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Abstract. Commutative algebra is used extensively in the cohomology
of groups. In this series of lectures, I concentrate on finite groups, but I
also discuss the cohomology of finite group schemes, compact Lie groups,
p-compact groups, infinite discrete groups and profinite groups. I describe
the role of various concepts from commutative algebra, including finite gen-
eration, Krull dimension, depth, associated primes, the Cohen–Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality,
and Castelnuovo–Mumford regularity.
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1. Introduction

The purpose of these lectures is to explain how commutative algebra is used in

the cohomology of groups. My interpretation of the word “group” is catholic: the

kinds of groups in which I shall be interested include finite groups, finite group

schemes, compact Lie groups, p-compact groups, infinite discrete groups, and

profinite groups, although later in the lectures I shall concentrate more on the

case of finite groups, where representation theoretic methods are most effective.

In each case, there are finite generation theorems which state that under suitable

conditions, the cohomology ring is a graded commutative Noetherian ring; over

a field k, this means that it is a finitely generated graded commutative k-algebra.

Although graded commutative is not quite the same as commutative, the usual

concepts from commutative algebra apply. These include the maximal/prime

ideal spectrum, Krull dimension, depth, associated primes, the Cohen–Macaulay

and Gorenstein conditions, local cohomology, Grothendieck’s local duality, and

so on. One of the themes of these lectures is that the rings appearing in group co-

homology theory are quite special. Most finitely generated graded commutative

k-algebras are not candidates for the cohomology ring of a finite (or compact Lie,

or virtual duality, or p-adic Lie, or . . . ) group. The most powerful restrictions

come from local cohomology spectral sequences such as the Greenlees spectral

sequence Hs,t
m H∗(G, k) =⇒ H−s−t(G, k), which can be viewed as a sort of dual-

ity theorem. We describe how to construct such spectral sequences and obtain

information from them.

The companion article to this one, [Iyengar 2004], explains some of the back-

ground material that may not be familiar to commutative algebraists. A number

of references are made to that article, and for distinctiveness, I write [Sri].

2. Some Examples

For motivation, let us begin with some examples. We defer until the next

section the definition of group cohomology

H∗(G, k) = Ext∗kG(k, k)

(or see § 6 of [Sri]). All the examples in this section are for finite groups G over

a field of coefficients k.

(2.1) The first comment is that in the case where k is a field of characteristic

zero or characteristic not dividing the order of G, Maschke’s theorem in represen-

tation theory shows that all kG-modules are projective (see Theorem 3.1 of [Sri]).

So for any kG-modules M and N , and all i > 0, we have Exti
kG(M,N) = 0. In

particular, H∗(G, k) is just k, situated in degree zero. Given this fact, it makes

sense to look at examples where k has characteristic p dividing |G|.
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(2.2) Next, we discuss finite abelian groups. See also § 7.4 of [Sri]. The Künneth

theorem implies that

(2.2.1) H∗(G1 × G2, k) ∼= H∗(G1, k) ⊗k H∗(G2, k).

So we decompose our finite abelian group as a direct product of cyclic groups of

prime power order. The factors of order coprime to the characteristic may be

thrown away, using (2.1). For a cyclic p-group in characteristic p, there are two

possibilities (Proposition 7.3 of [Sri]). If p = 2 and |G| = 2, then H∗(G, k) = k[x]

where x has degree one. In all other cases (i.e., p odd, or p = 2 and |G| ≥ 4), we

have H∗(G, k) = k[x, y]/(x2) where x has degree one and y has degree two. It

follows that if G is any finite abelian group then H∗(G, k) is a tensor product of

a polynomial ring and a (possibly trivial) exterior algebra.

(2.2.2) In particular, if G is a finite elementary abelian p-group of rank r (i.e.,

a product of r copies of Z/p) and k is a field of characteristic p, then the coho-

mology ring is as follows. For p = 2, we have

H∗((Z/2)r, k) = k[x1, . . . , xr]

with |xi| = 1, while for p odd, we have

H∗((Z/p)r, k) = Λ(x1, . . . , xr) ⊗ k[y1, . . . , yr]

with |xi| = 1 and |yi| = 2. In the latter case, the nil radical is generated by

x1, . . . , xr, and in both cases the quotient by the nil radical is a polynomial ring

in r generators.

(2.3) The next comment is that if S is a Sylow p-subgroup of G then a transfer

argument shows that the restriction map from H∗(G, k) to H∗(S, k) is injective.

What’s more, the stable element method of Cartan and Eilenberg [1956] identifies

the image of this restriction map. For example, if S E G then H∗(G, k) =

H∗(S, k)G/S , the invariants of G/S acting on the cohomology of S (see § 7.6 of

[Sri]). It follows that really important case is where G is a p-group and k has

characteristic p. Abelian p-groups are discussed in (2.2), so let’s look at some

nonabelian p-groups.

(2.4) Consider the quaternion group of order eight,

(2.4.1) Q8 = 〈g, h | gh = h−1g = hg−1〉.

There is an embedding

g 7→ i, h 7→ j, gh 7→ k, g2 = h2 = (gh)2 7→ −1

of Q8 into the unit quaternions (i.e., SU(2)), which form a three dimensional

sphere S3. So left multiplication gives a free action of Q8 on S3; in other words,

each nonidentity element of the group has no fixed points on the sphere. The

quotient S3/Q8 is an orientable three dimensional manifold, whose cohomology
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therefore satisfies Poincaré duality. The freeness of the action implies that we

can choose a CW decomposition of S3 into cells permuted freely by Q8. Taking

cellular chains with coefficients in F2, we obtain a complex of free F2Q8-modules

of length four, whose homology consists of one copy of F2 at the beginning and

another copy at the end. Making suitable choices for the cells, this looks as

follows.

0 → F2Q8

(
g−1
h−1

)
−−−−−→ (F2Q8)

2

(
h−1 hg+1
gh+1 g−1

)
−−−−−−−−−→ (F2Q8)

2 (g−1 h−1)−−−−−−−→ F2Q8 → 0

So we can form a Yoneda splice of an infinite number of copies of this sequence

to obtain a free resolution of F2 as an F2Q8-module. The upshot of this is that

we obtain a decomposition for the cohomology ring

H∗(Q8, F2) = F2[z] ⊗F2
H∗(S3/Q8; F2)(2.4.2)

= F2[x, y, z]/(x2 + xy + y2, x2y + xy2),

where z is a polynomial generator of degree four and x and y have degree one.

This structure is reflected in the Poincaré series

∞∑

i=0

ti dimHi(Q8, F2) = (1 + 2t + 2t2 + t3)/(1 − t4).

The decomposition (2.4.2) into a polynomial piece and a finite Poincaré duality

piece can be expressed as follows (cf. § 11):

H∗(Q8, F2) is a Gorenstein ring.

(2.5) We recall that the meanings of Cohen–Macaulay and Gorenstein in this

context are as follows. Let R be a finitely generated graded commutative k-

algebra with R0 = k and Ri = 0 for i < 0. Then Noether’s normalization lemma

guarantees the existence of a homogeneous polynomial subring k[x1, . . . , xr] over

which R is finitely generated as a module.

Proposition 2.5.1. If R is of the type described in the previous paragraph, then

the following are equivalent .

(a) There exists a homogeneous polynomial subring k[x1, . . . , xr] ⊆ R such

that R is finitely generated and free as a module over k[x1, . . . , xr].

(b) If k[x1, . . . , xr] ⊆ R is a homogeneous polynomial subring such that R is

finitely generated as a k[x1, . . . , xr]-module then R a free k[x1, . . . , xr]-module.

(c) There exist homogeneous elements of positive degree x1, . . . , xr forming a

regular sequence, and R/(x1, . . . , xr) has finite rank as a k-vector space.

We say that R is Cohen–Macaulay of dimension r if the equivalent conditions of

the above proposition hold.
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(2.6) If R is Cohen–Macaulay, and the quotient ring R/(x1, . . . , xr) has a sim-

ple socle, then we say that R is Gorenstein. Whether this condition holds is

independent of the choice of the polynomial subring. Another way to phrase the

condition is that R/(x1, . . . , xr) is injective as a module over itself. This quotient

satisfies Poincaré duality, in the sense that if the socle lies in degree d (d is called

the dualizing degree) and we write

p(t) =

∞∑

i=0

ti dimk(R/(x1, . . . , xr))i

then

(2.6.1) tdp(1/t) = p(t).

Setting

P (t) =

∞∑

i=0

ti dimk Ri,

the freeness of R over k[x1, . . . , xr] implies that P (t) is the power series expansion

of the rational function p(t)/
∏r

i=1(1− t|xi|). So plugging in equation (2.6.1), we

obtain the functional equation

(2.6.2) P (1/t) = (−t)rt−aP (t),

where a = d −
∑r

i=1(|xi| − 1). We say that R is Gorenstein with a-invariant a.

Another way of expressing the Gorenstein condition is as follows. If R (as

above) is Cohen–Macaulay, then the local cohomology H s,t
m R is only nonzero for

s = r. The graded dual of Hr,∗
m R is called the canonical module, and written

ΩR. To say that R is Gorenstein with a-invariant a is the same as saying that

ΩR is a copy of R shifted so that the identity element lies in degree r − a.

In the case of H∗(Q8, F2), we can choose the polynomial subring to be k[z].

The ring H∗(Q8, F2) is a free module over k[z] on six generators, corresponding

to a basis for the graded vector space H∗(S3/Q8; F2) ∼= H∗(Q8, F2)/(z), which

satisfies Poincaré duality with d = 3. So in this case the a-invariant is 3−(4−1) =

0. We have p(t) = 1 + 2t + 2t2 + t3 and P (t) = p(t)/(1 − t4).

(2.7) A similar pattern to the one seen above for Q8 holds for other groups.

Take for example the group GL(3, 2) of 3 × 3 invertible matrices over F2. This

is a finite simple group of order 168. Its cohomology is given by

H∗(GL(3, 2), F2) = F2[x, y, z]/(x3 + yz)

where deg x = 2, deg y = deg z = 3. A homogeneous system of parameters

for this ring is given by y and z, and these elements form a regular sequence.

Modulo the ideal generated by y and z, we get F2(x)/(x3). This is a finite

Poincaré duality ring whose dualizing degree is 4. Again, this means that the

cohomology is a Gorenstein ring with a-invariant 4− (3− 1)− (3− 1) = 0, but it
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does not decompose as a tensor product the way it did for the quaternion group

(2.4.2).

(2.8) It is not true that the cohomology ring of a finite group is always Goren-

stein. For example, the semidihedral group of order 2n (n ≥ 4),

(2.8.1) G = SD2n = 〈g, h | g2n−1

= 1, h2 = 1, h−1gh = g2n−2−1〉

has cohomology ring

H∗(SD2n , F2) = F2[x, y, z, w]/(xy, y3, yz, z2 + x2w)

with deg x = deg y = 1, deg z = 3 and deg w = 4. This ring is not even Cohen–

Macaulay. But what is true is that whenever the ring is Cohen–Macaulay, it is

Gorenstein with a-invariant zero. See § 11 for further details.

Even if the cohomology ring is not Cohen–Macaulay, there is still a certain

kind of duality, but it is expressed in terms of a spectral sequence of Greenlees,

Hs,t
m H∗(G, k) =⇒ H−s−t(G, k). Let us see in the case above of the semidihedral

group, what this spectral sequence looks like. And let’s do it in pictures. We’ll

draw the cohomology ring as follows.
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homology, just turn this picture upside down by rotating the page, as follows.

(2.8.2)
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We compute local cohomology using the stable Koszul complex for the homo-

geneous system of parameters w, x,

0 → H∗(G, F2) → H∗(G, F2)[w
−1] ⊕ H∗(G, F2)[x

−1] → H∗(G, F2)[w
−1x−1] → 0

where the subscripts denote localization by inverting the named element. A

picture of this stable Koszul complex is as follows.
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The local cohomology of H∗(G, k) is just the cohomology of this complex. In

degree zero there is no cohomology. In degree one there is some cohomology,

namely the hooks that got introduced when w was inverted,
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H1
mH∗(SD2n , F2) =

. . . w−2y

w−2y2

a

a

�

w−1y

w−1y2

a

a

�

In degree two, we get the part of the plane not hit by either of the two degree

one pieces,

H2
mH∗(SD2n , F2) = . . .

w−2x−1z

a

a

w−1x−1

a

a

a

w−1x−1z

a

a

a

a

a

a

Now the differential d2 in this spectral sequence increases local cohomological

degree by two and decreases internal degree by one, and the higher differentials

are only longer. So there is no room in this example for nonzero differentials. It

follows that the spectral sequence takes the form of a short exact sequence

0 → H1,t−1
m H∗(SD2n , F2) → H−t(SD2n , F2) → H2,t−2

m H∗(SD2n , F2) → 0.

This works fine, because H∗(SD2n , F2) is the graded dual of H∗(SD2n , F2), as

shown in (2.8.2). So the short exact sequence places the hooks of H 1
m underneath

every second nonzero column in H2
m to build H∗(SD2n , F2). Notice that the

hooks appear inverted, so that there is a separate Poincaré duality for a hook.

The same happens as in this case whenever the depth and the Krull dimension

differ by one. The kernel of multiplication by the last parameter, modulo the

previous parameters, satisfies Poincaré duality with dualizing degree determined

by the degrees of the parameters; in particular, the top degree of this kernel

is determined. In the language of commutative algebra, this can be viewed in

terms of the Castelnuovo–Mumford regularity of the cohomology ring. See § 14

for more details.

The reader who wishes to understand these examples better can skip directly

to § 14, and refer back to previous sections as necessary to catch up on definitions.

Conjecture 14.6.1 says that for a finite group G, Reg H∗(G, k) is always zero. This

conjecture is true when the depth and the Krull dimension differ by at most one,

as in the above example. It is even true when the difference is two, by a more

subtle transfer argument sketched in § 14 and described in detail in [Benson 2004].

