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Commutative Algebra of n Points in the Plane
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WITH AN APPENDIX BY EZRA MILLER

Abstract. We study questions arising from the geometry of configurations

of n points in the affine plane C
2. We first examine the ideal of the locus

where some two of the points coincide, and then study the rings of invariants

and coinvariants for the action of the symmetric group Sn permuting the

points among themselves. We also discuss the ideal of relations among the

slopes of the lines that connect the n points pairwise, which is the subject

of beautiful and surprising results by Jeremy Martin.
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Introduction

These lectures address commutative algebra questions arising from the geom-

etry of configurations of n points in the affine plane C2. In the first lecture, we

study the ideal of the locus where some two of the points coincide. We are led

naturally to consider the action of the symmetric group Sn permuting the points

among themselves. This provides the topic for the second lecture, in which we

study the rings of invariants and coinvariants for this action. As you can see,

we have chosen to study questions that involve rather simple and naive geo-

metric considerations. For those who have not encountered this subject before,

it may come as a surprise that the theorems which give the answers are quite

remarkable, and seem to be hard.

One reason for the subtlety of the theorems is that lurking in the background

is the more subtle geometry of the Hilbert scheme of points in the plane. The
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special properties of this algebraic variety play a role in the proofs of the theo-

rems. The involvement of the Hilbert scheme in the proofs means that at present

the theorems apply only to points in the plane, even though we could equally

well raise the same questions for points in Cd, and conjecturally we expect them

to have similar answers.

In the third lecture, we change perspective slightly, by introducing the
(

n
2

)

lines connecting the points in pairs, and asking for the ideal of relations among

the slopes of these lines when the points are in general position (that is, no two

points coincide). We present a synopsis of the beautiful and surprising results

on this problem found by my former student, Jeremy Martin.

Lecture 1: A Subspace Arrangement

We consider ordered n-tuples of points in the plane, denoted by

P1, . . . , Pn ∈ C2.

We work over C to keep things simple and geometrically concrete, although some

of the commutative algebra results remain true over more general ground rings.

Assigning the points coordinates

x1, y1, . . . , xn, yn,

we identify the space E of all n-tuples (P1, . . . , Pn) with C2n. The coordinate

ring of E is then the polynomial ring

C[E] = C[x,y] = C[x1, y1, . . . , xn, yn]

in 2n variables. Let Vij be the locus where Pi = Pj , that is, the codimension-2

subspace of E defined by the equations xi = xj and yi = yj . The locus

V =
⋃

i<j

Vij

where some two points coincide is a subspace arrangement of
(

n
2

)

codimension-2

subspaces in E. Evidently, V is the zero locus of the radical ideal

I = I(V ) =
⋂

i<j

(xi−xj , yi−yj).

The central theme of today’s lecture is: What does the ideal I look like?

As a warm-up, we consider the much easier case of n points on a line. Then

we only have coordinates x1, . . . , xn, and the analog of I is the ideal

J =
⋂

i<j

(xi−xj) ⊆ C[x].

This ideal has some easily checked properties.
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(1) J is the principal ideal (∆(x)) generated by the Vandermonde determinant

∆(x) =
∏

i<j

(xi−xj) = det











1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

...

1 xn . . . xn−1
n











.

(2) J is (trivially) a free C[x] module with generator ∆(x).

(3) Jm = J (m) def
=

⋂

i<j(xi −xj)m, that is, the powers of J are equal to its

symbolic powers. This is clear, since both ideals are equal to (∆(x)m).

(4) The Rees algebra C[x][tJ ] is Gorenstein. In fact, it’s just a polynomial ring

in n+1 variables.

All this follows from the fact that J is the ideal of a hyperplane arrangement.

In general, one cannot say much about the ideal of an arrangement of subspaces

of codimension 2 or more. However, our ideal I is rather special, so let’s try to

compare its properties with those listed above for J .

Beginning with property (1), we can observe that I has certain obvious ele-

ments. The symmetric group Sn acts on E, permuting the points Pi. In coordi-

nates, this is the diagonal action

σxi = xσ(i), σyi = yσ(i) for σ ∈ Sn.

We denote the sign character of Sn by

ε(σ) =

{

1 if σ is even,

−1 if σ is odd.

Let

C[x,y]ε = {f ∈ C[x,y] : σf = ε(σ)f for all σ ∈ Sn}
be the space of alternating polynomials. Any alternating polynomial f satisfies

f(x1, y1, . . . , xi, yi, . . . , xj , yj , . . . , xn, yn)

= −f(x1, y1, . . . , xj , yj , . . . , xi, yi, . . . , xn, yn),

which immediately implies that f vanishes on every Vij , that is, f belongs to I.

There is a natural vector space basis for C[x,y]ε. Namely, let xαyβ =

xα1
1 yβ1

1 . . . xαn
n yβn

n be a monomial, and put

A(xαyβ) =
∑

σ∈Sn

ε(σ)σ(xαyβ).

If the exponent pairs (αi, βi) are not all distinct, then A(xαyβ) = 0. If they are

all distinct, set D = {(α1, β1), . . . , (αn, βn)} ⊆ N×N. Then A(xαyβ) is given

by a bivariate analog of the Vandermonde determinant

A(xαyβ) = ∆D = det







xα1
1 yβ1

1 . . . xαn

1 yβn

1
...

...

xα1
n yβ1

n . . . xαn
n yβn

n






,
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which only depends on D, up to sign. It is easy to see that the set of all such

polynomials

{∆D : D ⊆ N×N, |D| = n}
is a vector space basis of C[x,y]ε. In particular, the ideal they generate is the

same as the ideal generated by all alternating polynomials. We have just seen

that this ideal is contained in I.

Theorem 1.1. We have I = (∆D : D ⊆ N×N, |D| = n).

As far as I know, this is not an easy theorem. We will say something about its

proof later on. Before that, we discuss briefly the question of finding a minimal

set of generators for I, and take up the analogs of the other properties (2)–(4)

that we had for J .

Note that I is a homogeneous ideal — in fact it is doubly homogeneous, with

respect to the double grading given by degrees in the x and y variables separately.

It follows that a set of homogeneous generators for I, for example a subset of

the ∆D’s, is minimal if and only if its image is a vector space basis of

I/(x,y)I.

It turns out that we know exactly what the size of such a minimal generating

set must be, although no one has yet succeeded in finding an explicit choice of

minimal generators.

Theorem 1.2. The dimension of I/(x,y)I is equal to the Catalan number

Cn =
1

n+1

(

2n

n

)

.

Indeed, quite a bit more can be said. The space M = I/(x,y)I is doubly graded,

say M =
⊕

r,s Mr,s. Define a “q, t-analog” of the Catalan number by

Cn(q, t) =
∑

r,s

trqs dim Mr,s.

According to Theorem 1.2 we then have Cn(1, 1) = Cn. From geometric con-

siderations involving the Hilbert scheme we have a formula for Cn(q, t) [Haiman

1998; 2002], and Theorem 1.2 is proved by specializing the formula to q = t = 1.

The formula gives Cn(q, t) as a complicated rational function of q, t that on its

face is not even obviously a polynomial. However, Garsia and Haglund [Garsia

and Haglund 2001; 2002] discovered a simple combinatorial interpretation of the

formula, as follows. Let D be the set of integer sequences

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0

satisfying

λi ≤ n− i for all i.
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In other words, D is the set of partitions whose Young diagram fits inside that

of the partition (n−1, n−2, . . . , 1). It is well-known that the number of these is

the Catalan number Cn. For each λ ∈ D , define

a(λ) =
∑

i

(n− i−λ),

b(λ) =
∣

∣

{

i < j : λi−λj + i−j ∈ {0, 1}
}∣

∣ .

Garsia and Haglund showed that

Cn(q, t) =
∑

λ∈D

qa(λ)tb(λ).

