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Abstract. The theory of syzygies connects the qualitative study of al-

gebraic varieties and commutative rings with the study of their defining

equations. It started with Hilbert’s work on what we now call the Hilbert

function and polynomial, and is important in our day in many new ways,

from the high abstractions of derived equivalences to the explicit computa-

tions made possible by Gröbner bases. These lectures present some high-

lights of these interactions, with a focus on concrete invariants of syzygies

that reflect basic invariants of algebraic sets.
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These notes illustrate a few of the ways in which properties of syzygies reflect

qualitative geometric properties of algebraic varieties. Chapters 1, 3 and 4 were

written by David Eisenbud, and closely follow his lectures at the introductory

workshop. Chapter 2 was written by Jessica Sidman, from the lecture she gave

enlarging on the themes of the first lecture and providing examples. The lectures
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assertions here.
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1. Hilbert Functions and Syzygies

1.1. Counting functions that vanish on a set. Let K be a field and let S =

K[x0, . . . , xr] be a ring of polynomials over K. If X ⊂ P
r is a projective variety,

the dimension of the space of forms (homogeneous polynomials) of each degree d

vanishing on X is an invariant of X, called the Hilbert function of the ideal IX

of X. More generally, any finitely generated graded S-module M =
⊕
Md has

a Hilbert function HM (d) = dimK Md. The minimal free resolution of a finitely

generated graded S-module M provides invariants that refine the information

in the Hilbert function. We begin by reviewing the origin and significance of

Hilbert functions and polynomials and the way in which they can be computed

from free resolutions.

Hilbert’s interest in what is now known as the Hilbert function came from

invariant theory. Given a group G acting on a vector space with basis z1, . . . , zn,

it was a central problem of nineteenth century algebra to determine the set of

polynomial functions p(z1, . . . , zn) that are invariant under G in the sense that

p(g(z1, . . . , zn)) = p(z1, . . . , zn). The invariant functions form a graded subring,

denoted TG, of the ring T = K[z1, . . . , zn] of all polynomials; the problem of

invariant theory was to find generators for this subring.

For example, if G is the full symmetric group on z1, . . . , zn, then TG is the

polynomial ring generated by the elementary symmetric functions σ1, . . . , σn,

where

σi =
∑

j1<···<ji

i∏

t=1

zjt
;

see [Lang 2002, V.9] or [Eisenbud 1995, Example 1.1 and Exercise 1.6]. The

result that first made Hilbert famous [1890] was that over the complex numbers

(K = C), if G is either a finite group or a classical group of matrices (such

as GLn) acting algebraically— that is, via matrices whose entries are rational

functions of the entries of the matrix representing an element of G—then the

ring TG is a finitely generated K-algebra.

The homogeneous components of any invariant function are again invariant,

so the ring TG is naturally graded by (nonnegative) degree. For each integer

d the homogeneous component (TG)d of degree d is contained in Td, a finite-

dimensional vector space, so it too has finite dimension.

How does the number of independent invariant functions of degree d, say

hd = dimK(TG)d, change with d? Hilbert’s argument, reproduced in a similar

case below, shows that the generating function of these numbers,
∑∞

0 hdt
d, is a

rational function of a particularly simple form:

∞∑

0

hdt
d =

p(t)∏s

0(1 − tαi )
,

for a polynomial p and positive integers αi.
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A similar problem, which will motivate these lectures, arises in projective

geometry: Let X ⊂ P
r = P

r
K

be a projective algebraic variety (or more generally

a projective scheme) and let I = IX ⊂ S = K[x0, . . . , xr] be the homogeneous

ideal of forms vanishing on X. An easy discrete invariant of X is given by

the vector-space dimension dimK Id of the degree d component of I. Again,

we may ask how this “number of forms of degree d vanishing on X” changes

with d. This number is usually expressed in terms of its complement in dimSd.

We write SX := S/I for the homogeneous coordinate ring of X and we set

HX(d) = dimK(SX)d = dimK Sd−dimK Id =
(
r+d

r

)
−dimK Id. We callHX(d) the

Hilbert function of X. Using Hilbert’s ideas we will see that HX(d) agrees with

a polynomial PX(d), called the Hilbert polynomial of X, when d is sufficiently

large. Further, its generating function
∑

d HX(d)td can be written as a rational

function in t, t−1 as above with denominator (1 − t)r+1. Hilbert proved both

the Hilbert Basis Theorem (polynomial rings are Noetherian) and the Hilbert

Syzygy Theorem (modules over polynomial rings have finite free resolutions) in

order to deduce this. As a first illustration of the usefulness of syzygies we shall

see how these results fit together.

This situation of projective geometry is a little simpler than that of invariant

theory because the generators xi of S have degree 1, whereas in the case of

invariants we have to deal with graded rings generated by elements of different

degrees (the αi). For simplicity we will henceforward stick to the case of degree-1

generators. See [Goto and Watanabe 1978a; 1978b] for more information.

Hilbert’s argument requires us to generalize to the case of modules. If M is

any finitely generated graded S-module (such as the ideal I or the homogeneous

coordinate ring SX), then the d-th homogeneous component Md of M is a finite-

dimensional vector space. We set HM (d) := dimK Md. The function HM is

called the Hilbert function of M .

Theorem 1.1. Let S = K[x0, . . . , xr] be the polynomial ring in r + 1 variables

over a field K. Let M be a finitely generated graded S-module.

(i) HM (d) is equal to a finite sum of the form
∑

i ±
(
r+d−ei

r

)
, and thus HM (d)

agrees with a polynomial function PM (d) for d ≥ maxi ei − r.

(ii) The generating function
∑

dHM (d)td can be expressed as a rational function

of the form

p(t, t−1)

(1 − t)r+1

for some polynomial p(t, t−1).

Proof. First consider the case M = S. The dimension of the d-th graded

component is dimK Sd =
(
r+d

r

)
, which agrees with the polynomial in d

(r + d) · · · (1 + d)

r · · · 1
=
dr

r!
+ · · · + 1
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for d ≥ −r. Further,

∞∑

0

HS(d)td =
∞∑

0

(
r + d

r

)
td =

1

(1 − t)r+1

proving the theorem in this case.

At this point it is useful to introduce some notation: If M is any module

we write M(e) for the module obtained by “shifting” M by e positions, so that

M(e)d = Me+d. Thus for example S(−e) is the free module of rank 1 generated

in degree e (note the change of signs!) Shifting the formula above we see that

HS(−e)(d) =
(
r+d−e

r

)
.

We immediately deduce the theorem in case M =
⊕

i S(−ei) is a free graded

module, since then

HM (d) =
∑

i

HS(−ei)(d) =
∑

i

(
r + d− ei

r

)
.

This expression is equal to a polynomial for d ≥ maxi ei − r, and

∞∑

d=−∞

HM (d) =

∑
i t

ei

(1 − t)r+1
.

Hilbert’s strategy for the general case was to compare an arbitrary module

M to a free module. For this purpose, we choose a finite set of homogeneous

generators mi in M . Suppose degmi = ei. We can define a map (all maps are

assumed homogeneous of degree 0) from a free graded module F0 =
⊕
S(−ei)

onto M by sending the i-th generator to mi. Let M1 := kerF0 → M be the

kernel of this map. Since HM (d) = HF0
(d) − HM1

(d), it suffices to prove the

desired assertions for M1 in place of M .

To use this strategy, Hilbert needed to know that M1 would again be finitely

generated, and that M1 was in some way closer to being a free module than was

M . The following two results yield exactly this information.

Theorem 1.2 (Hilbert’s Basis Theorem). Let S be the polynomial ring in

r + 1 variables over a field K. Any submodule of a finitely generated S-module

is finitely generated .

Thus the module M1 = kerF0 →M , as a submodule of F0, is finitely generated.

To define the sense in which M1 might be “more nearly free” than M , we need

the following result:

Theorem 1.3 (Hilbert’s Syzygy Theorem). Let S be the polynomial ring

in r+ 1 variables over a field K. Any finitely generated graded S-module M has

a finite free resolution of length at most r + 1, that is, an exact sequence

0 - Fn
φn- Fn−1

- · · · - F1
φ1- F0

- M - 0,

where the modules Fi are free and n ≤ r + 1.
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We will not prove the Basis Theorem and the Syzygy Theorem here; see the very

readable [Hilbert 1890], or [Eisenbud 1995, Corollary 19.7], for example. The

Syzygy Theorem is true without the hypotheses that M is finitely generated and

graded (see [Rotman 1979, Theorem 9.12] or [Eisenbud 1995, Theorem 19.1]),

but we shall not need this.

If we take

F : 0 - Fn
φn- Fn−1

- · · · - F1
φ1- F0

- M - 0

to be a free resolution of M with the smallest possible n, then n is called the

projective dimension of M . Thus the projective dimension of M is zero if and

only if M is free. If M is not free, and we take M1 = imφ1 in such a minimal

resolution, we see that the projective dimension of M1 is strictly less than that

of M . Thus we could complete the proof of Theorem 1.1 by induction.

However, given a finite free resolution of M we can compute the Hilbert

function of M , and its generating function, directly. To see this, notice that if

we take the degree d part of each module we get an exact sequence of vector

spaces. In such a sequence the alternating sum of the dimensions is zero. With

notation as above we have HM (d) =
∑

(−1)iHFi
(d). If we decompose each Fi as

Fi =
∑

j S(−j)βi,j we may write this more explicitly as

HM (d) =
∑

i

(−1)i
∑

j

βi,j

(
r + d− j

r

)
.

The sums are finite, so this function agrees with a polynomial in d for d ≥

max{j − r | βi,j 6= 0 for some i}. Further,

∑

d

HM (d)td =

∑
i(−1)i

∑
j βi,jt

j

(1 − t)r+1

as required for Theorem 1.1.

