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An Informal Introduction to Multiplier Ideals

MANUEL BLICKLE AND ROBERT LAZARSFELD

Abstract. Multiplier ideals are associated with a complex variety and an
ideal or ideal sheaf thereon, and satisfy certain vanishing theorems that
have proved rich in applications, for example in local algebra. This article
offers an introduction to the study of multiplier ideals, mainly adopting the
geometric viewpoint.
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1. Introduction

Given a smooth complex variety X and an ideal (or ideal sheaf) a on X, one

can attach to a a collection of multiplier ideals J(ac) depending on a rational

weighting parameter c > 0. These ideals, and the vanishing theorems they

satisfy, have found many applications in recent years. In the global setting they

have been used to study pluricanonical and other linear series on a projective

variety [Demailly 1993; Angehrn and Siu 1995; Siu 1998; Ein and Lazarsfeld

1997; 1999; Demailly 1999]. More recently they have led to the discovery of

some surprising uniform results in local algebra [Ein et al. 2001; 2003; 2004].

The purpose of these lectures is to give an easy-going and gentle introduction to

the algebraically-oriented local side of the theory.

Multiplier ideals can be approached (and historically emerged) from three

different viewpoints. In commutative algebra they were introduced and studied
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by Lipman [1993] (under the name “adjoint ideals”, which now means something

else), in connection with the Briançon–Skoda theorem. On the analytic side

of the field, Nadel [1990] attached a multiplier ideal to any plurisubharmonic

function, and proved a Kodaira-type vanishing theorem for them. (In fact, the

“multiplier” in the name refers to their analytic construction; see Section 2.4.)

This machine was developed and applied with great success by Demailly, Siu and

others. Algebro-geometrically, the foundations were laid in passing by Esnault

and Viehweg in connection with their work involving the Kawamata–Viehweg

vanishing theorem. More systematic developments of the geometric theory were

subsequently undertaken by Ein, Kawamata and Lazarsfeld. We will take the

geometric approach here.

The present notes follow closely a short course on multiplier ideals given by

Lazarsfeld at the Introductory Workshop for the Commutative Algebra Program

at the MSRI in September 2002. The three main lectures were supplemented

with a presentation by Blicke on multiplier ideals associated to monomial ideals

(which appears here in Section 3). We have tried to preserve in this write-up

the informal tone of these talks: thus we emphasize simplicity over generality in

statements of results, and we present very few proofs. Our primary hope is to

give the reader a feeling for what multiplier ideals are and how they are used.

For a detailed development of the theory from an algebro-geometric perspective

we refer to Part Three of the forthcoming book [Lazarsfeld 2004]. The analytic

picture is covered in Demailly’s lectures [2001].

We conclude this introduction by fixing the set-up in which we work and

giving a brief preview of what is to come. Throughout these notes, X denotes

a smooth affine variety over an algebraically closed field k of characteristic zero

and R = k[X] is the coordinate ring of X, so that X = SpecR. We consider

a nonzero ideal a ⊆ k[X] (or equivalently a sheaf of ideals a ⊆ OX). Given a

rational number c ≥ 0 our plan is to define and study the multiplier ideal

J(c · a) = J(ac) ⊆ k[X].

As we proceed, there are two ideas to keep in mind. The first is that J(ac)

measures in a somewhat subtle manner the singularities of the divisor of a typical

function f in a: for fixed c, “nastier” singularities are reflected by “deeper”

multiplier ideals. Secondly, J(ac) enjoys remarkable formal properties arising

from the Kawamata–Viehweg–Nadel vanishing theorem. One can view the power

of multiplier ideals as arising from the confluence of these facts.

The theory of multiplier ideals described here has striking parallels with the

theory of tight closure developed by Hochster and Huneke in positive character-

istic. Many of the uniform local results that can be established geometrically via

multiplier ideals can also be proven (in more general algebraic settings) via tight

closure. For some time the actual connections between the two theories were

not well understood. However very recent work of Hara and Yoshida [2003] and

Takagi [2004] has generalized tight closure theory to define a so called test ideal
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τ(a), which corresponds to the multiplier ideal J(a) under reduction to positive

characteristic. This provides a first big step towards identifying concretely the

links between these theories.

Concerning the organization of these notes, we start in Section 2 by giving

the basic definition and examples. Section 3 discusses in detail multiplier ideals

of monomial ideals. Invariants arising from multiplier ideals, with some appli-

cations to uniform Artin–Rees numbers, are taken up in Section 4. Section 5

is devoted to a discussion of some basic results about multiplier ideals, notably

Skoda’s theorem and the restriction and subadditivity theorems. We consider

asymptotic constructions in Section 6, with applications to uniform bounds for

symbolic powers following [Ein et al. 2001].

We are grateful to Karen Smith for suggestions concerning these notes.

2. Definition and Examples

As just stated, X is a smooth affine variety of dimension n over an algebraically

closed field of characteristic zero, and we fix an ideal a ⊆ k[X] in the coordinate

ring of X. Very little is lost by focusing on the case X = Cn of affine n-space over

the complex numbers C, so that a ⊆ C[x1, . . . , xn] is an ideal in the polynomial

ring in n variables.

2.1. Log resolution of an ideal. The starting point is to realize the ideal a

geometrically.

Definition 2.1. A log resolution of an ideal sheaf a ⊆ OX is a proper, birational

map µ : Y −→ X whose exceptional locus is a divisor E, satisfying the following

conditions:

(i) Y is nonsingular.

(ii) a · OY = µ−1a = OY (−F ), with F =
∑

riEi an effective divisor.

(iii) F + E has simple normal crossing support.

Recall that a (Weil) divisor D =
∑

αiDi has simple normal crossing support if

each of its irreducible components Di is smooth, and if locally analytically one

has coordinates x1, . . . , xn of Y such that SuppD =
∑

Di is defined by x1· · · · ·xa

for some a between 1 and n. In other words, all the irreducible components of

D are smooth and intersect transversally. The existence of a log resolution for

any sheaf of ideals in any variety over a field of characteristic zero is essentially

Hironaka’s celebrated result [1964] on resolution of singularities. Nowadays there

are more elementary constructions of such resolutions, for instance [Bierstone and

Milman 1997; Encinas and Villamayor 2000; Paranjape 1999].

Example 2.2. Let X = A2 = Spec k[x, y] and a = (x2, y2). Blowing up the

origin in A2 yields

Y = Bl0(A2)
µ−→ A2 = X.
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Clearly, Y is nonsingular. Computing on the chart for which the blowup µ is a

map A2 −→ A2 given by (u, v) 7→ (u, uv) shows that a · OY = OY (−2E). On the

same chart we have a · OY = (u2, u2v2) = (u2) and (u = 0) is the equation of

the exceptional divisor. This resolution is illustrated in Figure 1, where we have

drawn schematically the curves in A2 defined by typical k-linear combinations

of generators of a, and the proper transforms of these curves on Y . Note that

these proper transforms do not meet: this reflects the fact that a has become

principal on Y .

µ

E

Figure 1. Log resolution of (x2, y2).

Example 2.3. Now let a = (x3, y2). Here a log resolution is constructed by the

familiar sequence of three blowups used to resolve a cuspidal curve (Figure 2).

We have a · OY = OY (−2E1 − 3E2 − 6E3), where Ei is the exceptional divisor

of the i-th blowup.

These examples illustrate the principle that a log resolution of an ideal a is very

close to being the same as a resolution of singularities of a divisor of a general

function in a.

2.2. Definition of multiplier ideals. Besides a log resolution of µ : Y −→ X

of the ideal a, the other ingredient for defining the multiplier ideal is the relative

canonical divisor

KY/X = KY − µ∗KX = div(det(Jac µ)).

