instead.

As an example, suppose |W | = 1
2 . If u points along W (that is, u = 2W ), then

v = 3
2u. Alternatively, if u points opposite to W (u = −2W ), then v = 1

2u. In

these two scenarios, |v| equals 3
2 and 1

2 instead of 1. So, with the wind present, our

Riemannian metric h no longer gives the travel time along vectors. This prompts

the introduction of a function F on the tangent bundle TM , to keep track of the

travel time needed to traverse tangent vectors y under windy conditions. For all

those resultants v = u+W mentioned above, we have F (v) = 1. In other words,

within each tangent space TxM , the unit sphere of F is simply the W -translate

of the unit sphere of h. Since this W -translate is no longer centrally symmetric

about the origin 0 of TxM , the Finsler function F cannot be Riemannian.

Given any Finsler manifold (M,F ), the indicatrix in

���p0
Wx

h = 1

F = 1
TxMeach tangent space is Sx(F ) := {y ∈ TxM : F (x, y) = 1}.

The indicatrices of h and the Randers metric F with

navigation data (h,W ) are related by a rigid transla-

tion: Sx(F ) = Sx(h) + Wx. In particular, the Randers

indicatrix is simply an ellipse centered at the tip of Wx.
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In the following section we will algebraically derive an expression for F , show-

ing that it is a Randers metric. Then we demonstrate that the paths of shortest

time are indeed the geodesics of this F .

3.1.1. Algebraic and calculus-of-variations aspects. We return to the earlier

discussion and consider those u ∈ TxM with |u| = 1; equivalently, h(u, u) = 1.

Into this, we substitute u = v−W and then h(v,W ) = |v| |W | cos θ. Introducing

the abbreviation λ := 1− |W |2, we have

|v|2 − (2 |W | cos θ) |v| −λ = 0.

Since |W | < 1, the resultant v is never zero, hence |v| > 0. This leads to

|v| = |W | cos θ+
√

|W |2 cos2 θ +λ, which we abbreviate as p+q. Since F (v) = 1,

we see that

F (v) = 1 = |v| 1

q + p
= |v| q− p

q2 − p2
=

√
[h(W, v)]2 + |v|2λ

λ
− h(W, v)

λ
.

It remains to deduce F (y) for an arbitrary y ∈ TM . Note that every nonzero

y is expressible as a positive multiple c of some v with F (v) = 1. For c > 0,

traversing y = cv under the windy conditions should take c seconds. Conse-

quently, F is positively homogeneous: F (y) = cF (v). Using this homogeneity

and the formula derived for F (v), we find that

F (y) =

√
[h(W, y)]2 + |y|2λ

λ
− h(W, y)

λ
.

Here, F (y) abbreviates F (x, y); the basepoint x has been suppressed temporarily.

As promised, F is a Randers metric. Namely, it has the form F (x, y) =√
aij(x)yiyj + bi(x)yi, where a is a Riemannian metric and b a differential 1-

form. Explicitly,

aij =
hij

λ
+

Wi

λ

Wj

λ
, bi =

−Wi

λ
.

Here Wi := hij W j and λ = 1 − W iWi. In particular, there is a canonical

Randers metric associated to each Zermelo navigation problem with data (h,W ).

Incidentally, the inverse of a is given by

aij = λ(hij −W iW j), and bi := aijbj = −λW i.

Under the influence of W , the most efficient navigational paths are no longer

the geodesics of the Riemannian metric h; instead, they are the geodesics of the

Finsler metric F . To see this, let x(t), for t ∈ [0, τ ], be a curve in M from

point p to point q. Return to our imaginary ship sailing about M , with velocity

vector u but not necessarily with constant speed. If the ship is to travel along

the curve x(t) while the wind blows, the captain must continually adjust the

ship’s direction u/|u| so that the resultant u+W is tangent to x(t). The travel

time along any infinitesimal segment ẋ dt of the curve is F (x, ẋ dt) = F (x, ẋ) dt,

because as explained above it is the positively homogeneous F (not h) that keeps
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track of travel times. The captain’s task is to select a path x(t) from p to q that

minimises the total travel time
∫ τ

0

F (x, ẋ) dt.

This quantity is independent of orientation-preserving parametrisations due to

the positive homogeneity of F and the change-of-variables theorem. Such an

efficient path is precisely a geodesic of the Finsler metric F , which is said to

have solved Zermelo’s problem of navigation under the external influence W .

Let’s look at some 2-dimensional examples. Being in two dimensions, we

revert to the common notation of denoting position coordinates by x, y rather

than x1, x2, and components of tangent vectors by u, v rather than y1, y2.

Example (Minkowski space). Consider R
2 equipped with the Euclidean met-

ric hij = δij . Let W = (p, q) be a constant vector field. The resulting Randers

metric is of Minkowski type, and is given by

F (x, y;u, v) =

√
(pu+qv)2 +(u2+v2)

(
1− (p2+q2)

)

1− (p2+q2)
+

−(pu+ qv)

1− (p2+q2)
.

The condition |W |2 = p2 + q2 < 1 ensures that F is strongly convex. The

geodesics of both h and F are straight lines. Thus, when navigating on flat-land

under the influence of a constant wind, the correct strategy is to steer the ship

so that it travels along a straight line. This means the captain should aim the

ship, not straight toward the desired destination, but slightly off course with a

velocity V , selected so that V +W points at the destination. ♦
Example (Shen’s fish pond). Fish are kept in a pond with a rotational

current. The pond occupies the unit disc in R
2, and hij is again the Euclidean

metric δij . The current’s velocity field is W := −y∂x + x∂y, which describes a

counterclockwise circulation of angular speed 1. These navigation data give rise

to the Randers metric [Shen 2002]

F (x, y;u, v) =

√
(−yu+xv)2 +(u2 + v2)(1−x2 − y2)

1−x2 − y2
+

−yu+xv

1−x2 − y2
,

with |W |2 = x2+y2 < 1. A feeding station is placed at a fixed location along the

perimeter of the pond. The fish, eager to get to the food, swim along geodesics

of F . As observed by a stationary viewer at the pond’s edge, these geodesics are

spirals because it is the fish’s instinct to approach the perimeter quickly, where it

can obtain the most help from the current’s linear velocity (which equals angular

speed times radial distance). An experienced fish will aim itself with a velocity

V , selected so that V +W is tangent to the spiral. ♦
For the pond described above, Shen has found numerically that the geodesics of

F are spirals as expected. Now suppose that instead of fish we have an excited

octopus which secretes ink as it swims toward the feeding station. The resulting
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ink trail comoves with the swirling water. Its exact shape can be deduced by

reexpressing the above spiral with respect to a frame which is comoving with the

water. Shen agrees with this trend of thought and finds, somewhat surprisingly,

that the trail in question is a straight ray.

fish pond ink trail geodesic in space

counterclockwise

current

food food

no current

food food

3.1.2. Inverse problem. A question naturally arises: Can every strongly convex

Randers metric be realised through the perturbation of some Riemannian metric

h by some vector field W satisfying |W | < 1?

The answer is yes. Indeed, let us be given an arbitrary Randers metric F with

Riemannian metric a and differential 1-form b, satisfying ‖b‖2 := aij bibj < 1.

Set bi := aij bj and ε := 1−‖b‖2. Construct h and W as follows:

hij := ε(aij − bibj), W i := −bi/ε.

Note that F is Riemannian if and only if W = 0, in which case h = a. Also,

Wi := hij W j = −εbi.

Using this, it can be directly checked that perturbing h by the stipulated W

gives back the Randers metric we started with. Furthermore,

|W |2 := hij W iW j = aij bibj =: ‖b‖2 < 1.

Incidentally, the inverse of hij is

hij = ε−1aij + ε−2 bibj .

This hij , together with W i, defines a Cartan metric F ∗ of Randers type on

the cotangent bundle T ∗M . A comparison with [Hrimiuc–Shimada 1996] shows

that F ∗ is the Legendre dual of the Finsler–Randers metric F on TM . It is

remarkable that the Zermelo navigation data of any strongly convex Randers

metric F is so simply related to its Legendre dual. See also [Ziller 1982; Shen

2002; 2004].

We summarise:
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Proposition 8. A strongly convex Finsler metric F is of Randers type if and

only if it solves the Zermelo navigation problem on some Riemannian mani-

fold (M,h), under the influence of a wind W with h(W,W ) < 1. Also, F is

Riemannian if and only if W = 0.