3. Group Cohomology

For general background material on cohomology of groups, the textbooks I

recommend are [Adem and Milgram 1994; Benson 1991b; Brown 1982; Cartan

and Eilenberg 1956; Evens 1991]. The commutative algebra texts most relevant
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to these lectures are [Bruns and Herzog 1993; Eisenbud 1995; Grothendieck 1965;

1967; Matsumura 1989].

(3.1) For a discrete group, the easiest way to think of group cohomology is as

the Ext ring (see § 5 of [Sri]). If G is a group and k is a commutative ring of

coefficients, we define group cohomology via

H∗(G, k) = Ext∗
ZG(Z, k) ∼= Ext∗kG(k, k).

Here, the group ring kG consists of formal linear combinations
∑

λigi of elements

of the group G with coefficients in k. The cup product in cohomology comes

from the fact that kG is a Hopf algebra (see § 1.8 of [Sri]), with comultiplication

∆(g) = g⊗g. Another part of the Hopf structure on kG is the augmentation map

kG → k,
∑

λigi 7→
∑

λi, which is what allows us to regard k as a kG-module.

Cup product and Yoneda product define the same multiplicative structure,

and this makes cohomology into a graded commutative ring, in the sense that

ab = (−1)|a||b|ba,

where |a| denotes the degree of an element a (see Prop. 5.5 of [Sri]). In contrast,

the Ext ring of a commutative local ring is seldom graded commutative; this

happens only for a restricted class of complete intersections. The group ring of

an abelian group is an example of a complete intersection (see § 1.4 of [Sri]).

More generally, if M is a left kG-module then

H∗(G,M) = Ext∗
ZG(Z,M) ∼= Ext∗kG(k,M)

is a graded right H∗(G, k)-module.

It is a nuisance that most texts on commutative algebra are written for strictly

commutative graded rings, where ab = ba with no sign. I do not know of an

instance where the signs make a theorem from commutative algebra fail. It is

worth pointing out that if a is an element of odd degree in a graded commutative

ring then 2a2 = 0. So 2a is nilpotent, and it follows that modulo the nil radical

the ring is strictly commutative. On the other hand, it is more than a nuisance

that commutative algebraists often assume that their graded rings are generated

by elements of degree one, because this is not at all true for cohomology rings.

Nor, for that matter, is it true for rings of invariants.

(3.2) A homomorphism of groups ρ : H → G gives rise to a map the other way

ρ∗ : H∗(G,M) → H∗(H,M)

for any kG-module M . If ρ : H → G is an inclusion, this is called the restriction

map, and denoted resG,H . If G is a quotient group of H and ρ : H → G is the

quotient map, then it is called the inflation map, and denoted infG,H .
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(3.3) For a topological group (this includes compact Lie groups as well as dis-

crete groups), a theorem of Milnor [1956] says that the infinite join

EG = G ? G ? · · ·

is weakly contractible, G acts freely on it, and the quotient BG = EG/G together

with the principal G-bundle p : EG → BG forms a classifying space for principal

G-bundles over a paracompact base. A topologist refers to H∗(BG; k) as the

classifying space cohomology of G. Again, it is a graded commutative ring. For

example, for the compact unitary group U(n), the cohomology ring

(3.3.1) H∗(BU(n); k) ∼= k[c1, . . . , cn]

is a polynomial ring over k on n generators c1, . . . , cn with |ci| = 2i, called

the Chern classes. Similarly, for the orthogonal group O(2n), if k is a field of

characteristic not equal to two, then we have

(3.3.2) H∗(BO(2n); k) ∼= k[p1, . . . , pn]

is a polynomial ring over k on n generators p1, . . . , pn with |pi| = 4i, called the

Pontrjagin classes. For SO(2n) we have

(3.3.3) H∗(BSO(2n); k) ∼= k[p1, . . . , pn−1, e].

where e ∈ H2n(BSO(2n); k) is called the Euler class, and satisfies e2 = pn. We

shall discuss these examples further in § 12.

If G is a discrete group then BG is an Eilenberg–MacLane space for G; in

other words, π1(BG) ∼= G and πi(BG) = 0 for i > 1. The relationship between

group cohomology and classifying space cohomology for G discrete is that the

singular chains C∗(EG) form a free resolution of Z as a ZG-module. Then there

are isomorphisms

H∗(BG; k) = H∗HomZ(C∗(BG), k) ∼= H∗HomZG(C∗(EG), k) ∼= H∗(G, k),

and the topologically defined product on the left agrees with the algebraically

defined product on the right.

(3.4) Another case of interest is profinite groups. A profinite group is defined

to be an inverse limit of a system of finite groups, which makes it a compact,

Hausdorff, totally disconnected topological group. For example, writing Z
∧

p for

the ring of p-adic integers, SLn(Z
∧

p ) is a profinite group. The open subgroups of

a profinite group are the subgroups of finite index.

Classifying space cohomology turns out to be the wrong concept for a profinite

group. A better concept is continuous cohomology, which is defined as follows

[Serre 1965a]. Let G = lim
←−

U∈U

G/U be a profinite group, where U is a system of
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open normal subgroups with
⋂

U∈U
U = {1}. We restrict attention to modules

M such that M =
⋃

U∈U
MU , and continuous cohomology is then defined as

Hi
c(G,M) = lim

−→
U∈U

Hi(G/U,MU ).

Again, if k is a commutative ring of coefficients then H∗c (G, k) is a graded com-

mutative ring.

(3.5) In all of the above situations, if p is a prime number and k is the finite

field Fp, then there are Steenrod operations

(3.5.1)

{
Sqi : Hn(G, F2) → Hn+i(G, F2) (p = 2),

P i : Hn(G, Fp) → Hn+2i(p−1)(G, Fp) (p odd)

(i ≥ 0) acting on the cohomology of any group (Sq0 and P 0 act as the identity

operation).1 These operations satisfy some identities called the Adem relations,

and the Steenrod algebra is the graded algebra generated by the Steenrod oper-

ations subject to the Adem relations. The action of the Steenrod operations is

related to the multiplicative structure of cohomology by the Cartan formula

(3.5.2)

{
Sqn(xy) =

∑
i+j=n Sqi(x)Sqj(y) (p = 2),

Pn(xy) =
∑

i+j=n P i(x)P j(y) (p odd).

Finally, the action of the Steenrod operations on group cohomology satisfies the

unstable axiom, which states that

(3.5.3){
Sqi(x) = 0 for i > |x| and Sq|x|(x) = x2 (p = 2)

P i(x) = 0 for i > 2(p − 1)|x| and P 2(p−1)|x|(x) = xp (p odd).

The Cartan formula and the unstable axiom make the cohomology ring of a group

(or more generally, the cohomology ring of any space) with Fp coefficients into

an unstable algebra over the Steenrod algebra. For more details, see [Steenrod

1962; Schwartz 1994].

(3.6) There are some important variations on the definitions of group cohomol-

ogy. For example, for a finite group, Tate cohomology is defined using complete

resolutions, and gives a Z-graded ring Ĥ∗(G, k). More precisely, if G is a finite

group, k is a field2 and N is a kG-module, then we splice together an injective

1For p odd, there is also a separate Bockstein operation β : Hn(G, Fp) → Hn+1(G, Fp)

which we shall systematically ignore. For p = 2, the Bockstein operation is equal to Sq1, so it
is not a separate operation.

2Tate cohomology is defined over an arbitrary commutative ring of coefficients, but the
definition is slightly different to the one given here. See [Cartan and Eilenberg 1956, Chapter
XII].
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resolution and a projective resolution of N to give an exact sequence

. . . // P̂1
// P̂0

//

&&MMMM P̂−1
// P̂−2

// . . .

N

77oooo

((QQ
QQ

QQ

0

66nnnnn
0

The fact that injective kG-modules are the same as projective kG-modules (see

Theorem 3.6 as well as the paragraph following Corollary 3.7 in [Sri]) means

that this is an exact sequence of projective modules such that the image of the

middle map is equal to N , which is the definition of a complete resolution. If M is

another kG-module, we define Ex̂t
∗

kG(N,M) to be the cohomology of the cochain

complex obtained by taking homomorphisms from the complete resolution P̂∗ to

M . In the case where N = k, we define

Ĥ∗(G,M) = Ex̂t
∗

kG(k,M).

If M is also equal to k, then Ĥ∗(G, k) is a graded commutative ring. If M is a

left kG-module then Ĥ∗(G,M) is a right module over Ĥ∗(G, k).

There is a map from a complete resolution of N to the projective resolution

of N used to make it

. . . // P̂1
//

��

P̂0
//

��

P̂−1
//

��

P̂−2
//

��

. . .

. . . // P1
// P0

// 0 // 0 // . . .

which is an isomorphism in nonnegative degrees and the zero map in negative

degrees. This induces a map from Ext∗kG(N,M) to Ex̂t
∗

kG(N,M) which is an

isomorphism in positive degrees, surjective in degree zero, and the zero map in

negative degrees. In particular, we obtain this way a map from ordinary coho-

mology to Tate cohomology, H∗(G,M) → Ĥ∗(G,M). This is a homomorphism

of graded k-algebras.

Tate duality says that for any kG-module M and every n ∈ Z, the k-vector

space Ex̂t
n−1

kG (M,k) is the dual of Ĥ−n(G,M),

(3.6.1) Ex̂t
n−1

kG (M,k) ∼= Homk(Ĥ−n(G,M), k).

The case M = k of this statement can be interpreted as saying that the Tate

cohomology is isomorphic to its graded dual, shifted in degree by one. This

implies that it is selfinjective as a ring.

4. Finite Generation

There are various finite generation theorems, which provide the Noetherian

hypothesis as starting point for the application of commutative algebra.
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(4.1) We begin with finite groups, where we have the following algebraic theo-

rem of Evens [1961] (see also [Golod 1959] for the case of a finite p-group).

Theorem 4.1.1. Let G be a finite group, k a commutative ring of coefficients

and M a kG-module. If M is Noetherian as a k-module then H∗(G,M) is Noe-

therian as an H∗(G, k)-module. In particular , if k is Noetherian then H∗(G, k)

is a finitely generated k-algebra.

This can be contrasted with the situation in commutative algebra, where the

Ext ring of a commutative local ring is Noetherian if and only if the ring is a

complete intersection [Bøgvad and Halperin 1986]. The following extension of

the theorem above also appears in [Evens 1961].

Theorem 4.1.2. Let H be a subgroup of a finite group G, let k be a commutative

ring of coefficients, and let N be a Noetherian kH-module. Then H∗(H,N) is

a finitely generated module over H∗(G, k) via the restriction map (3.2) from G

to H.

In contrast, Tate cohomology is almost never finitely generated. In fact, if k is

a field of characteristic p, then there is a dichotomy [Benson and Krause 2002].

Either

(4.1.3) G has no subgroups isomorphic to Z/p×Z/p (i.e., the Sylow p-subgroups

of G are cyclic, or p = 2 and the Sylow 2-subgroups of G are generalized quater-

nion) and Ĥ∗(G, k) is periodic and Noetherian, of the form k[x, x−1] tensored

with a finite dimensional part, or

(4.1.4) G has a subgroup isomorphic to Z/p × Z/p and Ĥ∗(G, k) is not Noe-

therian. In this case, the negative degree cohomology Ĥ−(G, k) is nilpotent,

in the sense that there is some integer n such that every product of n or more

elements of Ĥ−(G, k) gives zero. In fact, if the depth of H∗(G, k) is bigger than

one then all products in Ĥ−(G, k) vanish [Benson and Carlson 1992].

(4.2) Evens’ theorem generalizes in a number of directions. The following is a

theorem of Friedlander and Suslin [1997].

Theorem 4.2.1. Let G be a finite group scheme over a field k (i .e., kG is a

finite dimensional cocommutative Hopf algebra), and let M be a finitely generated

kG-module. Then H∗(G, k) = Ext∗kG(k, k) is a finitely generated k-algebra and

H∗(G,M) = Ext∗kG(k,M) is a finitely generated H∗(G, k)-module.

(4.3) For compact Lie groups, the following is a theorem of Venkov [1959].

Theorem 4.3.1. Let G be a compact Lie group and k a Noetherian ring of coef-

ficients. If G → U(n) is a faithful unitary representation3 of G then H∗(BG; k)

3The Peter–Weyl theorem implies that every compact Lie group has a faithful unitary
representation, so that this is not a restriction on G.
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is finitely generated as a module over the image of the Chern classes (3.3.1):

H∗(BU(n); k) = k[c1, . . . , cn] → H∗(BG; k).

In particular , H∗(BG; k) is a finitely generated k-algebra. If H is a closed

subgroup of G then H∗(BH; k) is a finitely generated module over the image of

the restriction map (3.2) from G to H.

(4.4) There is an interesting generalization of compact Lie groups which has

been extensively investigated by Dwyer and Wilkerson, among others. A loop

space is by definition a space X together with another space Y and a homotopy

equivalence X ' ΩY between X and the space of pointed maps from S1 to Y . If,

furthermore, H∗(X; Z) is finitely generated as an abelian group (in other words,

if each Hi(X; Z) is finitely generated, and only nonzero for a finite number of

different values of i), so that X looks homologically like a finite CW-complex,

then we say that X is a finite loop space. For example, if G is a compact Lie

group then G ' ΩBG and G is a finite loop space. For this reason, in general,

the notation for the space Y is BX, and it is called the classifying space of the

loop space X. But in spite of the notation, the space Y cannot be recovered

from the space X, so naming Y = BX is regarded as part of the structure of

the finite loop space X. The following theorem of Dwyer and Wilkerson [1994]

generalizes Venkov’s Theorem 4.3.1.

Theorem 4.4.1. If X is a finite loop space, then for any field k, the algebra

H∗(BX; k) is finitely generated .

A closely related concept is that of a p-compact group, which is by definition a

loop space X which is Fp-complete in the sense of [Bousfield and Kan 1972]4,

Fp-finite in the sense that H∗(X; Fp) is finite, and such that π0X is a finite p-

group. The Fp-completion of a finite loop space is an example of a p-compact

group. The following theorem is also proved by Dwyer and Wilkerson [1994].