It is unique as a divisor (and not just as a divisor class) if one requires its support

to be contained in the exceptional locus of µ. Alternatively, KY/X is the effective

divisor defined by the vanishing of the determinant of the Jacobian of µ. The

canonical divisor KX is the class corresponding to the canonical line bundle ωX .

If X is smooth, ωX is just the sheaf of top differential forms Ωn
X on X.

The next proposition is extremely useful for basic computations of multiplier

ideals; see [Hartshorne 1977, Exercise II.8.5].

Proposition 2.4. Let Y = BlZX, where Z is a smooth subvariety of the smooth

variety X of codimension c. Then the relative canonical divisor KY/X is (c−1)E,

E being the exceptional divisor of the blowup.
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µ

E1

E3

E2

E1

E2

E1

Figure 2. Log resolution of (x3, y2).

Now we can give a provisional definition of the multiplier ideal of an ideal a: it

coincides in our setting with Lipman’s construction [1993].

Definition 2.5. Let a ⊆ k[X] be an ideal. Fix a log resolution µ : Y −→ X of

a such that a · OY = OY (−F ), where F =
∑

riEi, and KY/X =
∑

biEi. The

multiplier ideal of a is

J(a) = µ∗OY (KY/X − F )

=
{

h ∈ k[X] | div(µ∗h) + KY/X − F ≥ 0
}

=
{

h ∈ k[X] | ordEi
(µ∗h) ≥ ri − bi for all i

}

.

(We will observe later that this is independent of the choice of resolution.)

The definition may seem at first blush a little mysterious. One way to motivate it

is to note that J(a) is the push-forward of a bundle that is very natural from the

viewpoint of vanishing theorems. In fact, the bundle OY (−F ) appearing above

is (close to being) ample for the map µ. Therefore KY/X − F has the shape to

which Kodaira-type vanishing results will apply. In any event, the definition will

justify itself before long through the properties of the ideals so defined.
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Exercise 2.6. Use the fact that µ∗ωY = ωX to show that J(a) is indeed an

ideal in k[X].

Exercise 2.7. Show that the integral closure ā of a is equal to µ∗OY (−F ). Use

this to conclude that a ⊆ ā ⊆ J(a) = J(a). (Recall that the integral closure of

an ideal a consists of all elements f such that v(f) ≥ v(a) for all valuations v of

OX .)

Exercise 2.8. Verify that for ideals a ⊆ b one has J(a) ⊆ J(b). Use this and

the previous exercise to show that J(a) = J(ā).

The above definition of the multiplier ideal is not general enough for the most

interesting applications. As it turns out, allowing an additional rational (or real)

parameter c considerably increases the power of the theory.

Note that a log resolution of an ideal a is at the same time a log resolution

of any integer power an of that ideal. Thus we extend the last definition, using

the same log resolution for every c ≥ 0:

Definition 2.9. For every rational number c ≥ 0, the multiplier ideal of the

ideal a with exponent (or coefficient) c is

J(ac) = J(c · a) = µ∗OY (KY/X − bc · F c)
=

{

h ∈ k[X]
∣

∣ ordEi
(µ∗h) ≥ bcric − bi for all i

}

,

where µ : Y −→ X is a log resolution of a such that a · OY = OY (−F ).

Note that we do not assign any meaning to ac itself, only to J(ac).1 The round-

down operation b · c applied to aQ-divisor D =
∑

aiDi for distinct prime divisors

Di is just rounding down the coefficients. That is, bDc =
∑baicDi. The round

up dDe = −b−Dc is defined analogously.

Exercise 2.10 (Caution with rounding). Show that rounding does not in

general commute with restriction or pullback.

Exercise 2.11. Let m be the maximal ideal of a point x ∈ X. Show that

J(mc) =

{

mbcc+1−n for c ≥ n = dimX.

OX otherwise.

Example 2.12. Let a = (x2, y2) ⊆ k[x, y]. For the log resolution of a as

calculated above we have KY/X = E. Therefore,

J(ac) = µ∗

(

OY (E − b2ccE)
)

= (x, y)b2cc−1.

(In view of Exercise 2.8, this is a special case of Exercise 2.11.)

1There is a way to define the integral closure of an ideal a
c, for c ≥ 0 rational, such that

it is consistent with the definition of the multiplier ideal. For c = p/q with positive integers p

and q, set f ∈ a
p/q if and only if fq ∈ a

p, where the bar denotes the integral closure.
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Example 2.13. Let a = (x2, y3). In this case we computed a log resolution

with F = 2E1 + 3E2 + 6E3. Using the basic formula (Proposition 2.4) for

the relative canonical divisor of a blowup along a smooth center, one computes

KY/X = E1 + 2E2 + 4E3. Therefore,

J(ac) = µ∗

(

OY (E1 + 2E2 + 4E3 − bc(2E1+3E2+6E3)c)
)

= µ∗

(

OY ((1 − b2cc)E1 + (2 − b3cc)E2 + (4 − b6cc)E3)
)

.

This computation shows that for c < 5
6 the multiplier ideal is trivial, that is,

J(ac) = OX . Furthermore, J(a5/6) = (x, y). The next coefficient for which

the multiplier ideal changes is c = 1. This behavior of multiplier ideals to be

piecewise constant with discrete jumps is true in general and will be discussed

in more detail later.

Exercise 2.14 (Smooth ideals). Suppose that q ⊆ k[X] is the ideal of a

smooth subvariety Z ⊆ X of pure codimension e. Then

J(ql) = ql+1−e.

(Blowing up X along Z yields a log resolution of q.) The case of fractional

exponents is similar.

2.3. Two basic properties. The definitions of the previous subsection are

justified by the fact that they lead to two fundamental results. The first is that

the ideal J(ac) constructed in Definition 2.9 is actually independent of the choice

of resolution.

Theorem 2.15. If X1
µ1−→ X and X2

µ2−→ X are log resolutions of the ideal

a ⊆ OX such that aOXi
= OXi

(−Fi), then

µ1∗

(

OX1
(KX1/X − bc · F1c

)

= µ2∗

(

OX2
(KX2/X − bc · F2c

)

.

As one would expect, the proof involves dominating µ1 and µ2 by a third res-

olution. It is during this argument that it becomes important to know that F1

and F2 have normal crossing support. See [Lazarsfeld 2004, Chapter 9].

Exercise 2.16. By contrast, give an example to show that if c is nonintegral,

the ideal µ∗(−bcF c) may indeed depend on the log resolution µ.

The second fundamental fact is a vanishing theorem for the sheaves computing

multiplier ideals.

Theorem 2.17 (Local Vanishing Theorem). Consider an ideal a ⊆ k[X] as

above, and let µ : Y −→ X be a log resolution of a with a · OY = OY (−F ). Then

Riµ∗OY (KY/X − bcF c) = 0

for all i > 0 and c > 0.
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This leads one to expect that the multiplier ideal, being the zeroth derived image

of OY (KY/X − bcF c) under µ∗, will display particularly good cohomological

properties.

Theorem 2.17 is a special case of the Kawamata–Viehweg vanishing theorem

for a mapping; see [Lazarsfeld 2004, Chapter 9]. It is the essential fact underlying

all the applications of multiplier ideals appearing in this article. When c is a

natural number, the result can be seen as a slight generalization of the classical

Grauert–Riemenschneider Vanishing Theorem. However, as we shall see, it is

precisely the possibility of working with nonintegral c that opens the door to

applications of a nonclassical nature.