Problem 1.3. Find a rule associating to each λ ∈ D an n-element subset

D(λ) ⊆ N×N in such a way that deg
y

∆D(λ) = a(λ), deg
x

∆D(λ) = b(λ), and

the set {∆D(λ) : λ ∈ D} generates I.

A solution to this problem would give a new and in some sense improved proof

of the Garsia–Haglund result. One can proceed similarly for the powers of I,

defining

M (m) = Im/(x,y)Im

and

C(m)
n (q, t) =

∑

r,s

trqs dim M (m)
r,s .

Again there is a formula for C
(m)
n (q, t) from geometry. There is also a conjectured

combinatorial interpretation, as follows. Let D (m) be the set of integer sequences

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0

satisfying

λi ≤ m(n− i) for all i.

In other words, we now allow partitions whose Young diagram fits inside that of

m ·(n−1, n−2, . . . , 1). For each λ ∈ D (m), define

a(m)(λ) =
∑

i

(m(n− i)−λ),

b(m)(λ) =
∣

∣

{

i < j : λi−λj +m(i−j) ∈ {0, 1, . . . ,m}
}∣

∣ .

Conjecture 1.4. We have C
(m)
n (q, t) =

∑

λ∈D(m) qa(m)(λ)tb
(m)(λ).

Problem 1.5. Find generators for Im indexed by elements λ ∈ D (m), with

y-degree equal to a(m)(λ) and x-degree equal to b(m)(λ).

It is known that C
(m)
n (q, 1) =

∑

λ∈D(m) qa(m)(λ), and hence in particular that

dim Im/(x,y)Im = Cn(1, 1) = |D (m)|. The generating set given by a solution

to Problem 1.5 would therefore be minimal, so Conjecture 1.4 would follow au-

tomatically.
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Now we ask whether I has an analog of property (2) for J . It certainly cannot

be that I is a free C[x,y]-module, for then C[x,y]/I would have depth 2n−1,

whereas it has dimension 2n−2. What we have instead is that I is a free module

with respect to either set of variables alone.

Theorem 1.6. The ideal I is a free C[y]-module.

This theorem is best possible, modulo one detail. The ideal I has an extra

degree of freedom: it is invariant with respect to x-translations mapping each

xi to xi +a. This invariance holds for I/(y)I as well, and implies that I/(y)I is

a free C[x1]-module (say). Hence Theorem 1.6 actually implies that I is a free

C[y, x1]-module, and in particular has depth at least n+1. On the other hand,

it is easy to see that ∆(y) represents a nonzero element of I/(y)I annihilated by

(x1−x2, . . . , xn−1−xn). This implies that depth I/(y)I ≤ 1 and hence depth I =

n+1.

Next we turn to property (3), the coincidence of powers with symbolic powers.

Theorem 1.7. We have Im = I(m) def
=

⋂

i<j(xi−xj , yi−yj)(m) for all m.

In fact, Theorems 1.1, 1.6, and 1.7 are all plainly corollaries to the following two

statements.

Theorem 1.8. For all m, the m-th power of the ideal (∆D : D ⊆ N×N, |D| = n)

is a free C[y]-module.

Corollary 1.9. For all m, we have I(m) = (∆D : D ⊆ N×N, |D| = n)m.

On the maxim that every mathematics lecture should contain one proof, we

sketch how Theorem 1.8 implies Corollary 1.9. Abbreviating (∆D : D ⊆ N×
N, |D| = n) to (∆D), we clearly have

(∆D)m ⊆ I(m).

Localizing at any point P ∈ E with not all Pi equal, one shows that both (∆D)P
and I

(m)
P

factor locally into products of the corresponding ideals in subsets of

the variables. On the open set U where some Pi 6= Pj we can therefore assume

locally that (∆D)m
P

= I
(m)
P

, by induction on n.

Now Theorem 1.8 implies that C[x,y]/(∆D)m has depth ≥ n−1 as a C[y]-

module. In particular, (∆D)m cannot have an associated prime supported in

V (y1 −y2, . . . , yn−1 −yn), if n ≥ 3. In other words, if f ∈ C[x,y] belongs to

the localization (∆D)m
Q for all Q ∈ (SpecC[y])\V (y1−y2, . . . , yn−1−yn), then

f ∈ (∆D)m. By induction this holds for all f ∈ I (m). The induction step assumes

n ≥ 3. The base cases n = 1, 2 are trivial. �

Finally, we discuss property (4). Take the Rees algebra R = C[x,y][t(∆D)],

and put X = Proj R, that is, the blowup of E at the ideal (∆D). Here, as above,

(∆D) is shorthand for the ideal generated by all the alternating polynomials ∆D.
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In view of Theorem 1.1, we can also identify X with the blowup of E along V ,

but it is preferable for geometric reasons not to take this as the definition.

The symmetric group Sn acts equivariantly on both X and E, giving a diagram

X −−−−→ E




y





y

X/Sn −−−−→ E/Sn.

Now it develops that X/Sn is nothing else but the Hilbert scheme Hilbn(C2)

parametrizing 0-dimensional subschemes of length n in C2, or equivalently, ideals

J ⊆ C[x, y] such that dimC C[x, y]/J = n. This is in fact not difficult to show,

using explicit local coordinates on Hilbn(C2) and the definition of X.

By a classical theorem of Fogarty [1968], Hilbn(C2) is non-singular and irre-

ducible — see the Appendix for another proof using explicit local coordinates. It

is also known that the locus in Hilbn(C2) where the y-coordinates vanish, that is,

the locus describing subschemes of C2 supported on the x-axis, has codimension

n. From this it follows easily that dim R/(y) = n+1.

We come now to the most important theorem from the geometric point of

view.

Theorem 1.10. The blowup scheme X is arithmetically Gorenstein, that is, R

is a Gorenstein ring .

Let us pause to understand how this result is related to Theorem 1.8. The

dimension count above shows that (y) is a complete intersection ideal in R.

Hence, if we assume Theorem 1.10 holds, then R is a free C[y]-module, which is

merely a restatement of Theorem 1.8. So Theorem 1.8 is a simple corollary to

Theorem 1.10.

Unfortunately for this logic, the only proof of Theorem 1.10 known at present

uses Theorem 1.8. Specifically, although the main argument of the proof given

in [Haiman 2001] is an induction based on elementary geometry of the Hilbert

schemes, there is a key technical step that depends on Theorem 1.8. So for now

we cannot elegantly deduce Theorem 1.8 from Theorem 1.10, as above, but must

prove Theorem 1.8 directly.

Problem 1.11. Find an “intrinsic” proof of Theorem 1.10 that does not rely

on Theorem 1.8.

In this connection we may note that there are classical theorems in commutative

algebra for showing that Rees algebras are Cohen–Macaulay or Gorenstein. In

particular, as W. Vasconcelos pointed out to me, since our ideal has codimension

2 it is enough to show that the Rees algebra R is Cohen–Macaulay, and it is

then automatically Gorenstein (this consequence also follows from the geometry).

Unfortunately, as far as I am aware, the theorems one might use to show that R is

Cohen–Macaulay tend to require hypotheses on the blowup ideal, such as strong
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Cohen–Macaulayness, or small analytic spread, that fail drastically for our ideal

I. It is natural to inquire whether advances in singularity theory might even

make it possible to show that our Rees algebra R has singularities better than

Cohen–Macaulay. Could one hope to prove, for instance, that R is of F -rational

type?

I’ll conclude with some remarks concerning the existing proof and possible gen-

eralizations of Theorem 1.8, which for the moment remains the linchpin among

the results. To prove Theorem 1.8, we first show that (∆D)m is a direct summand

as a graded C[x,y]-module of the coordinate ring C[W ] of an auxiliary subspace

arrangement W ⊆ E×C2mn, called a “polygraph.” Then we show that C[W ]

is a free C[y]-module by explicitly constructing a basis. This requires a horri-

bly complicated and not very illuminating induction. The basis construction is

secretly modeled on a combinatorial interpretation of a formula from geometry

for the Hilbert series of C[W ]. In the end, however, both the formula and the

combinatorics are suppressed from the proof, as they must be, since one can only

prove such formulas by assuming the theorem a priori.