Theorem 4.4.2. If X is a p-compact group then H∗(BX; Fp) is a finitely

generated Fp-algebra.

(4.5) For infinite discrete groups, the question of finite generation is more del-

icate, and there are various theorems for some special classes of infinite groups.

For example, the cohomology of an arithmetic group with coefficients in Z or a

field is finitely generated. More generally, we have the following theorem.

Theorem 4.5.1. If a discrete group G has a subgroup H of finite index , such

that there is a classifying space BH which is a finite CW complex , and k is a

Noetherian commutative ring of coefficients, then H∗(G, k) is Noetherian.

4Bousfield–Kan Fp-completion of a space is analogous to completion with respect to a
prime ideal, inasmuch as it isolates the homotopy theoretic information at the prime p and
kills torsion coprime to p. It is used in order to do homotopy theory one prime at at time.
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Proof. We can take H to be normal, and then the spectral sequence

H∗(G/H,H∗(H, k)) =⇒ H∗(G, k)

has Noetherian E2 page, and so H∗(G, k) is Noetherian. �

(4.6) A pro p-group is defined to be in inverse limit of finite p-groups. For

pro p-groups, we have the following finite generation theorem of Minh and

Symonds [2004].

Theorem 4.6.1. Let G be a pro p-group.

(i) The cohomology ring H∗c (G, Fp) is finitely generated over Fp if and only if

G contains an open normal torsion-free subgroup U such that H∗c (U, Fp) is finite.

(ii) If H∗c (G, Fp) is finitely generated then the number of conjugacy classes of

finite subgroups of G is finite.

(iii) H∗c (G, Fp) modulo its nil radical is a finitely generated Fp-algebra if and

only if G has only a finite number of conjugacy classes of finite elementary abelian

p-subgroups.

5. Krull Dimension

(5.1) For a finitely generated graded commutative algebra R over a field k,

there are several ways to define Krull dimension, which all give the same answer.

(5.1.1) Noether normalization (2.5) guarantees the existence of a homogeneous

polynomial ring k[x1, . . . , xr] over which R is finitely generated as a module. The

integer r is the Krull dimension of R.

(5.1.2) If m = p0 ⊃ p1 ⊃ p2 ⊃ · · · ⊃ pr is the longest chain of homogeneous

prime ideals in R and proper inclusions then r is the Krull dimension of R.

(5.1.3) Set pR(t) =
∑∞

i=0 ti dimk Ri. Then pR(t) is a rational function of t, and

the order of the pole at t = 1 is the Krull dimension of R.

(5.2) The first results on Krull dimension for cohomology rings are due to

Quillen [1971b; 1971c], and are expressed in terms of the p-rank rp(G), where

p ≥ 0 is the characteristic of k. If p is a prime, this is defined to be the largest r

such that G has an elementary abelian subgroup of rank r; in other words, such

that (Z/p)r ⊆ G. If G is a compact Lie group, this is at least as big as the Lie

rank r0(G), which is defined to be the rank r0 of a maximal torus (S1)r0 ⊆ G.

Quillen’s theorem is as follows.

Theorem 5.2.1. Let G be a compact Lie group, and k be a field of characteristic

p ≥ 0. Then the Krull dimension of H∗(BG; k) is equal to rp(G).

(5.3) In the special case where G is finite, this means that the Krull dimension

of H∗(G, k) is equal to rp(G). Quillen [1971c] proved that the same holds more

generally for groups of finite virtual cohomological dimension; in other words,
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for discrete groups G containing a normal subgroup H of finite index such that

Hn(H,M) = 0 for all large enough values of n and all ZH-modules M . The

cohomology ring of G is not necessarily finitely generated in this situation, but

it is finitely generated modulo its nil radical.

In fact, in these cases, Quillen obtained much more than just the Krull di-

mension. He obtained a complete description of the maximal ideal spectrum of

H∗(BG; k) up to inseparable isogeny, in terms of the Quillen category Ap(G)

whose objects are the finite elementary abelian p-subgroups of G, and whose

arrows are the monomorphisms induced by conjugation in G.

Theorem 5.3.1. The restriction map (3.2)

(5.3.2) H∗(BG; k) → lim
←−

E∈Ap(G)

H∗(BE; k)

is an inseparable isogeny . In other words, the kernel of this map consists of

nilpotent elements, and if x is an element of the right hand side then xpa

is in

the image for some a ≥ 0.

We interpret Theorem 5.3.1 in terms of varieties in § 9. But for now, notice that

the cohomology of a finite elementary abelian p-group of rank r is described in

(2.2.2). In particular, modulo its nil radical it is always a polynomial ring in r

generators.

Corollary 5.3.3. The minimal primes in H∗(BG; k) are in one-one corre-

spondence with the conjugacy classes of maximal elementary abelian p-subgroups

of G, with respect to inclusion. If E is a maximal elementary abelian p-subgroup,

then the corresponding minimal prime is
√

ker(resG,E), the radical of the kernel

of the restriction map (3.2) from G to E. The Krull dimension of the quotient

by this minimal prime is equal to the rank rp(E).

(5.4) The analog of the inseparable isogeny (5.3.2) was also proved by Quillen

[1971c, Proposition 13.4] in the case of a profinite group with a finite number of

conjugacy classes of elementary abelian p-subgroups.

6. Depth

(6.1) In contrast with Krull dimension, the depth of a cohomology ring is harder

to compute. There are many interesting classes of groups for which the coho-

mology is known to be Cohen–Macaulay, even though this is less common for

general finite groups, let alone for more general classes of groups.

(6.1.1) Groups with abelian Sylow p-subgroups have Cohen–Macaulay coho-

mology [Duflot 1981].

(6.1.2) GLn(Fq) in characteristic not dividing q [Quillen 1972], as well as vari-

ous other finite groups of Lie type away from their defining characteristic, have
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Cohen–Macaulay cohomology (see [Fiedorowicz and Priddy 1978] for the classi-

cal groups and [Kleinerman 1982] for the groups of exceptional Lie type).

(6.1.3) (p = 2) Groups with almost extraspecial Sylow 2-subgroups5 have

Cohen–Macaulay cohomology [Quillen 1971a].

(6.1.4) (p = 2) Finite simple groups of 2-rank at most three have Cohen–Mac-

aulay cohomology [Adem and Milgram 1995].

(6.1.5) Finite groups of Lie type in the defining characteristic and finite sym-

metric groups almost never have Cohen–Macaulay cohomology, because they

have maximal elementary abelian p-subgroups of different ranks, and hence min-

imal primes with quotients of different dimensions by Corollary 5.3.3.

(6.1.6) (p = 2) By computations of Carlson [≥ 2004], of the 267 isomorphism

classes of 2-groups of order 64, 119 have Cohen–Macaulay cohomology rings.

The depth differs from the Krull dimension by one in 126 cases and by two in

the remaining 22 cases. See the Appendix at the end of these notes for more

detailed information.

(6.2) As far as group theoretic characterizations of depth are concerned, the

best theorems to date only give bounds on the depth. For example, Duflot’s

theorem [1981] gives the following lower bound.

Theorem 6.2.1. Let G be a finite group and k a field of characteristic p. Then

the depth of H∗(G, k) is greater than or equal to the p-rank of the center of a

Sylow p-subgroup S of G. In particular , if |G| is divisible by p then H∗(G, k)

has strictly positive depth.

The bound of Theorem 6.2.1 gives the exact value for the depth for 193 of the

267 groups of order 64.

(6.3) Theorem 6.2.1 generalizes to compact Lie groups as follows. If G is a

compact Lie group and T is a maximal torus, then the inverse image S ⊆ G of

a Sylow p-subgroup of NG(T )/T is called a Sylow p-toral subgroup of G. The

Sylow p-toral subgroups play the same role for compact Lie groups that Sylow

p-subgroups do for finite groups. The crucial property as far as cohomology is

concerned is that the restriction map (3.2) H∗(BG; k) → H∗(BS; k) followed

by the transfer map H∗(BS; k) → H∗(BG; k) of [Becker and Gottlieb 1975] is

the identity.6 Since the transfer map is a map of H∗(BG; k)-modules, it follows

that H∗(BG; k) is a direct summand of H∗(BS; k) as an H∗(BG; k)-module. In

particular, the depth of H∗(BG; k) is at least as big as the depth of H∗(BS; k).

5A finite p-group P is said to be almost extraspecial if P has a central subgroup Z ∼= Z/p
such that P/Z is elementary abelian.

6For any closed subgroup, the composite of the restriction and the transfer is multiplication
by the Euler characteristic of the quotient. The analog of the third Sylow theorem says that
χ(G/S) is congruent to 1 modulo p.
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Stong (unpublished) showed how to generalize Duflot’s proof to this situation,

and showed that the depth of H∗(BG; k) is at least as big as rp(Z(S)). Broto

and Henn [1993] gave another proof which is conceptually easier, and goes as

follows. We begin by establishing the notation.

If C is a central elementary abelian p-subgroup of S, then the multiplica-

tion maps C × C → C and µ : C × S → S are group homomorphisms. This

means that H∗(BC; k) is a graded commutative and cocommutative Hopf alge-

bra, H∗(BS; k) is an H∗(BC; k)-comodule algebra via

µ∗ : H∗(BS; k) → H∗(BC; k) ⊗k H∗(BS; k),

and H∗(BG; k) is a sub-comodule algebra.

Since H∗(BC; k) is Cohen–Macaulay (2.2.2), we can find elements ζ1, . . . , ζr ∈
H∗(BG; k) whose restriction to C form a homogeneous system of parameters

and hence a regular sequence x1, . . . , xr ∈ H∗(BC; k). One way to do this is

to use Theorem 4.3.1 and throw away redundant Chern classes. We claim that

ζ1, . . . , ζr form a regular sequence in H∗(BG; k). Setting ξi = µ∗(ζi), the ele-

ments ξ1, . . . , ξr are elements of H∗(B(C × G); k) ∼= H∗(BC; k) ⊗k H∗(BG; k)

(see (2.2.1)) whose restrictions to the first factor are x1, . . . , xr and whose re-

strictions to the second factor are ζ1, . . . , ζr. So

µ∗(ζi) = xi ⊗ 1 + · · · + 1 ⊗ ζi.

We begin with ζ1. If y is a nonzero element in Hd(BG; k) such that ζ1y = 0,

then µ∗(ζ1y) = 0. Then µ∗(y) is a sum of tensors, and we separate out the terms

whose degree in H∗(BC; k) are highest, say

µ∗(y) =
∑

j

uj ⊗ vj + terms of lower first degree.

Then

µ∗(ζ1y) =
∑

j

x1uj ⊗ vj + terms of lower first degree.

But multiplication by x1 ⊗ 1 is injective on H∗(BC; k)⊗H∗(BG; k), so the only

way this can be zero is for
∑

j uj ⊗ vj to be zero. This means that µ∗(y) = 0

and so y = 0.

The same argument works inductively, because the map µ∗ passes down to a

well defined map

µ∗ : H∗(BG; k)/(ζ1, . . . , ζi) → H∗(BC; k)/(x1, . . . , xi) ⊗ H∗(BG; k)/(ζ1, . . . , ζi).

Applying the same argument to ζi+1 using this map, we see that multiplication

by ζi+1 is injective on H∗(BG; k)/(ζ1, . . . , ζi). This inductive argument proves

that ζ1, . . . , ζr is a regular sequence in H∗(BG; k), and completes the Broto–

Henn proof of the following version of Duflot’s theorem.
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Theorem 6.3.1. Let G be a compact Lie group and k a field of characteristic p.

Then the depth of H∗(BG; k) is greater than or equal to the p-rank of the center

of a Sylow p-toral subgroup S of G. �

(6.4) Green [2003] extended the above idea to prove a stronger result. An

element x ∈ H∗(BS; k) is said to be primitive if its image under µ∗ is equal

to 1 ⊗ x. Since µ∗ is a ring homomorphism, the primitives form a subring of

H∗(BS; k). Since both µ and the projection onto the second factor of C × S

have the same composite with the quotient map S → S/C, it follows that the

image of the inflation map (see (3.2)) H∗(B(S/C); k) → H∗(BS; k) consists of

primitive elements. If I is an ideal in H∗(BG; k) generated by a regular sequence

of primitive elements, then we can replace H∗(BG; k) by H∗(BG; k)/I in the

above argument for Duflot’s theorem, to obtain the following.

Theorem 6.4.1. Let G be a compact Lie group with Sylow p-toral subgroup S,

and set r = rp(Z(S)). If there is a regular sequence of length s in H∗(BG; k)

which consists of primitive elements, then the depth of H∗(BG; k) is at least

r + s.

7. Associated Primes and Steenrod Operations

(7.1) Depth of the cohomology ring is closely linked with the action of the

Steenrod operations (3.5). For example, an analysis of unstable algebras over

the Steenrod algebra gives rise to a way of computing the depth with a single

test sequence.

The test sequence takes the form of Dickson invariants. If Fp[x1, . . . , xr] is a

polynomial ring, then the general linear group GLr(Fp) acts by linear substitu-

tions, and Dickson [1911] proved that the invariants form a polynomial ring

Fp[x1, . . . , xr]
GLr(Fp) = Fp[cr,r−1, . . . , cr,0].

The Dickson invariant cr,i has degree pr − pi in the variables x1, . . . , xr. The

Dickson invariants are further studied in [Wilkerson 1983], where the action of

the Steenrod operations on them is also described.

If G is a compact Lie group of p-rank r, then it is shown in [Benson and

Wilkerson 1995] that it follows from Quillen’s Theorem 5.3.1 that as an algebra

over the Steenrod algebra, H∗(BG; Fp) always contains a copy of the Dickson

invariants as a homogeneous system of parameters, where, for a suitable integer

a ≥ 0 depending on G, x1, . . . , xr are taken to have degree 2a if p = 2 and 2pa

if p is odd. So

|cr,i| =

{
2a+r − 2a+i (p = 2)

2(pa+r − pa+i) (p odd).