Conversely, given the Hilbert function of a finitely generated module, one can

recover some information about the βi,j in any finite free resolution F . For this

we use the fact that
(
r+d−j

r

)
= 0 for all d < j. We have

HM (d) =
∑

i

(−1)i
∑

j

βi,j

(
r + d− j

r

)
=

∑

j

(∑

i

(−1)iβi,j

)(
r + d− j

r

)
.

Since F is finite there is an integer d0 such that βi,j = 0 for j < d0. If we

put d = d0 in the expression for HM (d) then all the
(
r+d−j

r

)
vanish except for

j = d0, and because
(
r+d0−d0

r

)
= 1 we get

∑
i(−1)iβi,d0

= HM (d0). Proceeding

inductively we arrive at the proof of:

Proposition 1.4. Let M be a finitely generated graded module over S =

K[x0, . . . , xr], and suppose that F is a finite free resolution of M with graded
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Betti numbers βi,j . If βi,j = 0 for all j < d0, then the numbers Bj =
∑

i(−1)iβi,j

are inductively determined by the formulas

Bd0
= HM (d0)

and

Bj = HM (j) −
∑

k<j

Bk

(
j + d− k

r

)
.

1.2. Meaning of the Hilbert function and polynomial. The Hilbert

function and polynomial are easy invariants to define, so it is perhaps surprising

that they should be so important. For example, consider a variety X ⊂ P
r

with homogeneous coordinate ring SX . The restriction map to X gives an exact

sequence of sheaves 0 → IX → OPr → OX → 0. Tensoring with the line bundle

OPr(d) and taking cohomology we get a long exact sequence beginning

0 → H0
IX(d) → H0

OPr (d) → H0
OX(d) → H1

IX(d) → · · · .

The term H0OPr (d) may be identified with the vector space Sd of forms of degree

d in S. The space H0IX(d) is thus the space of forms of degree d that induce

0 on X, that is (IX)d. Further, by Serre’s vanishing theorem [Hartshorne 1977,

Ch. III, Theorem 5.2], H1IX(d) = 0 for large d. Thus for large d

(SX)d = Sd/(IX)d = H0
OX(d).

Applying Serre’s theorem again, we see that all the higher cohomology of OX(d)

is zero for large d. Taking dimensions, we see that for large d the Hilbert function

of SX equals the Euler characteristic

χ(OX(d)) :=
∑

i

(−1)i dimK Hi(OX(d)).

The Hilbert function equals the Hilbert polynomial for large d; and the Euler

characteristic is a polynomial for all d. Thus we may interpret the Hilbert poly-

nomial as the Euler characteristic, and the difference from the Hilbert function

(for small d) as an effect of the nonvanishing of higher cohomology.

For a trivial case, take X to be a set of points. Then OX(d) is isomorphic to

OX whatever the value of d, and its global sections are spanned by the charac-

teristic functions of the individual points. Thus χ(OX(d)) = PX(d) is a constant

function of d, equal to the number of points in X.

In general the Riemann–Roch Theorem gives a formula for the Euler charac-

teristic, and thus the Hilbert polynomial, in terms of geometric data on X. In

the simplest interesting case, where X is a smooth curve, the Riemann–Roch

theorem says that

χ(OX(d)) = PX(d) = d+ 1 − g,

where g is the genus of X.

These examples only suggest the strength of the invariants PX(d) and HX(d).

To explain their real role, we recall some basic definitions. A family of algebraic
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sets parametrized by a variety T is simply a map of algebraic sets π : X → T .

The subschemes Xt = π−1(t) for t ∈ T are called the fibers of the family. Of

course we are most interested in families where the fibers vary continuously in

some reasonable sense! Of the various conditions we might put on the family to

ensure this, the most general and the most important is the notion of flatness, due

to Serre: the family π : X → T is said to be flat if, for each point p ∈ T and each

point x ∈ X mapping to t, the pullback map on functions π∗ : OT,t → OX ,x is

flat. This means simply that OX ,x is a flat OT,t-module; tensoring it with short

exact sequences of OT,t-modules preserves exactness. More generally, a sheaf F

on X is said to be flat if the OT,t-module Fx (the stalk of F at x) is flat for

all x mapping to t. The same definitions work for the case of maps of schemes.

The condition of flatness for a family X → T has many technical advantages.

It includes the important case where X , T , and all the fibers Xt are smooth

and of the same dimension. It also includes the example of a family from which

algebraic geometry started, the family of curves of degree d in the projective

plane, even though the geometry and topology of such curves varies considerably

as they acquire singularities. But the geometric meaning of flatness in general

could well be called obscure.

In some cases flatness is nonetheless easy to understand. Suppose that X ⊂

P
r × T and the map π : X → T is the inclusion followed by the projection onto

T (this is not a very restrictive condition: any map of projective varieties, for

example, has this form). In this case each fiber Xt is naturally contained as an

algebraic set in Pr.

We say in this case that π : X → T is a projective family. Corresponding to

a projective family X → T we can look at the family of cones

X̃ ⊂ A
r+1 × T → T

obtained as the affine set corresponding to the (homogeneous) defining ideal of

X . The fibers X̃t are then all affine cones.

Theorem 1.5. Let π : X → T be a projective family , as above. If T is a

reduced algebraic set then π : X → T is flat if and only if all the fibers Xt of X

have the same Hilbert polynomial . The family of affine cones over Xt is flat if

and only if all the X̃t have the same Hilbert function.

These ideas can be generalized to the flatness of families of sheaves, giving an

interpretation of the Hilbert function and polynomial of modules.

1.3. Minimal free resolutions. As we have defined it, a free resolution F of

M does not seem to offer any easy invariant of M beyond the Hilbert function,

since F depends on the choice of generators for M , the choice of generators for

M1 = kerF0 → M , and so on. But this dependence on choices turns out to be

very weak. We will say that F is a minimal free resolution of M if at each stage

we choose the minimal number of generators.
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Proposition 1.6. Let S be the polynomial ring in r+1 variables over a field K,

and M a finitely generated graded S-module. Any two minimal free resolutions

of M are isomorphic. Moreover , any free resolution of M can be obtained from

a minimal one by adding “trivial complexes” of the form

Gi = S(−a)
1- S(−a) = Gi−1

for various integers i and a.

The proof is an exercise in the use of Nakayama’s Lemma; see for example

[Eisenbud 1995, Theorem 20.2].

Thus the ranks of the modules in the minimal free resolution, and even the

numbers βi,j of generators of degree j in Fi, are invariants of M . Theorem 1.1

shows that these invariants are at least as strong as the Hilbert function of M ,

and we will soon see that they contain interesting additional information.

The numerical invariants in the minimal free resolution of a module in non-

negative degrees can be described conveniently using a piece of notation intro-

duced by Bayer and Stillman: the Betti diagram. This is a table displaying the

numbers βi,j in the pattern

· · ·

β0,0 β1,1 · · · βi,i

β0,1 β1,2 · · · βi,i+1

· · ·

with βi,j in the i-th column and (j−i)-th row. Thus the i-th column corresponds

to the i-th free module in the resolution, Fi =
⊕

j S(−j)βi,j . The utility of this

pattern will become clearer later in these notes, but it was introduced partly to

save space. For example, suppose that a moduleM has all its minimal generators

in degree j, so that β0,j 6= 0 but β0,m = 0 for m < j. The minimality of F then

implies that β1,j = 0; otherwise, there would be a generator of F1 of degree j,

and it would map to a nonzero scalar linear combination of the generators of F0.

Since this combination would go to 0 in M , one of the generators of M would be

superfluous, contradicting minimality. Thus there is no reason to leave a space

for β1,j in the diagram. Arguing in a similar way we can show that βi,m = 0 for

all m < i + j. Thus if we arrange the βi,j in a Betti diagram as above we will

be able to start with the j-th row, simply leaving out the rest.

To avoid confusion, we will label the rows, and sometimes the columns of the

Betti diagram. The column containing βi,j (for all j) will be labeled i while the

row with β0,j will be labeled j. For readability we often replace entries that are

zero with −, and unknown entries with ∗, and we suppress rows in the region

where all entries are 0. Thus for example if I is an ideal with 2 generators of

degree 4 and one of degree 5, and relations of degrees 6 and 7, then the free

resolution of S/I has the form

0 → S(−6) ⊕ S(−7) → S2(−4) ⊕ S(−5) → S
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and Betti diagram
0 1 2

0 1 − −

1 − − −

2 − − −

3 − 2 −

4 − 1 1
5 − − 1

An example that makes the space-saving nature of the notation clearer is the

Koszul complex (the minimal free resolution of S/(x0, . . . , xr) — see [Eisenbud

1995, Ch. 17]), which has Betti diagram

0 1 · · · i · · · r + 1

0 1 r + 1 · · ·
`

r+1

i

´

· · · 1

1.4. Four points in P
2. We illustrate what has gone before by describing the

Hilbert functions, polynomials, and Betti diagrams of each possible configuration

X ⊂ P
2 of four distinct points in the plane. We let S = K[x0, x1, x2] be the

homogeneous coordinate ring of the plane. We already know that the Hilbert

polynomial of a set of four points, no matter what the configuration, is the

constant polynomial PX(d) ≡ 4. In particular, the family of 4-tuples of points is

flat over the natural parameter variety

T = P
2 × P

2 × P
2 × P

2 \ diagonals.

We shall see that the Hilbert function of X depends only on whether all four

points lie on a line. The graded Betti numbers of the minimal resolution, in

contrast, capture all the remaining geometry: they tell us whether any three of

the points are collinear as well.

Proposition 1.7. (i) If X consists of four collinear points, HSX
(d) has the

values 1, 2, 3, 4, 4, . . . at d = 0, 1, 2, 3, 4, . . .

(ii) If X ⊂ P
2 consists of four points not all on a line, HSX

(d) has the values

1, 3, 4, 4, . . . at d = 0, 1, 2, 3, . . . . In classical language: X imposes 4 conditions

on degree d curves for d ≥ 2.