Example (Finslerian Poincaré disc). As an illustration of the inverse

procedure, we apply it to the Randers metric F that describes the Finslerian

Poincaré disc (Section 2.3.2). With r and θ denoting polar coordinates on the

open disc of radius 2 in R
2, the Randers metric in question is defined by

a =
dr⊗ dr + r2dθ⊗ dθ

(1− 1
4r2)2

, b =
r dr

(1+ 1
4r2)(1− 1

4r2)
.

The underlying Zermelo navigation data is

h =
(1− 1

4r2)2dr⊗ dr + r2(1+ 1
4r2)2dθ⊗ dθ

(1+ 1
4r2)4

, W =
−r(1+ 1

4r2)

1− 1
4r2

∂r.

It turns out that this Riemannian landscape h on which the navigation takes

place is flat (!), and the associated 1-form

W [ = −r
1− 1

4r2

1+ 1
4r2

dr = −8 d
r2

(4+ r2)2

is exact. The wind here is blowing radially toward the center of the disc, and its

strength decreases to zero there.

The geodesics of h are straight lines. Those of F have been analysed in detail

in [Bao et al. 2000]. Their trajectories coincide with those of the Riemannian

Poincaré model: straight rays to and from the origin, and circular arcs intersect-

ing the rim of the disc at Euclidean right angles. ♦

3.1.3. General relation between two covariant derivatives. Our goal in Section

3.2 will be to reexpress the Einstein characterisation of Theorem 5 in terms of

the navigation data (h,W ). To that end, it is helpful to first relate the covariant

derivative bi|j of b (with respect to a) to the covariant derivative Wi:j of W (with

respect to h). Let aγi
ij and hγi

jk denote the respective Christoffel symbols of

the Riemannian metrics a and h. We have

bi|j = bi,xj − bs
aγs

ij and Wi:j = Wi,xj −Ws
hγs

ij .

Since
aγi

ij = (aGi)yjyk , hγi
ij = (hGi)yjyk ,

it suffices to compare the geodesic spray coefficients

aGi := 1
2

aγi
jkyjyk =: 1

2
aγi

00 and hGi := 1
2

hγi
jkyjyk =: 1

2
hγi

00.

The tool that effects this comparison is Rapcsák’s identity (Section 1.2.2).
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The symbol α denotes the Finsler norm associated to the Riemannian metric a:

α2(x, y) := aij(x)yiyj = a(y, y). According to Section 1.2.2, the user-friendly

form of Rapcsák’s identity gives

aGi = hGi + 1
4 aij

(
(α2

:0)yj − 2α2
:j

)
.

Using the formula aij = 1
λ hij + 1

λ2 WiWj derived in Section 1.3.1, we find that

aij = λ(hij −W iW j ) and α2 =
1

λ
h00 +

1

λ2
W0

2.

Here, Wi := hij W j , λ := 1 − W iWi, and the formula for the inverse aij is

ascertained by inspection. A straightforward but tedious computation of the

right-hand side of Rapcsák’s identity yields

aGi = hGi + ζi,

where (using W s:i to abbreviate W s
:r hri)

ζi :=
1

λ
yiW sWs:0 + 1

2 W iW0:0 +
(

1

2λ
h00 +

1

λ2
W0

2
)
(W iW sW tWs:t −WsW

s:i)

+
1

2λ
W0

(
W iW s(Ws:0 +W0:s)+ (W i

:0 −W0
:i)

)
.

Differentiating with respect to yj , yk gives aγi
jk = hγi

jk + (ζi)yjyk , whence

bj|k = bj:k − bi(ζ
i)yjyk . Into the right-hand side we substitute bs = −(1/λ)Ws

(Section 1.3.1), resulting in a formula for bj|k in terms of the covariant derivatives

of W with respect to h. For later purposes, it is best to split the answer into its

symmetric and anti-symmetric parts,

bj|k = 1
2 (bj|k + bk|j)+ 1

2 (bj|k − bk|j) =: 1
2 liejk + 1

2 curljk,

and to introduce the abbreviations

Ljk := Wj:k +Wk:j , Cjk := Wj:k −Wk:j .

Then the said computation gives bj|k = 1
2 liejk + 1

2 curljk, with

liejk = −Ljk −
(

1

λ
hjk +

2

λ2
WjWk

)
W sW tLst

+
1+ |W |2

λ2
W i(Wi:jWk +Wi:kWj)−

1

λ
(WjWk:i +WkWj:i)W

i,

curljk = − 1

λ
Cjk +

2

λ2
W i(Wi:jWk −Wi:kWj).

Observe that since curljk = ∂xkbj−∂xj bk and liejk = bi∂xiajk+aik ∂xj bi+aji∂xkbi

(where bi = −λW i), the last two conclusions could have been obtained without

relying on the explicit formula of aγ. In any case, the relation above between

bj|k and the covariant derivatives of W is valid without any assumption on b.
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3.2. Navigation description of curvature conditions. Theorem 5 (p. 227)

characterises Einstein Randers metrics via the defining Riemannian metric a and

1-form b. It says that a Randers metric F is Einstein if and only if both the Basic

and Ricci Curvature Equations hold with constant σ (or S-curvature). Though

this is a substantial improvement over the Einstein criterion K i
i = Ric(x)F 2,

most notably in the realm of computation, the characterisation does little to

describe the geometry of these metrics. Surprisingly, the breakthrough lies in a

change of dependent variables. We find that replacing the defining data (a, b)

by the navigation data (h,W ) (discussed in Section 3.1.2) yields a breviloquent

geometric description of Einstein Randers metrics. Explicitly, this change of

variables reveals that the Riemannian metric h must be an Einstein metric itself,

and the vector field W an infinitesimal homothety of h. The next two subsections

are devoted to developing this “navigation description”.

3.2.1. Consequences of the Basic Equation. Our first step is to derive the

navigation version of the Basic Equation lieik + biθk + bkθi = σ(aik − bibk) of

page 226. For that we replace aik by (1/λ)hik + (1/λ2)WiWk, bi by −(1/λ)Wi,

and lieik by the expression derived on the previous page. We also use the formula

for curljk there to compute θk := bj curljk. Since bj := ajsbs = −λW j , we get

θk = Tk −
1

λ
(W iW jLij)Wk +

2

λ
|W |2W iWi:k.

Here, an abbreviation has been introduced for the ubiquitous quantity

Tk := W j(Wj:k −Wk:j) = W j Cjk.

These manoeuvres, followed by some rearranging, convert the Basic Equation

to λLik +L(W,W )hik = −σhik, where L(W,W ) stands for LstW
sW t. Con-

tracting with W i, W k and using λ := 1− |W |2 shows that L(W,W ) = −σ|W |2.
Consequently, the navigation version of the Basic Equation is

Lik := Wi:k +Wk:i = −σhik, that is, LW h = −σh.

We name this the LW Equation. It says that W is an infinitesimal homothety

of h; see [Kobayashi–Nomizu 1996, p. 309]. In this equation,

σ must be zero whenever h is not flat.

(In particular, σ must vanish whenever h is not Ricci-flat.) Indeed, let ϕt denote

the time t flow of the vector field W . The LW Equation tells us that ϕ∗
t h = e−σth.

Since ϕt is a diffeomorphism, e−σth and h must be isometric; therefore they

have the same sectional curvatures. If h is not flat, this condition on sectional

curvatures mandates that e−σt = 1, hence σ = 0. The argument we presented

was pointed out to us by Bryant.

Incidentally, the use of h = ε(a− b⊗ b) and W = −b]/ε (Section 3.1.2) allows

us to recover the Basic Equation from the LW Equation. Thus the two equations
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are equivalent. This remains so even if σ were to be a function of x, because

neither equation contains any derivative of σ.

We now turn to the derivation of the navigation versions of the Ricci Curva-

ture Equation (Theorem 5, page 227) and the Curvature Equation (Theorem 6,

page 228). The LW Equation affords simplified expressions for many quantities

that enter into the curvature equations of Theorems 5 and 6. The key in all such

simplifications can invariably be traced back to the statement

Wi:j = 1
2 (Lij + Cij) = − 1

2σhij + 1
2Cij .

We first address all but one of the terms on the right-hand sides of the cur-

vature equations. Keep in mind that indices on curl, θ, and ayi := aij yj are

manipulated by the Riemannian metric a, while those on C, T , and hyi := hij yj

are manipulated by the Riemannian metric h. The relevant formulae are

curlij = − 1

λ
Cij +

1

λ2
(TiWj −TjWi),

curlij = −Ci
j +

1

λ
T iWj ,

curlij = −λCij;

ayi =
1

λ
hyi +

1

λ2
WiW0,

θi =
1

λ
Ti,

θi = T i.

