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Abstract. These lectures provide a glimpse of the applications of toric

geometry to singularity theory. They illustrate some ideas and results of

commutative algebra by showing the form which they take for very simple

ideals of polynomial rings: monomial or binomial ideals, which can be

understood combinatorially. Some combinatorial facts are the expression

for monomial or binomial ideals of general results of commutative algebra

or algebraic geometry such as resolution of singularities or the Briançon–

Skoda theorem. In the opposite direction, there are methods that allow

one to prove results about fairly general ideals by continuously specializing

them to monomial or binomial ideals.
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1. Introduction

Let k be a field. We denote by k[u1, . . . , ud] the polynomial ring in d variables,

and by k[[u1, . . . , ud]] the power series ring.

If d = 1, given two monomials um, un, one divides the other, so that if m > n,

say, a binomial um − λun = un(um−n − λ) with λ ∈ k∗ is, viewed now in k[[u]],

a monomial times a unit. For the same reason any series
∑

i fiu
i ∈ k[[u]] is the

product of a monomial un, n ≥ 0, by a unit of k[[u]]. Staying in k[u], we can
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also view our binomial as the product of a monomial and a cyclic polynomial

um−n − λ.

For d = 2, working in k[[u1, u2]], we meet a serious difficulty: a series in two

variables does not necessarily have a dominant term (a term that divides all

others). The simplest example is the binomial ua
1 − cub

2 with c ∈ k∗. As we shall

see, if we allow enough transformations, this is essentially the only example in

dimension 2. So the behavior of a series f(u1, u2) near the origin does not reduce

to that of the product of a monomial ua
1ub

2 by a unit.

In general, for d > 1 and given f(u1, . . . , ud) ∈ k[[u1, . . . , ud]], say f =∑
m fmum, where m ∈ Zd

≥0 and um = um1

1 . . . umd

d , we can try to measure how

far f is from a monomial times a unit by considering the ideal of k[[u1, . . . , ud]] or

k[u1, . . . , ud] generated by the monomials {um : fm 6= 0} that actually appear in

f . Since both rings are noetherian, this ideal is finitely generated in both cases,

and we are faced with the following problem:

Problem. Given an ideal generated by finitely many monomials (a monomial

ideal) in k[[u1, . . . , ud]] or k[u1, . . . , ud], study how far it is from being principal .

We shall also meet a property of finitely generated ideals that is stronger than

principality, namely that given any pair of generators, one divides the other.

This implies principality (exercise), but is stronger in general: take an ideal in a

principal ideal domain such as Z, or a nonmonomial ideal in k[u]. I shall call this

property strong principality. Integral domains in which every finitely generated

ideal is strongly principal are known as valuation rings. Most are not noetherian.

Here we reach a bifurcation point in methodology:

– One approach is to generalize the notion of divisibility by studying all linear

relations, with coefficients in the ambient ring, between our monomials. This

leads to the construction of syzygies for the generators of our monomial ideal

M , or free resolutions for the quotient of the ambient ring by M . There

are many beautiful results in this direction; see [Eisenbud and Sidman 2004]

in this volume and [Sturmfels 1996]. One is also led to try and compare

monomials using monomial orders to produce Gröbner bases, since as soon

as the ideal is not principal, deciding whether a given element belongs to it

becomes arduous in general.

– Another approach is to try and force the ideal M to become principal after a

change of variables. This is the subject of the next section.
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2. Strong Principalization of Monomial Ideals by Toric Maps

In order to make a monomial ideal principal by changes of variables, the first

thing to try is changes of variables that transform monomials into monomials,

that is, which are themselves described by monomial functions:

u1 = y1
a1
1 · · · · yd

ad
1 ,

u2 = y1
a1
2 · · · · yd

ad
2 ,

. . . . . . . . . . . . . . . . . . .

ud = y1
a1

d · · · · yd
ad

d ,

where we can consider the exponents of yi appearing in the expressions of

u1, . . . , ud as the coordinates of a vector ai with integral coordinates. These

expressions decribe a monomial, or toric, map of d-dimensional affine spaces

π(a1, . . . , ad) : Ad(k) → Ad(k)

in the coordinates (yi) for the first affine space and (ui) for the second.

If we compute the effect of the change of variables on a monomial um, we see

that

um 7→ y
〈a1,m〉
1 . . . y

〈ad,m〉
d .