2.4. Analytic construction of multiplier ideals. We sketch briefly the

analytic construction of multiplier ideals. Let X be a smooth complex affine

variety, and a ⊆ C[X] an ideal. Choose generators g1, . . . , gp ∈ a. Then

J(ac)an =locally

{

h holomorphic

∣

∣

∣

∣

|h|2
(
∑

|gi|2
)c is locally integrable

}

.

In other words, the analytic ideal associated to J(ac) arises as a sheaf of “mul-

tipliers”. See [Demailly 1999, (5.9)] or [Lazarsfeld 2004, Chapter 9.3.D] for the

proof. In brief the idea is to show that both the algebraic and the analytic defi-

nitions lead to ideals that transform the same way under birational maps. This

reduces one to the situation where a is the principal ideal generated by a single

monomial in local coordinates. Here the stated equality can be checked by an

explicit calculation.

2.5. Multiplier ideals via tight closure. As hinted at in the introduction,

there is an intriguing parallel between effective results in local algebra obtained

via multiplier ideals on the one hand and tight closure methods on the other.

Almost all the results we will discuss in these notes are of this kind: there are

tight closure versions of the Briançon–Skoda theorem, the uniform Artin–Rees

lemma and even of the result on symbolic powers that we present as an applica-

tion of the asymptotic multiplier ideals in Section 6.4. (For these tight closure

analogues see [Hochster and Huneke 1990], [Huneke 1992] and [Hochster and

Huneke 2002], respectively.) There is little understanding for why such different

techniques (characteristic zero, analytic in origin vs. positive characteristic) seem

to be tailor-made to prove the same results.

Recently, Hara and Yoshida [2003] and Takagi [Takagi 2004; Takagi and

Watanabe 2004; Hara and Takagi 2002; Takagi 2003] strengthened this par-

allel by constructing multiplier-like ideals using techniques modelled after tight

closure theory. Their construction builds on earlier work of Smith [2000] and

Hara [2001], who had established a connection between the multiplier ideal as-

sociated to the unit ideal (1) on certain singular varieties with the so-called test
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ideal in tight closure. The setting of the work of Hara and Yoshida is a regular2

local ring R of positive characteristic p. For simplicity one might again assume

R is the local ring of a point in An. Just as with multiplier ideals, one assigns

to an ideal a ⊆ R and a rational parameter c ≥ 0, the test ideal

τ(ac) =
{

h ∈ R | hI∗a
c ⊆ I for all ideals I

}

.

Here I∗a
c

denotes the ac–tight closure of an ideal, specifically introduced for the

purpose of constructing these test ideals τ(ac).3 The properties the test ideals

enjoy are strikingly similar to those of the multiplier ideal in characteristic zero:

For example the Restriction Theorem (Theorem 5.8) and Subadditivity (Theo-

rem 5.10) hold. What makes the test ideal a true analog of the multiplier ideal is

that under the process of reduction to positive characteristic the multiplier ideal

J(ac) corresponds to the test ideal τ(ac), or more precisely to the test ideal of

the reduction mod p of ac (for p � 0).

3. The Multiplier Ideal of Monomial Ideals

Although multiplier ideals enjoy excellent formal properties, they are hard to

compute in general. An important exception is the class of monomial ideals,

whose multiplier ideals are described by a simple combinatorial formula estab-

lished by Howald [2001]. By way of illustration we discuss this result in detail.

To state the result let a ⊆ k[x1, . . . , xn] be a monomial ideal, that is, an ideal

generated by monomials of the form xm = xm1

1 · · · · · xmn

n for m ∈ Zn ⊆ Rn.

In this way we can identify a monomial ideal a of k[x1, . . . , xn] with the set of

exponents (contained in Zn) of the monomials in a. The convex hull of this set

in Rn = Zn ⊗R is called the Newton polytope of a and it is denoted by Newt(a).

Now Howald’s result states:

Theorem 3.1. Let a ⊆ k[x1, . . . , xn] be a monomial ideal . Then for every c > 0,

J(ac) =
〈

xm | m + (1, . . . , 1) ∈ interior of c · Newt(a)
〉

For example, the picture of the Newton polytope of the monomial ideal a =

(x4, xy2, y4) in Figure 3 shows, using Howald’s result, that J(a) = (x2, xy, y2).

Note that even though (0, 1)+(1, 1) lies in the Newton polytope Newt(a) it does

not lie in the interior. Therefore, the monomial y corresponding to (0, 1) does

not lie in the multiplier ideal J(a). But for all c < 1, clearly y ∈ J(ac).

To pave the way for clean proofs we need to formalize our setup slightly and

recall some results from toric geometry.

2One feature of their theory is that there is no reference to resolutions of singularities. As a
consequence no restriction on the singularity of R arises, whereas for multiplier ideals at least
some sort of Q–Gorenstein assumption is needed.

3Similarly as for tight closure, x ∈ I∗a
c

if there is a h 6= 0 such that for all q = pe one has
hxq

a
dqce ⊆ I[q]. Note that I [q] denotes the ideal generated by all q-th powers of the elements

of I, whereas a
dqce is the usual dqce-th power of a.
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Figure 3. Newton polytope of (x4, xy2, y4).

The ring k[X] = k[x1, . . . , xn] carries a natural Zn-grading that assigns to

a monomial xm = xm1

1 · · · · · xmn

n the degree m ∈ Zn. Equivalently, the n-

dimensional torus

Tn = Spec k[x±1
1 , . . . , x±1

n ] ∼= (k∗)n

acts on k[X] via λ·xm = λmxm for λ ∈ (k∗)n. In terms of the varieties this means

that X = An contains the torus T n as a dense open subset, and the action of T n

on itself naturally extends to an action of T n on all of X. Under this action, the

torus fixed (= Zn-graded) ideals are precisely the monomial ideals. We denote

the lattice Zn in which the grading takes place by M . It is just the lattice of the

exponents of the Laurent monomials of k[T n].

As indicated above, the Newton polytope Newt(a) of a monomial ideal a is

the convex hull in MR = M ⊗Z R of the set {m ∈ M | xm ∈ a}. The Newton

polytope of a principal ideal (xv) is just the positive orthant in MR shifted by v.

In general, the Newton polytope of any ideal is an unbounded region contained

in the first orthant. With every point v the Newton polytope also contains the

first orthant shifted by v.

Exercise 3.2. Let a be a monomial ideal in k[x1, . . . , xn]. The lattice points

(viewed as exponents) in the Newton polytope Newt(a) of a define an ideal ā ⊇ a.

Show that ā is the integral closure of a (see [Fulton 1993]).

The fact that X = An contains the torus T n as a dense open set such that the

action of T n on itself extends to an action on X as just described makes it a

toric variety, by definition. The language of toric varieties is the most natural to

phrase and prove Howald’s result (and generalize it— see [Blickle 2004]). To set

this up completely would take us far afield, so we choose a more direct approach

using a bare minimum of toric geometry.

A first fact we have to take without proof from the theory of toric varieties

is that log resolutions of torus fixed ideals of k[X] exist in the category of toric

varieties. (To be precise, a toric variety comes with the datum of the torus

embedding T n ⊆ X. Maps of toric varieties must preserve the torus action.)
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Theorem 3.3. Let a ⊆ k[x1, . . . , xn] be a monomial ideal . Then there is a

log resolution µ : Y −→ X of a such that µ is a map of toric varieties and

consequently a · OY = OY (−F ) is such that F is fixed by the torus action on Y .

Indication of proof. This follows from the theory of toric varieties. First one

takes the normalized blowup of a, which is a (possibly singular) toric variety since

a was a torus-invariant ideal. Then one torically resolves the singularities of the

resulting variety as described in [Fulton 1993]. This is a much easier task than

resolution of singularities in general. It comes down to a purely combinatorial

procedure.