I think that some of the complexity of the existing proof may eventually be

removed. I also think that most of the phenomena concerning the ideal I should

persist if we take points in Cd for general d, instead of C2. If so, we will need

proofs that do not refer to the Hilbert scheme, secretly or otherwise. Here are

some specific problems motivated by my thoughts along these lines.

Problem 1.12. Is it possible to dispense with the polygraph and construct a

free C[y]-module basis of (∆D)m directly? It would already be interesting to

accomplish this for d = 2. In this case, the geometry does provide a formula for

the Hilbert series, but an obstacle to using it is that we don’t have a combinatorial

interpretation, and therefore no clue how to index the basis elements.

Problem 1.13. Our subspace arrangement V can be written as C2⊗V ′, where

V ′ is the hyperplane arrangement V ′ =
⋃

i<j V (xi −xj) in Cn. Here, for any

subspace arrangement A =
⋃

k Ak ⊆ Cn, we denote by Cd⊗A the arrangement

of subspaces Cd⊗Ak ⊆ Cd⊗Cn = Cdn.

(a) Is it true more generally that for all d, the ideal of Cd⊗V ′ is a free C[x]-

module, where x is one of the d sets of n coordinates on Cdn?

(b) The hyperplane arrangement V ′ is the Coxeter arrangement of type An−1.

What if we consider instead the Coxeter arrangements of other types?

(c) Are there general criteria for a hyperplane arrangement A ⊆ Cn to have the

property that the ideal Id of Cd⊗A is a free module over the coordinate ring

of Cn, for all d?

(d) Exercise: show that a hyperplane arrangement with the property in (c) must

be free in the sense used in the theory of hyperplane arrangements [Orlik and

Terao 1992]. Freeness as a hyperplane arrangement is not sufficient for (c),

however.
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Lecture 2: A Ring of Invariants

As in Lecture 1, let E = C2n be the space of n-tuples (P1, . . . , Pn) of points

in the plane. The action of the symmetric group Sn on E has already made

an appearance in our study of the ideal of the locus where points coincide. In

this lecture we will discuss some other features of this action. We will begin

with a review of some general theory of invariants and coinvariants of linear

representations of finite groups, then turn to particulars of the representation of

Sn on E.

For the moment, we consider an arbitrary finite group G, acting linearly on

a finite-dimensional vector space V = kn. Our only assumption will be that

char k does not divide |G|. Then all finite-dimensional representations of G are

completely reducible, that is, they are direct sums of irreducible representations.

In particular, each homogeneous component of the ring k[V ] of polynomial func-

tions on V is completely reducible. Of special interest is the subring of invariants

k[V ]G. It follows from complete reducibility that k[V ]G is a direct summand of

k[V ] as a G-module, and also as a k[V ]G-module. The projection of k[V ] on its

summand k[V ]G is given explicitly by the Reynolds operator

Rf =
1

|G|
∑

g∈G

g ·f,

which will be important in what follows.

A second ring associated with the action of G on V is the ring of coinvariants

, defined as

RG = k[V ]/IG,

where IG = k[V ]·(k[V ]G+) is the ideal generated by all homogeneous invariants of

positive degree. Geometrically, these rings have the following interpretation (at

least when k is algebraically closed). The space of G-orbits V/G has a natural

structure of algebraic variety, with regular functions given by the G-invariant

functions on V . Thus its coordinate ring is the ring of invariants:

k[V ]G = k[V/G].

The homogeneous maximal ideal k[V ]G+ in k[V ]G is the ideal of the origin 0 ∈ V/G

(the G-orbit consisting only of the origin in V ). Then the scheme-theoretic fiber

π−1(0) of the natural projection

π: V → V/G

has coordinate ring equal to the ring of coinvariants,

RG = k[π−1(0)].

The two constructions are related by a famous lemma of Hilbert.

Lemma 2.1 (Hilbert). Homogeneous invariants f1, . . . , fr of positive degree

generate k[V ]G as a k-algebra if and only if they generate IG as an ideal .
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Proof. If k[V ]G = k[f1, . . . , fr], then every homogeneous invariant of positive

degree is a polynomial without constant term in the fi’s. This shows that IG ⊆
(f1, . . . , fr), and the reverse inclusion is trivial.

For the converse, suppose to the contrary that IG = (f1, . . . , fr) but k[V ]G 6=
k[f1, . . . , fr]. Let h be a homogeneous invariant of minimal degree, say d, not

contained in k[f1, . . . , fr]. Certainly d > 0, so h ∈ IG, and we can write

h =
∑

i

aifi,

where we can assume without loss of generality that ai is homogeneous of degree

d−deg fi. Applying the Reynolds operator to both sides gives

h =
∑

i

(Rai)fi.

But each Rai is a homogeneous invariant of degree < d, hence belongs to

k[f1, . . . , fr]. This contradicts the assumption h 6∈ k[f1, . . . , fr]. �

It is natural to ask for a bound on the degrees of a minimal set of homogeneous

generators for k[V ]G, or equivalently for IG. To give precise bounds for particular

G and V is in general a difficult problem. One has the following global bound,

which was proved by Noether in characteristic 0.

Theorem 2.2. The ring of invariants k[V ]G is generated by homogeneous ele-

ments of degree at most |G|.

Let us pause to discuss a more modern proof of this theorem, based on a beautiful

lemma of Harm Derksen. To state the lemma we need some additional notation.

Let x1, . . . , xn be a basis of coordinates on V , so k[V ] = k[x]. We introduce a

second copy of V , with coordinates y1, . . . , yn. Then the coordinate ring k[V ×V ]

is identified with the polynomial ring k[x,y]. For each g ∈ G, let

Jg = (xi−gyi : 1 ≤ i ≤ n) ⊆ k[x,y] (2–1)

be the ideal of the subspace Wg = {(v, gv) : v ∈ V } ⊆ V ×V .

Lemma 2.3 [Derksen 1999]. Let J =
⋂

g∈G Jg, with Jg as above. Then k[x]∩
(J +(y)) = IG.

Proof. If f(x) is a homogeneous invariant of positive degree, then f(y) ∈ (y),

and f(x)−f(y) ∈ J , since f(x)−f(y) vanishes on setting y = gx for any g ∈ G.

This shows IG ⊆ k[x]∩(J +(y)).

For the reverse inclusion, suppose f(x) ∈ J +(y), so

f(x) =
∑

i

ai(x)bi(y)+p(x,y), (2–2)

where p(x,y) ∈ J and we can assume bi(y) homogeneous of positive degree. Let

Ry be the Reynolds operator for the action of G on the y variables only. The
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ideal J is invariant for this action, so RyJ ⊆ J . Hence, applying Ry to both

sides in (2–2) yields

f(x) =
∑

i

ai(x)Rybi(y)+q(x,y)

with q(x,y) ∈ J . In particular, q(x,x) = 0. Substituting y 7→ x on both sides

now exhibits f as an element of IG. �

We remark that J is the ideal of the subspace arrangement W =
⋃

g Wg, which we

will call Derksen’s arrangement. It is the arrangement in V ×V whose projection

on the first factor V has finite fiber over each point v, identified set-theoretically

with the orbit Gv (by projecting on the second factor). Derksen’s Lemma says

that the scheme-theoretic 0-fiber of the projection W → V is isomorphic to the

scheme-theoretic 0-fiber of π: V → V/G, that is, to Spec RG.

Derksen’s lemma has the following easy analog for the product ideal.