Exercise. Show that the degree of the fraction field extension k(u1, . . . , ud) →
k(y1, . . . , yd) determined by π(a1, . . . , ad) is the absolute value of the determi-

nant of the vectors (a1, . . . , ad). In particular, it is equal to one—that is, our

map π(a1, . . . , ad) is birational— if and only if the determinant of the vectors

(a1, . . . , ad) is ±1, that is, (a1, . . . , ad) is a basis of the integral lattice Zd.

In view of the form of the transformation on monomials by our change of vari-

ables, it makes sense to introduce a copy of Zd where the exponents of our

monomials dwell, and which we will denote by M , and a copy of Zd in which

our vectors aj dwell, which we will call the weight space and denote by W . The

lattices M and W are dual and we consider W as the integral lattice of the vector

space Řd dual to the vector space Rd in which our monomial exponents live. In

this manner, we think of m 7→ 〈ai,m〉 as the linear form on M corresponding to

ai ∈ W .

Given two monomials um and un, the necessary and sufficient condition for the

transform of un to divide the transform of um in k[y1, . . . , yd] is that 〈ai,m〉 ≥
〈ai, n〉 for all i with 1 ≤ i ≤ d. If we read this as 〈ai,m−n〉 ≥ 0 for all i,

1 ≤ i ≤ d, and seek a symmetric formulation, we are led to introduce the

rational hyperplane Hm−n in Řd dual to the vector m− n ∈ M , and obtain the

following elementary but fundamental fact, where the transform of a monomial

is just its composition with the map π(a1, . . . , ad) in the coordinates (y1, . . . , yd):

Lemma 2.1. A necessary and sufficient condition for the transform of one of the

monomials um, un by the map π(a1, . . . , ad) to divide the transform of the other
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in k[y1, . . . , yd] is that all the vectors aj lie on the same side of the hyperplane

Hm−n in Řd
≥0.

The condition is nonvacuous if and only if one of the monomials um, un does

not already divide the other in k[u1, . . . , ud], because to say that such divisibility

does not occur is to say that the equation of the hyperplane Hm−n does not have

all its coefficients of the same sign, and therefore separates into two regions the

first quadrant Řd
≥0 where our vectors aj live.

To force one monomial to divide the other in the affine space Ad(k) with

coordinates (yi) is nice, but not terribly useful, since it provides information on

the original monomials only in the image of the map π(a1, . . . , ad) in the affine

space Ad(k) with coordinates (ui), which is a constructible subset different from

Ad(k). It is much more useful to find a proper and birational (hence surjective)

map π : Z → Ad(k) of algebraic varieties over k such that the compositions with

π of our monomials generate a sheaf of ideals in Z which is locally principal; if

you prefer, Z should be covered by affine charts U such that if our monomial ideal

M is generated by um1

, . . . , umq

, the ideal (um1 ◦ π, . . . , umq ◦ π)|U is principal

or strongly principal.

Toric geometry provides a way to do this. To set the stage, we need a few

definitions (see [Ewald 1996]):

A cone σ in Rd (or Řd) is a set closed under multiplication by nonnegative

numbers. A cone is strictly convex if it contains no positive-dimensional vector

subspace. Cones contained in the first quadrant are strictly convex. The convex

dual of σ is the set

σ̌ = {m ∈ Rd : 〈m,a〉 ≥ 0 for all a ∈ σ}.

This is also a cone. A cone is strictly convex if and only if its convex dual has

nonempty interior.

A rational convex cone is one bounded by finitely many hyperplanes whose

equations have rational (or equivalently, integral) coefficients. An equivalent

definition is that a rational convex cone is the cone positively generated by

finitely many vectors with integral coordinates.

A rational fan with support Řd
≥0 is a finite collection Σ of rational strictly

convex cones (σα)α∈A with the following properties:

(1) The union of all the (σα)α∈A is the closed first quadrant Řd
≥0 of Řd.

(2) Each face of a σα ∈ Σ is in Σ; in particular {0} ∈ Σ.

(3) Each intersection σα ∩ σβ is a face of σα and of σβ .

In general, the support of a fan Σ is defined as
⋃

α∈A σα.

A fan is regular if each of its k-dimensional cones is generated by k integral

vectors (a simplicial cone) that form part of a basis of the integral lattice. If

k = d this means that their determinant is ±1.



MONOMIAL IDEALS, BINOMIAL IDEALS, POLYNOMIAL IDEALS 215

If we go back to our monomial map, assuming that the determinant of the

vectors (a1, . . . , ad) is ±1, we can express the yj as monomials in the ui; the

matrix of exponents will then be the inverse of the matrix (a1, . . . , ad), and will

have some negative entries. Monomials with possibly negative exponents will be

called Laurent monomials here.