An alternative proof could use Encinas and Villamayor’s [2000] equivariant

resolution of singularities. They give an algorithmic procedure of constructing

a log resolution of a such that the torus action is preserved—that is, by only

blowing up along torus fixed centers. �

Toric Divisors. A toric variety X has a finite set of torus-fixed prime (Weil)

divisors. Indeed, since an arbitrary torus fixed prime divisor cannot meet the

torus (Tn acts transitively on itself and is dense in X), it has to lie in the

boundary Y − T n, which is a variety of dimension at most n − 1 and thus

can only contain finitely many components of dimension n − 1. Furthermore,

these torus fixed prime divisors E1, . . . , Er generate the lattice of all torus fixed

divisors, which we shall denote by LX . We denote the sum of all torus-invariant

prime divisors E1 + · · · + Er by 1X .

The torus-invariant rational functions of a toric variety are just the Laurent

monomials xm1

1 · · · · ·xmn

n ∈ k[Tn]. For the toric variety X = An one clearly can

identify M , the lattice of exponents, with LX by sending m to div xm. In general

this map will not be surjective and its image is precisely the set of torus-invariant

Cartier divisors. We note the following easy lemma, which will nevertheless play

an important role in our proof of Theorem 3.1. It makes precise the idea that a

log resolution of a monomial ideal a corresponds to turning its Newton polytope

Newt(a) ⊆ MR into a translate of the first orthant in LX
R .

Lemma 3.4. Let µ : Y −→ X = Spec k[x1, . . . , xn] be a toric resolution of the

monomial ideal a⊆ k[x1, . . . , xn] such that a·OY =OY (−F ). For m∈M we have

c · m ∈ c′ Newt(a) ⇐⇒ c · µ∗ div xm ≥ c′ · F

for all rational c, c′ > 0.

Proof. We first show the case c = c′ = 1. Assume that m ∈ Newt(a). By

Exercise 3.2, this is equivalent to xm ∈ ā, the integral closure of a. Since, by

Exercise 2.7, ā = µ∗OY (−F ) it follows that xm ∈ ā if and only if µ∗xm ∈
OY (−F ). This, finally, is equivalent to µ∗(div xm) ≥ F .

For the general case, express c and c′ as integer fractions. Then reduce to the

previous case by clearing denominators and noticing that aNewt(a) = Newt(aa)

if a is an integer. �
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The canonical divisor. As a further ingredient for computing the multiplier ideal

we need an understanding of the canonical divisor (class) of a toric variety.

Lemma 3.5. Let X be a (smooth) toric variety and let E1, . . . , Er denote the

collection of all torus-invariant prime Weil divisors. Then the canonical divisor

is KY = −
∑

Ei = −1X .

We leave the proof as an exercise or alternatively refer to [Fulton 1993] or

[Danilov 1978] for this basic result. We verify it for X = An. In this case

Ei = (xi = 0) for i = 1, . . . , n are the torus-invariant divisors and KX is repre-

sented by the divisor of the T n-invariant rational n-form dx1/x1 ∧ · · · ∧ dxn/xn,

which is −(E1 + · · · + En). As a consequence of the last lemma we get the

following lemma.

Lemma 3.6. Let µ : Y −→ X = An be a birational map of (smooth) toric

varieties. Then KY/X = µ∗1X − 1Y and the support of µ∗1X is equal to the

support of 1Y .

Proof. As the strict transform of a torus-invariant divisor on X is a torus-

invariant divisor on Y it follows that µ∗1X − 1Y is supported on the exceptional

locus of µ. Since −1X represents the canonical class KX and likewise for Y , the

first assertion follows from the definition of KY/X . Since µ∗1X is torus-invariant,

its support is included in 1Y . Since µ is an isomorphism over the torus T n ⊆ X

it follows that µ−1(1X) ⊇ 1Y , which implies the second assertion. �

Exercise 3.7. This exercise shows how to avoid taking Lemma 3.5 on faith but

instead using a result of Russel Goward [2002] that states that a log resolution

of a monomial ideal can be obtained by a sequence of monomial blowups.

A monomial blowup Y = BlZ(Y ) of An is the blowing up of An at the

intersection Z of some of the coordinate hyperplanes Ei = (xi = 0) of An.

For such a monomial blowup µ : Y = BlZ(X) −→ X ∼= An, show that Y is

a smooth toric variety canonically covered by codim(Z,X) many An patches.

Show that 1Y = E1 + · · ·+ En + E, where E is the exceptional divisor of µ. Via

a direct calculation verify the assertions of the last two lemmata for Y .

Since a monomial blowup is canonically covered by affine spaces, one can

repeat the process in a sequence of monomial blowups. Using Goward’s result,

show directly that a monomial ideal has a toric log resolution µ : Y −→ A with

the properties stated in Lemma 3.6.

We are now ready to wrap up the Proof of Theorem 3.1. By the existence of a

toric (or equivariant) log resolution of a monomial ideal a, it follows immediately

that the multiplier ideal J(ac) is also generated by monomials. Thus, in order to

determine J(ac), it is enough to decide which monomials xm lie in J(ac). With

our preparations this is now an easy task.

Proof of Theorem 3.1. As usual we denote Spec k[x1, . . . , xn] by X and let

µ : Y −→ X be a toric log resolution of a such that a · OY = OY (−F ).
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Abusing notation by identifying div(x1 · · · · ·xn) = 1X ∈ LX with (1, . . . , 1) ∈
M , the condition of the theorem that m + 1X is in the interior of the Newton

polytope c · Newt(a) is equivalent to

m + 1X − ε 1X ∈ c Newt(a)

for small enough rational ε > 0. By Lemma 3.4 this holds if and only if

µ∗ div g + µ∗1X − εµ∗1X ≥ cF.

Using the formula KY/X = µ∗1X − 1Y from Lemma 3.5 this is equivalent to

µ∗ div g + KY/X + b1Y − εµ∗1X − cF c ≥ 0

for sufficiently small ε > 0. Since by Lemma 3.6, µ∗1X is effective with the same

support as 1Y it follows that all coefficients appearing in 1Y −εµ∗1X are very close

to but strictly smaller than 1 for small ε > 0. Therefore, b1Y − εµ∗1X − cF c =

d−cF e = −bcF c. Thus we can finish our chain of equivalences with

µ∗ div g ≥ −KY/X + bcF c,

which says nothing but that g ∈ J(ac). �

This formula for the multiplier ideal of a monomial ideal is applied in the next

section to concretely compute certain invariants arising from multiplier ideals.

4. Invariants Arising from Multiplier Ideals and Applications

We keep the notation of a smooth affine variety X over an algebraically closed

field of characteristic zero, and an ideal a ⊆ k[X]. In this section we use multiplier

ideals to attach some invariants to a, and we study their influence on some

algebraic questions.

4.1. The log canonical threshold. If c > 0 is very small, then J(ac) = k[X].

For large c, on the other hand, the multiplier ideal J(ac) is clearly nontrivial.

This leads one to define:

Definition 4.1. The log canonical threshold of a is the number

lct(a) = lct(X, a) = inf
{

c > 0 | J(ac) 6= OX

}

.

The following exercise shows that lct(a) is a rational number, and that the infi-

mum appearing in the definition is actually a minimum. Consequently, the log

canonical threshold is just the smallest c > 0 such that J(ac) is nontrivial.