Lemma 2.4. Let d = |G| and let J ′ =
∏

g Jg, with Jg as in (2–1). Then

k[x]∩(J ′ +(y)) = (x)d.

Proof. Note that k[x]∩(J ′+(y)) is the set of polynomials {f(x, 0) : f(x,y) ∈
J ′} (this holds with any ideal in the role of J ′). Since J ′ is generated by products

of d linear forms, this shows k[x]∩(J ′+(y)) ⊆ (x)d. For the reverse inclusion, fix

any monomial xα of degree d, and write it as a product of individual variables

xα = xi1xi2 . . . xid
.

Let g1, . . . , gd be an enumeration of all the elements of G, and consider the

polynomial

f(x,y) =
∏

j

(xij
−gjyij

).

The j-th factor belongs to Jgj
, so f(x,y) ∈ J ′, and clearly f(x, 0) = xα. �

Now J ′ ⊆ J , so Lemmas 2.3 and 2.4 imply (x)d ⊆ IG. Hence IG is generated by

its homogeneous elements of degree at most d, proving Theorem 2.2. In fact, we

have proved something stronger.

Corollary 2.5. The ring of coinvariants RG is zero in degrees ≥ |G|.

The degree bound in Theorem 2.2 is tight only when G is a cyclic group. For

arbitrary G and V , rather little is known about how to describe k[V ]G and RG

more fully. Of the two, the ring of invariants is better understood. In particular,

we have the Eagon–Hochster theorem:

Theorem 2.6 [Hochster and Eagon 1971]. The ring of invariants k[V ]G is

Cohen–Macaulay .

My hope in this lecture is to persuade you that k[V ]G and RG can have surpris-

ingly rich structure for naturally occurring group representations, and that the
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problem of describing them is deserving of further study. We now turn to the

particular case G = Sn, and fix k = C. As we did in Lecture 1, let’s warm up in

the easier situation of n points on a line. This means we consider the represen-

tation of Sn on V = Cn, permuting the coordinates x1, . . . , xn. We make several

observations.

(I) The ring of invariants C[x]Sn is the polynomial ring C[e1, . . . , en] freely

generated by the elementary symmetric functions ej = ej(x). This is the funda-

mental theorem of symmetric functions. Its Hilbert series is

1

(1−q)(1−q2) · · · (1−qn)
,

which can also be written as

hn(1, q, q2, . . .), (2–3)

where hn(z1, z2, . . .) denotes the complete homogeneous symmetric function of

degree n in infinitely many variables.

(II) By Lemma 2.1, ISn
(x) = (e1, . . . , en). In particular it is a complete

intersection ideal. Hence RSn
(x) is an Artinian local complete intersection ring.

It can be described quite precisely. For example, since deg ej = j, the Hilbert

series of RSn
(x) is given by the q-analog of n!, namely,

[n]q! =
(1−q)(1−q2) · · · (1−qn)

(1−q)n
= [n]q[n−1]q . . . [1]q,

where [k]q = 1+q+ · · ·+qk−1. Hence

dimC RSn
(x) = n!.

(III) Since C[x] is a graded Cohen–Macaulay ring, and e1, . . . , en is a ho-

mogeneous system of parameters, it follows that C[x] is a free C[x]Sn -module,

with basis given by any n! homogeneous elements forming a vector space basis of

RSn
(x). It is easy using standard techniques to determine the character of the

polynomial ring C[x] as a graded Sn representation, and from this to determine

the corresponding graded character of RSn
(x). The answer can be expressed as

follows. The irreducible representations Vλ of Sn are indexed by partitions λ of

the integer n. For each λ, define

fλ(q) = (1−q)(1−q2) · · · (1−qn)sλ(1, q, q2, . . .),

where sλ(z1, z2, . . .) is the Schur symmetric function indexed by λ in infinitely

many variables. Then fλ(q) is a polynomial with positive integer coefficients, and

fλ(1) is the number of standard Young tableau of shape λ, which is also equal

to dim Vλ. Let m(Vλ, RSn
(x)d) denote the multiplicity of Vλ in a decomposition
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of the degree d homogeneous component RSn
(x)d as a direct sum of irreducible

representations of Sn. Then these multiplicities are given by

∑

d

m(Vλ, RSn
(x)d)qd = fλ(q).

This is a very precise answer, as fλ(q) has an explicit combinatorial description,

and it is possible to produce a correspondingly explicit decomposition of RSn
(x)

into irreducibles with generators indexed by suitable combinatorial data. It

would take us too far afield to go into this here, but see [Allen 1993], for example,

for more details. We only note that ignoring the grading gives

m(Vλ, RSn
(x)) = fλ(1) = dim Vλ,

so RSn
(x) is a graded version of the regular representation of Sn (the represen-

tation of Sn by left multiplication on its group algebra CSn).

(IV) Derksen’s arrangement W is a complete intersection in Cn×Cn, defined

by the ideal (ei(x)−ei(y) : 1 ≤ i ≤ n). In particular, its coordinate ring C[W ]

is Cohen–Macaulay, and since (y) is obviously a system of parameters, C[W ] is

a free C[y]-module.

These special properties of the invariants and coinvariants of Sn on Cn are

consequences of the fact that Sn acts on Cn as a group generated by complex

reflections: linear transformations that fix a hyperplane pointwise. In the case

of Sn, the reflections are the transpositions (i, j), which fix every vector on

the hyperplane xi = xj . By general results of Steinberg, Chevalley, Shepard

and Todd, every complex reflection group G has k[V ]G a polynomial ring, IG a

complete intersection ideal, and RG isomorphic to a graded version of the regular

representation of G. Moreover, each of these properties holds only for complex

reflection groups, and there is a complete classification of such groups [Chevalley

1955; Shephard and Todd 1954; Steinberg 1960; 1964].

Finally we come to the situation that we set out to study in the first place,

namely, the action of Sn on E = C2n. Note that this is not an action generated

by complex reflections. In fact, every element of Sn acts on E with determinant

1, while a nontrivial complex reflection has determinant 6= 1. The determinant

1 property does have a useful consequence, however, owing to the following

refinement of the Eagon–Hochster theorem.

Theorem 2.7 [Watanabe 1974]. The canonical module of k[V ]G is the module

of covariants k[V ]ε, where ε denotes the determinant character ε(g) = detV (g).

In particular if G acts on V by endomorphisms with determinant 1, then k[V ]G

is Gorenstein.

There is an old theorem of Weyl giving a (minimal) generating set for the ring

of invariants C[E]Sn .
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Theorem 2.8 [Weyl 1939]. The ring of invariants C[x,y]Sn is generated by the

polarized power sums

pr,s =

n
∑

i=1

xr
i y

s
i , 1 ≤ r+s ≤ n.

The analogous theorem holds in d sets of variables. Note that the actual degree

bound on the generators in this case, namely n, is very much smaller than the

order of the group!

It turns out to be almost as easy to determine the Hilbert series of C[E]Sn =

C[x,y]Sn as it is for C[x]Sn . In fact, we can compute its Hilbert series as a

doubly graded ring, by degree in the x and y variables separately. It is given by

the following analog of (2–3).

∑

r,s

dim(C[x,y]Sn)r,sq
rts = hn(1, q, q2, . . . , t, qt, q2t, . . . , t2, qt2, q2t2, . . .).

There is a also similar formula for the Hilbert series of the ring of invariants

C[x,y, . . . ,z]Sn in d sets of variables, as an Nd-graded ring. So we have good

analogs of observation (I) for the invariants of n points in the plane or more

generally in Cd.

The interesting surprises appear when we turn to analogs of observations (II)

and (III), on the ring of coinvariants. We now drop the modifier x from the

notation and write simply RSn
for the ring of coinvariants C[E]/ISn

.