This does not address the term θ0|0 (equivalently θi|k+θk|i), which appears on

the right-hand side of the Ricci Curvature Equation (Section 2.2.3). To tackle

this, as well as the left-hand sides of those curvature equations, we shall need the

relation between the geodesic spray coefficients aGi and hGi. That relation, first

derived in Section 3.1.3, undergoes a dramatic simplification in the presence of

the LW Equation. The result is

aGi = hGi + ζi,

where

ζi = yi 1

2λ
(T0 −σW0)−T i

(
1

4λ
h00 +

1

2λ2
W0

2
)

+
1

2λ
Ci

0W0.

Hence

θ0|0 = θ0:0 − 2θi ζ
i =

1

λ
T0:0 −

1

λ2
W0T iCi0 +

(
1

2λ2
h00 +

1

λ3
W0

2
)
T iTi.

Differentiating these two statements with respect to yj , yk gives an explicit

relation between the Christoffel symbols aγi
jk and hγi

jk, as well as a formula for

θj|k+θk|j in terms of the navigation data (h,W ). However, we refrain from doing

so. In the following two subsections, we shall determine the navigation version

of the Ricci Curvature Equation in Theorem 5 and of the Curvature Equation

in Theorem 6. It is found, in retrospect, that the computational tedium is

significantly lessened by working with aRic00,
aKi

k rather than aRicij ,
aRhijk.

Consequently, the relation aGi = hGi +ζi and the formula for θ0|0 should suffice.
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3.2.2. Einstein–Randers metrics. The contracted form of the Ricci Curvature

Equation (Section 2.2.3) reads

aRic00 = (α2 +β2)Ric(x)− 1
4α2 curlhj curlhj − 1

2 curlj0 curlj0

−(n− 1)
(

1
16σ2(3α2 −β2)+ 1

4 (θ0)
2 + 1

2θ0|0

)
.

With α2 = a00 = (1/λ)h00 +(1/λ2)W0
2 and β = b0 = −(1/λ)W0, the simpli-

fied formulae in Section 3.2.1, and Ric(x) =: (n− 1)K(x), all the terms on the

right-hand side are accounted for.

For the left-hand side, note first that aRic00 = aKi
i. Specialising the split and

covariantised form of Berwald’s formula (Section 1.2.3) to F = a and F = h,

and taking the natural trace, we have

aRic00 = hRic00 +(2ζi):i − (ζi)yj (ζj)yi − yj(ζi
:j)yi +2ζj(ζi)yjyi .

Though ζi has a simplified formula (Section 3.2.1), computing the four terms

dependent on ζ is still tedious. That task is helped by the LW Equation and the

navigation description [Robles 2003] of the E23 Equation:

W i
:0:i = (n− 1)

(
K(x)+ 1

16σ2
)
W0.

The result is unexpectedly elegant:

hRic00 = (n− 1)
(
K(x)+ 1

16σ2
)
h00.

Differentiating away the contracted yi, yk gives hRicik.

Conversely, it has been checked that, via h = ε(a− b⊗ b) and W = −b]/ε

(Section 3.1.2), the above navigation description reproduces the characterisation

in Theorem 5. Thus the characterisation (in terms of a, b) is equivalent to the

navigation description (in terms of h, W ). In particular, Theorem 5 implies:

Theorem 9 (Einstein navigation description). Suppose the Randers met-

ric F solves Zermelo’s problem of navigation on the Riemannian manifold (M,h)

under the external influence W , |W | < 1. Then (M,F ) is Einstein with Ricci

scalar Ric(x) =: (n− 1)K(x) if and only if there exists a constant σ such that

(i) h is Einstein with Ricci scalar (n− 1)
(
K(x)+ 1

16σ2
)
, that is,

hRicik = (n− 1)
(
K(x)+ 1

16σ2
)
hik,

and

(ii) W is an infinitesimal homothety of h, namely ,

(LW h)ik = Wi:k +Wk:i = −σhik.

Furthermore, σ must vanish whenever h is not Ricci-flat .

We call this a ‘description’ rather than a ‘characterisation’ because, in contrast

with Theorem 5, it makes explicit the underlying geometry of Einstein–Randers

metrics. Section 4 will illustrate Theorem 9 with a plethora of examples.
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3.2.3. Constant flag curvature Randers metrics. For Randers metrics of con-

stant flag curvature, the equation destined to be recast into navigational form

is given in Theorem 6. Contracting it with yh, yk, raising the index i with a,

and relabelling j as k, we obtain the following expression for the spray curvature
aKi

k (= yj aRj
i
kl y

l; Section 1.2.3):

aKi
k =

(
(K− 3

16σ2)+(K+ 1
16σ2)bsbs− 1

4 θsθs

)
(δi

k α2−yi ayk)

+ 1
4 curls0(curls

i ayk+yi curlsk−curls0 δi
k)− 1

4 α2 curlsi curlsk− 3
4 curli0 curlk0.

Here ayk := aikyi. This is equivalent to the Curvature Equation because

aRhijk = 1
3

(
(aKij)ykyh − (aKik)yjyh

)
. (∗)

We now recast the equality just given for aKi
k. All the terms on the right-

hand side are routinely computed, using α2 = a00 = (1/λ)h00 + (1/λ2)W0
2,

bs = −(1/λ)Ws, bs = −λW s, and the simplified formulae in Section 3.2.1.

For the left-hand side, we first specialise the split and covariantised form of

Berwald’s formula (Section 1.2.3) to F = a and F = h, getting

aKi
k = hKi

k +(2ζi):k − (ζi)ys(ζs)yk − ys(ζi
:s)yk +2ζs(ζi)ysyk .

Into this we substitute the simplified formula for ζ (Section 3.2.1). The ensu-

ing computation is assisted by the prodigious use of the LW Equation and the

navigation description of the CC(23) Equation:

Wi:j:k =
(
K + 1

16σ2
)
(hik Wj −hjk Wi).

The result is as elegant as the Einstein case:

hKi
k =

(
K + 1

16σ2
)
(δi

k h00 − yi hyk),

where hyk := hik yi. Lowering the index i with the Riemannian metric h and

differentiating in the same fashion as formula (∗) gives hRhijk.

We have verified that the use of h = ε(a− b⊗ b) and W = −b]/ε (Section

3.1.2) converts the above navigation description in terms of h, W back to the

characterisation in terms of a, b presented by Theorem 6. So the two pictures

are indeed equivalent, and Theorem 6 implies:

Theorem 10 (Constant flag curvature navigation description). Sup-

pose the Randers metric F solves Zermelo’s problem of navigation on the Rie-

mannian manifold (M,h) under the external influence W , |W | < 1. Then (M,F )

is of constant flag curvature K if and only if there exists a constant σ such that

(i) h is of constant sectional curvature (K + 1
16σ2), that is,

hRhijk =
(
K + 1

16σ2
)
(hijhhk −hikhhj) ,

and
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(ii) W is an infinitesimal homothety of h, namely ,

(LW h)ik = Wi:k +Wk:i = −σhik.

Furthermore, σ must vanish whenever h is not flat .

Examples. We present three favorite examples to illustrate the use of Theorem

10. In the examples below: position coordinates are denoted x, y, z rather than

x1, x2, x3; components of tangent vectors are u, v, w instead of y1, y2, y3.

Funk disc. The Finslerian Poincaré example was discussed in Section 2.3.2

and Section 3.1.2. Here we revisit it a third time, for the sake of those who prefer

to work with simple navigation data.

Fix the angle θ and contract the radius via r 7→ r/
(
1+ 1

4r2
)
. This map is an

isometry of the Finslerian Poincaré model onto the Funk metric of the unit disc

[Funk 1929; Okada 1983; Shen 2001]. The navigation data of the Funk metric is

simple: h is the Euclidean metric and the radial W = −r∂r is an infinitesimal

homothety with σ = 2. Writing tangent vectors at (r, θ) as u∂r + v∂θ, we have

F =

√
u2 + r2(1− r2)v2

1− r2
+

ru

1− r2
, with r2 = x2 + y2.

By Theorem 10, K + 1
16 σ2 = 0. Hence the Funk metric on the unit disc has

constant flag curvature K = − 1
4 .