If σ = 〈a1, . . . , ad〉, the cone positively generated by the vectors a1 . . . , ad,

then the monomials in y1, . . . , yd, viewed as Laurent monomials in u1, . . . ud via

the expression of the yj as Laurent monomials in the ui, correspond to the

integral points of the convex dual cone of σ, that is, those points m ∈ Zd such

that 〈ai,m〉 ≥ 0 for all 1 ≤ i ≤ d. So we can identify the polynomial algebra

k[y1, . . . , yd] with the algebra k[σ̌ ∩M ] of the semigroup σ̌ ∩M with coefficients

in k. Since σ is contained in the first quadrant of Řd, its convex dual σ̌ contains

the first quadrant of Rd, so we have a graded inclusion of algebras

k[Rd
≥0 ∩ M ] = k[u1, . . . , ud] ⊂ k[σ̌ ∩ M ] = k[y1, . . . , yd],

the inclusion being described by sending each variable ui to a monomial in

y1, . . . , yd as we did in the beginning.

This slightly more abstract formulation has the following use: Given a fan in

Řd, to each of its cones σ we can associate the algebra k[σ̌ ∩ M ], even if the

strictly convex cone σ is not generated by d vectors with determinant ±1.

By a lemma of Gordan [Kempf et al. 1973], the algebra k[σ̌ ∩ M ] is finitely

generated, so it corresponds to an affine algebraic variety Xσ = Spec k[σ̌ ∩ M ].

This variety is a d-dimensional affine space if and only if the cone σ̌ (or σ) is

d-dimensional and generated by vectors that form a basis of the integral lattice

of Řd. It is, however, always normal and has rational singularities only [Kempf

et al. 1973]; moreover it is rational, which means that the field of fractions of

k[σ̌ ∩ M ] is k(u1, . . . , ud).

If two cones σα and σβ have a common face ταβ , the affine varieties Xσα
and

Xσβ
can be glued up along the open set corresponding to the shared Xταβ

. By

this process, the fan Σ gives rise to an algebraic variety Z(Σ) proper over Ad(k):

π(Σ) : Z(Σ) → Ad(k).

The variety Z(Σ) is covered by affine charts corresponding to the d-dimensional

cones σ of Σ, and in each of these charts the map π(Σ) corresponds to the inclu-

sion of algebras k[u1, . . . , ud] ⊂ k[σ̌ ∩M ]. If σ is generated by d vectors forming

a basis of the integral lattice (determinant ±1), the latter algebra is a polyno-

mial ring k[y1, . . . , yd] and the inclusion is given by the monomial expression we

started from.

Definition. A convex polyhedral cone σ is compatible with a convex polyhedral

cone σ′ if σ ∩ σ′ is a face of each. A fan is compatible with a polyhedral cone if

each of its cones is.

Remember that {0} is a face of every strictly convex cone.
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Lemma 2.2. Given two monomials um, un, if we can find a fan Σ compatible

with the hyperplane Hm−n in the weight space, then in each chart of Z(Σ) the

transform of one of our monomials will divide the other .

Proof. This follows from Lemma 2.1. �

Example. In dimension d = 2, let’s try to make one of the two monomials

(u1, u2) divide the other after a monomial transformation. The hyperplane in

the weight space is w1 = w2; its intersection with the first quadrant defines a

fan whose cones are σ1 generated by a1 = (0, 1), a2 = (1, 1) and σ2 generated by

b1 = (1, 1), b2 = (0, 1), together with and their faces. The semigroup of integral

points of σ̌1 ∩ M is generated by (1, 0), (−1, 1), which correspond respectively

to the monomials y1 = u1, y2 = u−1
1 u2. The semigroup of integral points of

σ̌2 ∩M is generated by (0, 1), (1,−1), which correspond to y′
2 = u2, y′

1 = u1u
−1
2 .

There is a natural isomorphism of the open sets where u1 6= 0 and u2 6= 0,

and gluing gives the two-dimensional subvariety of A2(k) × P1(k) defined by

t2u1 − t1u2 = 0, where (t1 : t2) are the homogeneous coordinates on P1(k), with

its natural projection to A2(k): it is the blowing-up of the origin in A2(k).