If E is an elementary abelian p-subgroup of G of rank s ≤ r, then the restric-

tion to H∗(BE; k) of cr,i ∈ H∗(BG; k) is equal to cpa+r−s

s,i−r+s; thus it is a power of
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the Dickson invariant in the polynomial generators (2.2.2) in degree one (p = 2)

or two (p odd) of H∗(BE; k).

The Landweber–Stong conjecture, proved by Bourguiba and Zarati [1997],

implies the following.

Theorem 7.1.1. The depth of H∗(BG; Fp) is equal to the maximum value of d

for which cr,r−1, . . . , cr,r−d is a regular sequence.

Theorem 8.1.8 of [Neusel 2000] proves the much stronger statement that such a

copy of the Dickson algebra can be found in any Noetherian unstable algebra

over the Steenrod algebra. The conclusion of Theorem 7.1.1 holds in this more

general context. The proof given by Bourguiba and Zarati makes heavy use of

the machinery of unstable algebras over the Steenrod algebra. A proof without

this machinery, but which only works in the context of the cohomology of a finite

group, can be found in [Benson 2004].

The Dickson invariants have further desirable properties among all homo-

geneous systems of parameters in cohomology. For example, if H is a closed

subgroup of G of p-rank s then the restrictions of cr,r−1, . . . , cr,r−s are Dickson

invariants forming a homogeneous system of parameters in H∗(BH; k). Further-

more, cr,i is a sum of transfers from centralizers of elementary abelian subgroups

of rank i.

(7.2) To get further with depth, it is necessary to get some understanding of

the associated primes in group cohomology. In general, the dimension of the

quotient by an associated prime is an upper bound for the depth. For general

commutative rings, the depth cannot be computed from the dimensions of the

quotients by associated primes, but in the case of cohomology of a finite group, we

have the following conjecture of Carlson [1999]. Partial results on this conjecture

have been obtained by Green [2003].

Conjecture 7.2.1. Let G be a finite group and k a field. Then H∗(G, k) has

an associated prime p such that the Krull dimension of H∗(G, k)/p is equal to

the depth of the H∗(G, k).

(7.3) The following theorem of Wilkerson [1982] shows that associated primes

are invariant under the action of the Steenrod operations. Since it is not easy to

find an explicit reference, we include a complete proof here.

Theorem 7.3.1. Let H be a graded commutative unstable algebra over the

Steenrod algebra. For example, these hypotheses are satisfied if H is the mod p

cohomology ring of a space, see (3.5). Then the radical of the annihilator of any

element is invariant under the action of the Steenrod operations.

More explicitly , for p = 2, if y annihilates x and 2n > |x| then (Sqky)2
n

x = 0

for all k > 0. For p odd , if y annihilates x and pn > 2(p−1)|x| then (P ky)pn

= 0

for all k > 0.
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Proof. We give the proof for p = 2; the proof for p odd is the same, with P i

instead of Sqi and pn instead of 2n.

Let x ∈ H, let I be the annihilator of x, and let y ∈ I. We have y2n

x = 0,

and so for any k > 0 we have Sq2nk(y2n

x) = 0. Using the Cartan formula (3.5.2)

we obtain
2nk∑

i=0

Sq2nk− i(y2n

)Sqix = 0.

The Cartan formula and divisibility properties of binomial coefficients imply

that Sq2nk− i(y2n

) = 0 unless i is of the form 2nj, and in that case we have

Sq2n(k−j)(y2n

) = (Sqk−jy)2
n

. So the above equation becomes

k∑

j=0

(Sqk−jy)2
n

Sq2njx = 0.

Since 2n > |x|, the unstable condition implies that the only term which survives

in this sum is the term with j = 0. So we have (Sqky)2
n

x = 0. �

Since associated primes are annihilators, we get the following.

Corollary 7.3.2. The associated primes in a mod p cohomology ring of a space

are invariant under the Steenrod operations. �

(7.4) The importance of the Steenrod invariance of the associated primes in

the cohomology of groups comes from the following theorem of Serre [1965b,

Proposition 1].

Theorem 7.4.1. Let E be an elementary abelian p-group. The Steenrod invari-

ant prime ideals in H∗(E, Fp) are in one-one correspondence with the subgroups

of E. If E′ is a subgroup of E then the corresponding Steenrod invariant prime

ideal is
√

ker(resE,E′), the radical of the kernel of restriction from E to E ′.

(7.5) Combining Theorem 7.4.1 with Quillen’s Theorem 5.3.1, it follows that for

any of the classes of groups for which that theorem holds, the Steenrod invariant

primes in the mod p cohomology ring are the radicals of the kernels of restriction

to elementary abelian subgroups. So using Corollary 7.3.2 we have the following.

Theorem 7.5.1. Let G be a compact Lie group. Then the Steenrod invariant

prime ideals in H∗(BG; Fp) are the ideals of the form
√

ker(resG,E), where E is

an elementary abelian p-subgroup of G. In particular , the associated primes are

of this form.

(7.6) The corresponding result holds for the cohomology of groups of finite

virtual cohomological dimension, and continuous cohomology of profinite groups

with a finite number of conjugacy classes of elementary abelian p-subgroups.

(7.7) The question of exactly which elementary abelian subgroups give the

associated primes is difficult. In the next section, we relate this to the question

of finding upper bounds for the depth.



22 DAVE BENSON

8. Associated Primes and Transfer

(8.1) Upper bounds on the depth of the cohomology ring of a finite group come

from a careful analysis of transfer and its relationship to the associated primes.

If H is a subgroup of a finite group G and M is a kG-module, then the transfer

is a map

TrH,G : Hn(H,M) → Hn(G,M).

It is defined by choosing a set of left coset representatives gi of H in G. Let P∗
be a projective resolution of k as a kG-module. Given a representative cocycle,

which is a kH-module homomorphism ζ̂ : Pn → M , the transfer TrH,G(ζ) is

represented by
∑

i gi(ζ̂), which is a kG-module homomorphism.

The reason why the transfer map is relevant is that if H is a subgroup of G

and M is a kG-module, then TrH,G is H∗(G, k)-linear, when H∗(H,M) is viewed

as a right module over H∗(G, k) via the restriction map H∗(G, k) → H∗(H, k).

In other words, the following identity holds. If ζ ∈ H∗(G, k) and η ∈ H∗(H,M)

then

(8.1.1) TrH,G(η.resG,H(ζ)) = TrH,G(η).ζ.

In particular, if η annihilates resG,H(ζ) then TrH,G(η) annihilates ζ. For exam-

ple, if ζ restricts to zero on some set of subgroups, then all transfers from those

subgroups annihilate ζ.

(8.2) One way to exploit the above observation is to use the following transfer

theorem from [Benson 1993]. This generalizes a theorem of Carlson [1987] relat-

ing transfers from all proper subgroups of a p-group to the kernel of restriction

to the center.

Theorem 8.2.1. Suppose that G is a finite group, and k is a field of character-

istic p. Let H be a collection of subgroups of G. Let K denote the collection

of all elementary abelian p-subgroups K of G with the property that the Sylow

p-subgroups of the centralizer CG(K) are not conjugate to a subgroup of any of

the groups in H .

Let J be the sum of the images of transfer from subgroups in H , which is an

ideal in H∗(G, k) by (8.1.1). Let J ′ be the intersection of the kernels of restriction

to subgroups in K , which is again an ideal in H∗(G, k) (in case K is empty ,

this intersection is taken to be the ideal of all elements of positive degree). Then

J and J ′ have the same radical ,
√

J =
√

J ′.

(8.3) Theorem 8.2.1 is the main ingredient in the proof of the following theorem

of Carlson [1995] relating the associated primes with detection on centralizers.

Theorem 8.3.1. Let G be a finite group. Suppose that H∗(G, k) has a nonzero

element ζ which restricts to zero on CG(E) for each elementary abelian p-

subgroup E ≤ G of rank s. Then H∗(G, k) has an associated prime p such
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that the Krull dimension of H∗(G, k)/p is strictly less than s. In particular , the

depth of H∗(G, k) is strictly less than s.

Proof. In Theorem 8.2.1, we take H to be the set of centralizers of elementary

abelian p-subgroups of rank s. Then the elementary abelian p-subgroups in K

have rank strictly less than s. So the theorem implies that the ideal J has

dimension strictly less than s.

If ζ is an element of H∗(G, k) which restricts to zero on every element of

H , then by (8.1.1), ζ is annihilated by all transfers from H . In other words,

the annihilator of ζ contains J . Since the associated primes are the maximal

annihilators, there is an associated prime containing J , and such an associated

prime has dimension strictly less than s. �

(8.4) Another way of stating the conclusion to the theorem above is that if

H∗(G, k) has depth at least s then cohomology is detected on centralizers of

rank s elementary abelian p-sugroups of G.

9. Idempotent Modules and Varieties

(9.1) There is a method for systematically exploiting the connections between

representation theory and cohomology, which was first introduced by Carlson

[1981a; 1981b; 1983] for finitely generated modules, and by Benson, Carlson and

Rickard [Benson et al. 1995; 1996] for infinitely generated modules.

Let G be a finite group, and let k be an algebraically closed field of charac-

teristic p. We write VG for the maximal ideal spectrum of H∗(G, k). This is a

closed homogeneous affine variety. For example, if G ∼= (Z/p)r then VG = Ar(k),

affine r-space over k. Quillen’s Theorem 5.3.1 can be interpreted as saying that

for any finite group G, the natural map

lim
−→

E∈AG

VE → VG

is bijective at the level of sets of points. However, it is usually not invertible in

the category of varieties.

If M is a finitely generated kG-module, then the kernel of the natural map

H∗(G, k) = Ext∗kG(k, k)
M⊗k−−−−−→ Ext∗kG(M,M)

is an ideal in H∗(G, k), which defines a closed homogeneous subvariety VG(M)

of VG. The same subvariety can be obtained by taking the intersection of the

annihilators of Ext∗kG(S,M) as S runs over the simple kG-modules. Properties

of varieties for modules include (9.1.1)–(9.1.5) below.

(9.1.1) VG(M) = {0} if and only if M is projective,

(9.1.2) VG(M ⊕ N) = VG(M) ∪ VG(N),
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(9.1.3) VG(M ⊗ N) = VG(M) ∩ VG(N),7

(9.1.4) If 0 6= ζ ∈ Hn(G, k) is represented by a cocycle ζ̂ : Ωn(k) → k, let Lζ be

the kernel of ζ̂. Then VG(Lζ) is the hypersurface in VG determined by regarding

ζ as an element of the coordinate ring of VG.

(9.1.5) If V is any closed homogeneous subvariety of VG, then we can choose

homogeneous elements ζ1, . . . , ζt ∈ H∗(G, k) so that the intersection of the hy-

persurfaces they define is equal to V . Properties (9.1.3) and (9.1.4) then imply

that

VG(Lζ1
⊗ · · · ⊗ Lζt

) = V.

So every closed homogeneous subvariety is the variety of some module.

(9.2) For infinite dimensional modules,8 the definitions are more difficult. A

tentative definition was given in [Benson et al. 1995], and the definition was

modified in [Benson et al. 1996] to remedy some defects. We begin with some

background on the stable module category. We write Mod(kG) for the cate-

gory of kG-modules and module homomorphisms. The stable module category

StMod(kG) has the same objects as Mod(kG), but the morphisms are

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) is the subspace consisting of maps which factor through

some projective kG-module. One of the advantages of StMod(kG) over Mod(kG)

is that if we define ΩM to be the kernel of a surjection from a projective module P

onto M , then Ω is a functor on StMod(kG). Since, over kG, projective modules

are the same as injective modules, Ω is a self-equivalence of StMod(kG). Its

inverse Ω−1 is defined by embedding M into an injective kG-module I and

writing Ω−1M for the quotient I/M .

The category Mod(kG) is abelian, but StMod(kG) is not. Instead it is a

triangulated category. The triangles are of the form

A → B → C → Ω−1A

where 0 → A → B → C → 0 is a short exact sequence in Mod(kG). We write

mod(kG) and stmod(kG) for the full subcategories of finitely generated modules.

Write ProjH∗(G, k) for the set of closed homogeneous irreducible subvarieties

of VG, and let V be a subset of ProjH∗(G, k) which is closed under specialization,

7When we write M ⊗ N for kG-modules M and N , we mean M ⊗k N with diagonal G-
action. So an element g ∈ G acts via g(m ⊗ n) = gm ⊗ gn. But the general element of kG
does not act in this fashion; rather, we extend linearly from the action of the group elements.
See § 2.11 of [Sri].

8The reason for interest in infinite dimensional modules in this context is similar to the
reason for the interest in infinite CW complexes in algebraic topology. Namely, the repre-
senting objects for functors often turn out to be infinite. For example in algebraic topology,
Eilenberg–Mac Lane spaces are the representing objects for cohomology, BU for K-theory, MU
for cobordism, and so on.
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in the sense that if V ∈ V and W ⊆ V then W ∈ V . Let M be the full

subcategory of stmod(kG) consisting of finitely generated modules M such that

VG(M) is a finite union of elements of V . Then M is a thick subcategory of

stmod(kG); in other words it is a full triangulated subcategory of stmod(kG) with

the same definition of triangles, and is closed under taking direct summands.

Furthermore, a tensor product of any module with a module in M gives an

answer in M , so we say that M is a tensor closed thick subcategory. To such a

subcategory of stmod(kG), Rickard [1997] associates two idempotent modules9

EV and FV and a triangle

EV → k → FV → Ω−1EV

in StMod(kG). This triangle is characterized by the statement that EV can be

written as a filtered colimit of modules in M , and for any M in M , we have

HomkG(M,FV ) = 0. This construction is the analog in representation theory of

Bousfield localization [Bousfield 1979] in algebraic topology.