The isometry above is a global change of coordinates which transforms the

navigation data in the Section 3.1.2 example into a more computationally friendly

format. ♦
A 3-sphere that is not projectively flat. We start with the unit sphere

S3 in R
4, parametrised by its tangent spaces at the poles, as in [Bao–Shen 2002].

For each constant K > 1, let h be 1/K times the standard Riemannian metric

induced on S3. The rescaled metric has sectional curvature K. Perturb h by the

Killing vector field

W =
√

K − 1
(
− s(1+x2), z − sxy,−y − sxz

)
,

with s = ±1 depending on the hemisphere. Then |W | =
√

(K − 1)/K and W is

tangent to the S1 fibers in the Hopf fibration of S3. By Theorem 10, the resulting

Randers metric F has constant flag curvature K. Explicitly, F = α +β, where

α =

√
K(su− zv + yw)2 +(zu+ sv−xw)2 +(−yu+xv + sw)2

1+x2 + y2 + z2
,

β =

√
K − 1(su− zv + yw)

1+x2 + y2 + z2
.

This Randers metric is not projectively flat [Bao–Shen 2002]. This is in stark

contrast with the Riemannian case because, according to Beltrami’s theorem,

a Riemannian metric is locally projectively flat if and only if it is of constant

sectional curvature. ♦
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Shen’s fish tank. This example, first presented in [Shen 2002], is a three-

dimensional variant of Shen’s fish pond (Section 3.1.1). Consider a cylindrical

fish tank x2 + y2 < 1 in R3, equipped with the standard Euclidean metric h.

Suppose the tank has a rotational current with velocity vector W = y∂x−x∂y +

0∂z, and a big inquisitive mosquito hovers just above the water. Wishing to

reach the bug as soon as possible, the hungry fish swim along a path of shortest

time —that is, along a geodesic of the Randers metric F = α +β with Zermelo

navigation data h and the infinitesimal rotation W . Explicitly,

α =

√
(−yu+xv)2 +(u2 + v2 +w2)(1−x2 − y2)

1−x2 − y2
,

β =
−yu+xv

1−x2 − y2
, with |W |2 = x2 + y2.

Since W is a Killing field of Euclidean space we have σ = 0, and Theorem 10

tells us that F is of constant flag curvature K = 0. The same conclusion holds

for the fish pond. ♦

Theorem 10 implies that every constant flag curvature Randers metric is lo-

cally isometric to a “standard model” with navigation data (h,W ), where h is a

standard Riemannian space form (sphere, Euclidean space, or hyperbolic space),

and W is one of its infinitesimal homotheties. It remains to sort these standard

models into Finslerian isometry classes.

Let (M1, F1), (M2, F2) be any two Randers spaces, with navigation data

(h1,W1) and (h2,W2). It is a fact that F1, F2 are isometric as Finsler metrics

if and only if there exists a Riemannian isometry ϕ : (M1, h1) → (M2, h2) such

that ϕ∗W1 = W2. For each standard Riemannian space form (M,h), the isom-

etry group G of h leaves h invariant, but acts on its infinitesimal homotheties

W via push-forward. By the cited fact, all (h,W ) which lie on the same G-

orbit generate mutually isometric standard models. This redundancy can be

suppressed by collapsing each G-orbit to a point. For any fixed K, the resulting

collection of such “points” constitutes the moduli space MK for strongly convex

Randers metrics of constant flag curvature K. Lie theory effects (a parametrisa-

tion and hence) a dimension count of MK ; see [Bao et al. 2003] for details. The

table on the next page includes, for comparison, similar information about the

Riemannian setting and the case θ := curl(b], ·) = 0 (Section 2.3.2).

3.3. Issues resolved by the navigation description

3.3.1. Schur lemma for the Ricci scalar. In essence, this lemma constrains the

geometry of Einstein metrics in dimension > 3 by forcing the Ricci scalar to

be constant. Historically, this is the second Schur lemma in (non-Riemannian)

Finsler geometry. The first Finslerian Schur lemma concerns the flag curvature;

see [del Riego 1973; Matsumoto 1986; Berwald 1947]. An exposition can be

found in [Bao et al. 2000].
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Dimension of moduli space

K < 0
CFC metrics dim M K > 0 K = 0

σ = 0 σ 6= 0

Riemannian

b equiv. W = 0
n > 2 0 empty

Yasuda–Shimada even n 0∗

θ = 0 odd n 1
1 0∗ 0†

Unrestricted even n n/2

Randers odd n (n+1)/2 (n− 1)/2

The moduli spaces of dimension 0 consist of a single point.
∗ The single isometry class is Riemannian.
† The single isometry class is non-Riemannian, of Funk type.

Table 1. The dimension of the moduli space for several families of constant flag

curvature (CFC) Randers metrics.

In two dimensions, the Ricci scalar of a Riemannian metric is the Gaussian

curvature of the surface. Hence all Riemannian surfaces are Einstein in the

sense of Section 1.3.2. Since the Gaussian curvature is not constant in general,

the Schur lemma fails for Riemannian (and therefore Randers) metrics in two

dimensions. It is natural to ask whether the Schur lemma also fails for non-

Riemannian (W 6= 0) Randers surfaces. The answer is yes. Section 4.1 develops

a class of non-Riemannian Randers surfaces whose Ricci scalars are nonconstant

functions of x alone. In particular, these non-Riemannian surfaces are Einstein,

but fail the Schur lemma.

In dimension n > 3, every Riemannian Einstein metric h is Ricci-constant.

This follows readily from tracing the second Bianchi identity and realising that,

for such metrics, hRicij = (S/n)hij , where S denotes the scalar curvature of h.

Lemma 11 (Schur lemma). The Ricci scalar of any Einstein Randers metric

in dimension greater than two is necessarily constant .

Proof. Suppose F is an Einstein metric of Randers type, with navigation data

(h,W ) and Ricci scalar Ric(x) = (n− 1)K(x). Theorem 9 says that h must be

Einstein with Ricci scalar (n− 1)
(
K + 1

16σ2
)
, for some constant σ. Since n > 2

here, the Riemannian Schur lemma forces K + 1
16σ2 to be constant. The same

must then hold for K and Ric = (n− 1)K. �

Another proof of the Schur lemma, based on the Einstein characterisation of

Section 2.2.3 (Theorem 5 on page 227), is given in [Robles 2003].

3.3.2. Three dimensional Einstein–Randers metrics. For Riemannian metrics

in three dimensions, being Einstein and having constant sectional curvature are

equivalent conditions because the conformal Weyl curvature tensor automatically

vanishes. It is not known whether this rigidity holds for Einstein–Finsler metrics
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in general. However, the said rigidity does hold for Randers metrics. The proof

rests on a comparison between the navigation descriptions for Einstein (Section

3.2.2) and constant flag curvature (Section 3.2.3) Randers metrics.

Proposition 12 (Three-dimensional rigidity). Let F be a Randers metric

in three dimensions. Then F is Einstein if and only if it has constant flag

curvature.

Proof. Metrics of constant flag curvature are always Einstein. As for the

converse, let F be an Einstein Randers metric with navigation data (h,W ). The

Ricci scalar of F is (n − 1)K = 2K; in view of the Schur lemma above, K

has to be constant. According to Theorem 9, h is Einstein with Ricci scalar

2
(
K + 1

16σ2
)
, for some constant σ. By Riemannian three-dimensional rigidity, h

must have constant sectional curvature K + 1
16σ2. The navigation description in

Theorem 10 then forces F to be of constant flag curvature K. �

Interestingly, the two navigation descriptions also tell us that any Einstein Ran-

ders metric that arises as a solution to Zermelo’s problem of navigation on a

Riemannian space form must be of constant flag curvature.

3.3.3. The Matsumoto identity. This identity first came to light in a letter from

Matsumoto to the first author. It says that any Randers metric of constant flag

curvature K satisfies

σ
(
K + 1

16 σ2
)

= 0.

Since metrics of constant flag curvature are Einstein, it is natural to wonder

whether this identity can be extended to Einstein Randers metrics. The answer

is yes, by the following result:

Proposition 13. Let F be an Einstein Randers metric whose Ricci scalar

Ric(x) we reexpress as (n− 1)K(x). Then

σ
(
K + 1

16σ2
)

=

{
W iK:i when n = 2,

0 when n > 2.

Here, σ is the constant supplied by the navigation data (h,W ) of F . According

to Theorem 9, h must be Einstein with Ricci scalar (n− 1)(K + 1
16σ2), and W

satisfies the LW Equation Wi:j +Wj:i = −σhij .