Proof. Let HX := HSX
(d). In case (i), HX has the same values that it would

if we considered X to be a subset of P
1. But in P

1 the ideal of any d points

is generated by one form of degree d, so the Hilbert function HX(d) for four

collinear points X takes the values 1, 2, 3, 4, 4, . . . at d = 0, 1, 2, 3, 4, . . . .

In case (ii) there are no equations of degree d ≤ 1, so for d = 0, 1 we get

the claimed values for HX(d). In general, HX(d) is the number of independent

functions induced on X by ratios of forms of degree d (see the next lecture) so

HX(d) ≤ 4 for any value of d.

To see that HX(2) = 4 it suffices to produce forms of degree 2 vanishing at

all X \ p for each of the four points p in X, since these forms must be linearly
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independent modulo the forms vanishing on X. But it is easy to draw two lines

going through the three points of X \ p but not through p:

p

and the union of two lines has as equation the quadric given by the product

of the corresponding pair of linear forms. A similar argument works in higher

degree: just add lines to the quadric that do not pass through any of the points

to get curves of the desired higher degree. �

In particular we see that the set of lines through a point in affine 3-space (the

cones over the sets of four points) do not form a flat family; but the ones where

not all the lines are coplanar do form a flat family. (For those who know about

schemes: the limit of a set of four noncoplanar lines as they become coplanar

has an embedded point at the vertex.)

When all four points are collinear it is easy to compute the free resolution:

The ideal of X contains the linear form L that vanishes on the line containing

the points. But S/L is the homogeneous coordinate ring of the line, and in the

line the ideal of four points is a single form of degree 4. Lifting this back (in

any way) to S we see that IX is generated by L and a quartic form, say f .

Since L does not divide f the two are relatively prime, so the free resolution of

SX = S/(L, f) has the form

0 → S(−5)

 

f

−L

!

- S(−1) ⊕ S(−4)
(L, f )- S,

with Betti diagram
0 1 2

0 1 1 −

1 − − −

2 − − −

3 − 1 1

We now suppose that the points of X are not all collinear, and we want to

see that the minimal free resolutions determine whether three are on a line. In

fact, this information is already present in the number of generators required by

IX . If three points of X lie on a line L = 0, then by Bézout’s theorem any conic

vanishing on X must contain this line, so the ideal of X requires at least one

cubic generator.

On the other hand, any four noncollinear points lie on an irreducible conic

(to see this, note that any four noncollinear points can be transformed into any
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other four noncollinear points by an invertible linear transformation of P2; and we

can choose four noncollinear points on an irreducible conic.) From the Hilbert

function we see that there is a two dimensional family of conics through the

points, and since one is irreducible, any two distinct quadrics Q1, Q2 vanishing

on X are relatively prime. It is easy to see from relative primeness that the

syzygy (Q2,−Q1) generates all the syzygies on (Q1, Q2). Thus the minimal free

resolution of S/(Q1, Q2) has Betti diagram

0 1 2

0 1 − −

1 − 2 −

2 − − 1

It follows that S/(Q1, Q2) has the same Hilbert function as SX = S/IX . Since

IX ⊃ (Q1, Q2) we have IX = (Q1, Q2).

In the remaining case, where precisely three of the points of X lie on a line,

we have already seen that the ideal of X requires at least one cubic generator.

Corollary 2.3 makes it easy to see from this that the Betti diagram of a minimal

free resolution must be
0 1 2

0 1 − −

1 − 2 1
2 − 1 1

2. Points in the Plane and an Introduction to

Castelnuovo–Mumford Regularity

2.1. Resolutions of points in the projective plane. This section gives a

detailed description of the numerical invariants of a minimal free resolution of a

finite set of points in the projective plane. To illustrate both the potential and the

limitations of these invariants in capturing the geometry of the points we compute

the Betti diagrams of all possible configurations of five points in the plane. In

contrast to the example of four points worked out in the previous section, it

is not possible to determine whether the points are in linearly general position

from the Betti numbers alone. The presentation in this section is adapted from

Chapter 3 of [Eisenbud ≥ 2004], to which we refer the reader who wishes to find

proofs omitted here.

Let X = {p1, . . . , pn} be a set of distinct points in P2 and let IX be the

homogeneous ideal of X in S = K[x0, x1, x2]. Considering this situation has the

virtue of simplifying the algebra to the point where one can describe a resolution

of IX quite explicitly while still retaining a lot of interesting geometry.

Fundamentally, the algebra is simple because the resolution of IX is very

short. In particular:

Lemma 2.1. If IX ⊆ K[x0, x1, x2] is the homogeneous ideal of a finite set of

points in the plane, then a minimal resolution of IX has length one.
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Proof. Recall that if

0 - Fm
- · · · - F1

- F0
- S/IX - 0

is a resolution of S/IX then we get a resolution of IX by simply deleting the

term F0 (which of course is just S). We will proceed by showing that S/IX has

a resolution of length two.

From the Auslander–Buchsbaum formula (see Theorem 3.1) we know that the

length of a minimal resolution of S/IX is:

depthS − depthS/IX .

Since S is a polynomial ring in three variables, it has depth three. Our hypothesis

is that S/IX is the coordinate ring of a finite set points taken as a reduced

subscheme of P2. The Krull dimension of S/IX is one, and hence depthS/IX ≤ 1.

Furthermore, since IX is the ideal of all homogeneous forms in S that vanish on

X, the irrelevant ideal is not associated. Therefore, we can find an element of S

with positive degree that is a nonzerodivisor on S/IX . We conclude that S/IX
has a free resolution of length two. �

We see now that a resolution of IX has the form

0 -
t1⊕

i=1

S(−bi)
M-

t0⊕

i=1

S(−ai) - IX - 0.

We can complete our description of the shape of the resolution via the following

theorem:

Theorem 2.2 (Hilbert–Burch). Suppose that an ideal I in a Noetherian ring

R admits a free resolution of length one:

0 - F
M- G - I - 0.

If the rank of the free module F is t, then the rank of G is t+1, and there exists

a nonzerodvisor a ∈ R such that I is aIt(M); in fact , regarding M as a matrix

with respect to given bases of F and G, the generator of I that is the image of

the i-th basis vector of G is ±a times the determinant of the submatrix of M

formed by deleting the i-th row . Moreover , the depth of It(M) is two.

Conversely , given a nonzerodivisor a of R and a (t + 1) × t matrix M with

entries in R such that the depth of It(M) is at least 2, the ideal I = aIt(M)

admits a free resolution as above.

We will not prove the Hilbert–Burch Theorem here, or its corollary stated below;

our main concern is with their consequences. (Proofs can be found in [Eisenbud ≥

2004, Chapter 3]; alternatively, see [Eisenbud 1995, Theorem 20.15] for Hilbert–

Burch and [Ciliberto et al. 1986] for the last statement of Corollary 2.3.)

As we saw in Section 1.1, the Hilbert function and the Hilbert polynomial

of S/IX are determined by the invariants of a minimal free resolution. So, for



LECTURES ON THE GEOMETRY OF SYZYGIES 127

example, we expect to be able to compute the degree of X from the degrees of

the entries of M . When X is a complete intersection this is already familiar to us

from Bézout’s theorem. In this case M is a 2 × 1 matrix whose entries generate

IX . Bézout’s theorem says that the product of the degrees of the entries of M

gives the degree of X.

The following corollary of the Hilbert–Burch Theorem generalizes Bézout’s

theorem and describes the relationships between the degrees of the generators of

IX and the degrees of the generators of the module of their syzygies. Since the

map given by M has degree zero, the (i, j) entry of M has degree bj − ai. Let

ei = bi − ai and fi = bi − ai+1 denote the degrees of the entries on the two main

diagonals of M . Schematically:




e1
f1 e2

f2 .

.

.

ft−1 et

ft




Corollary 2.3. Assume that a1 ≥ a2 ≥ · · · ≥ at+1 and b1 ≥ b2 ≥ · · · ≥ bt.

Then, for 1 ≤ i ≤ t, we have

ei ≥ 1, fi ≥ 1, ai =
∑

j<i

ej +
∑

j≥i

fj , bi = ai + ei.

Moreover ,

n = degX =
∑

i≤j

eifj . (2–1)

The last equality is due to Ciliberto, Geramita, and Orecchia [Ciliberto et al.

1986].

From Corollary 2.3 we can already bound the number of minimal generators

of IX given a little bit of information about the geometry of X.

Corollary 2.4 [Burch 1967]. If X lies on a curve of degree d, then IX requires

at most d+ 1 generators.

Proof. Since X lies on a curve of degree d there is an element of IX of degree

d. Therefore, at least one of the ai’s must be at most d. By Corollary 2.3, each

ai is the sum of t integers that are all at least 1. Therefore, t ≤ ai ≤ d, which

implies that t+ 1, the number of generators of IX , is at most d+ 1. �

Using the information above one can show that for small values of n there are

very few possibilities for the invariants of the resolution of IX .
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2.2. Resolutions of five points in the plane. We now show how to use

these ideas to compute all possible Betti diagrams of X when X is a set of five

distinct points in the projective plane. As before, let S = K[x0, x1, x2], and let

IX be the saturated homogeneous ideal of X. In keeping with conventions, we

give the Betti diagrams of the quotient S/IX . From these computations it will

be easy to determine the Hilbert function HX(d) as well.

First, we organize the possible configurations of the points into four categories

based on their geometry:

(1) The five points are all collinear.

(2) Precisely four of the points are collinear.

(3) Some subset of three of the points lies on a line but no subset of four of the

points lies on a line.

(4) The points are linearly general.

Case (1): Corollary 2.4 implies that IX has at most two generators. Thus, t = 1,

and the points are a complete intersection. By Bézout’s Theorem, the generators

of IX have degrees a1 = 5 and a2 = 1. Furthermore, we see that IX is resolved

by a Koszul complex and hence b1 = 6. The Betti diagram of the resolution of

5 collinear points is

0 1 2

0 1 1 −

1 − − −

2 − − −

3 − − −

4 − 1 1

From Section 1.1 we see that the Hilbert function is given by

(
2 + d

2

)
−

(
2 + d− 1

2

)
−

(
2 + d− 5

2

)
+

(
2 + d− 6

2

)
.