As an example, if ζ ∈ Hn(G, k) defines a hypersurface V in VG and V is the

set of subvarieties of V then we write Eζ and Fζ instead of EV and FV . If ζ is

represented by a cocycle ζ̂ : Ωn(k) → k, then the module Fζ can be constructed

as follows. We can dimension shift ζ̂ to give maps

k
Ω−nζ̂−−−→ Ω−n(k)

Ω−2nζ̂−−−−→ Ω−2n(k)
Ω−3n ζ̂−−−−→ · · ·

and the colimit is Fζ . So for example the cohomology of Fζ ,

Ĥ∗(G,Fζ) ∼= Ĥ∗(G, k)ζ
∼= H∗(G, k)ζ

is the localization of either Tate or ordinary cohomology with respect to ζ.

If we take the map from the first term in the sequence to the colimit and

complete to a triangle, we get the module Eζ and the triangle

(9.2.1) Eζ → k → Fζ → Ω−1Eζ .

If Lζi is the kernel of ζ̂i then Eζ can be written as the colimit of

Ω−nLζ → Ω−2nLζ2 → Ω−3nLζ3 → · · ·

More generally, if V is a closed homogeneous subvariety of VG defined by the

vanishing of elements ζ1, . . . , ζt ∈ H∗(G, k) and V is the set of subvarieties of

V , we write EV and FV for EV and FV . In this case, EV can be obtained as

Eζ1
⊗ · · · ⊗ Eζt

, and FV can be obtained by completing the map EV → k to a

triangle.

9A module M is said to be idempotent if M ⊗ M is isomorphic to M in StMod(kG). The
only finite dimensional idempotent module is the trivial kG-module k.
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Now if V is a closed homogeneous irreducible subvariety of VG, let W be the

set of subvarieties of VG which do not contain V . Then we define

(9.2.2) κV = EV ⊗ FW .

This is an idempotent module which corresponds to a layer of stmod(kG) con-

sisting of modules with variety exactly V .

If M is a kG-module, not necessarily finitely generated, we associate to M a

collection of varieties

VG(M) = {V | M ⊗ κV is not projective} ⊆ ProjH∗(G, k).

If M happens to be finitely generated, then VG(M) is just the collection of all

subvarieties of VG(M). But for infinitely generated modules, the collection is

not necessarily closed under specialization. The properties of VG(M) include:

(9.2.3) VG(M) = ∅ if and only if M is projective,

(9.2.4) VG(
⊕

α Mα) =
⋃

α VG(Mα),

(9.2.5) VG(M ⊗ N) = VG(M) ∩ VG(N),

(9.2.6) VG(κV ) = {V }.

(9.2.7) It follows from (9.2.4) and (9.2.6) that every subset of ProjH∗(G, k)

occurs as VG(M) for some M .

10. Modules with Injective Cohomology

In this section, we continue with our assumption that G is a finite group and

k is a field.

(10.1) A better understanding of the modules κV comes from understanding

modules whose Tate cohomology is injective as a module over the Tate coho-

mology of the group. In this section, we shall see that there is an essentially

unique module with a given injective as its cohomology [Benson and Krause

2002]. Conjecturally, these are the translates of the modules κV described in the

last section. This has been proved under some restrictive hypotheses in [Benson

2001], but at least it is true for elementary abelian groups, an important special

case. The connection between the κV and modules with injective cohomology

involves the study of the local cohomology of the cohomology ring, H∗∗p H∗(G, k).

This is the subject of the next section.

(10.2) It is well known that the indecomposable injective modules over a com-

mutative Noetherian ring R are precisely the injective hulls E(R/p) of the mod-

ules R/p, as p ranges over the prime ideals of R, and that a general injective
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module can be written in an essentially unique way as a direct sum of indecom-

posable injectives.10 For a Noetherian graded commutative ring, the classifica-

tion of injective graded modules is the same, except that we must restrict our

attention to homogeneous prime ideals, and we must allow degree shift. If p is

a homogeneous prime ideal in H∗(G, k) and d is an integer, we define Ip to be

E(H∗(G, k)/p) and Ip[n] to be the result of shifting degrees by n. The notation

here is that a shift of [n] in a graded module means that the degree d part of the

shifted module is the same as the degree (n + d) part of the original module.

(10.3) Recall that the ordinary cohomology H∗(G, k) is Noetherian, whereas

Tate cohomology Ĥ∗(G, k) is usually not. The way to get from injective modules

over ordinary cohomology to injectives over Tate cohomology is by coinduction.

If I is an injective H∗(G, k)-module, we define Î to be the injective Ĥ∗(G, k)-

module

Î = Hom∗H∗(G,k)(Ĥ
∗(G, k), I).

The notation here is that Homn denotes the graded homomorphisms which in-

crease degree by n. If there is no superscript, it is assumed that n = 0.

Theorem 10.3.1. Every injective Ĥ∗(G, k)-module is of the form Î for some

injective H∗(G, k)-module I.

(10.4) In order to understand what happens when we coinduce I = Ip[n], we

consider two cases. Let m = H+(G, k) be the maximal ideal of positive degree

elements in H∗(G, k). If p is not equal to m then Î = I. More precisely, the

restriction of Î to an H∗(G, k)-module is naturally isomorphic to I. On the other

hand, if p = m then Tate duality (3.6.1) says that I = Ĥ−(G, k)[n − 1]. In this

case, Î = Ĥ∗(G, k)[n − 1].

Since Ĥ∗(G, k) is usually not Noetherian, coinduction does not preserve di-

rect sums. Actually, it does preserve direct sums as long as the injective only

has copies of Ip[n] with p 6= m, and no copies of Im[n]; in other words if

Hom∗H∗(G,k)(k, I) = 0. Although Ĥ∗(G, k) is not Noetherian, it is shown in

[Benson and Krause 2002] that the general injective Ĥ∗(G, k)-module has the

form

(10.4.1)
⊕

Îp[n] ⊕ E
(⊕

Ĥ∗(G, k)[n − 1]
)

,

where p 6= m for each of the left hand summands, and E(−) stands for injective

hull over Ĥ∗(G, k).

A way to construct modules with injective cohomology is to use the Brown rep-

resentability theorem [Brown 1965; Neeman 1996]. If I is an injective H ∗(G, k)-

module, the functor from StMod(kG) to vector spaces, which takes a kG-module

10A ring R is Noetherian if and only if an arbitrary direct sum of injective R-modules is
injective.
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M to the degree preserving homomorphisms

HomH∗(G,k)(Ĥ
∗(G,M), I)

is exact (in other words it takes triangles in StMod(kG) to long exact sequences)

and takes direct sums to direct products. Brown’s representability theorem says

that any such functor is representable. In other words, there exists a kG-module

T (I) and a functorial isomorphism

(10.4.2) HomH∗(G,k)(Ĥ
∗(G,M), I) ∼= HomkG(M,T (I)).

We remark that we could just as easily have replaced the left hand side of this iso-

morphism with HomĤ∗(G,k)(Ĥ
∗(G,M), Î), because this gives the same answer,

and because by Theorem 10.3.1, every injective Ĥ∗(G, k)-module is coinduced

from H∗(G, k).

(10.5) Yoneda’s lemma says that all natural transformations from a repre-

sentable functor are representable. Applying this to natural transformations

arising from homomorphisms between injective H∗(G, k)-modules, this makes

T into a functor from the full subcategory InjH∗(G, k) of injective H∗(G, k)-

modules to the stable module category StMod(kG). Here are some properties of

the modules T (I), proved in [Benson and Krause 2002].

(10.5.1) T (Im[n]) ∼= Ω−n+1(k).

(10.5.2) If p 6= m then T (Ip[n]) is an infinitely generated module whose variety

is given by VG(T (Ip[n])) = {V }, where V is the irreducible variety corresponding

to p.

(10.5.3) Hom∗H∗(G,k)(Ĥ
∗(G,M), I) ∼= Ex̂t

∗

kG(M,T (I)). This isomorphism fol-

lows by dimension shifting the defining isomorphism (10.4.2).

(10.5.4) Ĥ∗(G,T (I)) ∼= Î. This is the special case of (iii) where M = k.

(10.5.5) If p 6= m then Ex̂t
∗

kG(T (Ip[n]), T (Ip[n])) ∼= End∗H∗(G,k)(Ip). By a the-

orem of Matlis [1958], End∗H∗(G,k)(Ip) is isomorphic to the p-adic completion of

cohomology,

H∗(G, k)
∧

p = lim
←−
n

H∗(G, k)p/p
n
p .

More generally, if I has no copies of Im[n] as summands, or equivalently, if there

are no homomorphisms from any degree shifted copy of k to I, then

HomkG(T (I), T (I ′)) ∼= HomH∗(G,k)(I, I ′).

So T is a fully faithful functor on the full subcategory Inj0 H∗(G, k) of injective

modules I satisfying Hom∗H∗(G,k)(k, I) = 0.
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(10.5.6) The modules T (I) are pure injective. This means that if a short exact

sequence of kG-modules

0 → T (I) → X → Y → 0

has the property that every morphism from any finitely generated module to Y

lifts to X, then it splits. The reason for this is that T (I) is a direct summand of

a direct product of finitely generated kG-modules. In fact,

(10.5.7) The modules T (I) are precisely the direct summands of direct products

of modules isomorphic to Ωn(k) for n ∈ Z. The indecomposable ones are exactly

T (Ip[n]). So we obtain an embedding of Proj H∗(G, k) into the Ziegler spectrum

[Ziegler 1984] of pure injective kG-modules with the Zariski topology (modulo the

translation Ω), and we can recover Proj H∗(G, k) from the category StMod(kG)

if we know where the translates of the trivial module are.

(10.6) The following conjecture from [Benson 2001] relates the modules T (Ip[n])

described in this section and the modules κV described in the previous section.

Conjecture 10.6.1. If p is the homogeneous prime ideal corresponding to a

closed homogeneous irreducible subvariety V of dimension d in VG, then there is

an isomorphism T (Ip[n]) ∼= Ω−n−dκV in StMod(kG).

This conjecture is known to hold if H∗(G, k)p is Cohen–Macaulay. In the next

few sections, we describe how to view this conjecture in terms of local cohomology

and Grothendieck’s local duality. See Conjecture 13.2.2.

(10.7) Another conjecture, related in philosophy to Conjecture 10.6.1, comes

from an idea of Amnon Neeman. If M is a kG-module, not necessarily finitely

generated, then for each simple module S, consider a minimal injective resolution

of Ex̂t
∗

kG(S,M) as a module over Ĥ∗(G, k),

0 → Ex̂t
∗

kG(S,M) → Î0 → Î1 → Î2 → · · ·

Each injective in such a resolution can be written in the form (10.4.1), and we

can ask which nonmaximal prime ideals occur in such a decomposition. Since

each Îj is coinduced from some injective H∗(G, k)-module Ij , we have

Hom∗
Ĥ∗(G,k)

(H∗(G, k)/p, Îj) ∼= Hom∗H∗(G,k)(H
∗(G, k)/p, Ij),

and this is nonzero exactly for the primes appearing in this minimal resolution.

Since coinduction is exact on injectives away from the maximal ideal, it does not

matter whether we resolve over Ĥ∗(G, k) or H∗(G, k). The following conjecture

says that the primes appearing in these minimal resolutions, as S runs over the

simple kG-modules, correspond exactly to the varieties in VG(M).

Conjecture 10.7.1. Let M be a kG-module. If p is a homogeneous prime

ideal in H∗(G, k), we define k(p) to be the homogeneous field of fractions of
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H∗(G, k)p. Then the nonmaximal homogeneous primes p for which11

Ext∗∗H∗(G,k)p
(k(p),Ex̂t

∗

kG(S,M)p) 6= 0

for some simple kG-module S are exactly the primes corresponding to the vari-

eties in VG(M).

The point of this conjecture is that it provides a method for characterizing

VG(M) just in terms of Ex̂t
∗

kG(S,M), without having to tensor M with the

rather mysterious modules κV .

11. Duality Theorems

In this section, we describe various spectral sequences which can be inter-

preted as duality theorems for group cohomology. It is these theorems which

demonstrate that most finitely generated graded commutative algebras are not

candidates for group cohomology. The original version of the spectral sequence

for finite groups appeared in [Benson and Carlson 1994b], and used multiple com-

plexes and related finite Poincaré duality complexes of projective kG-modules.

One consequence of the existence of this spectral sequence is that if H ∗(G, k)

is Cohen–Macaulay then it is Gorenstein, with a-invariant zero (2.5). Even if

H∗(G, k) is not Cohen–Macaulay, the spectral sequence gives severe restrictions

on the possibilities for the ring structure.

Greenlees [1995] discovered a way of using the same techniques to construct

a cleaner spectral sequence of the form

Hs,t
m H∗(G, k) =⇒ H−s−t(G, k)

giving essentially equivalent information. We present here an alternative con-

struction [Benson 2001] of Greenlees’ spectral sequence using Rickard’s idempo-

tent modules.

(11.1) Choose a homogeneous set of parameters ζ1, . . . , ζr for H∗(G, k). For

each ζi, we truncate the triangle (9.2.1) to give a cochain complex of the form

(11.1.1) · · · → 0 → k → Fζi
→ 0 → · · ·

where k is in degree zero and Fζi
is in degree one, and the remaining terms are

zero. The cohomology of this complex is Ω−1Eζi
concentrated in degree one.

Tensoring these complexes together gives a complex Λ∗ of the form

0 → k →
⊕

1≤i≤r

Fζi
→ · · · →

⊗

1≤i≤r

Fζi
→ 0,

11In commutative algebra, the ranks over k(p) of these Ext groups are called the Bass
numbers.
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which is exact except in degree r, where its cohomology is

Ω−1Eζ1
⊗ · · · ⊗ Ω−1Eζr

.

Now VG(Ω−1Eζi
) is the set of subvarieties of the hypersurface determined by ζi.

So using (9.2.5), the variety of this tensor product is the intersection of these sets,

which is empty. It follows using (9.2.3) that this tensor product is a projective

kG-module.

Now let P̂∗ be a Tate resolution of k as a kG-module, and consider the double

complex Ê∗∗0 = HomkG(P̂∗,Λ
∗). This double complex gives rise to two spectral

sequences. If we take cohomology with respect to the differential coming from

Λ∗ first, the E1 page is HomkG(P̂∗,H
∗(Λ)). Since H∗(Λ) is projective, the E2

page is zero, and so the cohomology of the total complex Tot Ê∗∗0 is zero.