Exercise 4.2. As usual, fixing notation of a log resolution µ : Y −→ X with

a · OY =
∑

riEi and KY/X =
∑

biEi, show that

lct(X, a) = min
{bi + 1

ri

}

.
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Recall the notions from singularity theory [Kollár 1997] in which a pair (X, ac)

is called log terminal if and only if bi − cri + 1 > 0 for all i. It is called log

canonical if and only if bi − cri + 1 ≥ 0 for all i. The last exercise also shows

that (X, ac) is log terminal if and only if the multiplier ideal J(ac) is trivial.

Example 4.3. Continuing previous examples, we observe that lct((x2, y2)) = 1

and lct((x2, y3)) = 5
6 .

Example 4.4 (The log canonical threshold of a monomial ideal). The

formula for the multiplier ideal of a monomial ideal a on X = Spec k[x1, . . . , xn]

shows that J(ac) is trivial if and only if 1X = (1, . . . , 1) is in the interior of the

Newton polytope c Newt(a). This allows to compute the log canonical threshold

of a: lct(a) is the largest t > 0 such that 1X ∈ t · Newt(a).

Example 4.5. As a special case of the previous example, take

a = (xa1

1 , . . . , xan

n ).

Then the Newton polytope is the subset of the first orthant consisting of points

(v1, . . . , vn) satisfying
∑

vi/ai ≥ 1. Therefore 1X ∈ t · Newt(a) if and only if
∑

1/ai ≥ t. In particular, lct(a) =
∑

1/ai.

4.2. Jumping numbers. The log canonical threshold measures the triviality

or nontriviality of a multiplier ideal. By using the full algebraic structure of

these ideals, it is natural to see this threshold as merely the first of a sequence

of invariants. These so-called jumping numbers were first considered (at least

implicitly) in [Libgober 1983] and [Loeser and Vaquié 1990]. They are studied

more systematically in [Ein et al. 2004].

We start with a lemma:

Lemma 4.6. For a ⊆ OX , there is an increasing discrete sequence of rational

numbers

0 = ξ0 < ξ1 < ξ2 < · · ·
such that J(ac) is constant for ξi ≤ c < ξi+1 and J(aξi) ! J(aξi+1).

We leave the (easy) proof to the reader.

The ξi = ξi(a) are called the jumping numbers or jumping coefficients of a.

Referring to the log resolution µ appearing in Example 4.2, note that the only

candidates for jumping numbers are those c such that cri is an integer for some

i. Clearly the first jumping number ξ1(a) is the log canonical threshold lct(a).

Example 4.7 (Jumping numbers of monomial ideals). Consider a mono-

mial ideal a ⊆ k[x1, . . . , xn]. For the multiplier ideal J(ac) to jump at c = ξ is

equivalent to the condition that some monomial, say xv, is in J(aξ) but not in

J(aξ−ε) for all ε > 0. Thus, the largest ξ > 0 such that v+(1, . . . , 1) ∈ ξ Newt(a)

is a jumping number. Performing this construction for all v ∈ Nn one obtains all

jumping numbers of a (this uses the fact that the multiplier ideal of a monomial

ideal is a monomial ideal).
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Exercise 4.8. Consider again a = (xa1

1 , . . . , xan

n ). The jumping numbers of a

are precisely the rational numbers of the form

v1 + 1

a1
+ · · · + vn + 1

an
,

where (v1, . . . , vn) ranges over Nn. But different vectors (v1, . . . , vn) may give

the same jumping number.

It is instructive to picture the jumping numbers of an ideal graphically. The

figure below, taken from [Ein et al. 2004], shows the jumping numbers of the two

ideals (x9, y10) and (x3, y30): the exponents are chosen so that the two ideals

have the same Samuel multiplicity, and so that the pictured jumping coefficients

occur “with multiplicity one” (in a sense whose meaning we leave to the reader).

(x9, y10)

(x3, y30)

0.0

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

4.3. Jumping length. Jumping numbers give rise to an additional invariant

in the case of principal ideals.

Lemma 4.9. Let f ∈ k[X] be a nonzero function. Then J(f) = (f) but (f)  
J(f c) for c < 1. In other words, ξ = 1 is a jumping number of the principal

ideal (f).

Deferring the proof for a moment, we note that the lemma means that ξl(f) = 1

for some index l. We define l = l(f) to be the jumping length of f . Thus l(f)

counts the number of jumping coefficients of (f) that are ≤ 1.

Example 4.10. Let f = x4 + y3 ∈ C[x, y]. One can show that f is sufficiently

generic so that J(f c) = J((x4, y3)c) provided that c < 1. Therefore the first few

jumping numbers of f are

0 < lct(f) = 1
4 + 1

3 < 2
4 + 1

3 < 1
4 + 2

3 < 1,

and l(f) = 4.

Proof of Lemma 4.9. Let µ : Y −→ X be a log resolution of (f) and denote

the integral divisor (f = 0) by D =
∑

aiDi. Clearly, a · OY = OY (−µ∗D) and

µ∗D is also an integral divisor. Thus

J(f) = µ∗OY (KY/X − µ∗D) = µ∗(OY (KY/X) ⊗ µ∗
OX(−D))

= OX ⊗ OX(−D)

= (f).
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On the other hand, choose a general point x ∈ Di on any of the components of

D = div(f) =
∑

aiDi. Then µ is an isomorphism over x and consequently

ordDi

(

J(f c)
)

< ai for 0 < c < 1.

Therefore J((f)c) $ (f) whenever c < 1. �

Finally, we note that the jumping length can be related to other invariants of

the singularities of f :

Proposition 4.11 [Ein et al. 2004]. Assume the hypersurface defined by the

vanishing of f has at worst an isolated singularity at x ∈ X. Then

l(f) ≤ τ(f, x) + 1,

where τ(f, x) is the Tjurina number of f at x, defined as the colength in Ox,X

of (f, ∂f/∂z1, . . . , ∂f/∂zn) for z1, . . . , zn parameters around x.

4.4. Application to uniform Artin–Rees numbers. We next discuss a

result relating jumping lengths to uniform Artin–Rees numbers of a principal

ideal.

To set the stage, recall the statement of the Artin–Rees lemma in a simple

setting:

Theorem (Artin–Rees). Let b be an ideal and f an element of k[X]. There

exists an integer k = k(f, b) such that

bm ∩ (f) ⊆ bm−k · (f)

for all m ≥ k. In other words, if fg ∈ bm then g ∈ bm−k.

Classically, k is allowed to depend both on b and f . However, Huneke [1992]

showed that in fact there is a single integer k = k(f) that works simultaneously

for all ideals b. Any such k is called a uniform Artin–Rees number of f . (Both

the classical Artin–Rees Lemma and Huneke’s theorem are valid in a much more

general setting.)

The next result shows that the jumping length gives an effective estimate (of

moderate size!) for uniform Artin–Rees numbers.

Theorem 4.12 [Ein et al. 2004]. As above, write l(f) for the jumping length of

f . Then the integer k = l(f) · dimX is a uniform Artin–Rees number of f .

If f defines a smooth hypersurface, its jumping length is 1 and it follows that

n = dimX is a uniform Artin–Rees number in this case. (In fact, Huneke showed

that n − 1 also works in this case.)

If f defines a hypersurface with only an isolated singular point x ∈ X, it fol-

lows from Proposition 4.11 and the theorem that k = n·
(

τ(f, x)+1)
)

is a uniform

Artin–Rees number. (One can show using the next lemma and observations of

Huneke that k = τ(f, x) + n also works: see [Ein et al. 2004, § 3].)
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The essential input to Theorem 4.12 is a statement involving consecutive

jumping coefficients:

Lemma 4.13. Consider two consecutive jumping numbers

ξ = ξi(f) < ξi+1(f) = ξ′

of f , and let b ⊆ k[X] be any ideal . Then given a natural number m > n =

dimX, one has

bm · J(f ξ) ∩ J(f ξ′

) ⊆ bm−n · J(f ξ′

).