Thus, HX(d) has values 1, 2, 3, 4, 5, 5, . . . at d = 1, 2, 3, 4, 5, . . . .

We claim that t = 2 in the remaining cases. Since the degree of X is prime,

Bézout’s theorem tells us that the points are a complete intersection if and only

if they are collinear. Hence, t ≥ 2. Since there is a 6-dimensional space of conics

in three variables, any set of five points must lie on a conic. Thus Corollary 2.4

implies that IX has at most three generators, so t = 2. We conclude that in Cases

(2)–(4), the invariants of the resolution satisfy the relationships a1 ≥ a2 ≥ a3,

b1 ≥ b2, and

a1 = f1 + f2,

a2 = e1 + f2.

a3 = e1 + e2.
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Case (2): If precisely four of the points are collinear, we see from the picture

below that there are two conics containing the points: L1 ∪ L3 and L2 ∪ L3.

L3

L1 L2

Since these conics are visibly different, their defining equations must be linearly

independent. We conclude that IX must have two minimal generators of degree

two, and hence that

a2 = e1 + f2 = 2,

a3 = e1 + e2 = 2.

By Corollary 2.3, e1, e2, f2 ≥ 1, which implies that e1 = e2 = f2 = 1. We also

know that

5 = e1f1 + e1f2 + e2f2 = f1 + 1 + 1.

Hence, f1 = 3, a1 = 4, b1 = a1 + e1 = 5, and b2 = a2 + e2 = 3. In this case, the

points have Betti diagram

0 1 2

0 1 − −

1 − 2 1
2 − − −

3 − 1 1

and Hilbert function
(

2 + d

2

)
− 2

(
2 + d− 2

2

)
−

(
2 + d− 4

2

)
+

(
2 + d− 3

2

)
+

(
2 + d− 5

2

)
,

taking on the values 1, 3, 4, 5, 5, . . . at d = 0, 1, 2, 3, 4, . . . .

Case (3): We will show that the points lie on a unique reducible conic. By

assumption there is a line L containing three of the points. Any conic containing

all five must vanish at these three points and hence will vanish identically on

L. Therefore, L must be a component of any conic that contains X. There are

precisely two points not on L, and they determine a line L′ uniquely. The union

of L and L′ is the unique conic containing these points.

If the five points lie on a unique conic, we can determine all of the remaining

numerical invariants. We must have a3 = e1 + e2 = 2, which implies that

e1 = e2 = 1. We also know that 3 ≤ a2 = e1 + f2 = 1 + f2, which implies that

f2 ≥ 2. Since

5 = e1f1 + e1f2 + e2f2 = f1 + f2 + f2,
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we must have f1 = 1 and f2 = 2. Now the invariants a1, a2, b1, and b2 are

completely determined: a1 = f1 + f2 = 3, a2 = e1 + f2 = 3, b1 = a1 + e1 = 4

and b2 = a2 + e2 = 4. The Betti diagram is

0 1 2

0 1 − −

1 − 1 −

2 − 2 2

We have the Hilbert function
(

2 + d

2

)
−

(
2 + d− 2

2

)
− 2

(
2 + d− 3

2

)
+ 2

(
2 + d− 4

2

)
,

which takes on values 1, 3, 5, 5, . . . at d = 0, 1, 2, 3, . . . .

Case (4): We claim that five points in linearly general position also lie on a

unique conic. If the points lie on a reducible conic then it is the union of two

lines, and one of the lines must contain at least three points. Therefore, if the

points are linearly general, any conic containing them must be irreducible. By

Bézout’s theorem, five points cannot lie on two irreducible conics because the

intersection of the conics contains only four points.

As we saw in Case (3), the Betti diagram of IX was completely determined

after we discovered that X lay on a unique conic. We conclude that the Betti

numbers are not fine enough to distinguish between the geometric situations

presented by Cases (3) and (4).

2.3. An introduction to Castelnuovo–Mumford regularity. Let S =

K[x0, . . . , xr] and let M be a finitely generated graded S-module. One of the

ways in which the Betti diagrams for the examples in Section 2.1 differ is in the

number of rows. This apparently artificial invariant turns out to be fundamental.

In this section we introduce it systematically via the notion of Castelnuovo–

Mumford regularity. We follow along the lines of [Eisenbud ≥ 2004, Chapter 4].

Definition 2.5. (i) If F is a finitely generated free module, we define regF ,

the regularity of F , as the maximum degree of a minimal generator of F :

regF = max
{
i | (F/(x0, . . . , xr)F )i 6= 0

}
.

(The maximum over the empty set is −∞.)

(ii) For an arbitrary finitely generated graded moduleM , we define the regularity

of M as

regM = maxi {regFi − i},

where

0 - Fm
- · · · - F1

- F0
- M - 0

is a minimal free graded resolution of M . We say that M is d-regular if

d ≥ regM .
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Notice that

regM ≥ regF0 − 0 = regF0,

where regF0 is the maximum degree of a generator of M . The regularity should

be thought of as a stabilized version of this “generator degree” which takes into

account the nonfreeness of M . One of the most fundamental results about the

regularity is a reinterpretation in terms of cohomology. We begin with a special

case where the cohomology has a very concrete meaning.

Suppose that we are given a finite set of points X = {p1, . . . , pn} ⊂ Ar
K
,

where K is an infinite field. We claim that for any function φ : X → K there

is a polynomial f ∈ R = K[x1, . . . , xn] such that f |X = φ. As noted in Section

1.2, the set of all functions from X to K is spanned by characteristic functions

φ1, . . . , φn, where

φi(pj) =

{
1 if i = j,

0 if i 6= j.

So it is enough to show that the characteristic functions can be given by poly-

nomials. For each i = 1, . . . , n, let Li be a linear polynomial defining a line

containing pi but not any other point of X. Let fi =
∏

j 6=i Li. The restriction

of fi to X is the function φi up to a constant scalar.

Definition 2.6. The interpolation degree of X is the least integer d such that

for each φ : X → K there exists f ∈ R with deg f ≤ d such that φ = f |X .

When n is small, one can compute the interpolation degree of X easily from first

principles:

Example 2.7. Let X be a set of four points in A
2 in linearly general position.

None of the characteristic functions φi can be the restriction of a linear poly-

nomial; each φi must vanish at three of the points, but no three are collinear.

However, we can easily find quadratic polynomials whose restrictions give the φi.

For instance, let L23 be a linear polynomial defining the line joining p2 and p3

and let L34 be a linear polynomial defining the line joining p3 and p4.

p3

p1

p2

p4

L23
L34

The product L23L34|X equals φ1 up to a constant factor. By symmetry, we

can repeat this procedure for each of the remaining φi. Thus, the interpolation

degree of X is two.

It is clear that the interpolation degree of X depends on the cardinality of X.

It will also depend on the geometry of the points. To see this, let’s compute the
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interpolation degree of X when X consists of four points that lie on a line L.

Any polynomial that restricts to one of the characteristic functions vanishes on

three of the points and so intersects the line L at least three times. Therefore,

the interpolation degree is at least three. We can easily find a polynomial fi

of degree three that restricts to each φi: For each j 6= i, let Lj be a linear

polynomial that vanishes at pj and no other points of X. Let fi be the product

of these three linear polynomials. Thus, if X consists of four collinear points, its

interpolation degree is three.

To study what happens more generally we projectivize. We can view the

affine r-space containing our n points as a standard affine open patch of Pr with

coordinate ring S = K[x0, . . . , xr], say, where x0 is nonzero. A homogeneous

polynomial does not have a well-defined value at a point of Pr, so elements of

S do not give functions on projective space. However, the notion of when a

homogeneous polynomial vanishes at a point is well-defined. This observation

shows that we can hope to find homogeneous polynomials that play the role that

characteristic functions played for points in affine space and is the basis for the

following definition.

Definition 2.8. We say that X imposes independent conditions on forms of

degree d if there exist F1, . . . , Fn ∈ Sd such that Fj(pi) is nonzero if and only if

i = j.

We may rephrase the condition in Definition 2.8 as follows: Suppose that F is

a form of degree d, say F =
∑
aαx

α with aα ∈ K for each α ∈ Z
n+1
≥0 such that

|α| = d. Fix a set of coordinates for each of the points p1, . . . , pn and substitute

these values into F . Then F (p1) = 0, . . . , F (pn) = 0 are n equations, linear in

the aα. These equations are the “conditions” that the points p1, . . . , pn impose.

We can translate the interpolation degree problem into the projective setting:

Proposition 2.9. The interpolation degree of X is the minimum degree d such

that X imposes independent conditions on forms of degree d.

Proof. Let {f1, . . . , fn} be a set of polynomials in K[x1, . . . , xr] of degree d

whose restrictions to X are the characteristic functions of the points. Homog-

enizing the fi with respect to x0 gives us homogeneous forms satisfying the

condition of Definition 2.8. So if the interpolation degree of X is d, then X

imposes independent conditions of forms of degree d. Furthermore, if X imposes

independent conditions on forms of degree d, then there exists a set of forms of

degree d that are “homogeneous characteristic functions” and dehomogenizing

by setting x0 = 1 gives a set of polynomials of degree at most d whose restric-

tions to X are characteristic functions for the points in affine space. �

To analyze the new problem in the projective setting we will use methods of

coherent sheaf cohomology. (One could use local cohomology with respect to

(x0, . . . , xr) equally well. See [Eisenbud ≥ 2004, Chapter 4] for this point of

view.) Let IX be the ideal sheaf of X and OX its structure sheaf. These
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sheaves fit into the short exact sequence:

0 - IX
- OPr - OX

- 0.