On the other hand, if we first take cohomology with respect to the differen-

tial coming from P̂∗, we obtain a spectral sequence whose E1 page is Ês,t
1 =

Ĥt(G,Λs). Now each Λs is a direct sum of modules of the form Fζ , where

ζ is the product of a subset of size s of ζ1, . . . , ζr. The cohomology of Fζ is

Ĥ∗(G, k)ζ
∼= H∗(G, k)ζ , and the maps are exactly the maps in the stable Koszul

complex12 for Ĥ∗(G, k) over ζ1, . . . ζr,

Ê∗∗1 = C∗(Ĥ∗(G, k); ζ1, . . . , ζr).

The stable Koszul complex computes local cohomology with respect to the max-

imal ideal m, and so we have a spectral sequence

(11.1.2) Ês,t
2 = Hs,t

m Ĥ∗(G, k) =⇒ 0.

(11.2) The spectral sequence (11.1.2) is almost, but not quite, the Greenlees

spectral sequence, so we modify it as follows. Consider the subcomplex E∗∗0
consisting of all the terms in Ê∗∗0 except the ones of the form Ê0,t

0 with t < 0.

Then we have a short exact sequence of complexes

0 → TotE∗∗0 → Tot Ê∗∗0 → HomkG(P̂−∗ , k) → 0.

Since Tot Ê∗∗0 is exact, the long exact sequence in cohomology and Tate duality

give

HnTotE∗∗0
∼= Hn+1(HomkG(P̂−∗ , k)) ∼= H−n(G, k).

So the spectral sequence of the double complex E∗∗0 has

E∗∗1 = C∗(H∗(G, k); ζ1, . . . , ζr)

Es,t
2 = Hs,t

m H∗(G, k) =⇒ H−s−t(G, k).(11.2.1)

12See for example [Bruns and Herzog 1993, § 3.5]. Sometimes the stable Koszul complex

is called the Čech complex, but strictly speaking the latter name should be reserved for the
complex where the degree zero term is deleted and the degrees of the remaining terms are
decreased by one. This is the complex used to derive the spectral sequence (11.3.1).
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This is a spectral sequence of H∗(G, k)-modules; that is, the differentials

dn : Es,t
n → Es+n,t−n+1

n

are H∗(G, k)-linear. It converges because there are only a finite number of

nonzero columns. This is because Es,t
2 = 0 unless s lies between the depth and

the Krull dimension of H∗(G, k). The spectral sequence (11.2.1) is isomorphic to

the one constructed by Greenlees [1995], although the construction given there

is slightly different. Note also that H∗(G, k) is just the injective module Im, so

we can write this as

Hs,t
m H∗(G, k) =⇒ Im.

The local cohomology can only be nonzero for s at least the depth and at most

the Krull dimension, so this spectral sequence often has only a few nonvanishing

columns.

(11.3) Another variation on the construction (11.2) is as follows. Instead of

eliminating just the negative part of the s = 0 line of the E0 page, we eliminate

the whole of the s = 0 line. Then after reindexing, we obtain a spectral sequence

whose E2 page is the Čech cohomology of the cohomology ring, and converging

to Tate cohomology,

(11.3.1) Ȟs,t
m H∗(G, k) =⇒ Ĥs+t(G, k).

This is the spectral sequence described in [Greenlees 1995, Theorem 4.1].

(11.4) As an example of an application of the spectral sequence (11.2.1), con-

sider the case where H∗(G, k) is Cohen–Macaulay (2.5). In this case, the local co-

homology Hs,∗
m H∗(G, k) is zero unless s = r, and the graded dual of Hr,∗

m H∗(G, k)

is the canonical module ΩH∗(G,k). So the E2 page is only nonzero on the col-

umn s = r, and there is no room for differentials. It follows that the spectral

sequence converges to (ΩH∗(G,k)[r])
∗, and so ΩH∗(G,k)[r] is isomorphic to the

graded dual of H∗(G, k), which in turn is isomorphic to H∗(G, k). We deduce

that ΩH∗(G,k)
∼= H∗(G, k)[−r]. It follows that H∗(G, k) is Gorenstein with

a-invariant zero. This gives the following theorem, which was first proved in

[Benson and Carlson 1994b], using the original version of the spectral sequence.

Theorem 11.4.1. Let G be a finite group and k be a field of characteristic p.

If H∗(G, k) is Cohen–Macaulay , then it is Gorenstein with a-invariant zero.

This theorem may be interpreted in terms of Poincaré series as follows. If we

set pG(t) =
∑∞

i=0 ti dimHi(G, k) then the finite generation theorem says that

pG(t) is a rational function of t whose poles are at roots of unity. If H∗(G, k) is

Cohen–Macaulay, the theorem above implies that this rational function satisfies

the functional equation pG(1/t) = (−t)rpG(t). For this and related functional

equations, see [Benson and Carlson 1994a].
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(11.5) Another interpretation of Theorem 11.4.1 is as follows. If ζ1, . . . , ζr is a

homogeneous system of parameters for H∗(G, k) with |ζi| = ni then the quotient

ring H∗(G, k)/(ζ1, . . . , ζr) satisfies Poincaré duality with dualizing degree a =∑r
i=1(ni − 1). See the description of the quaternion group of order eight (2.4)

for an explicit example of this phenomenon. Whether or not H∗(G, k) is Cohen–

Macaulay, it is shown in [Benson and Carlson 1994b] that there is always a

nonzero element of the quotient H∗(G, k)/(ζ1, . . . , ζr) in the dualizing degree a.

In particular, we get the following corollary from that paper:

Corollary 11.5.1. Let G be a finite group and k be a field of characteristic

p. If H∗(G, k) is a polynomial ring , then the generators are in degree one. This

forces p to be 2, and G/O2′(G) to be an elementary abelian 2-group.

Here, Op′(G) denotes the largest normal subgroup of G of order not divisi-

ble by p. If k is a field of characteristic p, then the inflation map (3.2) from

H∗(G/Op′(G), k) to H∗(G, k) is an isomorphism, so we would expect to get

information only about the structure of G/Op′(G) from information about the

cohomology of G. If p = 2 and G ∼= (Z/2)r is elementary abelian then by (2.2.2),

H∗(G, k) = k[x1, . . . , xr] is a polynomial ring on r generators of degree one. In

this case, Hs,t
m H∗(G, k) vanishes except when s = r, and13

Hr,∗
m H∗(G, k) = k[x−1

1 , . . . , x−1
r ],

where the right hand side is graded in such a way that the identity element is in

Hr,−r
m H∗(G, k).

There are no differentials, and it is easy to see how the spectral sequence

converges to the dual of the cohomology ring.

On the other hand, if G ∼= (Z/p)r with p odd, then H∗(G, k) = Λ(x1, . . . , xr)⊗
k[y1, . . . , yr] is a tensor product of an exterior algebra on r generators of degree

one with a polynomial algebra on r generators in degree two. Taking y1, . . . , yr

as a homogeneous sequence of parameters, the exterior algebra Λ(x1, . . . , xr) is

the finite Poincaré duality piece referred to in the discussion following Theo-

rem 11.4.1. The local cohomology is again concentrated in degree r, and H r
m

consists of 2r copies of k[y−1
1 , . . . , y−1

r ] with generators in Hr,−r−i
m , i = 0, . . . , r

dual to a basis for the exterior algebra.

(11.6) As another Cohen–Macaulay example, if G = D2n is dihedral of order

2n then H∗(G, F2) = F2[x, y, z]/(xy) where x and y have degree one and z has

degree two. We can take x+y and z as a homogeneous system of parameters, and

the quotient is H∗(G, F2)/(x+y, z) = F2[x]/(x2), which satisfies Poincaré duality

13The notation k[x−1
1 , . . . , x−1

r ] is just a shorthand notation for the graded dual of the
polynomial ring in x1, . . . , xr. Beware that the notation does not transform correctly with
respect to linear transformations of x1, . . . , xr because it depends on the choice of system
of parameters for the stable Koszul complex. The action on the inverse generators should be
transposed from what the notation suggests. However, the notion is called “Macaulay’s inverse
system,” and is standard in commutative algebra.
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with dualizing degree one. The local cohomology is concentrated in degree two,

and consists of two copies of F2[(x + y)−1, z−1] with generators in H2,−2
m and

H2,−3
m dual to 1 and x.

(11.7) If G = SD2n is semidihedral of order 2n (2.8.1) and k is a field of

characteristic two then H∗(G, k) = k[x, y, z, w]/(xy, y3, yz, z2 + wx2) where x

and y have degree one, z has degree three, and w has degree four. The depth

of this ring is one, and the Krull dimension is two, so there is local cohomology

in degrees one and two; H1
m consists of two copies of F2[w

−1] with generators in

H1,−2
m and H1,−3

m which play the role of duals for y and y2, while H2
m consists of

two copies of F2[w
−1, x−1] with generators in H2,−2

m and H2,−5
m dual to 1 and z.

This example is described in more detail in § 2.

(11.8) The cohomology of the 2-groups of order at most 32 has been calculated

by Rusin [1989]. A particularly interesting example is the group

(11.8.1) Γ7a2 = 〈a, b, c | a4b = ba4, a4c = ca4, bc = cb,

a8 = b2 = c2 = 1, aba−1 = bc, aca−1 = a4c〉,

of order 32, whose cohomology has Krull dimension three and depth one. This

is the smallest example where the Greenlees spectral sequence has a nonzero

differential. The cohomology ring H∗(Γ7a2, F2) is generated by elements z, y, x,

w, v, u, t and s of degrees 1, 1, 2, 2, 3, 3, 4, 4, respectively, where the ideal of

relations is generated by the elements

zy, y2, yx, yw, yv, yu, yt, xw + zu, z2w +w2, wv + zt, zxw +wu,

z2t+wt, x3 + zxv + z2s+ v2, vu+xt, x2u+ zxt+ zws+ vt,

x3w + z2xt+ z2ws+ t2, zxt+ut, x2w +u2.

As a module over the polynomial subring F2[z, x, s], the cohomology is generated

by 1, y, w, v, u and t, subject to the relations zy = 0, xy = 0 and zu = xw.

The local cohomology is nonvanishing in degrees 1, 2 and 3; both H 1
m and H2

m

consist of a copy of F2[s
−1] generated in degree −3, while H3

m consists of four

copies of F2[z
−1, x−1, s−1] generated in degrees −3, −4, −6 and −7. The nonzero

differential d2 takes the generator in H1,−3
m to the generator in H3,−4

m , wiping out

H1
m and having a cokernel on this part of H3

m which plays the role of the dual of

the summand generated by w and u. The remaining generators in H3,−3
m , H3,−6

m

and H3,−7
m are dual to 1, v and t, while the generator of H2,−3

m is dual to y.

12. More Duality Theorems

(12.1) There is a version of the spectral sequence (11.2.1) for compact Lie

groups [Benson and Greenlees 1997a]. This involves a dimension shift, equal to

the dimension d of G as a manifold. There is also an orientation issue. Namely,
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the adjoint representation of G gives a homomorphism G → O(d), whose image

does not necessarily lie in SO(d). Composing with the determinant represen-

tation of O(d), which takes values ±1, gives a one dimensional representation

ε : π1(BG) ∼= π0(G) → k×. The spectral sequence then takes the form

(12.1.1) Hs,t
m H∗(BG; k) =⇒ H−d−s−t(BG; ε).

Dwyer, Greenlees and Iyengar [Dwyer et al. 2002] give another proof for compact

Lie groups and also a version for p-compact groups.

For example, if H∗(BG; k) is a polynomial ring on generators ζ1, . . . , ζr with

|ζi| = ni, and ε = k, then we have

(12.1.2) d =

r∑

i=1

(ni − 1).

If G = U(n), the compact unitary group of n × n matrices, and k is any

commutative coefficient ring, then H∗(BU; k) = k[c1, . . . , cn] is a polynomial ring

on Chern classes ci of degree 2i (3.3.1). In accordance with equation (12.1.2),

we have dimU(n) = n2 =
∑n

i=1(2i − 1).

On the other hand, if G = O(2n), the compact orthogonal group of real

2n × 2n matrices preserving a positive definite inner product, and k is a field of

characteristic not equal to two, then H∗(BO(2n); k) = k[p1, . . . , pn] is a polyno-

mial ring on Pontrjagin classes pi of degree 4i (3.3.2). Since dimO(2n) = 2n2−n

and
∑n

i=1(4i− 1) = 2n2 +n, we see that the two sides of equation (12.1.2) differ

by 2n. This is because the orientation representation ε is nontrivial, and

H∗(BO(2n); ε) = k[p1, . . . , pn] · e

where e ∈ H2n(BSO(2n); k) ∼= H2n(BO(2n); k ⊕ ε) is the Euler class, satis-

fying e2 = pn (3.3.3). The degree of the Euler class exactly accounts for the

discrepancy in equation (12.1.2).

(12.2) Another version of the spectral sequence has been developed for virtual

duality groups [Benson and Greenlees 1997b]. The latter is a class of groups

which includes arithmetic groups [Borel and Serre 1973], mapping class groups

of orientable surfaces [Harer 1986] and automorphism groups of free groups of

finite rank [Bestvina and Feighn 2000]. A discrete group G is said to be a

duality group of dimension d over k (see [Bieri 1976]) if there is a dualizing

module. This is defined to be a kG-module I such that there are isomorphisms

Hi(G,M) ∼= Hd−i(G, I ⊗k M) for all kG-modules M . It turns out that such

isomorphisms may be taken to be functorial in M if they exist at all, and in

that case, I ∼= Hd(G, kG). A Poincaré duality group is a duality group for which

the dualizing module I is isomorphic to the field k with some G-action, and it is

orientable if the action is trivial. A virtual duality group of dimension d is a group

G with a normal subgroup N of finite index which is a duality group of dimension

d. Since the Eckmann–Shapiro lemma says that H∗(G, kG) ∼= H∗(N, kN), the
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dualizing module I does not depend on which normal subgroup is used in the

definition. The spectral sequence for a virtual duality group takes the form

Hs,t
m H∗(G,M) =⇒ Hd−s−t(G, I ⊗ M).