σ1

σ2

σ̌1

σ̌2

Now if we have a finite number of distinct monomials 6= 1, say um1

, . . . , umq

, and

if we can find a fan Σ with support Řd
≥0 and compatible with all the hyperplanes

Hms−mt , 1 ≤ s, t ≤ q, s 6= t, this will give us an algebraic (toric) variety Z(Σ),

possibly singular and endowed with a proper surjective map π(Σ) : Z(Σ) →
Ad(k) such that the pullback by π(Σ) of the ideal M generated by our monomials

is strongly principal in each chart. Properness and surjectivity are ensured (see

[Kempf et al. 1973]) by the fact that the support of Σ is Rd
≥0.

Our collection of hyperplanes Hms−mt , 1 ≤ s, t ≤ q, s 6= t through the origin in

fact defines a fan Σ0(F ) that depends only upon the finite set F = {m1, . . . ,mq}
of elements of Zd: take as cones the closures of the connected components of

the complement in Řd
≥0 of the union of all the hyperplanes. They are strictly

convex rational cones because they lie in the first quadrant and are bounded

by hyperplanes whose equations have integral coefficients. Add all the faces of

these cones, and we have a fan, of course not regular in general. To say that a

monomial ideal generated by monomials in the generators of the algebra k[σ̌∩M ]

is locally strongly principal is not nearly as useful when these generators do not
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form a system of coordinates as when they do. However, note that we first make

our ideal M locally strongly principal via the map π(Σ0) : Z(Σ0) → Ad(k), and

then resolve the singularities of Z(Σ0) using a toric map.

The second step corresponds to a refinement of Σ0 into a regular fan Σ, where

refinement means that each cone of the second fan in contained in a cone of the

original.

This is always possible in view of a result of Kempf, Knudsen, Mumford and

St. Donat:

Theorem 2.3 [Kempf et al. 1973]. A rational fan can always be refined into a

regular fan.

From this follows:

Theorem 2.4. Let k be a field . Given a monomial ideal M in k[u1, . . . , ud],

there exists a fan Σ0 with support Řd
≥0 such that , given any regular refinement

Σ of Σ0, the associated proper birational toric map of nonsingular toric varieties

π(Σ) : Z(Σ) → Ad(k)

has the property that the transform of M is strongly principal in each chart .

Remark. By construction, for each chart Z(σ) of Z(Σ) there is an element of

M whose transform generates the ideal MOZ(σ). This element cannot be the

same for all charts unless M is already principal.

To see this, assume that there is a monomial un whose transform generates

MOZ(Σ) in every chart. This means that every simplicial cone σ of our fan with

support Řd
≥0 is on the positive side of all the hyperplanes Hm−n for all other

monomials um generating M . But this is possible only if none of these hyper-

planes meets the positive quadrant outside {0}, which means that un divides all

the other um.

Remark (Strong principalization and blowing-up). Given a finitely gen-

erated ideal I in a commutative integral domain R, there is a proper birational

map π : B(I) → SpecR, unique up to unique isomorphism, with the property

that the ideal sheaf IOB(I) generated by the compositions with π of the elements

of I is locally principal and generated by a nonzero divisor (that is, it’s an in-

vertible ideal), and that any map W → SpecR with the same property factors

uniquely through π. The map π is called the blowing-up of I in R, or in SpecR.

The blowing-up is independent of the choice of generators of I. Since a product

of ideals is invertible if and only if each ideal is, for I = (f1, . . . , fs)R the blowing-

up in SpecR of the ideal J =
∏

i<j(fi, fj)R will make I strongly principal.

If I is a monomial ideal in k[u1, . . . , ud], according to [Kempf et al. 1973], the

blowing-up of I followed by normalization is the equivariant map associated to

the fan dual to the Newton polyhedron of I. (The Newton polyhedron is defined

in the Appendix.) The reader is encouraged to check that the fan just mentioned
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admits the fan Σ0 introduced above as a refinement, illustrating the general fact

that a strong principalization map factors through the blowing-up.

Strong principalization is stressed in these lectures because it is directly linked

with the resolution of singularities of binomial ideals explained in Section 6.

Exercise. Check that one can in all statements and proofs in this section replace

the positive quadrant of Řd by any strictly convex rational cone σ0 ⊂ Řd. The

affine space Ad(k) is then replaced by the affine toric variety Xσ0
.

3. The Integral Closure of Ideals

Given a finite set F = {m1, . . . ,mq} of elements of Zd, define its support

function as the function hF : Řd → R defined by

hF (`) = min1≤s≤q `(ms).