The following proposition shows that the property that X imposes indepen-

dent conditions on forms of degree d can be interpreted cohomologically.

Proposition 2.10. X imposes independent conditions on forms of degree d if

and only if H1IX(d) vanishes.

Proof. We are interested in whether X imposes independent conditions on

forms of degree d so we tensor (or “twist”) the short exact sequence by OPr(d).

Exactness is clearly preserved on the level of stalks since the stalks of OPr (d) are

rank one free modules, and this suffices to show that exactness of the sequence

of sheaves is also preserved. We write

0 - IX(d) - OPr (d) - OX(d) - 0.

The first three terms in the long exact sequence in cohomology have very

concrete interpretations:

0 - H0
IX(d) - H0

OPr(d)
ρ
- H0

OX(d) - H1
IX(d) - · · ·

0 - (IX)d

∼=

?
- Sd

∼=

?
- K

n
?

- · · ·

Note that the map ρ, which is given by dehomogenizing with respect to x0 and

evaluating the resulting degree d polynomials at the points of X, is surjective

if and only if X imposes independent conditions on forms of degree d. The

equivalent cohomological condition is that H1IX(d) = 0. �

The next proposition is a first step in relating vanishings in cohomology with

regularity.

Proposition 2.11. If reg IX ≤ d then HiIX(d− i) = 0.

Proof. The point is to construct a short exact sequence of sheaves where IX

is either the middle or right-hand term and we can say a lot about the vanishing

of the higher cohomology of the other two terms. We will get this short exact

sequence (with IX as the right-hand term) from a free resolution of IX . Let

0 - ⊕
S(−am,j) - · · ·

⊕
S(−a1,j) - ⊕

S(−a0,j) - IX - 0

be a minimal free resolution of IX . Its sheafification is exact because localization

is an exact functor. Splitting this complex into a series of short exact sequences,
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and twisting by d− i gives

0 0

@
@R �

��

K1(d−i)

�
�� @

@R
· · · - ⊕

OPr (d−i−a1,j) - ⊕
OPr(d−i−a0,j) - IX(d−i) - 0

�
��

K2(d−i)

From the long exact sequence associated to each short exact sequence in the

diagram we see that if d− i ≥ ai,j for each i, j, then H iIX(d − i) = 0 for each

i > 0. �

These conditions on the vanishings of the higher cohomology of twists of a sheaf

were first captured by Mumford by what we now call the Castelnuovo–Mumford

regularity of a coherent sheaf. We give the definition for sheaves in terms of the

regularity of the cohomology modules

Hi
∗F :=

⊕

d≥0

Hi
F (d),

which are finite-dimensional K−vector spaces by a theorem of Serre. (See

[Hartshorne 1977, Ch. III, Theorem 5.2] for a proof.)

Definition 2.12. If F is a coherent sheaf on Pr,

reg F = max
i>0

{regHi
∗F + i+ 1}.

We say that F is d−regular if d ≥ reg F .

One may also reformulate the definition of the regularity of a finitely generated

graded module in a similar fashion.

Theorem 2.13. If H is an Artinian module, define

regH = max {i | Hi 6= 0}.

If M is an arbitrary finitely generated graded S-module define

regM = max
i≥0

regHi
(x0,...,xr)M + i.

For a proof, one may see [Eisenbud ≥ 2004].

The following theorem is Mumford’s original definition of regularity.

Theorem 2.14 [Mumford 1966, p. 99]. If F is a coherent sheaf on P
r then F

is d-regular if H iF (d− i) = 0 for all i > 0.
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From the proof of Proposition 2.11 it is clear that if an arbitrary homogeneous

ideal I ⊆ S is d-regular, then I is d-regular. In general, the relationship be-

tween the regularity of coherent sheaves and finitely generated modules is a bit

technical. (One should expect this since each coherent sheaf on projective space

corresponds to an equivalence class of finitely generated graded S-modules.)

However, if we work with saturated homogeneous ideals of closed subsets of P
r

the correspondence is quite nice:

Theorem 2.15 [Bayer and Mumford 1993, Definition 3.2]. If IZ is the saturated

homogeneous ideal of all elements of S that vanish on a Zariski-closed subset Z

in Pr and IZ is its sheafification, then reg IZ = reg IZ .

(See the technical appendix to Chapter 3 in [Bayer and Mumford 1993] for a

proof.)

We return now to the problem of computing the interpolation degree of X. As

a consequence of Proposition 2.10, the interpolation degree of X is the minimum

d such that H1IX(d) = 0. We claim that IX is (d+1)-regular if and only if

H1IX(d) = 0. If IX is (d+1)-regular, the vanishing is part of the definition.

To see the opposite direction, look at the long exact sequence in cohomology

associated to any positive twist of

0 - IX
- OPr - OX

- 0.

The higher cohomology of positive twists of OPr always vanishes, and the higher

cohomology of any twist of OX vanishes because the support of OX has dimension

zero. Therefore, H iIX(k) = 0 for any positive integer k and all i ≥ 2.

We conclude that the interpolation degree ofX equals d if and only if reg IX =

d + 1, if and only if reg IX = d + 1, if and only if regS/IX = d. Thus, the in-

terpolation degree of X is equal to the Castelnuovo–Mumford regularity of its

homogeneous coordinate ring S/IX . In Section 3 we will see many more ways in

which regularity and geometry interact.

3. The Size of Free Resolutions

Throughout this section we set S = K[x0, . . . , xr] and let M denote a finitely

generated graded S-module. Let

F : 0 - Fm
φm- Fm−1

- · · · - F1
φ1- F0

be a minimal free resolution of M , and let βi,j be the graded Betti numbers—

that is, Fi =
⊕

j S(−j)βi,j . In this section we will survey some results and

conjectures related to the size of F .
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3.1. Projective dimension, the Auslander–Buchsbaum Theorem, and

Cohen–Macaulay modules. The most obvious question is about the length

m, usually called the projective dimension of M , written pdM . The Auslander–

Buchsbaum Theorem gives a very useful characterization. Recall that a regular

sequence of length t on M is a sequence of homogeneous elements f1, f2, . . . , ft

of positive degree in S such that fi+1 is a nonzerodivisor on M/(f1, . . . , fi)M for

each 0 ≤ i < t. (The definition usually includes the condition (f1, . . . , ft)M 6=

M , but this is superfluous because the fi have positive degree and M is finitely

generated.) The depth of M is the length of a maximal regular sequence on

M (all such maximal regular sequences have the same length). For example,

x0, . . . , xr is a maximal regular sequence on S and thus on any graded free S-

module. In general, the depth of M is at most the (Krull) dimension of M ;

M is said to be a Cohen–Macaulay module when these numbers are equal, or

equivalently when pdM = codimM .

Theorem 3.1 (Auslander–Buchsbaum). If S = K[x0, . . . , xr] and M is a

finitely generated graded S-module, then the projective dimension of M is r+1−t,

where t is the length of a maximal regular sequence on M .

Despite this neat result there are many open problems related to the existence of

modules with given projective dimension. Perhaps the most interesting concern

Cohen–Macaulay modules:

Problem 3.2. What is the minimal projective dimension of a module annihi-

lated by a given homogeneous ideal I? From the Auslander–Buchsbaum Theo-

rem this number is greater than or equal to codim I; is it in fact equal? That is,

does every factor ring S/I have a Cohen–Macaulay module? If S/I does have a

Cohen–Macaulay module, what is the smallest rank such a module can have?

If we drop the restriction that M should be finitely generated, then Hochster has

proved that Cohen–Macaulay modules (“big Cohen–Macaulay modules”) exist

for all S/I, and the problem of existence of finitely generated (“small”) Cohen–

Macaulay modules was posed by him. The problem is open for most S/I of

dimension ≥ 3. See [Hochster 1975] for further information.

One of the first author’s favorite problems is a strengthening of this one. A

module M is said to have linear resolution if its Betti diagram has just one

row—that is, if all the generators of M are in some degree d, the first syzygies

are generated in degree d + 1, and so on. For example the Koszul complex is a

linear resolution of the residue class field K of S. Thus the following problem

makes sense:

Problem 3.3. What is the minimal projective dimension of a module with

linear resolution annihilated by a given homogeneous ideal I? Is it in fact equal

to codim I? That is, does every factor ring S/I have a Cohen–Macaulay module

with linear resolution? If so, what is the smallest rank such a module can have?



LECTURES ON THE GEOMETRY OF SYZYGIES 137

Cohen–Macaulay modules with linear resolutions are often called linear Cohen–

Macaulay modules or Ulrich modules. They appear, among other places, in

the computation of resultants. See [Eisenbud et al. 2003b] for results in this

direction and pointers to the literature. This last problem is open even when

S/I is a Cohen–Macaulay ring—and the rank question is open even when I is

generated by a single element. See [Brennan et al. 1987].

An interesting consequence of the Auslander–Buchsbaum theorem is that it

allows us to compare projective dimensions of a module over different polynomial

rings. A very special case of this argument gives us a nice interpretation of what

it means to be a Cohen–Macaulay module or an Ulrich module. To explain it

we need another notion:

Recall that a sequence of homogeneous elements y1, . . . , yd ∈ S is called a

system of parameters on a graded module M of Krull dimension d if and only

if M/(y1, . . . , yd)M has (Krull) dimension 0, that is, has finite length. (This

happens if and only if (y1, . . . , yd)+annM contains a power of (x0, . . . , xr). For

details see [Eisenbud 1995, Ch. 10], for example.) If K is an infinite field, M is

a finitely generated graded module of dimension > 0, and y is a general linear

form, then dimM/yM = dimM − 1. It follows that if M has Krull dimension

d then any sufficiently general sequence of linear forms y1, . . . , yd is a system of

parameters. Moreover, if M is a Cohen–Macaulay module then every system of

parameters is a regular sequence on M .