Notice that the sign of the degree shift in this case is in the opposite direction

to the case of a compact Lie group. So a virtual Poincaré duality group of

dimension d behaves very much like a compact Lie group of dimension −d.

(12.3) In [Greenlees 2002, § 8.4], there is a brief discussion of the corresponding

version for continuous cohomology of p-adic Lie groups, which are a particular

kind of profinite groups. These include matrix groups over the p-adic integers

such as SL(n, Z
∧

p ). The discussion for p-adic Lie groups translates into continuous

cohomology the story for virtual duality groups, with the same shift in dimension.

The way this works is as follows. By [Lazard 1965, Chapter V, 2.2.7.1 and

2.5.7.1], if G is a p-adic Lie group then G has a normal open subgroup H for

which H∗c (H, Fp) is the exterior algebra on H1
c (H, Fp), so that H is a Poincaré

duality group. Furthermore, H1
c (H, Fp) is a finite dimensional Fp-vector space

whose dimension is equal to the dimension d of G as a p-adic manifold. So

the dualizing module ε is the FpG-module Hd
c (H, Fp), which is the same as the

determinant of the adjoint representation of G on its Lie algebra. The spectral

sequence then takes the form

(12.3.1) Hs,t
m H∗c (G, Fp) =⇒ Hc

d−s−t(G, ε).

(12.4) There are also versions of the spectral sequence for other cohomology

theories. For example, [Bruner and Greenlees 2003] investigates the spectral

sequence

H∗,∗I ku∗(BG) =⇒ ku∗(BG)

where ku denotes connective complex K-theory, I is the kernel of the augmen-

tation map ku∗(BG) → ku∗, and G is a finite group.

(12.5) The papers [Dwyer et al. 2002; Greenlees 2002] also explain a more

general context for some of these spectral sequences. They explain the sense

in which the cochains on BG and related objects are examples of Gorenstein

differential graded algebras. Their notions are expressed in the language of E∞
ring spectra, or commutative S-algebras, see [Elmendorf et al. 1997].

13. Dual Localization

(13.1) Greenlees and Lyubeznik [2000] introduced a way of obtaining informa-

tion at nonmaximal prime ideals out of the Greenlees spectral sequence. Roughly

speaking, one would like to localize the spectral sequence. Attempting to do

this directly turns out to be a bad move. The reason is that every element of

H∗∗m H∗(G, k) and every element of Im is killed by some power of m. So the idea
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is to dualize first, then localize, and then dualize back again. The dualization

process needed for this is graded Matlis duality. See [Matlis 1958] for ordinary

Matlis duality, and [Bruns and Herzog 1993, § 3.6] for the graded version. If p is

a homogeneous prime ideal in H∗(G, k) and X is a module over H∗(G, k)p, then

we write Dp(X) for the graded Matlis dual of X

Dp(X) = HomH∗(G,k)p
(X, Ip),

where Ip is the injective hull of H∗(G, k)/p. The latter can be viewed as a

module over the completion H∗(G, k)
∧

p , and so Dp takes H∗(G, k)p-modules to

H∗(G, k)
∧

p -modules. It takes Artinian modules to Noetherian modules, and vice-

versa. Applying Dp twice to an Artinian module returns the same module, and

applying Dp twice to a Noetherian module returns its p-adic completion. In this

language, we can rewrite equation (10.5.3) as

DpĤ
∗(G,M) ∼= Ex̂t

∗

kG(M,T (Ip)).

Tate duality is the special case of this statement where p = m, because Dm

can be interpreted as taking the graded dual of a graded vector space, and

T (Im) = Ω(k).

Grothendieck duality [Grothendieck 1965; 1967] says that if we choose a poly-

nomial subring R = k[ζ1, . . . , ζr] over which H∗(G, k) is finitely generated as a

module, and M is a graded H∗(G, k)-module, then the graded Matlis dual of

local cohomology is Ext over R in complementary degrees,

(13.1.1) DmHs,t
m M ∼= Extr−s,−t

R (M,R[−a])

where a =
∑r

i=1 |ζi| and R[−a] is the canonical module for R. So the graded

Matlis dual of the Greenlees spectral sequence is

Extr−s,−t
R (H∗(G, k), R[−a]) =⇒ H−s−t(G, k).

Localizing this spectral sequence with respect to a homogeneous prime ideal

p 6= m of dimension d gives a spectral sequence

Extr−s,−t
Rq

(H∗(G, k)p, Rq[−a]) =⇒ H−s−t(G, k)p

where q = p ∩ R. Since Rq has Krull dimension r − d instead of r, applying Dp

to this spectral sequence and using Grothendieck duality again gives a spectral

sequence of the form Hs−d,t
p H∗(G, k)p =⇒ Ip, or reindexing,

(13.1.2) Hs,t
p H∗(G, k)p =⇒ Ip[d].

This is the Greenlees–Lyubeznik dual localized form of the Greenlees spectral

sequence. So for example, taking p to be a minimal prime in H∗(G, k), this spec-

tral sequence has only one nonvanishing column, and it follows that H∗(G, k)p

is Gorenstein. This gives the following theorem.
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Theorem 13.1.3. If G is a finite group and k is a field then H∗(G, k) is

generically Gorenstein.

(13.2) There is another, more module theoretic method for getting a spectral

sequence with the same E2 page as (13.1.2), described in [Benson 2001]. Let

V ⊆ VG be the closed homogeneous irreducible subvariety corresponding to p,

and let W be the subset of ProjH∗(G, k) used in the definition (9.2.2) of κV .

Since the maximal elements of W have codimension one in VG, the cohomology of

the F -idempotent is just the homogeneous localization, Ĥ∗(G,FW ) = H∗(G, k)p.

Let h be the height of p, namely the Krull dimension of H∗(G, k)p. Then by the

version of the Noether normalization theorem described in [Nagata 1962], we can

choose a homogeneous set of parameters ζ1, . . . , ζr for H∗(G, k) so that ζ1, . . . , ζh

lie in p. So ζ1, . . . , ζh is a system of parameters for H∗(G, k)p. We tensor together

the complexes (11.1.1) for ζ1, . . . , ζh to obtain a complex Λ∗(ζ1, . . . , ζh) of the

form

0 → k →
h⊕

i=1

Fζi
→ · · · →

h⊗

i=1

Fζi
→ 0

and then tensor the answer with the module FW to obtain a complex

Λ∗p = Λ∗(ζ1, . . . , ζh) ⊗ FW

whose cohomology is Ω−hEV ⊗ FW = Ω−hκV concentrated in degree h. The

spectral sequence of the double complex E∗∗0 (p) = HomkG(P̂∗,Λ
∗
p) gives

(13.2.1) Es,t
2 (p) = Hs,t

p H∗(G, k)p =⇒ Ĥs+t(G,κV ).

Conjecture 13.2.2. The spectral sequences 13.1.2 and 13.2.1 are isomorphic

from the E2 page onwards.

It is proved in [Benson 2001] that Conjecture 13.2.2 implies Conjecture 10.6.1.

Furthermore, Conjecture 13.2.2 clearly holds in the case where H∗(G, k) is

Cohen–Macaulay, because there is no room for nontrivial differentials or un-

grading problems.

14. Quasiregular Sequences

In this section, we describe the theory of quasiregular sequences, first intro-

duced in [Benson and Carlson 1994b], and describe their relationship with the

local cohomology of H∗(G, k). The material of this section is further developed

in a companion paper [Benson 2004], written during the month following the

MSRI workshop.

(14.1) Let G be a finite group of p-rank r, and let k be a field of characteristic

p. A homogeneous sequence of parameters ζ1, . . . , ζr for H∗(G, k) with |ζi| = ni

is said to be filter-regular if for each i = 0, . . . , r − 1, the map

(14.1.1) (H∗(G, k)/(ζ1, . . . , ζi))
j → (H∗(G, k)/(ζ1, . . . , ζi))

j+ni+1
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induced by multiplication by ζi+1 is injective for j large enough. The existence

of a filter-regular sequence is guaranteed by the standard method of prime avoid-

ance.

In [Benson and Carlson 1994b, § 10], the following terminology was intro-

duced. A sequence of parameters ζ1, . . . , ζr is said to be quasiregular 14 if the

map (14.1.1) is injective for i = 0, . . . , r − 1 whenever j ≥ n1 + · · · + ni, and

H∗(G, k)/(ζ1, . . . , ζr) is zero in degrees at least n1 + · · · + nr. For i = 0 this is

the same as saying that ζ1 is a regular element, but for i > 0 it allows some low

degree kernel.

Conjecture 14.1.2. For any finite group G and field k, there exists a quasi-

regular sequence in H∗(G, k).

It is proved in [Benson and Carlson 1994b] that the conjecture is true if r ≤ 2,

and Okuyama and Sasaki [2000] have a proof for r ≤ 3. These proofs work more

generally when the depth and Krull dimension differ by at most one, respectively

two. In this section, I shall try to explain the ideas behind these proofs, and the

relevance of quasiregular sequences for the computation of group cohomology.

(14.2) We can reinterpret the definition of quasiregular sequence in terms of

cohomology of modules as follows, and in the process give some sort of explana-

tion of where the condition j ≥ n1 + · · ·+ni comes from. We can always take our

first parameter ζ1 to be a regular element, by Duflot’s Theorem 6.2.1. Consider

the short exact sequence

0 → Lζ1
→ Ωn1(k) → k → 0.

The long exact sequence in cohomology gives (for j ≥ n1) an exact sequence

· · · → Hj(G,Lζ1
) → Hj−n1(G, k)

ζ1−→ Hj(G, k) → Hj+1(G,Lζ1
) → · · ·

So we have Hj+1(G,Lζ1
) ∼= (H∗(G, k)/(ζ1))

j for j ≥ n1.

Working inductively, for each i = 0, . . . , r − 1, if we tensor the short exact

sequence

0 → Lζi+1
→ Ωni+1(k) → k → 0

with the module Mi = Lζ1
⊗ · · · ⊗ Lζi

and take the long exact sequence in

cohomology, then we obtain the following.

Proposition 14.2.1. A homogeneous sequence of parameters ζ1, . . . , ζr is quasi-

regular if and only if for each i = 0, . . . , r − 1, multiplication by ζi+1 is injective

on Hj(G,Mi) for j ≥ n1 + · · · + ni + i. �

14This terminology has nothing to do with the terminology of quasiregular sequences used
in [Matsumura 1989]. The definition in [Benson and Carlson 1994b] omits the condition on
H∗(G, k)/(ζ1, . . . , ζr), but this condition turns out to be automatic, see Corollary 14.2.2.
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Corollary 14.2.2. If ζ1, . . . , ζr is a homogeneous system of parameters and

the condition for quasiregularity is satisfied for i = 0, . . . , r − 2, then it is also

satisfied for i = r− 1, and the quotient H∗(G, k)/(ζ1, . . . , ζr) is zero in degree at

least n1 + · · · + nr.

Proof. Hj+r−1(G,Mr−1) = (H∗(G, k)/(ζ1, . . . , ζr−1))
j for j ≥ n1 + · · ·+nr−1.

Tensoring the sequence 0 → Lζr
→ Ωnrk

ζ̂r−→ k → 0 with Mr−1, and using

the fact that Mr−1 ⊗ Lζr
is projective, we see that ζr induces an isomorphism

ΩnrMr−1
∼= Mr−1, and hence an isomorphism on H∗(G,Mr−1) in positive de-

grees. �

(14.3) To go further, we make use of the transfer map. If we choose the pa-

rameters to be the Dickson invariants (see § 7), then the restriction to each

elementary abelian p-subgroup E of rank r − 1 of the sequence ζ1, . . . , ζr−1 is a

homogeneous sequence of parameters in H∗(E, k). It follows that VG(Mr−1) has

trivial intersection with the image of VE → VG for each such E. Theorem 1.5

of [Benson 1994/95] (see also Corollary 4.5 of [Carlson et al. 1998]) then shows

that Mr−2 ⊗ Lζr−1
= Mr−1 is projective relative to15 the set Hr of centralizers

CG(E) of elementary abelian p-subgroups E of rank r. So the sum of the trans-

fers from these subgroups gives a surjective map in cohomology. Furthermore,

the restrictions of ζ1, . . . , ζr to a subgroup in Hr form a regular sequence, by

Duflot’s theorem. Now examine the diagram

· · · // Hj+nr−1(G,Mr−1) // Hj(G,Mr−2)
ζr−1 // Hj+nr−1(G,Mr−2)

· · · //
M

H∈Hr

H
j+nr−1(H,Mr−1)

OO

//
M

H∈Hr

H
j(H,Mr−2)

OO

//ζr−1 //
M

H∈Hr

H
j+nr−1(H,Mr−2)

OO

where the vertical maps are given by
∑

H∈Hr
TrH,G. The map marked ζr−1 on

the bottom row is injective, and a diagram chase shows that the corresponding

map on the top row is therefore also injective. So ζr−1 is quasiregular. Finally,

the argument of the previous paragraph shows that the last parameter ζr is also

quasiregular. This completes the argument of Okuyama and Sasaki, proving

Conjecture 14.1.2 in the case where the depth and the Krull dimension differ by

at most two.

It looks as though the argument above ought to admit a modification which

makes it work inductively and prove the conjecture, but so far nobody has suc-

ceeded in doing this.

Carlson [1999; 2001] has developed some conjectures related to Conjecture

14.1.2, which allow a machine computation of group cohomology by computing

15A module M is said to be projective relative to a set of subgroups H of G if it is a
direct summand of a direct sum of modules induced from elements of H . This is equivalent to
the statement that the sum of the transfer maps TrH,G : EndkH(M) → EndkG(M) from the

subgroups H ∈ H is surjective. For further details, see [Benson 1991a, § 3.6].
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just a finite part at the beginning of a projective resolution. The usefulness of

the conjectures depends on the fact that during the course of the calculation for

a particular group, it is proved that the cohomology ring really does satisfy the

conjectures, so there is no uncertainty about the answer. Condition G of [Carlson

2001] is related to the existence of a quasiregular sequence, while Condition R of

that paper is a weak form of Conjecture 7.2.1. If the existence of a quasiregular

sequence could be verified a priori, then the computational method could be

guaranteed to work. This is explained in Theorem 14.5.2 below.