Around 1991, Garsia and I were led to investigate RSn
because of its con-

nection with a problem on Macdonald polynomials. For small values of n, we

used a computer to determine its dimension and Sn character in each (double)

degree. Immediately we noticed some amazing coincidences between our data

and well-known combinatorial numbers. We publicized our early findings infor-

mally, leading various other people, especially Ira Gessel and Richard Stanley,

to discover still more such coincidences. Eventually I published a compilation of

these discoveries, all of which were then just conjectures, in [Haiman 1994].

Later, Procesi pointed out to us the fact that the Hilbert scheme Hilbn(C2)

provides a nice resolution of singularities of E/Sn, as discussed in Lecture 1,

and observed how this should be useful in attacking the conjectures. Assuming

the validity of some geometric hypotheses that would make Procesi’s method

work, I was soon able to find a formula for the doubly graded character of RSn

in terms of Macdonald polynomials. Garsia and I then proved that the earlier

combinatorial conjectures would all follow from the master formula. Recently I

succeeded in proving the needed geometric hypotheses, which by this time were

the only missing pieces remaining [Haiman 2001; 2002].

There is not room here to discuss in full the geometry of the Hilbert scheme

and the combinatorial theory of Macdonald polynomials. I will only summarize

some of the facts about RSn
that have been established using these methods.
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Theorem 2.9. The coinvariant ring RSn
for Sn acting on C2n has length

dimC RSn
= (n+1)n−1.

Ignoring the grading , the representation of Sn on RSn
is isomorphic to the sign

representation tensored by the obvious permutation representation of Sn on the

finite Abelian group Q/(n+1)Q, where Q = Zn/Z ·(1, 1, . . . , 1). Retaining the

grading by x degree only , one has the Hilbert series

∑

d

dim(RSn
)(d,−)q

d = Fn(q),

where Fn(q) is the generating function enumerating rooted forests on the vertex

set {1, . . . , n} by number of inversions, or equivalently , enumerating parking

functions on n cars by weight (see [Haiman 1994] for definitions and details).

Here we should mention the connection between RSn
and the ideal I studied in

the previous lecture, given by the following proposition, which is easy to prove.

Proposition 2.10. Homogeneous Sn-alternating polynomials f1, . . . , fr ∈ C[E]

minimally generate the ideal I in Theorem 1.1 if and only if their images modulo

ISn
form a basis of the space of Sn-alternating elements of RSn

.

In particular, Theorem 1.2 is really a statement about the character of RSn
. Like

Theorem 2.9, it follows from the master formula for the character of RSn
given

by the geometry of the Hilbert scheme.

I think it should be possible to obtain at least some of the above results on

RSn
, and maybe some new ones, or analogous ones for other groups, without

invoking Hilbert scheme and Macdonald polynomial machinery. In particular, it

seems to me that there is room for purely algebraic approaches. One encouraging

sign is recent work by Iain Gordon [2003], where he obtains an extension of the

(n+ 1)n−1 theorem, in a slightly weakened form, to any Weyl group. This is

especially notable in that for the Weyl groups of type G2, F4, and Dn, it is

known that there is no suitable geometric analog of the Hilbert scheme.

To close, let me suggest some open problems that might repay further study.

Problem 2.11. Can one determine the dimension and Hilbert series of RSn

inductively by fitting it into an exact complex with other terms built out of

the coinvariant rings RSk
for k < n? A specific conjecture along these lines in

[Haiman 1994] remains open.

Problem 2.12. Describe the minimal free resolution of C[x,y]Sn with respect

to the minimal generators given by Theorem 2.8. One could also consider this

problem in d sets of variables, although d = 2 may be nicer, since the ring of

invariants is Gorenstein. I don’t think a good description is known even for the

first syzygies.



168 MARK HAIMAN

Problem 2.13. Let W be the Derksen arrangement for Sn acting on E, say

with coordinates x,y,x′,y′ on E×E. Is C[W ] a free C[y]-module? What about

the same problem for fiber powers W ×E W ×E · · ·×E W? An affirmative answer

would be equivalent to sheaf cohomology vanishing properties for certain vector

bundles on the Hilbert scheme. Are there similar results in d sets of variables,

with E replaced by Cdn? Are there similar results for other Weyl groups G, with

E the direct sum of two (or more) copies of the defining representation?

Lecture 3: A Remarkable Gröbner Basis

This lecture will be an overview of some results by Jeremy Martin. I’ll give less

detailed notes here than for the previous two lectures, referring you to [Martin

2003a; 2003b] for the full story. Martin’s results concern the situation where we

introduce not only the points P1, . . . , Pn ∈ C2 but also lines Lij connecting them

in pairs. That is, Lij is a line passing through Pi and Pj . When Pi and Pj are

distinct, of course, Lij is determined. When they coincide, the line Lij can pass

through them with any slope, introducing an extra degree of freedom.

The locus of all configurations of points and lines as above is the picture space

X (Kn). One thinks of these configurations as plane “pictures” of the complete

graph Kn on n vertices, with edges represented by lines. To specify a picture, we

need to give the coordinates x1, y1, . . . , xn, yn of the n points, together with the

slopes mij of the
(

n
2

)

lines. In principle, the slopes mij lie on a projective line

P1. However, we will be interested only in local questions, so we will consider

the affine open set in X (Kn) where mij 6= ∞. It is the locus cut out (set-

theoretically, at least) by the equations

yj −yi = mij(xj −xi) for all i, j.

Now X (Kn) is in general not irreducible. For example, X (K4) has two irre-

ducible components, each of dimension 8: the generic component — the closure

of the locus where all the points are distinct, and the lines are determined —

and another component where all four points coincide, and the six lines have

arbitrary slopes. Martin has given a complete combinatorial description of the

component structure of X (G) for any graph G, which we won’t discuss in this

lecture. Instead we will concentrate on his results describing the generic compo-

nent V (Kn) of X (Kn), which we call the graph variety. Note that V (Kn) is,

essentially by definition, the simultaneous blowup of C2n along the coincidence

subspaces Vij = V (xi−xj , yi−yj) discussed in Lecture 1. This is, however, quite

a different thing from the blowup along the union of these subspaces, which is

the variety X from Lecture 1.

Proposition 2.1. The graph variety V (Kn) is cut out set-theoretically in

X (Kn) by the equations in the variables mij giving the algebraic relations among

the slopes that hold when the points Pi are in general position (no two coincide).
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In view of this proposition, the key issue is to understand the ideal of relations

among the slope variables mij . Although the problem of describing all relations

among the slopes of the
(

n
2

)

lines connecting n points in general position in the

plane is very classical in nature, there seems to have been almost no earlier work

on it. In more geometric terms, the projection of the graph variety V (Kn) on

the slope coordinates is a variety S (Kn), called the slope variety, whose ideal

I(Sn) is the ideal of all algebraic dependencies among the rational functions

(yj −yi)/(xj −xi). We want to describe this ideal.

The first result tells us which subsets of the variables mij are minimally alge-

braically dependent — that is, are circuits of the algebraic dependence matroid

of the quantities (yj −yi)/(xj −xi).

Theorem 2.2. The variables mij corresponding to a set of edges E ⊆ E(Kn)

are minimally algebraically dependent if and only if

(1) |E| = 2 |V (E)|−2, and

(2) |F | ≤ 2 |V (F )|−3 for all nonempty F  E,

where V (E) denotes the set of all endpoints of the edges in E.

This result is particularly interesting because there is another well-known alge-

braic dependence matroid whose characterization (due to Laman) is exactly the

same: that is the rigidity matroid of algebraic dependencies among the squared-

lengths (xi−xj)2+(yi−yj)2 of the line segments connecting the points (for points

with real coordinates).

The next result, which is a key one, is an explicit description of the polynomial

giving the algebraic dependence among the slopes in a rigidity-circuit. First one

shows that every rigidity circuit is the edge-disjoint union of two spanning trees

on a common set of vertices. Conversely, every minimal such union is a rigidity

circuit.