We will deduce this from Skoda’s theorem in the next section. In the meantime,

we observe an immediate application:

Proof of Theorem 4.12. We apply Lemma 4.13 repeatedly to successive

jumping numbers in the chain of multiplier ideals:

k[X] = J(f0) ! J(f ξ1) ! J(f ξ2) ! · · · ! J(f ξl) = J(f) = (f).

After further intersection with (f) one finds

bm ∩ (f) ⊆ bm−n · J(f ξ1) ∩ (f)

⊆ bm−2n · J(f ξ2) ∩ (f) ⊆ · · · ⊆ bm−ln(f),

as required. �

Remark 4.14. When a = (f) is a principal ideal, the jumping numbers of f are

related to other invariants appearing in the literature. In particular, if f has an

isolated singularity, suitable translates of the jumping coefficients appear in the

Hodge-theoretically defined spectrum of f . See [Ein et al. 2004, § 5] for precise

statements and references.

5. Further Local Properties of Multiplier Ideals

In this section we discuss some results involving the local behavior of multiplier

ideals. We start with Skoda’s theorem and some variants. Then we discuss the

restriction and subadditivity theorems, which will be used in the next section.

5.1. Skoda’s theorem. An important and early example of a uniform result

in local algebra was established by Briançon and Skoda [1974] using analytic

results of Skoda [1972]. In our language, Skoda’s result is this:

Theorem 5.1 (Skoda’s Theorem, I). Consider any ideal b ⊆ k[X] with X

smooth of dimension n. Then, for all m ≥ n,

J(bm) = b · J(bm−1) = · · · = bm+1−n · J(bn−1).
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Remark 5.2. The statement and proof in [Skoda 1972] have a more analytic

flavor (see [Hochster 2004, pp. 125 and 126] in this volume for some more on

this). In fact, using the analytic interpretation of multiplier ideals (Section 2.4)

one sees that the analytic analogue of Theorem 5.1 is essentially equivalent to

the following statement.

Suppose that b is generated by (g1, . . . , gt), and that f is a holomorphic

function such that
∫ |f |2

(
∑

|gi|2)m
< ∞

for some m ≥ n = dimX. Then locally there exist holomorphic functions

hi such that f =
∑

higi, and moreover each of the hi satisfies the local

integrability condition
∫ |hi|2

(
∑

|gi|2)m−1
< ∞.

(The hypothesis expresses the membership of f in J(bm)an and the conclusion

writes f as belonging to ban · J(bm−1)an.)

As a corollary of Skoda’s theorem, one obtains the classical theorem of Briançon–

Skoda.

Corollary 5.3 (Briançon–Skoda). With the notation as before,

bm ⊆ J(bm) ⊆ bm+1−n

where denotes the integral closure and n = dimX.

Sketch of proof of Theorem 5.1. The argument follows ideas of Teissier and

Lipman. We choose generators g1, . . . , gk for the ideal b and fix a log resolution

µ : Y −→ X of b with b · OY = OY (−F ). Write g′i = µ∗(gi) ∈ Γ(Y,OY (−F )) to

define the surjective map

(5–1)
⊕k

i=0 OY −→ OY (−F )

by sending (x1, . . . , xk) to
∑

xig
′
i. Tensoring this map with OY (KY/X−(m−1)F )

yields the surjection
⊕k

i=1 OY (KY/X − (m − 1)F )
ϕ−→ OY (KY/X − mF ).

Further applying µ∗ we get the map
⊕k

i=0 J(bm−1)
µ∗ϕ−−→ J(bm), which again

sends a tuple (y1, . . . , yk) to
∑

yigi. Therefore, the image of µ∗(ϕ) is

Image(µ∗ϕ) = bJ(bm−1) ⊆ J(bm).

What remains to show is that µ∗ϕ is surjective. For this consider the Koszul

complex on the g′
i on Y that resolves the map in (5–1):

0 −→ OY ((k − 1)F ) −→
⊕k

OY ((k − 2)F ) −→ · · ·
· · · −→

⊕(k

2) OY (F ) −→
⊕k

OY −→ OY (−F ) −→ 0.
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As above, tensor through by OY

(

KY/X − (m−1)F
)

to get a resolution of ϕ.

Local vanishing (Theorem 2.17) applies to the m ≥ n = dimX terms on the

right. Chasing through the sequence while taking direct images then gives the

required surjectivity. See [Lazarsfeld 2004, Chapter 9] or [Ein and Lazarsfeld

1999] for details. �

It will be useful to have a variant involving several ideals and fractional coef-

ficients. For this we extend slightly the definition of multiplier ideals. Fix a

sequence of ideals a1, . . . , at and positive rational numbers c1, . . . , ct. Then we

define the multiplier ideal

J(ac1

1 · · · · · act

t )

starting with a log resolution µ : Y −→ X of the product a1 · · · · · at. Since this

is at the same time also a log resolution of each ai write ai · OY = OY (−Fi) for

simple normal crossing divisors Fi.

Definition 5.4. With the notation as indicated, the mixed multiplier ideal is

J
(

ac1

1 · · · · · act

t ) = µ∗(OY (KY/X − bc1F1 + · · · + ctFtc)
)

.

As before, this definition is independent of the chosen log resolution.

Once again we do not attempt to assign any meaning to the expression ac1

1 · · · · ·act

t

in the argument of J. This expression is meaningful a priori whenever all the ci

are positive integers and our definition is consistent with this prior meaning.

With this generalization of the concept of multiplier ideals we get the following

variant of Skoda’s theorem.

Theorem 5.5 (Skoda’s Theorem, II). For every integer c ≥ n = dimX and

any d > 0 one has

J(ac
1 · ad

2) = a
c−(n−1)
1 J(an−1

1 · ad
2).

The proof of this result is only a technical complication of the proof of the first

version, Theorem 5.1. See [Lazarsfeld 2004, Chapter 9] for details.

We conclude by using Skoda’s Theorem to prove (a slight generalization of)

the Lemma 4.13 underlying the results on uniform Artin–Rees numbers in the

previous section.

Lemma 5.6. Let a ⊆ k[X] be an ideal and let ξ < ξ′ be consecutive jumping

numbers of a. Then for m > n we have

bm · J(aξ) ∩ J(aξ′

) ⊆ bm−n · J(aξ′

)

for all ideals b ⊆ k[X].

Proof. We first claim that

bmJ(aξ) ∩ J(aξ′

) ⊆ J(bm−1 · aξ′

).

This is shown via a simple computation. In fact, to begin with one can replace ξ

by c ∈ [ξ, ξ′) arbitrarily close to ξ′ since this does not change the statement. Let
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µ : Y −→ X be a common log resolution of a and b such that a · OY = OY (−A)

and b ·OY = OY (−B). Let E be a prime divisor on Y and denote by a, b and e

the coefficient of E in A, B and KY/X , respectively. Then f is in the left-hand

side if and only if

ordE f ≥ max
(

−e + mb + bcac,−e + bξ′ac
)

.

If b = 0 this implies that ordE f ≥ −e + (m − 1)b + bξ′ac. If b 6= 0 then b is a

positive integer ≥ 1. Since c is arbitrarily close to ξ ′ we get

bξ′ac − b ≤ bξ′ac − 1 ≤ bcac.

Adding −e+mb it follows that also in this case ordE f ≥ −e+(m− 1)b+ bξ′ac.
Since this holds for all E it follows that f ∈ J(bm−1 · aξ′

).