Corollary 3.4. Suppose that K is an infinite field , and that M is a finitely

generated graded S-module of dimension d. Let y1, . . . , yd be general linear forms.

The module M is a finitely generated module over the subring T := K[y1, . . . , yd].

It is a Cohen–Macaulay S-module if and only if it is free as a graded T -module.

It is an Ulrich S-module if and only if , for some n, it is isomorphic to T n as a

graded T -module.

Proof. Because M is a graded S-module, it is also a graded T -module and M

is zero in sufficiently negative degrees. It follows that M can be generated by any

set of elements whose images generate M := M/(y1, . . . , yd)M . In particular, M

is a finitely generated T module if M is a finite-dimensional vector space. Since

y1, . . . , yd are general, the Krull dimension of M is 0. Since M is also a finitely

generated S-module, it is finite-dimensional as a vector space, proving that M

is a finitely generated T -module.

The module M is a Cohen–Macaulay S-module if and only if y1, . . . yd is an

M -regular sequence, and this is the same as the condition that M be a Cohen–

Macaulay T -module. Since T is regular and has the same dimension as M , the

Auslander–Buchsbaum formula shows that M is a Cohen–Macaulay T -module

if and only if it is a free graded T -module.

For the statement about Ulrich modules we need to use the characterization

of Castelnuovo–Mumford regularity by local cohomology; see [Brodmann and

Sharp 1998] or [Eisenbud ≥ 2004]. Since y1, . . . , yd is a system of parameters
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on M , the ideal (y1, . . . , yd) + annM has radical (x0, . . . , xr) and it follows that

the local cohomology modules Hi
(x0,...,xr)(M) and Hi

(y1,...,yd)(M) are the same.

Thus the regularity of M is the same as a T -module or as an S-module. We can

rephrase the definition of the Ulrich property to say that M is Ulrich if and only

if M is Cohen–Macaulay, Mi = 0 for i < 0 and M has regularity 0. Thus M is

Ulrich as an S-module if and only if it is Ulrich as a T -module. Since M is a

graded free T -module, we see that it is Ulrich if and only if, as a T -module, it is

a direct sum of copies of T . �

Since S/annM acts on M as endomorphisms, we can say from Corollary 3.4

that there is an Ulrich module with annihilator I if and only if (for some n) the

ring S/I admits a faithful representation as n × n matrices over a polynomial

ring. Similarly, there is a Cohen–Macaulay module with annihilator I if S/I has

a faithful representation as EndF modules for some graded free module F .

3.2. Bounds on the regularity. The regularity of an arbitrary ideal I ⊂ S

can behave very wildly, but there is evidence to suggest that the regularity of

ideals defining (nice) varieties is much lower. Here is a sampling of results and

conjectures in this direction. See for example [Bayer and Mumford 1993] for the

classic conjectures and [Chardin and D’Cruz 2003] and the papers cited there

for a more detailed idea of current research.

Arbitrary ideals: Mayr–Meyer and Bayer–Stillman. Arguments going back to

Hermann [1926] give a bound on the regularity of an ideal that depends only

on the degrees of its generators and the number of variables—a bound that is

extremely large.

Theorem 3.5. If I is generated by forms of degree d in a polynomial ring in

r + 1 variables over a field of characteristic zero, then reg I ≤ (2d)2
r−1

.

For recent progress in positive characteristic, see [Caviglia and Sbarra 2003].

An argument of Mayr and Meyer [1982], adapted to the case of ideals in a

polynomial ring by Bayer and Stillman [1988], shows that the regularity can

really be (roughly) as large as this bound allows: doubly exponential in the

number of variables. These examples were improved slightly by Koh [1998] to

give the following result.

Theorem 3.6. For each integer n ≥ 1 there exists an ideal In ⊂ K[x0, . . . , xr]

with r = 22n− 1 that is generated by quadrics and has regularity

reg In ≥ 22n−1

.

See [Swanson 2004] for a detailed study of the primary decomposition of the

Bayer–Stillman ideals, which are highly nonreduced. See [Giaimo 2004] for a

way of making reduced examples using these ideals as a starting point.



LECTURES ON THE GEOMETRY OF SYZYGIES 139

By contrast, for smooth or nearly smooth varieties, there are much better

bounds, linear in each of r and d, due to Bertram, Ein and Lazarsfeld [Bertram

et al. 1991] and Chardin and Ulrich [2002]: For example:

Theorem 3.7. If K has characteristic 0 and X ⊂ P
r is a smooth variety defined

scheme-theoretically by equations of degree ≤ d, then

reg IX ≤ 1 + (d− 1)r.

More precisely , if X has codimension c and X is defined scheme-theoretically by

equations of degrees d1 ≥ d2 ≥ · · ·, then

reg IX ≤ d1 + · · · dc − c+ 1.

The hypotheses “smooth” and “characteristic 0” are used in the proof through

the use of the Kawamata–Viehweg vanishing theorems; but there is no evidence

that they are necessary to the statement, which might be true for any reduced

algebraic set over an algebraically closed field.

The Bertram–Ein–Lazarsfeld bound is sharp for complete intersection vari-

eties. But one might feel that, when dealing with the defining ideal of a variety

that is far from a complete intersection, the degree of the variety is a more natu-

ral measure of complexity than the degrees of the equations. This point of view

is borne out by a classic theorem proved by Castelnuovo in the smooth case and

by Gruson, Lazarsfeld and Peskine [Gruson et al. 1983] in general: If K is alge-

braically closed and I is prime defining a projective curve X, then the regularity

is linear in the degree of X. (Extending the ground field does not change the

regularity, but may spoil primeness.)

Theorem 3.8. If K is algebraically closed , and I is the ideal of an irreducible

curve X of degree d in Pr not contained in a hyperplane, then

reg I ≤ d− r + 2.

Giaimo [2003] has proved a generalization of this bound when X is only assumed

to be reduced, answering a conjecture of Eisenbud.

On the other hand, it is easy to see (or look up in [Eisenbud ≥ 2004, Ch. 4])

that if X ⊂ Pr is a scheme not contained in any hyperplane, and S/IX is Cohen–

Macaulay, then

reg IX ≤ degX − codimX + 1.

When X is an irreducible curve, this coincides with the Gruson–Lazarsfeld–

Peskine Theorem. From this remark and some (scanty) further evidence, Eisen-

bud and Goto [1984] conjectured that the same bound holds for prime ideals:

Conjecture 3.9. Let K be an algebraically closed field. If X ⊂ P
r is an

irreducible variety not contained in a hyperplane, then

reg IX ≤ degX − codimX + 1.
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This is now known to hold for surfaces that are smooth [Bayer and Mumford

1993] and a little more generally [Brodmann 1999; Brodmann and Vogel 1993];

also for toric varieties of codimension two [Peeva and Sturmfels 1998] and a

few other classes. Slightly weaker bounds, still linear in the degree, are known

for smooth varieties up to dimension six [Kwak 1998; 2000]. Based on a similar

analogy and and a little more evidence, Eisenbud has conjectured that the bound

of Conjecture 3.9 holds if X is merely reduced and connected in codimension 1.

Both the connectedness and the reducedness hypothesis are necessary, as the

following examples show:

Example 3.10 (Two skew lines in P3). Let

I = (s, t) ∩ (u, v) = (s, t) · (u, v) ⊂ S = K[s, t, u, v]

be the ideal of the union X of two skew lines (that is, lines that do not meet)

in P
3. The degree of X is of course 2, and X is certainly not contained in a

hyperplane. But the Betti diagram of the resolution of S/I is

0 1 2 3

0 1 − − −

1 − 4 4 1

so reg I = 2 > degX − codimX + 1.

Example 3.11 (A multiple line in P3). Let

I = (s, t)2 + (p(u, v) · s + q(u, v) · t) ⊂ S = K[s, t, u, v],

where p(u, v) and q(u, v) are relatively prime forms of degree d ≥ 1. The ideal I

has degree 2, independent of d, and no embedded components. The scheme X

defined by I has degree 2; it is a double structure on the line V (s, t), contained

in the first infinitesimal neighborhood V ((s, t)2) of the line in P
3. It may be

visualized as the thickening of the line along a “ribbon” that twists d times

around the line. But the Betti diagram of the resolution of S/I is

0 1 2 3

0 1 − − −

1 − 3 2 −

2 − − − −

...
...

...
...

...
d − 1 − − − −

d − 1 2 1

so reg I = d+ 1 > degX − codimX + 1 = 1.

This last example (and many more) shows that there is no bound on the regular-

ity of a nonreduced scheme in terms of the degree of the scheme alone. But the

problem for reduced schemes is much milder, and Bayer and Stillman [1988] have

conjectured that the regularity of a reduced scheme over an algebraically closed
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field should be bounded by its degree (the sum of the degrees of its components).

Perhaps the strongest current evidence for this assertion is the recent result of

Derksen and Sidman [2002]:

Theorem 3.12. If K is an algebraically closed field and X is a union of d linear

subspaces of P
r, then reg IX ≤ d

3.3. Bounds on the ranks of the free modules. From the work of Hermann

[1926], there are (very large) upper bounds known for the ranks of the free

modules Fi in a minimal free resolution

F : 0 - Fm
φm- . . .→ F1

φ1- F0

in terms of the ranks of the modules F1 and F0 and the degrees of their gen-

erators. However, recent work has focused on lower bounds. The only general

result known is that of Evans and Griffith [1981; 1985]:

Theorem 3.13. If Fm 6= 0 then rank imφi ≥ i for i < m; in particular ,

rankFi ≥ 2i+ 1 for i < m− 1, and rankFm−1 ≥ n.