Proof. We begin with the Ricci identity for the tensor Cij := Wi:j −Wj:i,

namely Cij:k:h −Cij:h:k = Csj
hRi

s
kh + Cis

hRj
s
kh, where hR i

h jk is the curvature

tensor of h. Trace this identity on (i, k) and (h, j) to obtain

(
W i:j

:i −W j:i
:i

)
:j =

(
W i:j −W j:i

)
hRicij = 0,

where the second equality follows because hRicij is symmetric.
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Next, we compute W i:j
:i −W j:i

:i. To that end, differentiating the LW Equa-

tion gives Wp:q:r +Wq:p:r = 0. This and the Ricci identity for W imply that

Wi:j:k −Wj:i:k = (Wi:j:k −Wi:k:j)− (Wk:i:j −Wk:j:i)+ (Wj:k:i −Wj:i:k)

= W s hRisjk −W s hRksij +W s hRjski.

Using h to trace on (i, k) and raise j, we get W i:j
:i−W j:i

:i = 2Ws
hRicsj . Since

hRic = (n− 1)(K + 1
16σ2)h, we are led to

W i:j
:i −W j:i

:i = 2(n− 1)
(
K + 1

16σ2
)
W j . (∗)

Finally, tracing the LW Equation gives 2W j
:j = −nσ, whence

0 = (W i:j
:i −W j:i

:i):j = 2(n− 1)
(
W jK:j − 1

2nσ(K + 1
16σ2)

)
.

The identity now follows from the Schur lemma (Section 3.3.1). �

Remark. If we assume that the LW Equation (or the Basic Equation, which

amounts to the same) holds, the E23 Equation (Section 2.2.3) can be reexpressed

as (∗). Thus (∗) is the navigation version of the E23 Equation. It can be further

refined, using Wi:j:k +Wj:i:k = 0, to read

W i
:j:i = (n− 1)

(
K + 1

16σ2
)

Wj .

A second derivation of the Matsumoto Identity, based on Theorem 5 (page 227),

may be found in [Robles 2003].

4. Einstein Metrics of Nonconstant Flag Curvature

We now present a variety of non-Riemannian Randers metrics that are either

Einstein or Ricci-constant. Apart from the 2-sphere, which is included merely

because of its simplicity, all examples have nonconstant flag curvatures. Section

3.1.1 will be used without mention.

4.1. Examples with Riemannian–Einstein navigation data

4.1.1. Surfaces of revolution. Our first class of examples comprises surfaces of

rotation in R
3. We shall see that solutions to Zermelo’s problem of navigation

under infinitesimal rotations are Einstein, with Ricci scalar Ric(x) equal to the

Gaussian curvature of the original Riemannian surface. Among the examples

below, two (the elliptic paraboloid and the torus) have nonconstant Ricci scalar.

These solutions of Zermelo navigation are non-Riemannian counterexamples to

Schur’s lemma in dimension 2.

To begin, take any surface of revolution M , obtained by revolving a profile

curve

ϕ 7→
(
0, f(ϕ), g(ϕ)

)
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in the right half of the yz-plane around the z axis. The ambient Euclidean space

induces a Riemannian metric h on M . Parametrise M by

(θ, ϕ) 7→
(
f(ϕ) cos θ, f(ϕ) sin θ, g(ϕ)

)
, 0 6 θ 6 2π.

Now consider the infinitesimal isometry W := ε∂θ, where ε is a constant. By

limiting the size of our profile curve if necessary, there is no loss of generality in

assuming that f is bounded. Choose ε so that ε|f | < 1 for all ϕ. Expressing h

in the given parametrisation, we find that the solution to Zermelo’s problem is

the Randers metric F = α +β on M , with

α =

√
u2f2 + v2 (1− ε2f2)(ḟ2 + ġ2)

1− ε2f2
, β =

−εuf2

1− ε2f2
,

and ‖b‖2 = ε2f2 = |W |2. Here, u∂θ +v∂ϕ represents an arbitrary tangent vector

on M , and ḟ , ġ are the derivatives of f , g with respect to ϕ. Note that the

hypothesis ε|f | < 1 ensures strong convexity.

Because W is a Killing vector field, σ vanishes. The Einstein navigation

description (Theorem 9 on page 238) then says that the Ricci scalar Ric of F is

identical to that of the Riemannian metric h. The latter is none other than the

Gaussian curvature K of h. Hence

Ric(x) = K(x) =
ġ (ḟ g̈− f̈ ġ)

f (ḟ2 + ġ2)2
,

where the dots indicate derivatives with respect to ϕ.

We examine three special cases of surfaces of revolution:

Sphere. The unit sphere is given as a surface of revolution by f(ϕ) = cos ϕ and

g(ϕ) = sinϕ. We will consider the infinitesimal rotation W = ε∂θ, with ε < 1 to

effect the necessary ε|f | < 1. The Randers metric solving Zermelo’s problem of

navigation on the sphere under the influence of W is of constant flag curvature

K = 1, with

α =

√
u2 cos2 ϕ+ v2 (1− ε2 cos2 ϕ)

1− ε2 cos2 ϕ
, β =

−εu cos2 ϕ

1− ε2 cos2 ϕ
. ♦

Elliptic paraboloid. This is the surface z = x2 + y2 in R
3. Set the multiple

ε in W to be 1. The resulting Randers metric lives on the x2 + y2 < 1 portion

of the elliptic paraboloid, and has Ricci scalar 4/(1+4x2 +4y2)2. It reads

α =

√
(−yu+xv)2 +

(
(1+4x2)u2 +8xyuv +(1+4y2)v2

)
(1−x2 − y2)

1−x2 − y2
,

β =
yu−xv

1−x2 − y2
, with ‖b‖2 = x2 + y2. ♦

Torus. Specialize to a torus of revolution with parametrisation

(θ, ϕ) 7→
(
(2+ cos ϕ) cos θ, (2+ cos ϕ) sin θ, sinϕ

)
.
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Set the multiple ε in W to be 1
4 . The resulting Randers metric on the torus has

Ricci scalar cos ϕ/(2+ cosϕ). It is given by

α =
4
√

16(2+ cosϕ)2u2 +
(
16− (2+ cos ϕ)2

)
v2

16− (2+ cos ϕ)2
,

β =
−4(2+ cosϕ)2u

16− (2+ cos ϕ)2
, with ‖b‖2 = 1

16 (2+ cos ϕ)2. ♦

4.1.2. Certain Cartesian products. Recall from Section 1.3.2 the geometri-

cal definition of the Ricci scalar and of Einstein metrics. When specialised to

Riemannian n-manifolds, it says that the Ricci scalar Ric is obtained by sum-

ming the sectional curvatures of n− 1 appropriately chosen sections that share

a common flagpole. A Ricci-constant metric is remarkable because this sum is a

constant. A moment’s thought convinces us of the following:

The Cartesian product of two Riemannian Einstein metrics with the same

constant Ricci scalar ρ is again Ricci-constant, and has Ric = ρ.

As we will illustrate, this allows us to construct a wealth of Ricci-constant

Randers metrics with nonconstant flag curvature.

Fix ρ. For i = 1, 2, let Mi be an ni-dimensional Riemannian manifold with

constant sectional curvature ρ/(ni − 1). Therefore Mi is Einstein with Ricci

scalar ρ. Let Wi be a Killing field on Mi. Let h denote the product Riemannian

metric on the Cartesian product M = M1 ×M2. Then h has constant Ricci

scalar ρ, and admits W = (W1,W2) as a Killing field.

By Theorem 9 (page 238), the Randers metric F generated by the naviga-

tion data (h,W ) on M is Einstein, with constant Ricci scalar ρ. When ρ is

nonzero, the Einstein metric h on M is not of constant sectional curvature.

Hence Theorem 10 (page 239) assures us that F will not be of constant flag

curvature. Proposition 8 (page 234) then says that the Randers metric F is

non-Riemannian if and only if the wind W is nonzero. So it suffices to select a

nonzero W1.

To that end, let M̃1 be the n1-dimensional, complete, simply connected stan-

dard model of constant sectional curvature ρ/(n1 − 1). The space of globally

defined Killing fields on M̃1 is a Lie algebra g of dimension 1
2n1(n1 +1). Select a

nonzero W̃1 from g. The isometry group G of M̃ acts on g via push-forwards. Let

H be any finite subgroup of the isotropy group of W̃1. Then we have a natural

projection π : M̃1 → M̃1/H. The quotient space M1 := M̃1/H is of constant

sectional curvature ρ/(n1 − 1), and has a nonzero Killing field W1 := π∗W̃1.