Now consider any two disjoint spanning trees S and T on the same vertex set,

and fix an arbitrary orientation of the edges of each tree. For each edge f ∈ S,

there are unique coefficients cef ∈ {0,±1} such that

f −
∑

e∈T

cefe (2–1)

is a directed cycle. Let us abbreviate xe = xj −xi, ye = yj −yi for a directed

edge e = (i, j). Then for a cycle as in (2–1), we have

yf =
∑

e∈T

cefye, xf =
∑

e∈T

cefxe.

Now since yf = mfxf and ye = mexe, we have an identity between two expres-

sions for yf
∑

e∈T

cefmexe = mf

∑

e∈T

cefxe,
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or
∑

e∈T

cef (me−mf )xe = 0.

This of course is not yet an equation among the variables mij . However, if S

and T are trees on d+1 vertices, then we have d such equations, one for each

f , which we can regard as linear equations in the d “unknowns” xe. When the

points are in general position, they obviously have a nonzero solution, since the

xe’s do not vanish. Hence the d×d matrix

MST = [cef (me−mf )]f∈S,e∈T

must be singular. Its determinant

DS∪T (m)

is a polynomial of degree d in the slope variables me for e in our rigidity circuit

S∪T , and this polynomial belongs to I(Sn).

Theorem 2.3. The determinants DS∪T enjoy the following properties:

(1) Up to sign, DS∪T depends only on the union S∪T , and not on the decom-

position into trees S, T .

(2) Every term of DS∪T is a square-free monomial ±
∏

e∈S′ me, where S′ is a

spanning tree in S∪T whose complement is also a spanning tree.

(3) DS∪T is irreducible if and only if S ∪T is a rigidity circuit , and in that

case it generates the principal ideal of algebraic dependencies among the slope

variables me for e ∈ S∪T .

One particularly simple class of rigidity circuits consists of the wheels. A wheel is

a graph consisting of a cycle (the rim) and one additional vertex (the hub) with

edges to all the rim vertices (the spokes). With this terminology established, we

can state Martin’s main theorem.

Theorem 2.4. The polynomials DW for W a wheel generate I(Sn). In fact ,

they form a Gröbner basis for this ideal , with respect to the graded lexicographic

term order on the obvious lexicographic ordering of the variables mij . Moreover ,

the initial ideal in(I(Sn)), and hence also I(Sn) itself , is Cohen–Macaulay , of

dimension 2n−3 and degree

M2n−4 = (2n−5)(2n−7) · · · 3 ·1.

Let us say just a few words about the proof of this theorem, which involves a

beautiful interplay of commutative algebra and combinatorics. By Theorem 2.3,

the initial term of DW is a square-free “tree monomial” mT =
∏

e∈T me, for

some tree. Martin proves first that for wheels, the initial terms belong, not to

arbitrary trees, but to trees which are paths, of the following special form.
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Definition 2.5. A Martin path in the graph Kn on vertices {1, . . . , n} is a path

Q = (x, v, . . . , w, y) such that (1) x and y are the two largest vertices of Q, and

(2) assuming without loss of generality that x < y, then v < w.

Now the initial ideal in(DW ) of the ideal generated by wheel polynomials DW

is the square-free monomial ideal generated by monomials MQ for Q a Martin

path. Hence

R∆ = C[m]/ in(DW )

is the Stanley–Reisner ring of the simplicial complex ∆ on the edge set of Kn,

whose faces are those subgraphs H ⊆ Kn that contain no Martin path. Martin

proves next that this simplicial complex has the most optimal properties one

could desire.

Proposition 2.6. Every maximal subgraph of Kn containing no Martin path —

that is, every facet of the simplicial complex ∆ — has 2n−3 edges. The number

of these facets is M2n−4. Moreover the complex ∆ is shellable.

Shellability is a combinatorial property of a simplicial complex which implies

in particular that it is Cohen–Macaulay, that is, the link of each face has only

one nonzero reduced homology group. By a theorem of Hochster (see [Stanley

1996]), the latter property is equivalent to the Stanley–Reisner ring being Cohen–

Macaulay. So Proposition 2.6 shows that the ideal

J = in(DW : all wheels W )

is Cohen–Macaulay, of dimension 2n−3 and degree M2n−4.

Finally, Martin uses a geometric argument to give a lower bound on the degree

of the slope variety Sn.

Proposition 2.7. The slope variety Sn has dimension 2n−3 and degree at

least M2n−4.

Let us see where the above results leave us. We have two ideals, J = in(DW ),

and I = in I(Sn), and from the facts established so far we have:

(i) J ⊆ I,

(ii) J is unmixed (since it is Cohen–Macaulay),

(iii) dim J = dim I,

(iv) deg J ≤ deg I.

Together, these imply J = I, and Theorem 2.4 follows.

To close, I’ll mention a striking combinatorial fact, which Martin left as a

conjecture at the end of his thesis, but has since proved. The number M2n−4 is

the number of matchings on 2n−4 vertices, that is, graphs in which every vertex

is the endpoint of exactly one edge. The Hilbert series of the slope variety may

be written
hn(q)

(1−q)2n−3
,
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where hn(q) is a polynomial with positive integer coefficients (because the ring

is Cohen–Macaulay) and hn(1) = M2n−4. Hence

hn(q) = a0 +a1q+a2q2 + · · ·

is a q-analog of the number of matchings M2n−4. It turns out that it coincides

with a combinatorial q-analog studied long ago by Kreweras and Poupard [1978].

Theorem 2.8. The coefficient al in the polynomial hn(q) is the number of

matchings on the integers {1, . . . , 2n−4} with l long edges, where an edge i, j is

long if |i−j| 6= 1.

Appendix: Hilbert Schemes of Points in the Plane

by Ezra Miller

Consider the polynomial ring C[x, y] in two variables over the complex numbers.

As a set, the Hilbert scheme Hn = Hilbn(C2) of n points in the plane consists

of those ideals I ⊆ C[x, y] such that the quotient C[x, y]/I has dimension n as a

vector space over C. This appendix provides some background on how this set

can be considered naturally as a smooth algebraic variety of dimension 2n. The

goal is to orient the reader rather than to give a complete introduction. Therefore

some details are omitted from the exposition to make the intuition more clear

(and short). The material here, which is based loosely on the introductory parts

of [Haiman 1998], reflects what was presented at the help session for Haiman’s

lectures; in particular, the Questions were all asked by participants at the help

session.

To begin, let’s get a feeling for what an ideal I of colength n can look like.

If P1, . . . , Pn ∈ C2 are distinct (reduced) points, for example, then the ideal of

functions vanishing on these n points has colength n. This is because the ring of

functions on n points has a vector space basis {f1, . . . , fn} in which fi(Pj) = 0

unless i = j, and fi(Pi) = 1. Ideals of the form I(P1, . . . , Pn) are called generic

colength n ideals.

At the opposite end of the spectrum, I could be an ideal whose (reduced)

zero set consists of only one point P ∈ C2. In this case, C[x, y]/I is a local ring

with lots of nilpotent elements. In geometric terms, this means that P carries

a nonreduced scheme structure. Such a nonreduced scheme structure on P is

far from unique; in other words, there are many length n local rings C[x, y]/I

supported at P . In fact, they come in an (n−1)-dimensional family.

Among the ideals supported at single points, the monomial ideals are the

most special. These ideals have the form I = 〈xa1yb1 , . . . , xamybm〉 for some

nonnegative integers a1, b1, . . . , am, bm, and are supported at (0, 0) ∈ C2. Note

that if xhyk is a monomial outside of I and xh′

yk′

is a monomial dividing xhyk (so

h′ ≤ h and k′ ≤ k), then xh′

yk′

also lies outside of I. This makes it convenient

to draw the monomials outside of I as the boxes “under a staircase”.
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Example A.1. For the ideal I = 〈x2, xy, y3〉 of colength n = 4, the diagram of

boxes under the staircase is L-shaped:

y2

y

1 x

Note that the monomial x2 would be the first box after the bottom row, while

xy would nestle in the nook of the ‘L’, and y3 would lie atop the first column.