For reasons that will become apparent, I denote the convex hull of F by F . It is

a classical result that

F =
{
n ∈ Rd : `(n) ≥ hF (`) for all ` ∈ Řd

}
;

in words, the convex hull of a set is the intersection of the half-spaces containing

that set (or, as often stated in books on convexity, a convex set is the intersection

of the half-spaces determined by its support hyperplanes). The proof of this

statement also shows that the “positive convex hull” is defined by the same

inequalities, restricted to the linear forms lying in the positive quadrant of Řd:

⋃

1≤s≤q

(ms + Rd
≥0) = {n ∈ Rd : `(n) ≥ hF (`) for all ` ∈ Řd

≥0}.

Lemma 3.1. The support function hF is linear in each cone of the fan Σ0(F )

introduced in Section 2.

Proof. This follows directly from the definitions. �

Choose a strongly principalizing map π(Σ) : Z(Σ) → Ad(k) with Σ a refinement

of Σ0(F ), as in Theorem 2.4. Then Z(Σ) is normal by [Kempf et al. 1973] (it is

regular if Σ is regular), and π(Σ) is proper and birational. Let un be a monomial

in k[u1, . . . , ud]. Given a chart Xσ of Z(Σ), corresponding to σ ∈ Σ, a necessary

and sufficient condition for un ◦π(Σ) to belong in k[σ̌∩M ] to the ideal generated

by the transforms of the generators of M is that we have `(n) ≥ hF (`) for all

` ∈ σ: by Lemma 3.1, we have for some t ∈ {1, . . . , q} that hF (`) = `(mt)

for all ` ∈ σ, and then by the definition of σ̌ our inequality means that the

quotient of the transform of un by the transform of umt

is in k[σ̌ ∩ M ], which

means that unk[σ̌ ∩ M ] ⊂ M k[σ̌ ∩ M ]. For this to be true in all charts it

is necessary and sufficient, as we saw, that n should be in the convex hull of⋃
1≤s≤q(m

s + Rd
≥0). So we have finally, using a little sheaf-theoretic language
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(in particular, unOZ(Σ) = un ◦ π(Σ) viewed as a global section of the sheaf

OZ(Σ)):

Lemma 3.2. unOZ(Σ) ∈ MOZ(Σ) if and only if n is in the convex hull of⋃
1≤s≤q(m

s + Rd
≥0).

Now one defines integral dependance over an ideal (a concept which goes back

to Prüfer or even Dedekind) as follows:

Definition. An element h of a commutative ring R is integral over an ideal I

of R if it satisfies an algebraic relation

hr + a1h
r−1 + · · · + ar = 0, with ai ∈ Ii for 1 ≤ i ≤ r.

It is not difficult to see that the set of elements integral over I is an ideal I

containing I and contained in
√

I; it is the integral closure of I. We have the

following characterization in algebraic geometry, which follows from the Riemann

extension theorem:

Proposition 3.3 [Lipman and Teissier 1981]. Let k be a field and R a localiza-

tion of a finitely generated reduced k-algebra. Let I be an ideal of R and h ∈ R.

The element h is integral over I if and only if there exists a proper and birational

morphism t : Z → SpecR such that h ◦ t ∈ IOZ (i .e., hOZ ∈ IOZ), and then

this inclusion holds for any such morphism such that Z is normal and IOZ is

invertible.

From this follows the interpretation of Lemma 3.2:

Proposition 3.4. The integral closure in k[u1, . . . , ud] of a monomial ideal

generated by the monomials um1

, . . . , umq

is the monomial ideal generated by the

monomials with exponents in the convex hull E of E =
⋃

1≤s≤q(m
s + Rd

≥0).

Example. In the ring k[u1, . . . , ud], for each integer n ≥ 1 the integral closure

of the ideal generated by un
1 , . . . , un

d is (u1, . . . , ud)
n.

Exercise. Check that in the preceding subsection, one can in all statements and

proofs replace the positive quadrant of Rd by any strictly convex rational cone

σ0 ⊂ Rd and let M denote the ideal generated by monomials um1

, . . . , umq

of the

normal toric algebra k[σ̌0∩M ]; its integral closure M in that algebra is generated

by the monomials with exponents in the convex hull in σ̌0 of
⋃

1≤s≤q(m
s + σ̌0).

m1

mi

ms

E

E
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4. The Monomial Briançon–Skoda Theorem

Theorem 4.1 (Carathéodory). Let E be a subset of Rd; every point of the

convex hull of E is in the convex hull of d + 1 points of E.