As a concrete illustration, we specialise the discussion to spheres. For sim-

plicity, we specify the finite subgroup H to be trivial.

Example. Let Mi (i = 1, 2) be the ni-sphere of radius
√

ni − 1, ni > 2. Then

Mi has constant sectional curvature 1/(ni − 1), and is therefore Einstein with

Ricci scalar 1. The Cartesian product M = M1×M2, equipped with the product
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metric h, is an (n1 + n2)-dimensional Riemannian Einstein manifold with Ricci

scalar 1, and it is not of constant sectional curvature.

The Lie algebra of Killing fields on the n-sphere Sn(r) with radius r is isomor-

phic to so(n +1), regardless of the size of r. The following description accounts

for all such vector fields. View points p ∈ Sn(r) as row vectors in R
n+1. For

each Ω ∈ so(n + 1), the assignment p 7→ pΩ ∈ Tp(S
n(r)) is a globally defined

Killing vector field on Sn(r).

Now, for i = 1, 2, take Ωi ∈ so(ni +1). Denote points of M1, M2 by p and q,

respectively. The map (p, q) 7→ (pΩ1, qΩ2) ∈ T(p,q)M defines a Killing field W

of h. This W is nonzero as long as Ω1, Ω2 are not both zero. Zermelo navigation

on (M,h) under the influence of W generates a non-Riemannian Randers metric

with constant Ricci scalar 1, and which is not of constant flag curvature. ♦

4.2. Examples with Kähler–Einstein navigation data. In this section, we

construct Einstein metrics of Randers type, with navigation data h, which is a

Kähler–Einstein metric, and W , which is a Killing field of h. We choose h from

among Kähler metrics of constant holomorphic sectional curvature, because the

formula can be explicitly written down. There exist much more general Kähler–

Einstein metrics, for instance those with positive sectional curvature; see [Tian

1997].

4.2.1. Kähler manifolds of constant holomorphic sectional curvature Suppose

(M,h) is a Kähler manifold of complex dimension m (real dimension n = 2m)

with complex structure J . Let (z1, . . . , zm), where zα := xα + ixᾱ, denote local

complex coordinates. Here, x1, . . . , xm;x1̄, . . . , xm̄ are the 2m real coordinates.

In our notation, lowercase Greek indices run from 1 to m. The complex coordi-

nate vector fields are
Zα := ∂zα = 1

2 (∂xα − i∂xᾱ),

Zᾱ := ∂z̄α = 1
2 (∂xα + i∂xᾱ),

respectively eigenvectors of J with eigenvalues +i and −i. In what follows,

uppercase Latin indices run through 1, . . . ,m, 1̄, . . . , m̄. Also, z̄α := xα − ixᾱ

abbreviates the complex conjugate of zα.

The Kähler metric h is a Riemannian (real) metric with the J-invariance

property h(JX, JY ) = h(X,Y ), and such that the 2-form (X,Y ) 7→ h(X,JY ),

known as the Kähler form, is closed.

Let hAB := h(ZA, ZB). The J-invariance of h implies hαβ = 0 = hᾱβ̄ . Ex-

panding in terms of the complex basis gives

h = hαβ̄ (dzα ⊗ dz̄β + dz̄β ⊗ dzα),

where (hαβ̄) is an m×m complex Hermitian matrix. By contrast, using the

real basis and setting HAB := h(∂xA , ∂xB ), we have h = HAB dxA ⊗ dxB , with

Hᾱβ̄ = Hαβ and Hᾱβ =−Hαβ̄ : the two diagonal blocks are symmetric and identi-

cal, while the off-diagonal blocks are skew-symmetric and negatives of each other.
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The Kähler form being closed is equivalent to either Zγ(hαβ̄) = Zα(hγβ̄) or

Zγ̄(hαβ̄) = Zβ̄(hαγ̄), which puts severe restrictions on the usual Riemannian con-

nection of h. Consequently, if we expand the curvature operator hR(ZC , ZD)ZB

as hRB
A

CD ZA in the complex basis, it is not surprising to find considerable

economy among the coefficients:

hRβ̄
α

CD = hRβ
ᾱ

CD = 0 = hRB
A

γδ = hRB
A

γ̄δ̄.

For each Y in the real tangent space TxM , the 2-plane spanned by {Y, JY }
is known as a holomorphic section because it is invariant under J , and the

corresponding sectional curvature (in the usual Riemannian sense) is called a

holomorphic sectional curvature. If all such curvatures are equal to the same

constant c, the Kähler metric is said to be of constant holomorphic sectional

curvature c. Such metrics are characterised by their curvature tensor having the

following form in the complex basis {ZA}:
hRβᾱγδ̄ =

c

2
(hβᾱ hγδ̄ +hγᾱhβδ̄).

Equivalently,
hRβ

α
γδ̄ =

c

2
(δβ

αhγδ̄ + δα
γ hβδ̄).

Discussion of all this may be found in [Kobayashi–Nomizu 1996]; but one must

adjust for the fact that their KABCD is our RBACD, and that their definition of

the curvature operator agrees with ours.

Remarks. 1. Suppose h is a Kähler metric of constant holomorphic sectional

curvature c. Return to the expression for hRβ
α

γδ̄ above. Tracing on the indices

α and γ, we see that hRic = (m + 1)(c/2)h. That is, h must be an Einstein

metric with constant Ricci scalar (m+1)c/2.

2. If a Kähler metric h were to satisfy the stronger condition of constant sectional

curvature c, then it would necessarily be Einstein with Ricci scalar (n−1)c =

(2m− 1)c; see Section 1.3.1. At the same time, (1) implies that the Ricci

scalar is (m+1)c/2. Hence we would have to have either c = 0 or m = 1.

Thus a Kähler manifold (M,h) can have constant sectional curvature in only

two ways: either h is flat, or the real dimension of M is 2. This rigidity indicates

that in the Kähler category, the weaker concept of constant holomorphic sectional

curvature is more appropriate.

In analogy with the constant sectional curvature case we have a classifica-

tion theorem for Kähler metrics of constant holomorphic sectional curvature

[Kobayashi–Nomizu 1996]:

Any simply connected complete Kähler manifold of constant holomorphic sec-

tional curvature c is holomorphically isometric to one of three standard models:

c > 0: the Fubini–Study metric on CP n (see below),

c = 0: the standard Euclidean metric on C
n,

c < 0: the Bergmann metric on the unit ball in C
n.
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4.2.2. Killing fields of the Fubini–Study metric. The Fubini–Study metric is

a Kähler metric on CP m of constant holomorphic sectional curvature c > 0.

Complex projective space is obtained from Cm+1 r 0 by quotienting out the

equivalence relation ζ ∼ λζ, where 0 6= λ ∈ C. Denote the equivalence class

of ζ by [ζ]. CP m is covered by the charts U j :=
{
[ζ] ∈ CPm : ζj 6= 0

}
,

j = 0, 1, . . . ,m, with holomorphic coordinate mapping

[ζ] 7→ 1

ζj
(ζ0, . . . , ζ̂j , . . . , ζm) =: (z1, . . . , zm) = z ∈ C

m.

In these coordinates, the Fubini–Study metric of constant holomorphic sec-

tional curvature c > 0 has components

hαβ̄ := h(Zα, Zβ̄) =
2

c

(
1

ρ
δαβ − 1

ρ2
z̄αzβ

)
,

where z̄α := δαβ z̄β, zβ := δβτ zτ , and ρ := 1+ zαz̄α.

Conventional wisdom in complex manifold theory prompts us to construct

some explicit Killing vector field of h by considering ξ := π∗(P
i
j ζj ∂ζi). Here,

π : C
m+1

r0 → CPm is the natural projection and P ∈ u(m+1), the Lie algebra

of the unitary group U(m+1). Note that U(m+1) is the group of holomorphic

isometries of Euclidean C
m+1

r 0.

For concreteness, we compute ξ in the local coordinates of the chart U 0.

We have π(ζ0, ζ1, . . . , ζm) := (1/ζ0)(ζ1, . . . , ζm) =: (z1, . . . , zm), from which it

follows that

π∗(∂ζ0) = − 1

ζ0
zα∂zα and π∗(∂ζα) =

1

ζ0
∂zα

because the differential of π is simply the matrix

π∗ =
1

ζ0




−z1 1
0

...
. . .