For an example, consider the Koszul complex resolving S/I, where I is generated

by a regular sequence of length m. In this case rankFm−1 = m, showing that the

first statement of Theorem 3.13 is sharp for i = m−1. But in the Koszul complex

case the “right” bound for the rank is a binomial coefficient. Based on many small

examples, Horrocks (see [Hartshorne 1979, problem 24]), motivated by questions

on low rank vector bundles, and independently Buchsbaum and Eisenbud [1977],

conjectured that something like this should be true more generally:

Conjecture 3.14. IfM has codimension c, then the i-th map φi in the minimal

free resolution of M has rankφi ≥
(
c−1
i−1

)
, so the i-th free module, has rankFi ≥(

c
i

)
. In particular,

∑
rankFi ≥ 2c.

The last statement, slightly generalized, was made independently by the topolo-

gist Gunnar Carlsson [1982; 1983] in connection with the study of group actions

on products of spheres.

The conjecture is known to hold for resolutions of monomial ideals [Chara-

lambous 1991], for ideals in the linkage class of a complete intersection [Huneke

and Ulrich 1987], and for small r (see [Charalambous and Evans 1992] for more

information). The conjectured bound on the sum of the ranks holds for almost

complete intersections by Dugger [2000] and for graded modules in certain cases

by Avramov and Buchweitz [1993].

4. Linear Complexes and the Strands of Resolutions

As before we set S = K[x0, . . . , xr]. The free resolution of a finitely generated

graded module can be built up as an iterated extension of linear complexes, its

linear strands. These are complexes whose maps can be represented by matrices
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of linear forms. In this section we will explain the Bernstein–Gelfand–Gelfand

correspondence (BGG) between linear free complexes and modules over a certain

exterior algebra. We will develop an exterior algebra version of Fitting’s Lemma,

which connects annihilators of modules over a commutative ring with minors of

matrices. Finally, we will use these tools to explain Green’s proof of the Linear

Syzygy Conjecture of Eisenbud, Koh, and Stillman.

4.1. Strands of resolutions. Let

F : 0 - Fm
φm- Fm−1

- · · · - F1
φ1- F0

be any complex of free graded modules, and write Fi =
⊕

j S(−j)βi,j . Although

we do not assume that F is a resolution, we require it to be a minimal complex

in the sense that Fi maps to a submodule not containing any minimal generator

of Fi−1. By Nakayama’s Lemma, this condition is equivalent to the condition

that φiFi ⊂ (x0, . . . , xr)Fi−1 for all i > 0.

Under these circumstances F has a natural filtration by subcomplexes as

follows. Let b0 = mini,j {j − i | βi,j 6= 0}. For each i let Li be the submodule of

Fi generated by elements of degree b0 + i. Because Fi is free and has no elements

of degree < b0 + i the module Li is free, Li
∼= S(−b0 − i)βi,b0+i . Further, since

φiFi does not contain any of the minimal degree elements of Fi−1 we see that

φiLi ⊂ Li−1; that is, the modules Li form a subcomplex of F . This subcomplex

L is a linear free complex in the sense that Li is generated in degree 1 more than

Li−1, so that the differential ψi = φi|Li
: Li → Li−1 can be represented by a

matrix of linear forms.

We will denote this complex Lb0 , and call it the first strand of F . Factoring

out Lb0 we get a new minimal free complex, so we can repeat the process to get

a filtration of F by these strands.

We can see the numerical characteristics of the strands of F : it follows at

once from the definition that the Betti diagrams of the linear strands of F are

the rows of the Betti diagram of F ! This is perhaps the best reason of all for

writing the Betti diagram in the form we have given.

Now suppose that F is actually the minimal free resolution of IX for some

projective scheme X. It turns out in many interesting cases that the lengths of

the individual strands of F carry much deeper geometric information than does

the length of F itself. A first example of this can be seen in the case of the four

points, treated in Section 1. The Auslander–Buchsbaum Theorem shows that

the resolution of SX has length exactly r for any finite set of points X ⊂ P
r. But

for four points not all contained in a line, the first linear strand of the minimal

resolution of the ideal IX had length 1 if and only if some three of the points

were collinear (else it had length 0). In fact, the line itself was visible in the first

strand: in case it had length 1, it had the form

0 → S(−3)
φ- S(−2)2 - 0,
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and the entries of a matrix representing φ were exactly the generators of the

ideal of the line.

A much deeper example is represented by the following conjecture of Mark

Green. After the genus, perhaps the most important invariant of a smooth

algebraic curve is its Clifford index. For a smooth curve of genus g ≥ 3 this

may be defined as the minimum, over all degree d maps α (where d ≤ g − 1)

from X to a projective space P
r, with image not contained in a hyperplane, as

degα−2r. The number CliffX is always nonnegative (Clifford’s Theorem). The

smaller the Clifford index is, the more special X is. For example, the Clifford

index CliffX is 0 if and only if X is a double cover of P1. If it is not 0, it is 1

if and only if X is either a smooth plane curve or a triple cover of the line. For

“most curves” the Clifford index is simply d− 2, where d is the smallest degree

of a nonconstant map from X to P
1; see [Eisenbud et al. 1989].

A curve X of genus g ≥ 3 that is not hyperelliptic has a distinguished embed-

ding in the projective space X ⊂ P
g−1 called the canonical embedding, obtained

by taking the complete linear series of canonical divisors. Any invariant derived

from the canonical embedding of a curve is thus an invariant of the abstract

(nonembedded) curve. It turns out that the Hilbert functions of all canonically

embedded curves of genus g are the same. This is true also of the projective

dimension and the regularity of the ideals of such curves. But the graded Betti

numbers seem to reflect quite a lot of the geometry of the curve. In particular,

Green conjectured that the length of the first linear strand of the resolution of

IX gives precisely the Clifford index:

Conjecture 4.1. Suppose that K has characteristic 0, and let X be a smooth

curve of genus g, embedded in Pg−1 by the complete canonical series. The length

of the first linear strand of the minimal free resolution of IX is g − 3 − CliffX.

The conjecture has been verified by Schreyer [1989] for all curves of genus g ≤ 8.

It was recently proved for a generic curve of each Clifford index by Teixidor [2002]

and Voisin [2002a; 2002b] (this may not prove the whole conjecture, because the

family of curves of given genus and Clifford index may not be irreducible).

For a version of the conjecture involving high-degree embeddings of X instead

of canonical embeddings, see [Green and Lazarsfeld 1988]. See also [Eisenbud

1992; Schreyer 1991] for more information.

4.2. How long is a linear strand? With these motivations, we now ask for

bounds on the length of the first linear strand of the minimal free resolution of an

arbitrary graded moduleM . One of the few general results in this direction is due

to Green. To prepare for it, we give two examples of minimal free resolutions with

rather long linear strands— in fact they will have the maximal length allowed

by Green’s Theorem:

Example 4.2 (The Koszul complex). The first example is already familiar:

the Koszul complex of the linear forms x0, . . . , xs is equal to its first linear strand.
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Notice that it is a resolution of a module with just one generator, and that the

length of the resolution (or its linear strand) is the dimension of the vector space

〈x0, . . . , xs〉 of linear forms that annihilate that generator.

Example 4.3 (The canonical module of the rational normal curve).

Let X be the rational normal curve of degree d, the image in P
d of the map

P
1 → P

d : (s, t) 7→ (sd, sd−1t, . . . , std−1, td).

It is not hard to show (see [Harris 1992, Example 1.16] or [Eisenbud 1995, Ex-

ercise A2.10]) that the ideal IX is generated by the 2 × 2 minors of the matrix

(
x0 x1 · · · xd−1

x1 x2 · · · xd

)

and has minimal free resolution F with Betti diagram

0 1 · · · d − 2 d − 1

0 1 − · · · − −

1 −
`

d

2

´

· · · (d − 2)d d − 1

Let ω be the module of twisted global sections of the canonical sheaf ωP1 =

OP1(−2 points):

H0
OP1(−2 + d points) ⊕ H0

OP1(−2 + 2d points) ⊕ · · ·

By duality, ω can be expressed as Extd−1
S (SX , S(−d− 1)), which is the cokernel

of the dual of the last map in the resolution of SX , twisted by −d − 1. From

the length of the resolution and the Auslander–Buchsbaum Theorem we see that

SX is Cohen–Macaulay, and it follows that the twisted dual of the resolution,

F
∗(−d− 1), is the resolution of ω, which has Betti diagram

0 1 · · · d − 2 d − 1

1 d − 1 (d − 2)d · · ·
`

d

2

´

−

2 − − · · · − 1

In particular, we see that ω has d − 1 generators, and the length of the first

linear strand of its resolution is d − 2. Since ω is the module of twisted global

sections of a line bundle on X, it is a torsion-free SX -module. In particular, since

the ideal of X does not contain any linear forms, no element of ω is annihilated

by any linear form.

These examples hint at two factors that might influence the length of the first

linear strand of the resolution of M : the generators of M that are annihilated by

linear forms; and the sheer number of generators of M . We can pack both these

numbers into one invariant. For convenience we will normalize M by shifting

the grading until Mi = 0 for i < 0 and M0 6= 0. Let W = S1 be the space of

linear forms in S, and let P = P(M ∗
0 ) be the projective space of 1-dimensional
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subspaces of M0 (we use the convention that P(V ) is the projective space of

1-dimensional quotients of V ). Let A(M) ⊂W × P be the set

A(M) :=
{
(x, 〈m〉) ∈W × P | xm = 0

}
.

The set A(M) contains 0×P, so it has dimension ≥ dimK M0−1. In Example 4.3

this is all it contains. In Example 4.2 however it also contains 〈x0, . . . , xs〉× 〈1〉,

a variety of dimension s+1, so it has dimension s+1. In both cases its dimension

is the same as the length of the first linear strand of the resolution. The following

result was one of those conjectured by Eisenbud, Koh and Stillman (the “Linear

Syzygy Conjecture”) based on a result of Green’s covering the torsion-free case,

and then proved in general by Green [1999]:

Theorem 4.4 (Linear Syzygy Conjecture). Let M be a graded S-module,

and suppose for convenience that Mi = 0 for i < 0 while M0 6= 0. The length of

the first linear strand of the minimal free resolution of M is at most dimA(M).