Thus the minimal generators of I specify where to draw the staircase.

If the diagram of monomials outside I has λi boxes in row i under the staircase,

then
∑

i λi = n is by definition a partition λ of n, and we write I = Iλ.

Example A.2. In Example A.1, there are 2 boxes in row 0, and 1 box in each

of rows 1 and 2, yielding the partition 2+1+1 = 4 of n = 4. Thus the ideal is

I = I2+1+1.

In full generality, the quotient C[x, y]/I is a product of local rings with maximal

ideals corresponding to a finite set P1, . . . , Pr of distinct points in C2, with the

lengths `1, . . . , `r of these local rings satisfying satisfying `1+· · ·+`r = n (do not

confuse this partition of n with the partitions obtained from monomial ideals,

where r = 1). When r = n it must be that `i = 1 for all i, so the ideal I is

generic.

Question 1. Is there some transformation of the plane so that every colength n

ideal has a basis of monomials?

Answer 1. This question can be interpreted in two different ways, because the

word “basis” has multiple meanings. Thinking of “basis” as “generating set”,

the question asks if given I, there is a coordinate system for C2 in which I is

a monomial ideal. The answer is no, in general; for instance, if C[x, y]/I is not

a local ring, then I can’t be a monomial ideal in any coordinates. The second

meaning of “basis” is “C-vector space basis”. Even though I itself may not

be expressible in some coordinates as a monomial ideal, the quotient C[x, y]/I

always has a C-vector space basis of (images of) monomials. This observation

will be crucial later on.

If all colength n ideals were generic, then the set Hn would be easy to de-

scribe, as follows. Every unordered list of n distinct points in C2 corresponds

to a set of n! points in (C2)n, or alternatively to a single point in the quotient

SnC2 := (C2)n/Sn by the symmetric group. Of course, not every point of SnC2

corresponds to an unordered list of distinct points; for that, one needs to remove

the diagonals

{(P1, . . . , Pn) ∈ (C2)n | Pi = Pj} (A–1)

of (C2)n before quotienting by Sn. Since Sn acts freely on the complement

((C2)n)◦ of the diagonals (A–1), the complement (SnC2)◦ of the diagonals in
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the quotient SnC2 is smooth. Therefore, whatever variety structure we end

up using, Hn will contain an open smooth subvariety (SnC2)◦ of dimension 2n

parametrizing generic ideals.

The variety structure on Hn arises by identifying it as an algebraic subvariety

of a more familiar variety: a grassmannian. Consider the vector subspace Vd

inside of C[x, y] spanned by the
(

d+2
2

)

monomials of degree at most d.

Lemma A.3. Fix d ≥ n. Given any colength n ideal I, the image of Vd spans

the quotient C[x, y]/I as a vector space.

Proof. The n monomials outside any initial ideal of I span the quotient

C[x, y]/I, and these monomials must lie inside Vd. �

The intersection I∩Vd is a vector subspace of codimension n. Thus Hn is (as a

set, at least) contained in the grassmannian Grn(Vd) of codimension n subspaces

of Vd.

Definition A.4. Given a partition λ of n, write Uλ ⊂ Hn for the set of ideals I

such that the monomials outside Iλ map to a vector space basis for C[x, y]/I.

The set of codimension n subspaces W ⊂ Vd for which the monomials outside Iλ

span Vd/W constitutes a standard open affine subvariety of Grn(Vd), defined by

the nonvanishing of the corresponding Plücker coordinate. This means that W

has a unique basis consisting of vectors of the form

xrys−
∑

hk∈λ

crs
hkxhyk for 0 ≤ r+s ≤ d. (A–2)

Here, we write hk ∈ λ to mean xhyk 6∈ Iλ, so the box labeled (h, k) lies under

the staircase for Iλ. The affine open inside Grn(Vd) is actually a cell — namely,

the variety whose coordinate ring is the polynomial ring in the coefficients crs
hk

from (A–2).

The intersection of each ideal I ∈ Uλ with Vd is a codimension n subspace

of Vd spanned by vectors of the form (A–2), by definition of Uλ. Of course, if

W ⊂ Vd is to be expressible as the intersection of Vd with some ideal I, the

coefficients crs
hk can’t be chosen completely at will. Indeed, the fact that I is an

ideal imposes relations on the coefficients that say “multiplication by x takes

xrys to xr+1ys and preserves I, and similarly for multiplication by y.”

Explicitly, if xr+1ys ∈ Vd, then multiplying (A–2) by x yields another poly-

nomial xr+1ys −∑

hk∈λ crs
hkxh+1yk inside I ∩Vd. Some of the terms xh+1yk no

longer lie outside Iλ, so we have to expand them again using (A–2) to get

xr+1ys−
(

∑

h+1,k∈λ

crs
hkxh+1yk +

∑

h+1,k 6∈λ

crs
hk

∑

h′k′∈λ

ch+1,k
h′k′ xh′

yk′

)

∈ I. (A–3)

Equating the coefficients on xhyk in (A–3) to those in

xr+1ys−
∑

hk∈λ

cr+1,s
hk xhyk
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from (A–2) yields relations in the polynomial ring C[{crs
hk}]. These relations,

taken along with their counterparts that result by switching the roles of x and y,

cut out Uλ. Though we have yet to see that these relations generate a radical

ideal, we can at least conclude that Uλ is an algebraic subset of an open cell in

the grassmannian.

Theorem A.5. Fix d ≥ n+1. The affine varieties Uλ cover the subset Hn ⊂
Grn(Vd), thereby endowing Hn with the structure of quasiprojective algebraic

variety .

Proof. The sets Uλ cover Hn by Lemma A.3, and each set Uλ is locally closed

in Grn(Vd) by the discussion above. �

In summary: Hn is a quasiprojective variety because it is locally obtained by the

intersection of a Zariski open condition (certain monomials span mod I) and a

Zariski closed condition (W ⊂ Vd is closed under multiplication by x and y).

Theorem A.5 does not claim that the variety structure is independent of d,

although it is true (and important), and can be deduced using smoothness of Hn

(Theorem A.14) along with the fact that projection Vd+1 → Vd maps Hn to itself

by sending I∩Vd+1 7→ I ∩Vd. Had we allowed d = n, however, where Proposi-

tion A.12 can fail, the variety structure might be different. In any case, fix

d ≥ n+1 in the forthcoming discussion.

Having endowed Hn with an algebraic variety structure, let us explore its

properties.

Lemma A.6. Every point I ∈ Hn is connected to a monomial ideal by a rational

curve.

Proof. Choosing a term order and taking a Gröbner basis of I yields a family

of ideals parametrized by the coordinate variable t on the affine line. When t = 1

we get I back, and when t = 0 we get the initial ideal of I, which is a monomial

ideal. �

This proof is stated somewhat vaguely, but can be made quite precise using the

notion of flat family and the fact that Gröbner degenerations are flat families

over the affine line [Eisenbud 1995, Proposition 15.17]. Here is an example, for

more concrete intuition.

Example A.7. Suppose I = 〈x2, xy+
√

2x, y3−2y〉, and consider the ideal

It = 〈x2, xy+
√

2tx, y3−2ty〉 ⊂ C[x, y][t].

This new ideal should be thought of as a family of ideals in C[x, y], parametrized

by the coordinate t. The ideal at α ∈ C is obtained by setting t = α in the

generators for It. Every one of these ideals has colength 4, because they all

have the ideal 〈x2, xy, y3〉 from Example A.1 as an initial ideal. It follows that

this family of ideals (or better yet, the family C[x, y][t]/It of quotients) is flat

over C[t].
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Lemma A.6 allows us to conclude the following:

Proposition A.8. The Hilbert scheme Hn is connected .