−zm
0

1


 .

Thus

π∗(P
i
j ζj ∂ζi) = P 0

j ζj
(
− 1

ζ0
zα∂zα

)
+Pα

j ζj
(

1

ζ0
∂zα

)

= (−P 0
0 −P 0

β zβ)zα∂zα +(Pα
0 +Pα

β zβ)∂zα .

With the skew-Hermitian property P t = −P̄ , and introducing the decomposition

P =

(
E C̄t

C Q

)
, where





E := P 0
0 is pure imaginary,

C = (Cα) := (Pα
0) ∈ C

m,

Q = (Qα
β) := (Pα

β) ∈ u(m),

we see that

ξ := π∗(P
i
j ζj ∂ζi) =

(
Qα

β zβ +Cα +(C̄ · z + Ē)zα
)
∂zα .
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The real and imaginary parts of ξ give two real vector fields. A straightforward

calculation shows that only Re ξ is Killing. The failure of Im ξ to be Killing

persists even for CP 1. In that case, the skew-Hermitian Q is simply a pure

imaginary number, C is a single complex constant, and

LIm ξh =

(
2

ρ2

(
1− 2

ρ

)
Im(E + Q̄)+

8

ρ3
Im(EC̄)

)
(dx1 ⊗ dx1 + dx1̄ ⊗ dx1̄),

where ρ := 1 + |z|2. (We hasten to add that for CP m with m > 1, the dxαdxβ̄

and dxᾱdxβ components of LIm ξh do not vanish.)

Thus, our construction of ξ gives rise to the real Killing fields

W := Re ξ = 1
2 (ξα∂zα + ξα∂z̄α) = 1

2

(
(Re ξα)∂xα +(Im ξα)∂xᾱ

)
,

where

ξα := Qα
β zβ +Cα +(C̄ · z + Ē)zα.

4.2.3. Non-Riemannian Einstein metrics on CP m. Theorem 9 (page 238) assures

us that the Randers metric F = α + β generated by the navigation data h,W

is a globally defined Einstein metric on CP m, provided that the Killing field W

satisfies |W | < 1. Since, with ρ := 1+ zγ z̄γ , the Fubini–Study metric

h :=
2

c

(
1

ρ
δαβ − 1

ρ2
z̄αzβ

)
(dzα ⊗ dz̄β + dz̄β ⊗ dzα)

does not have constant sectional curvature for m > 1, Theorem 10 (page 239)

ensures that F will not be of constant flag curvature. Moreover, the Ricci scalar

of F equals that of h, which has the constant value (m+1)c/2 (Section 4.2.1).

Example. To make explicit the Riemannian metric a underlying α and the 1-

form b that gives β, it is necessary to have available the covariant description W [

of the Killing field W . If we write W = W B ∂xB and HAB := h(∂xA , ∂xB ), then

W [ := (HAB WB) dxA. Using Hαβ = 2 Re hαβ̄ = Hᾱβ̄ and Hαβ̄ = 2 Im hαβ̄ =

−Hᾱβ , a computation tells us that

W [ = (Re ξᾱ) dxα +(Im ξᾱ) dxᾱ = 1
2 (ξᾱ dzα + ξᾱ dz̄α).

Here, ξᾱ := hᾱB ξB = hᾱβ ξβ has the formula

ξᾱ =
2

cρ2

(
ρ(Qαβ zβ +Cα)+ (C̄ · z −C · z̄ + Ē −Qβγ z̄βzγ)zα

)
,

where indices on Q, C, z are raised and lowered by the Kronecker delta.

As long as

|W |2 := h(W,W ) = 1
2 Re(ξαξᾱ) < 1,

the Randers metric F with defining data

a :=
1

λ
h+

1

λ2
W [ ⊗W [, b := − 1

λ
W [,
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where λ := 1− |W |2, will be strongly convex. Note that W [ ⊗W [ does have

dzαdzβ and dz̄αdz̄β components, whereas h doesn’t; thus the Riemannian metric

a is not Hermitian unless W = 0.

For any choice of the constant quantities Q, C, E, the resulting function

|W |2 is continuous on the compact CP m, and is therefore bounded. Normalising

these quantities by a common positive number if necessary, the strong convexity

criterion |W |2 < 1 can always be met. ♦

4.3. Rigidity and a Ricci-flat example. In this final set of examples, we

consider Einstein–Randers metrics on compact boundaryless manifolds M , with

an eye toward those with nonpositive constant Ricci scalar. The information

obtained will complement the Ricci-positive example presented in Section 4.2.3.

We begin by observing that any infinitesimal homothety of (M,h) is neces-

sarily Killing; that is, σ = 0. The proof follows from a divergence lemma (for

compact boundaryless manifolds) and the trace of the LW Equation:

0 =

∫

M

W i
:i dVh by the divergence lemma [Bao et al. 2000]

=

∫

M

− 1
2 nσ dVh by tracing Wi:j +Wj:i = −σhij ,

where dVh :=
√

h dx. In conjunction with Theorem 9 (page 238), we have:

Lemma 14. Let (M,h) be a compact boundaryless Riemannian manifold . Every

infinitesimal homothety W must be a Killing field ; equivalently , σ = 0. In

particular , if h is Einstein with Ricci scalar Ric, then the navigation data (h,W )

generates an Einstein Randers metric F with Ricci scalar Ric.

4.3.1. Killing fields versus eigenforms. Let W be any Killing vector field on

a Riemannian Einstein manifold (M,h) with constant Ricci scalar Ric. Let

W [ := Wi dxi denote the 1-form dual to W . The action of the Laplace–Beltrami

operator ∆ := dδ + δd on W [ is given by the Weitzenböck formula

∆W [ = (−Wi
:j

:j + hRici
j Wj) dxi. (†)

See, for example, [Bao et al. 2000]. Given that hRicij = Ric hij , we have

hRici
j Wj = Ric Wi.

By a Ricci identity, W j
:j:i−W j

:i:j = −hRici
sWs. Since W is Killing, Wi:j +Wj:i

vanishes. Thus W j
:j = 0 and −W j

:i = Wi
:j , which reduce that Ricci identity to

−Wi
:j

:j = hRici
sWs = Ric Wi.

(Note for later use that if W is parallel but 6≡ 0, then Ric = 0.)

The Weitzenböck formula (†) now becomes

∆W [ = 2Ric W [. (∗)
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Therefore, whenever h is Einstein with constant Ricci scalar Ric, all its Killing

1-forms must be eigenforms of ∆, with eigenvalue 2Ric.

Now suppose M is compact and boundaryless, so that integration by parts can

be carried out freely without generating any boundary terms. Let 〈 , 〉 denote

the L2 inner product on k-forms; namely,

〈ω, η〉 :=
1

k!

∫

M

hi1j1 · · ·hikjk ωi1···ik
ηj1···jk

√
h dx.

Since the codifferential δ is the L2 adjoint of d, we have

2Ric 〈W [,W [〉 = 〈∆W [,W [〉 = 〈δW [, δW [〉+ 〈dW [, dW [〉 > 0. (‡)

In particular, if Ric is negative, then W must be zero.

On the other hand, using (†) and hRicij = Ric hij , we get

〈∆W [,W [〉 =

∫

M

(Wi:j W i:j +Ric |W |2)
√

h dx.

This enables us to make a Bochner type argument: if Ric = 0, so that W [ is

harmonic by (∗), then Wi:j must vanish identically.

4.3.2. Digression on Berwald spaces. In anticipation of our discussion of non-

positive Ricci curvature, we review Berwald spaces. (See [Szabó 1981; 2003] for

a complete classification of such spaces.)

Let (M,F ) be an arbitrary Finsler space. M need not be compact boundary-

less, and F need not be Einstein or of Randers type. Let Gi denote the geodesic

spray coefficients of F . Then (M,F ) is a Berwald space if the Berwald connection

coefficients (Gi)yjyk do not depend on y. In particular, all Riemannian and

locally Minkowski spaces are Berwald; for explicit examples belonging to neither

of these two camps, see [Bao et al. 2000].

Now suppose F = α + β is Randers but not necessarily Einstein, and has

navigation data (h,W ). It is known that F is Berwald if and only if the defining

1-form b is parallel. This elegant theorem is due to the efforts of the Japanese

school. See [Bao et al. 2000] for an account of the history and references therein;

see also the errata for a proof by Mike Crampin.