The cohomology of the groups of order 64 can be found in [Carlson ≥ 2004].

In the course of the computations, Conditions G and R of [Carlson 2001] were

verified for these groups.

(14.4) The existence of a quasiregular sequence in group cohomology can be

reformulated in terms of local cohomology as follows. If

H =
⊕

i≥0

Hi = k ⊕ m

is a graded commutative ring with H0 = k a field and m =
⊕

i>0 Hi, and M is

a graded H-module, we set

ai
m(M) = max{n ∈ Z | H i,n

m (M) 6= 0}

(or ai
m(M) = −∞ if H i

m(M) = 0).

The following is proved in Corollary 3.7 of [Benson 2004].

Theorem 14.4.1. If G is a finite group and k is a field , then the following are

equivalent .

(i) There is a quasiregular sequence in H∗(G, k),

(ii) Every filter-regular sequence of parameters in H∗(G, k) is quasiregular ,

(iii) The Dickson invariants (see § 7) in H∗(G, k) are quasiregular ,

(iv) For all i ≥ 0 we have ai
m(H∗(G, k)) < 0.

(14.5) It is shown in [Benson 2004, § 5] that we can interpret the invariants ai
m

in terms of resolutions. If R = k[ζ1, . . . , ζr] is a polynomial subring over which

H is finitely generated as a module, and M is a graded H-module, let

0 → Fr → · · · → F0 → M → 0

be a minimal resolution of M over R. We define βR
j (M) to be the largest degree

of a generator of Fj as an R-module (or βR
j (M) = −∞ if Fj = 0). Then we have

(14.5.1) max
j≥0

{aj
m(M)} = max

j≥0
{βR

j (M) −
∑r

i=1 |ζi|}.

This equation, together with Theorem 14.4.1, explains the relevance of the exis-

tence of quasiregular sequences to finding bounds for the degrees of generators
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and relations for the group cohomology. Better ways of bounding the degrees of

the relations can be found in [Carlson 2001] and in [Benson 2004].

Theorem 14.5.2. Let G be a finite group and k be a field . If ζ1, . . . , ζr is

a quasiregular sequence in H∗(G, k), then all the generators for H∗(G, k) have

degree at most
∑r

i=1 |ζi|, and the relations have degree at most 2(
∑r

i=1 |ζi|) − 2.

Proof. Set R = k[ζ1, . . . , ζr] as above. By Theorem 14.4.1, the existence of

a quasiregular sequence implies that aj
m(H∗(G, k)) < 0 for all j ≥ 0. So by

equation (14.5.1), we have

βR
j (H∗(G, k)) <

r∑

i=1

|ζi|

for all j ≥ 0. The numbers βR
0 and βR

1 are the largest degrees for generators

and relations respectively of H∗(G, k) as an R-module. The ring generators

have degree at most max(βR
0 , |ζ1|, . . . , |ζr|). For the ring relations, we need the

R-module relations together with relations saying how the products of pairs of

R-module generators can be written as R-linear combinations of generators. �

(14.6) The Castelnuovo–Mumford regularity of a graded H-module M (see

[Eisenbud 1995, § 20.5], for example) is defined as

Reg M = max
j≥0

{aj
m(M) + j} = max

j≥0

{
βR

j (M) − j −
r∑

i=1

(|ζi| − 1)

}
.

The second equality here is proved in [Benson 2004]. Usually the summation

term does not appear, because much of the literature on the subject assumes

that the graded ring H is generated over H0 by elements of degree one; in this

context the above equality was proved in [Eisenbud and Goto 1984].

The “last survivor” described in [Benson and Carlson 1994b, Theorem 1.3]

and reinterpreted in terms of local cohomology in [Benson 2001, Theorem 4.1]

says that for a finite group G over a field k we have Hr,−r
m H∗(G, k) 6= 0, so

that Reg H∗(G, k) ≥ 0. One might strengthen Conjecture 14.1.2 to the following

statement, which has been checked for the 2-groups of order at most 64 using

Carlson’s calculations [≥ 2004].

Conjecture 14.6.1. If G is a finite group and k is a field then Reg H∗(G, k) = 0.

This conjecture is equivalent to a strengthening of the bound given in the defi-

nition of a quasiregular sequence to j > n1 + · · ·+ ni − i. Pushing the argument

given in the proof of Proposition 14.2.1 to its limits, and using some subtle in-

formation about Ĥ−1(G, k), one can translate this into a strengthening of the

module theoretic bounds given in that proposition to j > n1 + · · · + ni. For the

details, see [Benson 2004].

Example 14.6.2. Let G be the Sylow 2-subgroup of PSL(3, F4), of order 64 (this

is group number 183 in the Appendix). Then H∗(G, F2) has Krull dimension four
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and depth two, with a2
m = −3, a3

m = −5 and a4
m = −4. So the regularity is zero.

This is the only example of a 2-group of order at most 64 where H r,−r
m H∗(G, F2)

has dimension bigger than one; in this example it has dimension two.

(14.7) Conjecture 14.6.1 can be interpreted in terms of the Greenlees spectral

sequence (11.2.1). It says that the E2 page vanishes above the line s + t = 0.

Of course, this part of the E2 page dies by the time the E∞ page is reached,

in order for the spectral sequence to be able to converge to a negatively graded

target. In the above example, the extra dimension in H4,−4
m has to be hit in the

spectral sequence by H2,−3
m .

The conjecture can be generalized to compact Lie groups, virtual duality

groups and p-adic Lie groups as follows.

Conjecture 14.7.1. If G is a compact Lie group of dimension d and k is a field

then Reg H∗(BG; ε) = −d. Here, ε is the orientation representation of (12.1.1).

Conjecture 14.7.2. If G is an orientable virtual Poincaré duality group of

dimension d over a field k then Reg H∗(G, k) = d.

Conjecture 14.7.3. If G is a p-adic Lie group of dimension d then over Fp we

have Reg H∗(G, ε) = d. Here, ε is the the orientation representation of (12.3.1).

As a nontrivial example, for the compact simply connected Lie group E6 of

dimension 78, the calculations of Kono and Mimura [1975] (see also [Benson and

Greenlees 1997a]) imply that H∗(BE6; F2) has Krull dimension six and depth

five, with a5
m = −90 and a6

m = −84, so that Reg H∗(BE6; F2) = −78.

Appendix: Two-Groups of Order 64 and Their mod 2

Cohomology

The table on the next page lists the Krull dimension of H∗(G, F2), the depth

of H∗(G, F2), and the rank of the center of G (see Duflot’s Theorem 6.2.1), for

each of the 2-groups G of order 64. The numbering of the groups follows that of

Hall and Senior [1964], who classified these groups. Underlined entries have

Krull dimension − depth = 2;

otherwise the difference is 1 or 0.

A separate table on page 45 gives the invariants ai
m(H∗(G, F2)) defined in

(14.4), for the entries where the difference is 2, with the rows of the table arranged

in decreasing order of Krull dimension. Note that Duflot’s Theorem 6.2.1 implies

that a0
m is always zero, so the tables begin with the entry a1

m.

All this information has been extracted from [Carlson ≥ 2004].
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gp K d r gp K d r gp K d r gp K d r gp K d r gp K d r

001 6 6 6 046 3 3 2 091 4 3 3 136 2 2 2 181 3 1 1 226 3 2 2
002 5 5 5 047 4 3 3 092 3 3 3 137 2 2 1 182 2 1 1 227 2 2 2
003 4 4 4 048 3 3 3 093 3 3 3 138 3 2 2 183 4 2 2 228 3 2 2
004 4 4 4 049 3 3 3 094 4 2 2 139 2 2 2 184 4 3 2 229 3 2 2
005 3 3 3 050 3 3 3 095 3 2 2 140 2 2 2 185 3 2 2 230 3 2 2
006 3 3 3 051 3 3 2 096 3 3 2 141 2 2 2 186 3 2 2 231 3 2 2
007 3 3 3 052 3 2 2 097 3 2 2 142 2 2 1 187 2 2 2 232 3 2 2
008 2 2 2 053 3 3 2 098 3 2 2 143 2 1 1 188 3 3 2 233 2 2 2
009 2 2 2 054 3 2 2 099 3 2 2 144 4 4 3 189 3 2 2 234 3 2 2
010 2 2 2 055 3 3 2 100 3 2 2 145 3 3 3 190 2 2 2 235 2 2 2
011 1 1 1 056 3 2 2 101 2 2 2 146 4 3 3 191 2 2 2 236 2 2 2
012 5 5 4 057 2 2 2 102 3 2 2 147 4 3 3 192 2 2 2 237 3 3 2
013 4 4 4 058 2 2 1 103 4 4 2 148 4 3 3 193 3 2 2 238 3 2 2
014 4 4 3 059 3 3 3 104 3 3 2 149 3 3 3 194 2 2 2 239 3 2 2
015 5 4 4 060 3 2 2 105 3 3 1 150 4 3 3 195 3 3 2 240 2 2 2
016 4 4 4 061 3 2 2 106 4 3 2 151 4 3 3 196 3 2 2 241 3 3 1
017 4 3 3 062 3 2 2 107 3 3 2 152 3 3 3 197 3 2 2 242 3 2 1
018 4 4 3 063 2 2 2 108 3 2 2 153 3 3 3 198 3 2 2 243 2 2 1
019 3 3 3 064 2 2 2 109 3 2 1 154 4 4 2 199 2 2 2 244 3 2 1
020 4 3 3 065 2 2 2 110 4 3 2 155 3 3 2 200 3 2 2 245 2 1 1
021 3 3 2 066 2 2 1 111 3 2 2 156 2 2 2 201 4 3 2 246 2 1 1
022 4 4 4 067 2 1 1 112 3 2 1 157 4 3 2 202 4 2 2 247 3 1 1
023 3 3 3 068 5 4 3 113 4 2 2 158 3 3 2 203 3 3 2 248 2 2 1
024 4 3 3 069 4 4 3 114 3 3 2 159 3 3 2 204 3 2 2 249 2 1 1
025 3 3 3 070 3 3 3 115 3 2 2 160 3 3 2 205 3 3 2 250 4 2 1
026 3 2 2 071 4 4 3 116 3 2 2 161 3 2 2 206 3 2 2 251 3 1 1
027 3 3 2 072 4 3 3 117 3 3 2 162 2 2 2 207 3 2 2 252 3 2 1
028 4 3 3 073 4 3 3 118 3 2 2 163 4 2 2 208 3 2 2 253 3 1 1
029 3 3 3 074 4 3 3 119 2 2 2 164 3 3 2 209 3 2 2 254 3 1 1
030 3 3 3 075 3 3 3 120 3 2 1 165 3 2 2 210 2 2 2 255 2 1 1
031 3 2 2 076 4 3 3 121 3 1 1 166 3 2 2 211 2 2 2 256 3 2 1
032 3 2 2 077 4 3 2 122 2 2 1 167 3 2 2 212 2 2 2 257 3 1 1
033 3 2 2 078 3 3 2 123 4 3 2 168 3 2 2 213 3 2 2 258 2 1 1
034 3 3 2 079 3 2 2 124 4 2 2 169 4 3 2 214 3 2 2 259 4 3 1
035 2 2 2 080 3 2 2 125 3 2 2 170 4 3 2 215 3 2 2 260 3 2 1
036 2 2 1 081 5 3 3 126 3 2 1 171 3 3 2 216 3 2 2 261 3 3 1
037 3 3 3 082 3 3 3 127 3 2 1 172 3 2 2 217 3 3 2 262 3 1 1
038 2 2 2 083 4 3 3 128 4 3 2 173 4 2 2 218 3 2 2 263 3 2 1
039 2 2 2 084 4 4 3 129 3 2 2 174 3 2 2 219 3 2 2 264 2 2 1
040 3 2 2 085 4 3 3 130 3 1 1 175 4 2 2 220 3 2 2 265 2 2 1
041 2 2 2 086 4 3 3 131 4 2 2 176 3 3 2 221 3 2 2 266 2 1 1
042 2 1 1 087 3 3 3 132 3 2 2 177 3 2 2 222 2 2 2 267 1 1 1
043 4 4 3 088 3 3 3 133 3 1 1 178 3 2 2 223 3 2 2
044 4 3 3 089 4 3 3 134 3 3 2 179 3 2 2 224 3 2 2
045 3 3 3 090 3 3 3 135 3 2 2 180 3 1 1 225 3 2 2

Table 1. For each 2-group G of order 64, identified by its number in the notation
of [Hall and Senior 1964], we give the Krull dimension K of H∗(G, F2), the
depth d of H∗(G, F2), and the rank r of the center of G. Underlined entries
have K − d = 2. Data taken from [Carlson ≥ 2004].
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Group a1
m a2

m a3
m a4

m a5
m

081 −∞ −∞ −5 −5 −5

094 −∞ −4 −4 −4

113 −∞ −4 −4 −4

124 −∞ −4 −4 −4

131 −∞ −5 −4 −4

163 −∞ −5 −4 −4

173 −∞ −5 −4 −4

175 −∞ −5 −4 −4

183 −∞ −3 −5 −4

202 −∞ −4 −4 −4

250 −∞ −5 −4 −4

Group a1
m a2

m a3
m

121 −5 −3 −3

130 −5 −3 −3

133 −5 −3 −3

180 −5 −3 −3

181 −5 −3 −3

247 −3 −3 −3

251 −4 −3 −3

253 −5 −3 −3

254 −4 −3 −3

257 −5 −3 −3

262 −5 −3 −3

Table 2. Invariants ai
m(H∗(G, F2)) defined in (14.4), for the underlined entries

of Table 1.
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