Question 2. Lemma A.6 only says that every ideal connects to some monomial

ideal. How do you know that you can get from one monomial ideal to another?

Answer 2. They’re all connected to generic ideals:

Lemma A.9. For every partition λ of n, the point Iλ ∈ Hn lies in the closure of

the generic locus (SnC2)◦.

Proof. Consider the set of exponent vectors (h, k) on monomials xhyk outside I

as a subset of Z2 ⊂ C2. These exponent vectors constitute a collection of n points

in C2. The colength n ideal of these points is called the distraction I ′
λ of Iλ.

If Iλ = 〈xa1yb1 , . . . , xamybm〉, then I ′
λ = 〈f1, . . . , fm〉, where

fi = x(x−1)(x−2) · · · (x−ai +2)(x−ai +1)y(y−1) · · · (y−bi +1).

Indeed, this ideal has colength n because every term of fi divides its leading

term xaiybi , forcing Iλ to be the unique initial ideal of 〈f1, . . . , fm〉; and each

polynomial fi clearly vanishes on the exponent set of Iλ, so each fi lies in I ′
λ. �

Example A.10. The distraction of I2+1+1 = 〈x2, xy, y3〉 is the ideal

I ′2+1+1 = 〈x(x−1), xy, y(y−1)(y−2)〉.

The zero set of every generator of the distraction is a union of lines, namely

integer translates of one of the two coordinate axes in C2. The zero set of our

ideal I ′
2+1+1 is

.

.

. .

= ∩ ∩

The groups of lines on the right hand side are the zero sets of x(x−1), xy, and

y(y−1)(y−2), respectively.

Remark A.11. Proposition A.8 holds for Hilbert schemes of n points in Cm

even when m is arbitrary, with the same proof. Hartshorne’s connectedness

theorem [Hartshorne 1966] says that it holds for certain more general Hilbert

schemes, under the Z-grading. However, the result does not extend to Hilbert

schemes under arbitrary gradings [Haiman and Sturmfels 2002; Santos 2002].

Proposition A.12. For each λ, the local ring of Hn ⊂ Grn(Vd) at Iλ has

embedding dimension at most 2n; that is, the maximal ideal mIλ
satisfies

dimC(mIλ
/m

2
Iλ

) ≤ 2n.
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Proof. Identify each variable crs
hk with an arrow pointing from the box hk ∈ λ

to the box rs 6∈ λ (see Example A.13). Allow arrows starting in boxes with

h < 0 or k < 0, but set them equal to zero. The arrows lie inside — and in fact

generate — the maximal ideal mIλ
at the point Iλ ∈ Hn. As each term in the

double sum in (A–3) has two c’s in it, the double sum lies inside m
2
Iλ

. Moving

both the tail and head of any given arrow one box to the right therefore does not

change the arrow’s residue class modulo m
2
Iλ

, as long as the tail of the original

arrow does not end up past the last box in a row of λ, and the head of the arrow

does not end up on a monomial of degree strictly larger than d. Switching the

roles of x and y, we conclude that an arrow’s residue class mod m
2
Iλ

is unchanged

by moving vertically or horizontally, as long as the tail stays under the staircase,

while the head stays above it (but still inside the set of monomials of degree at

most d). This analysis includes the case where the tail of the arrow crosses either

axis, in which case the arrow is zero.

Using the fact that d ≥ n+1 in Theorem A.5 to pass the head through corners

(h+1, k+1) for (h, k) ∈ λ, every arrow can be moved horizontally and vertically

until either

(i) the tail crosses an axis; or

(ii) there is a box hk ∈ λ such that the tail lies just inside row k of λ while the

head lies just above column h outside λ; or

(iii) there is a box hk ∈ λ such that the tail lies just under the top of column h

in λ while the head lies in the first box to the right outside row k of λ.

Arrows of the first sort do not contribute at all to mIλ
/m

2
Iλ

. On the other hand,

there are exactly n northwest-pointing arrows of the second sort, and exactly n

southeast-pointing arrows of the third sort. Therefore mIλ
/m

2
Iλ

has dimension

at most 2n. �

Example A.13. All three figures below depict the same partition λ: 8+8+5+

3+3+3+3+2 = 35. In the left figure, the middle of the five arrows represents

c54
31 ∈ mIλ

. As in the proof of Proposition A.12, all of the arrows in the left figure

are equal modulo m
2
Iλ

. Since the bottom one is manifestly zero as in item (i)

from the proof of Proposition A.12, all of the arrows in the left figure represent

zero in mIλ
/m

2
Iλ

.
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The two arrows in the middle figure are equal, and the bottom one c08
25 provides

an example of a regular parameter in mIλ
as in (ii). Finally, the two arrows in

the rightmost figure represent unequal regular parameters as in (iii).

Now we finally have enough prerequisites to prove the main result.

Theorem A.14. The Hilbert scheme Hn is a smooth and irreducible subvariety

of dimension 2n inside Grn(Vd) for d ≥ n+1.

Proof. Since the intersection of two irreducible components would be contained

in the singular locus of Hn, it is enough by Proposition A.8 to prove smoothness.

Lemma A.9 implies that the dimension of the local ring of Hn at any monomial

ideal Iλ is at least 2n, because the generic locus has dimension 2n. On the other

hand, Proposition A.12 shows that the maximal ideal of that local ring can be

generated by 2n polynomials. Therefore Hn is regular in a neighborhood of any

point Iλ.

The two-dimensional torus acting on C2 by scaling the coordinates has an

induced action on Hn. Under this action, Lemma A.6 and its proof say that

every orbit on Hn contains a monomial ideal (= torus-fixed point) in its closure.

By general principles, the singular locus of Hn must be torus-fixed (though not

necessarily pointwise, of course) and closed. Since every torus orbit on Hn con-

tains a smooth point of Hn in its closure, the singular locus must be empty. �

The proof of Theorem A.14 used the fact that Gröbner degenerations are ac-

complished by taking limits of one-parameter torus actions on Hn. In plain

language, this means simply that if appropriate powers of t are used in the equa-

tions defining the family It, the variable t can be thought of as a coordinate

on C∗ for nonzero values of t.

Remark A.15. Theorem A.14 fails for Hilbert schemes Hilbn(Cm) of points

in spaces of dimension m ≥ 3, as proved by Iarrobino [Iarrobino 1972]. If it

were irreducible, then Hilbn(Cm) would have dimension mn, the dimension of

the open subset of configurations of n distinct points. But Iarrobino constructed

a dimension e family of ideals of colength n in the polynomial ring, where e is

proportional to n(2−2/m). It follows that Hilbn(Cm) is in fact reducible for m ≥ 3

and n sufficiently large. On the other hand, Hilbn(Cm) is connected by reasoning

as in the case n = 2 (Lemma A.6 and Lemma A.9).

Question 3. Is the open set Uλ ⊂ Hn the locus of colength n ideals having Iλ

as an initial ideal?

Answer 3. When λ is the partition 1+ · · ·+1 = n, then yes. Otherwise, no,

since the set of such ideals has dimension strictly less than 2n. However, the

locus in Hn of ideals having initial ideal Iλ is cell — that is, isomorphic to Cm for

some m. Lemma A.6 can be interpreted as saying that Hn is the disjoint union of

these cells. This is the Bia lynicki-Birula decomposition of Hn [Bia lynicki-Birula

1976; Ellingsrud and Strømme 1987]. It exists essentially because Hn has an
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action of the torus (C∗)2 with isolated fixed points. Knowledge of the Bia lynicki-

Birula decomposition allows one to compute the cohomology ring of Hn, which

was the purpose of [Ellingsrud and Strømme 1987].
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