Now, using Theorem 5.5 we deduce

J(bm−1 · aξ′

) ⊆ bm−nJ(bn−1 · aξ′

) ⊆ bm−nJ(aξ′

).

Putting all the inclusions together, the lemma follows. �

Exercise 5.7. Let a ⊆ k[X] be an ideal. Starting at dimX − 1, the jumping

numbers are periodic with period 1. That is, ξ ≥ dim X−1 is a jumping number

if and only if ξ + 1 is a jumping number.

5.2. Restriction theorem. The next result deals with restrictions of multiplier

ideals. Consider a smooth subvariety Y ⊆ X and an ideal b ⊆ k[X] that does

not vanish on Y . There are then two ways to get an ideal on Y . First, one can

compute the multiplier ideal J(X, bc) on X and then restrict it to Y . Or one

can restrict b to Y and then compute the multiplier ideal on Y of this restricted

ideal. The Restriction Theorem—arguably the most important local property

of multiplier ideals— says there is always an inclusion among these ideals on Y .

Theorem 5.8 (Restriction Theorem). Let Y ⊆ X be a smooth subvariety

of X and b an ideal of k[X] such that Y is not contained in the zero locus of b.

Then

J
(

Y, (b · k[Y ])c
)

⊆ J(X, bc) · k[Y ].

One can think of the theorem as reflecting the principle that singularities can

only get worse under restriction.

In the present setting, the result is due to Esnault and Viehweg [1992, Propo-

sition 7.5]. When Y is a hypersurface, the statement is proved using the Local

Vanishing Theorem, page 93. Since in any event a smooth subvariety is a local

complete intersection, the general case then follows from this.

Exercise 5.9. Give an example where strict inclusion holds in the theorem.
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5.3. Subadditivity theorem. We conclude with a result due to Demailly, Ein

and Lazarsfeld [Demailly et al. 2000] concerning the multiplicative behavior of

multiplier ideals. This subadditivity theorem will be used in the next section to

obtain uniform bounds on symbolic powers of ideals.

Theorem 5.10 (Subadditivity). Let a and b be ideals in k[X]. Then, for all

c, d > 0,

J(ac · bd) ⊆ J(ac) · J(bd).

In particular , for every positive integer m, J(acm) ⊆ J(ac)m.

Sketch of proof. The idea is to pull back the data to the product X × X

and then to restrict to the diagonal ∆. Specifically, assume for simplicity that

c = d = 1, and consider the product

X × X

p1
{{ww

ww
ww

ww
w

p2
##

GG
GG

GG
GG

G

X X

along with its projections as indicated. For log resolutions µ1 and µ2 of a and b

respectively one can verify that µ1 × µ2 is a log resolution of the ideal p−1
1 (a) ·

p−1
2 (b) on X × X. Using this one shows that

J(X × X, p−1
1 (a) · p−1

2 (b)) = p−1
1 J(X, a) · p−1

2 J(X, b).

Now let ∆ ⊆ X × X be the diagonal. Apply the Restriction Theorem 5.8 with

Y = ∆ to conclude that, as required,

J(X, a · b) = J(∆, p−1
1 (a) · p−1

2 (b) · O∆)

⊆ J(X × X, p−1
1 (a) · p−1

2 (b)) · O∆

= J(X, a) · J(X, b). �

6. Asymptotic Constructions

In many natural situations in geometry and algebra, one must confront rings

or algebras that fail to be finitely generated. For example, if D is a nonample

divisor on a projective variety V , the section ring R(V,D) =
⊕

Γ(V, OV (mD)) is

typically not finitely generated. Likewise, if q is a radical ideal in some ring, the

symbolic blow-up algebra
⊕

q(m) likewise fails to be finitely generated in general.

It is nonetheless possible to extend the theory of multiplier ideals to such settings.

It turns out that there is finiteness built into the resulting multiplier ideals that

may not be present in the underlying geometry or algebra. This has led to some

of the most interesting applications of the theory.

In the geometric setting, the asymptotic constructions have been known for

some time, but it was only with Siu’s work [1998] on deformation invariance of
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plurigenera that their power became clear. Here we focus on an algebraic for-

mulation of the theory from [Ein et al. 2001]. As before, we work with a smooth

affine variety X defined over an algebraically closed field k of characteristic zero.

6.1. Graded systems of ideals. We start by defining certain collections of

ideals, to which we will later attach multiplier ideals.

Definition 6.1. A graded system or graded family of ideals is a family a
•

=

{ak}k∈N of ideals in k[X] such that

al · am ⊆ al+m

for all l,m ≥ 1. To avoid trivialities, we also assume that ak 6= (0) for k � 1.

The condition in the definition means that the direct sum

R(a
•
)

def
= k[X] ⊕ a1 ⊕ a2 ⊕ · · ·

naturally carries a graded k[X]-algebra structure and R(a
•
) is called the Rees

algebra of a
•
. In the interesting situations R(a

•
) is not finitely generated, and

it is here that the constructions of the present section give something new. One

can view graded systems as local objects displaying complexities similar to those

that arise from linear series on a projective variety V . If D is an effective divisor

on V , the base ideals bk = b(|kD|) ⊆ OV form a graded family of ideal sheaves

on V : this is the prototypical example.

Example 6.2. We give several examples of graded systems.

(i) Let b ⊆ k[X] be a fixed ideal, and set ak = bk. One should view the resulting

graded system as a trivial example.

(ii) Let Z ⊆ X be a reduced subvariety defined by the radical ideal q. The

symbolic powers

q(k) def
=

{

f ∈ k[X]
∣

∣ ordz f ≥ k for z ∈ Z generic
}

form a graded system.4

(iii) Let < be a term order on k[x1, . . . , xn] and b be an ideal. Then

ak
def
= in<(bk)

defines a graded system of monomial ideals, where in<(bk) denotes the initial

ideal with respect to the given term order.

Example 6.3 (Valuation ideals). Let ν be a R-valued valuation centered on

k[X]. Then the valuation ideals

ak
def
=

{

f ∈ k[X]
∣

∣ ν(f) ≥ k
}

4When Z is reducible, we ask that the condition hold at a general point of each component.
That this is equivalent to the usual algebraic definition is a theorem of Zariski and Nagata:
see [Eisenbud 1995, Chapter 3].
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form a graded family. Special cases of this construction are interesting even when

X = A2
C .

(i) Let η : Y −→ A2 be a birational map with Y also smooth and let E ⊆ Y be

a prime divisor. Define the valuation ν(f)
def
= ordE(f). Then

ak
def
= µ∗OY (−kE) =

{

f ∈ OX

∣

∣ ν(f) = ordE(f) ≥ k
}

.

(ii) In C[x, y] put ν(x) = 1 and ν(y) = 1/
√

2. Then one gets a valuation by

weighted degree. Here ak is the monomial ideal generated by the monomials

xiyj such that i + j/
√

2 ≥ k.

(iii) Given f ∈ C[x, y] define ν(f) = ordz(f(z, ez−1)). This yields a valuation

giving rise to the graded system

ak
def
= (xk, y − Pk−1(x)),

where Pk−1(x) is the (k − 1)-st Taylor polynomial of ex − 1. Note that the

general element in ak defines a smooth curve in the plane.

Remark 6.4. Except for Example 6.2(i), all these constructions give graded

families a
•

whose corresponding Rees algebra need not be finitely generated.

6.2. Asymptotic multiplier ideals. We now attach multiplier ideals J(ac
•
)

to a graded family a
•

of ideals. The starting point is:

Lemma 6.5. Let a
•

be a graded system of ideals on X, and fix a rational number

c > 0. Then for p � 0 the multiplier ideals J(a
c/p
p ) all coincide.