Put differently, the only way that the length of the first linear strand can be

> dimK M0 is if there are “many” nontrivial pairs (x,m) ∈ W ×M0 such that

xm = 0.

The statement of Theorem 4.4 is only one of several conjectures in the paper

of Eisenbud, Koh, and Stillman. For example, they also conjecture that if the

resolution of M has first linear strand of length > dimK M0, and M is minimal

in a suitable sense, then every element of M0 must be annihilated by some linear

form. See [Eisenbud et al. 1988] for this and other stronger forms.

Though it explains the length of the first linear strand of the resolutions of

the residue field K or its first syzygy module (x0, . . . , xr), Theorem 4.4 is far

from sharp in general. A typical case where one would like to do better is the

following: the second syzygy module of K has no torsion and
(
r+1
2

)
generators, so

the theorem bounds the length of its first linear strand by
(
r+1
2

)
− 1. However,

its first linear strand only has length r − 1. We have no theory—not even a

conjecture— capable of predicting this.

We will sketch the proof after developing some basic theory connecting the

question with questions about modules over exterior algebras.

4.3. Linear free complexes and exterior modules. The Bernstein–Gelfand–

Gelfand correspondence is usually thought of as a rather abstract isomorphism

between some derived categories. However, it has at its root a very simple ob-

servation about linear free complexes: A linear free complex over S is “the same

thing” as a module over the exterior algebra on the dual of S1.

To simplify the notation, we will (continue to) write W for the vector space

of linear forms S1 of S, and we write V := W ∗ for its vector space dual. We set

E =
∧
V , the exterior algebra on V . Since W consists of elements of degree 1,

we regard elements of V as having degree −1, and this gives a grading on E with∧i
V in degree −i. We will use the element

∑
i xi ⊗ ei ∈W ⊗V , where {xi} and
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{ei} are dual bases of W and V . This element does not depend on the choice of

bases— it is the image of 1 ∈ K under the dual of the natural contraction map

V ⊗W → K : v ⊗ w 7→ v(w).

Although E is not commutative in the usual sense, it is strictly commutative in

the sense that

ef = (−1)(deg e)(deg f)fe

for any two homogeneous elements e, f ∈ E. In nearly all respects, E behaves

just like a finite-dimensional commutative graded ring. The following simple

idea connects graded modules over E with linear free complexes over S:

Proposition 4.5. Let {xi} and {ei} be dual bases of W and V , and let P =⊕
Pi be a graded E-module. The maps

φi : S ⊗ Pi → S ⊗ Pi−1

1 ⊗ p 7→
∑

j xj ⊗ ejp

make

L(P ) : · · · - S ⊗ Pi
φi- S ⊗ Pi−1

- · · · ,

into a linear complex of free S-modules. Every complex of free S modules L :

· · · → Fi → Fi−1 → · · ·, where Fi is a sum of copies of S(−i) has the form L(P )

for a unique graded E-module P .

Proof. Given an E-module P , we have

φi−1φi(p) = φi−1

(∑

j

xj ⊗ ejp

)
=

∑

k

(∑

j

xjxk ⊗ ejekp

)
.

The terms x2
j ⊗ e2jp are zero because e2j = 0. Each other term occurs twice, with

opposite signs, because of the skew-commutativity of E, so φi−1φi = 0 and L(P )

is a linear free complex as claimed.

Conversely, given a linear free complex L, we set Pi = Fi/(x0, . . . , xr)Fi.

Because L is linear, differentials of L provide maps ψi : Pi →W⊗Pi−1. Suppose

p ∈ Pi. If ψi(p) =
∑
xj ⊗ pj then we define µi : E ⊗ Pi → E ⊗ Pi−1 by

1 ⊗ p 7→
∑
ej ⊗ pj . Using the fact that the differentials of L compose to 0, it is

easy to check that these “multiplication” maps make P into a graded E-module,

and that the two operations are inverse to one another. �

Example 4.6. The Koszul complex

0 →
∧r+1

Sr+1 → · · · →
∧1

Sr+1 → S → 0

is a linear free complex over S. To make the maps natural, we should think of

Sr+1 as S ⊗W . Applying the recipe in Proposition 4.5 we see that Pi =
∧i

W .

The module structure on P is that given by contraction, e ⊗ x 7→ e¬x. This

module P is canonically isomorphic to Hom(E,K), which is a left E-module via

the right-module structure of E. It is also noncanonically isomorphic to E; to
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define the isomorphism E → P we must choose a nonzero element of
∧r+1

W , an

orientation, to be the image of 1 ∈ E. See [Eisenbud 1995, Ch. 17], for details.

The BGG point of view on linear complexes is well-adapted to studying the

linear strand of a resolution, as one sees from the following result. For any

finitely generated left module P over E we write P̂ for the module Hom(P,K);

it is naturally a right module, but we make it back into a left module via the

involution ι : E → E sending a homogeneous element a ∈ E to ι(a) = (−1)deg aa.

Proposition 4.7. Let L = L(P ) be a finite linear free complex over S corre-

sponding to the graded E-module P .

1. L is a subcomplex of the first linear strand of a minimal free resolution if and

only if P̂ is generated in degree 0.

2. L is the first linear strand of a minimal free resolution if and only if P̂ has a

linear presentation matrix .

· · ·

∞. L is a free resolution if and only if P̂ has a linear free resolution.

Here the infinitely many parts of the proposition correspond to the infinitely

many degrees in which L could have homology. For the proof, which depends on

the Koszul homology formula Hi(L)i+d = Tord(K, P̂ )−d−i, see [Eisenbud et al.

2003a].

4.4. The exterior Fitting Lemma and the proof of the Linear Syzygy

Conjecture. The strategy of Green’s proof of the Linear Syzygy Conjecture is

now easy to describe. We first reformulate the statement slightly. The algebraic

set A(M) consists of P and the set

A′ =
{
(x, 〈y〉) | 0 6= x ∈W, y ∈M0 and xm = 0

}
.

Supposing that the first linear strand L of the resolution of M has length k

greater than dimA′, we must show that k < dimM0. We can write L = L(P ) for

some graded E-module P , and we must show that Pm = 0, where m = dimK M0.

From Proposition 4.7 we know that P̂ is generated in degree 0. Thus to show

Pm = 0, it is necessary and sufficient that we show that P̂ is annihilated by

the m-th power of the maximal ideal E+ of E. In fact, we also know that P̂

is linearly presented. Thus we need to use the linear relations on P̂ to produce

enough elements of the annihilator of P to generate (E+)m.

If E were a commutative ring, this would be exactly the sort of thing where

we would need to apply the classical Fitting Lemma (see for example [Eisenbud

1995, Ch. 20]), which derives information about the annihilator of a module from

a free presentation. We will explain a version of the Fitting Lemma that can be

used in our exterior situation.

First we review the classical version. We write Im(φ) for the ideal of m×m

minors of a matrix φ
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Lemma 4.8 (Fitting’s Lemma). If

M = coker(Sn(−1)
φ- Sm)

is a free presentation, then Im(φ) ⊂ annM . In the generic case, when φ is

represented by a matrix of indeterminates, the annihilator is equal to Im(φ).

To get an idea of the analogue over the exterior algebra, consider first the special

case of a module with presentation

P = coker(E(1)

0

B

B

B

@

e1
...

et

1

C

C

C

A

- Et),

where the ei are elements of V = E−1. If we write p1, . . . , pt for the elements

of P that are images of the basis vectors of Et, then the defining relation is∑
eipi = 0. We claim that

∏
i ei annihilates P . Indeed,

(∏

i

ei

)
pj =

(∏

i6=j

ei

)
ejpj =

(∏

i6=j

ei

)∑

i6=j

−eipi = 0

since e2i = 0. Once can show that, if the ei are linearly independent, then
∏

i ei

actually generates annP . Thus the product is the analogue of the “Fitting ideal”

in this case.

In general, if

P = coker(E(1)s φ- Et),

then the product of the elements of every column of the matrix φ annihilates P

for the same reason. The same is true of the generalized columns of φ—that

is, the linear combinations with K coefficients of the columns. In the generic

case these products generate the annihilator. Unfortunately it is not clear from

this description which—or even how many—generalized columns are required

to generate this ideal.

To get a more usable description, recall that the permanent permφ of a t× t

matrix φ is the sum over permutations σ of the products φ1,σ(1) · · ·φt,σ(t) (the

“determinant without signs”). At least in characteristic zero, the product
∏
ei

in our first example is t! times the permanent of the t × t matrix obtained by

repeating the same column t times. More generally, if we make a t× t matrix φ

using a1 copies of a column φ1, a2 copies of a second column φ2, and in general

au copies of φu, so that
∑
ai = t, we find that, in the exterior algebra over the

integers, the permanent is divisible by a1!a2! · · · au!. We will write

(φ
(a1)
1 , . . . , φ(au)

u ) =
1

a1!a2! · · · au!
permφ

for this expression, and we call it a t× t divided permanent of the matrix φ. It

is easy to see that the divided permanents are in the linear span of the products



LECTURES ON THE GEOMETRY OF SYZYGIES 149

of the generalized columns of φ. This leads us to the desired analogue of the

Fitting Lemma:

Theorem 4.9. Let P be a module over E with linear presentation matrix

φ : Es(1) → Et. The divided permanents (φ
(a1)
1 , . . . , φ

(au)
u ) are elements of

the annihilator of P . If the st entries of the matrix φ are linearly independent

in V , then these elements generate the annihilator .

The ideal generated by the divided permanents can be described without recourse

to the bases above as the image of a certain map Dt(E
s(1)) ⊗

∧t
Et → E

defined from φ by multilinear algebra, where Dt(F ) = (Symt F
∗)∗ is the t-th

divided power. This formula first appears in [Green 1999] For the fact that

the annihilator is generated by the divided permanents, and a generalization to

matrices with entries of any degree, see [Eisenbud and Weyman 2003].
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