Decompose bi|j = 1
2 lieij + 1

2 curlij into its symmetric and skew-symmetric

parts. Look back at the expression for lie and curl at the end of Section 3.1.3.

(We reiterate here that they were derived under no assumptions on F .) Observe

that Wi:j = 0 implies bi|j = 0. We prove the converse: suppose bi|j = 0.

◦ We have 0 = 2bj|kW jW k = liejkW jW k = −(1/λ)Wj:kW jW k by referring to

Section 3.1.3. Hence Wj:kW jW k = 0.

◦ Using this, a similar calculation gives 0 = 2bj|kW j = −(2/λ)W jWj:k and

0 = 2bj|kW k = −(2/λ)Wj:kW k. That is, W jWj:k = 0 = Wj:kW k.

◦ The formulae for liejk and curljk now simplify to 0 = liejk = −Ljk and

0 = curljk = −(1/λ)Cjk. Hence Wj:k = 1
2 (Ljk + Cjk) = 0.
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Lemma 15. Let F be any Randers metric, with defining data (a, b) and naviga-

tion data (h,W ). The following three conditions are equivalent :

• F is Berwald .

• b is parallel with respect to a.

• W is parallel with respect to h.

4.3.3. A rigidity theorem. We now focus on Einstein Randers metrics of non-

positive constant Ricci scalar, and show that there is considerable rigidity.

We begin by addressing the Ricci-flat case. We saw at the end of 4.3.1 that

Ric = 0 implies that W is parallel. Conversely, if W is parallel and not identi-

cally zero, then Ric = 0 (see parenthetic remark just before (∗) on page 251).

Whence, in conjunction with Lemma 15 and Proposition 8 (page 234), we obtain:

Proposition 16. Let F be an Einstein Randers metric on a compact bound-

aryless manifold M .

• If Ric = 0, then F must be Berwald .

• If F is non-Riemannian and Berwald , then Ric = 0.

The second conclusion is false if we remove the stipulation that F be non-

Riemannian. A Riemannian metric is always Berwald and Randers, and being

Einstein certainly does not mandate it to be Ricci-flat.

Next, we turn our attention to compact boundaryless Einstein Randers spaces

of constant negative Ricci scalar. In this case, by (‡) on page 252, W must be

identically zero. Equivalently, F = h is Riemannian.

Proposition 17. Let F be an Einstein Randers metric with constant negative

Ricci scalar on a compact boundaryless manifold M . Then F is Riemannian.

Together, these two propositions imply the following rigidity theorem.

Theorem 18 (Ricci rigidity). Suppose (M,F ) is a connected compact bound-

aryless Einstein Randers manifold with constant Ricci scalar Ric.

• If Ric < 0, then (M,F ) is Riemannian.

• If Ric = 0, then (M,F ) is Berwald .

Note that locally Minkowskian spaces, being Berwald and of zero flag curvature,

are obvious examples of the second camp. The following arguments show that

there exist Ricci-flat non-Riemannian Berwald–Randers metrics which are not

locally Minkowskian.

Example. Take any K3 surface†, namely a complex surface with zero first Chern

class and no nontrivial global holomorphic 1-forms. All K3 surfaces admit Kähler

†According to [Weil 1979, v. 2, p. 546], K3 surfaces are named after Kummer, Kodaira,
Kähler, and “the beautiful mountain K2 in Kashmir” — the second tallest peak in the world.
One may conjecture that with this last reference Weil was implying that such surfaces are as
hard to conquer as the K2. . .
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metrics (a result due to Todorov and to Siu), and hence Ricci-flat Kähler metrics,

by Yau’s proof of the Calabi conjecture. Since χ(K3) = 24 by Riemann–Roch,

these metrics are not flat by virtue of the Gauss–Bonnet–Chern theorem. See

[Besse 1987] for details and references therein. It is futile to consider the Killing

fields of such Ricci-flat metrics because, by an argument involving Serre duality,

the isometry groups in question are all discrete. To circumvent this difficulty,

set M := K3×S1 (a compact boundaryless real 5-manifold) and consider the

product metric h on M ; it can be checked that h is also Ricci-flat but not flat.

The vector field W := 0⊕∂/∂t on M is parallel, hence Killing, with respect to h.

Theorem 9 (page 238) tells us that the Randers metric F on M with navigation

data (h,W ) is Ricci-flat, while Proposition 8 (page 234) guarantees that it is not

Riemannian. Theorem 10 (page 239) ensures that F is not of constant (zero)

flag curvature; hence it could not be locally Minkowskian. ♦

Theorem 18 generalises a result of Akbar-Zadeh’s for Finsler metrics of constant

flag curvature [Akbar-Zadeh 1988]:

Suppose (M,F ) is a connected compact boundaryless Finsler manifold of constant

flag curvature λ.

• If λ < 0, then (M,F ) is Riemannian.

• If λ = 0, then (M,F ) is locally Minkowski.

The Ricci rigidity theorem is a straightforward extension of Akbar-Zadeh’s

result when Ric < 0. To appreciate the generalisation when Ric = 0, it is

helpful to note that locally Minkowski spaces are precisely Berwald spaces of

constant flag curvature K = 0; see, for instance, [Bao et al. 2000].

Akbar-Zadeh’s theorem holds for all compact boundaryless Finsler spaces of

constant flag curvature, while the Ricci rigidity theorem above is restricted to

the Randers setting. So, towards a complete generalisation of Akbar-Zadeh’s

result: What should the conclusions be if we replace ‘Randers’ by ‘Finsler’ in

the Ricci rigidity theorem?

5. Open Problems

5.1. Randers and beyond. Table 2 summarises some key information about

Randers metrics, which are the simplest members in the much larger family of

strongly convex (α, β) metrics. Matusmoto’s slope-of-a-mountain metric (Section

1.1.1) is a prime example from this family. Formal discussions of (α, β) metrics

are given in [Matsumoto 1986; Antonelli et al. 1993]; see also [Shen 2004] in this

volume.

For strongly convex (α, β) metrics, how should the entries of the table be

modified?

Also, Randers metrics exhibit three-dimensional rigidity (Section 3.3.2), and

their Ricci scalars obey a Schur lemma (Section 3.3.1).
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Property Characterisation with (a, b) Description with (h,W )

Strong

convexity
‖b‖ < 1 |W | < 1

Berwald a∇b = 0 h∇W = 0

Constant

flag

curvature

Lb]a = σ(a− bb)− (bθ + θb)
aR = poly(K,σ, a, b, curl)

(Theorem 5)

h is a

space form,

LW h = −σh

Einstein
Lb]a = σ(a− bb)− (bθ + θb)

aRic = poly(Ric, σ, a, b, curl, a∇θ)

(Theorem 6)

h is Einstein,

LW h = −σh

Table 2. Summary of information about Randers metrics

• Does the passage from Randers metrics to (α, β) metrics allow us to construct,

in three dimensions, a Ricci-constant metric which is not of constant flag

curvature?

• Does every Einstein (α, β) metric (Ric a function of x only) in dimension > 3

have to be Ricci-constant?

Finally, fans of Randers metrics can aim to append an extra row to the above

table, characterising Randers metrics of scalar curvature (Section 1.2.1).

5.2. Chern’s question. Professor S.-S. Chern has openly asked the following

question on many occasions:

Does every smooth manifold admit a Finsler Einstein metric?

Topological obstructions prevent some manifolds, such as S2×S1, from admitting

Riemannian Einstein metrics; see Section 1.3.3 and references therein. By the

navigation description of Theorem 9 (page 238), any manifold that admits an

Einstein Randers metric must also admit a Riemannian Einstein metric. Thus

the same topological obstructions confront Einstein metrics of Randers type.

As a prelude to answering Chern’s question, it would be prudent to first settle

the issue for concrete examples such as S2×S1. The discussion above shows that

in searching for a Finsler Einstein metric on this 3-manifold, we must look beyond

those of Randers type.
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5.3. Geometric flows. On the slit tangent bundle TM r 0, there are two

interesting curvature invariants: the Ricci scalar and the S-curvature. They open

the door to evolution equations which may be used to deform Finsler metrics.

In this frame of mind, we wonder:

• Would a flow driven by the Ricci scalar, such as† ∂t log F = −Ric, enable us

to prove the existence of Finsler metrics with coveted curvature properties?

• Can deformations tailored to the S-curvature be used to ascertain the exis-

tence of Landsberg metrics (Ȧ = 0) which are not of Berwald type (P = 0)?
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