Definition 6.6. Let a
•

= {ak}k∈N be a graded system of ideals on X. Given

c > 0 we define the asymptotic multiplier ideal of a
•

with exponent c to be the

common ideal

J(ac
•
)

def
= J(ac/p

p )

for any sufficiently big p � 0.5

Indication of Proof of Lemma 6.5. We first claim that one has an inclusion

of multiplier ideals J(a
c/p
p ) ⊆ J(a

c/pq
pq ) for all p, q ≥ 0. Granting this, it follows

from the Noetherian condition that the collection of ideals
{

J(a
c/p
p )

}

p≥0
has a

unique maximal element. This proves the lemma at least for sufficiently divisible

p. (The statement for all p � 0 requires a little more work; see [Lazarsfeld 2004,

Chapter 11].)

To verify the claim let µ : X ′ −→ X be a common log resolution of ap and apq

with ap ·OY = OY (−Fp) and apq ·OY = OY (−Fpq). Since the ak form a graded

system one has aq
p ⊆ apq and therefore −cqFp ≤ −cFpq. Thus, as claimed,

µ∗OY (KY/X − b cq
pq Fpc) ⊆ µ∗OY (KY/X − b c

pq Fpqc). �

5In [Ein et al. 2001] and early versions of [Lazarsfeld 2004], one only dealt with the ideals
J(al

•
) for integral l, which were written J(‖al‖).
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Remark 6.7. Lemma 6.5 shows that any information captured by the multiplier

ideals J(a
c/p
p ) is present already for any one sufficiently large index p. It is in

this sense that multiplier ideals have some finiteness built in that may not be

present in the underlying graded system a
•
.

Exercise 6.8. We return to the graded systems in Example 6.3 coming from

valuations on A2.

(ii) Here ak is the monomial ideal generated by xiyj with i + j/
√

2 ≥ k, and

J(ac
•
) is the monomial ideal generated by all xiyj with

(i+1) +
(j+1)√

2
> c.

(Compare with Theorem 3.1.)

(iii) Now take the valuation ν(f) = ordz f(z, ez−1). Then

J(ac
•
) = C[x, y]

for all c > 0. (Use the fact that each ak contains a smooth curve.)

6.3. Growth of graded systems. We now use the Subadditivity Theorem

5.10 to prove a result from [Ein et al. 2001] concerning the multiplicative behavior

of graded families of ideals:

Theorem 6.9. Let a
•

be a graded system of ideals and fix any l ∈ N. Then

J(al
•
) = J(a

1/p
lp ) for p � 0.

Moreover , for every m ∈ N,

am
l ⊆ alm ⊆ J(alm

•
) ⊆ J(al

•
)m.

In particular , if J(al
•
) ⊆ b for some natural number l and ideal b, then alm ⊆ bm

for all m.

Remark 6.10. The crucial point here is the containment J(alm
•

) ⊆ J(al
•
)m: it

shows that passing to multiplier ideals “reverses” the inclusion am
l ⊆ alm.

Proof of Theorem 6.9. For the first statement, observe that if p � 0 then

J(al
•
) = J(al/p

p ) = J(a
l/lp
lp ) = J(a

1/p
lp ),

where the second equality is obtained by taking lp in place of p as the large index

in Lemma 6.5. For the containment alm ⊆ J(alm
•

) it is then enough to prove

that alm ⊆ J(a
1/p
lmp). But we have alm ⊆ J(alm) thanks to Exercise 2.7, while

the inclusion J(alm) ⊆ J(a
1/p
lmp) was established during the proof of 6.5.

It remains only to prove that J(alm
•

) ⊆ J(al
•
)m. To this end, fix p � 0. Then

by the definition of asymptotic multiplier ideals and the Subadditivity Theorem

one has, as required,

J(alm
•

) = J(alm/p
p ) ⊆ J(al/p

p )m = J(al
•
)m

�
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Example 6.11. The Theorem gives another explanation of the fact that the

multiplier ideals associated to the graded system a
•

from Example 6.3.(iii) are

trivial. In fact, in this example the colength of ak in C[X] grows linearly in k.

It follows from Theorem 6.9 that then J(al
•
) = (1) for all l.

Exercise 6.12. Let ak = bk be the trivial graded family consisting of powers

of a fixed ideal. Then J(ac
•
) = J(bc) for all c > 0. So we do not get anything

new in this case.

6.4. A comparison theorem for symbolic powers. As a quick but sur-

prising application of Theorem 6.9 we discuss a result due to Ein, Smith and

Lazarsfeld [Ein et al. 2001] concerning symbolic powers of radical ideals.

Consider a reduced subvariety Z ⊆ X defined by a radical ideal q ⊆ k[X].

Recall from Example 6.2(ii) that one can define the symbolic powers q(k) of q as

q(k) def
=

{

f ∈ OX

∣

∣ ordz f ≥ k for z ∈ Z
}

.

Thus evidently qk ⊆ q(k), and equality holds if Z is smooth. However, if Z is

singular, the inclusion is strict in general:

Example 6.13. Take Z ⊆ C3 to be the union of the three coordinate axes,

defined by the ideal

q = (xy, yz, xz) ⊆ C[x, y, z].

Then xyz ∈ q(2), since the union of the three coordinate planes has multiplicity 2

at a general point of Z. But q2 is generated by monomials of degree 4, and so

cannot contain xyz.

Swanson [2000] proved (in a much more general setting) that there exists an

integer k = k(Z) such that

q(km) ⊆ qm

for all m ≥ 0. At first glance, one might be tempted to suppose that for very

singular Z the coefficient k(Z) will have to become quite large. The main result

of [Ein et al. 2001] shows that this isn’t the case, and that in fact one can take

k(Z) = codimZ:

Theorem 6.14. Assume that every irreducible component of Z has codimension

at most e in X. Then

q(em) ⊆ qm for all m ≥ 0.

In particular , q(m·dim X) ⊆ qm for all radical ideals q ⊆ k[X] and all m ≥ 0.

Example 6.15 (Points in the plane). Let T ⊆ P2 be a finite set, considered

as a reduced scheme, and let I ⊆ S = C[x, y, z] be the homogeneous ideal of T .

Suppose that f ∈ S is a homogeneous form having multiplicity at least 2m at

each of the points of T . Then f ∈ Im. (Apply Theorem 6.14 to the homogeneous

ideal I of T .) In spite of the classical nature of this statement, we do not know

a direct elementary proof.



112 MANUEL BLICKLE AND ROBERT LAZARSFELD

Proof of Theorem 6.14. Applying Theorem 6.9 to the graded system ak =

q(k), it suffices to show that J(ae
•
) ⊆ q. Since q is radical, it suffices to test this

inclusion at a general point of Z. Therefore we can assume that Z is smooth, in

which case q(k) = qk. Now Exercises 2.14 and 6.12 apply. �

Remark 6.16. Using their theory of tight closure, Hochster and Huneke [2002]

have extended Theorem 6.14 to arbitrary regular Noetherian rings containing a

field.

Remark 6.17. Theorem 6.9 is applied in [Ein et al. 2003] to study the mul-

tiplicative behavior of Abhyankar valuations centered at a smooth point of a

complex variety.

Remark 6.18. Working with the asymptotic multiplier ideals J(ac
•
) one can

define the log canonical threshold and jumping coefficients of a graded system a
•
,

much as in Section 4. However now these numbers need no longer be rational, the

periodicity of jumping numbers (Exercise 5.7) may fail, and the set of jumping

coefficients of a
•

can contain accumulation points. See [Ein et al. 2004, § 5].
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