Proof. For the reader’s convenience, here is a sketch of the proof, according

to [Grünbaum 1967]. First one checks that the convex hull of E, defined as the

intersection of all convex subsets of Rd containing E, coincides with the set of

points of Rd which are in the convex hull of a finite number of points of E:

Given a finite set F of points of E, its convex hull F is contained in the convex

hull E of E. Now for two finite sets F and F ′ we have F ∪ F ′ ⊆ F ∪ F ′, so that⋃
F F is convex. It contains E and so has to be equal to E, which proves the

assertion.

Given a point x of the convex hull of E, let p be the smallest integer such

that x is in the convex hull of p + 1 points of E, i.e., that x =
∑p

i=0 αixi, with

αi ≥ 0,
∑p

i=0 αi = 1 and xi ∈ E; we must prove that p ≤ d. Assume that p > d.

Then the points xi must be affinely dependent: there is a relation
∑p

i=0 βixi = 0

with βi ∈ R, where not all the βi are zero and
∑p

i=0 βi = 0. We may choose the

βi so that at least one is > 0 and renumber the points xi so that βp > 0 and

for each index i such that βi > 0 we have αi/βi ≥ αp/βp. For 0 ≤ i ≤ p − 1 set

γi = αi − αp/βpβi, and γp = 0. Now we have

p−1∑

i=0

γixi =

p∑

i=0

γixi =

p∑

i=0

αixi −
αp

βp

p∑

i=0

βixi = x,

and moreover
p−1∑

i=0

γi =

p∑

i=0

γi =

p∑

i=0

αi −
αp

βp

p∑

i=0

βi = 1.

Finally, each γi is indeed ≥ 0 since if βi ≤ 0 we have γi ≥ αi ≥ 0 and if βi > 0

then by our choice of numbering we have γi = βi(αi/βi −αp/βp) ≥ 0. Assuming

that p > d we have expressed x as the barycenter of the p points x0, . . . , xp−1 of

E with coefficients γi, which contradicts the definition of p and thus proves the

theorem. �

Taking for E the set consisting of d + 1 affinely independent points of Rd shows

that the bound of the theorem is optimal. However, the following result means

that this is essentially the only case where d + 1 points are necessary:

Proposition 4.2 [Fenchel 1929; Hanner and R̊adström 1951]. Let E ⊂ Rd be

a subset having at most d connected components. Every point of the convex hull

of E is in the convex hull of d points of E.

Proof. We follow [Hanner and R̊adström 1951]. Assume that a point m of

the convex hull is not in the convex hull of any subset of d points of E. By

Caratheodory’s theorem, m is in the convex hull τ ⊂ Rd of d + 1 points of

E; if these d + 1 points were not linearly independent, the point m would be
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in the convex hull of the intersection of E with a hyperplane and we could

apply Caratheodory’s theorem in a space of dimension d − 1 and contradict our

assumption, so the convex hull τ of the d + 1 points is a d-simplex. Choose

m as origin, and denote by (q0, . . . , qd) the vertices of τ . We have therefore

0 =
∑d

0 riqi with ri ≥ 0 and
∑d

0 ri = 1. Our assumption that 0 is not the

barycenter of d points implies that 0 is in the interior of τ , that is, ri > 0 for

0 ≤ i ≤ d. Consider the simplex −τ and the cones with vertex 0 drawn on the

faces of −τ . Since the ri are > 0, we can reinterpret the expression of 0 as a

barycenter of the qi to mean that each qi is in the cone with vertex 0 generated

by the vectors −qj for j 6= i; thus each of these cones drawn from 0 on the faces

of −τ contains a point of E, namely one of the qi. The union of their closures

is Rd because −τ is a d-simplex, and no point of E can be on the boundary of

one of these cones; if such was the case, this point, together with d − 1 of the

vertices of τ , would define a (d − 1)-simplex with vertices in E and containing

0, a possibility which we have excluded. Therefore these d + 1 cones divide E

into d + 1 disjoint nonempty parts, and E must have at least d + 1 connected

components. �

We remark that, given finitely many points m1, . . . ,mq in the positive quadrant

Rd
≥0, the set E =

⋃q
s=1(m

s + Rd
≥0) is connected. Indeed, by definition, each

point of this set is connected by a line to at least one of the points ms, and

any point of Rd
≥0 having each of its coordinates larger than the maximum over

s ∈ {1, . . . , q} of the corresponding coordinate of the ms is in E and connected

by lines to all the points ms, so that any two of the points ms are connected

in E.

Now let σ be a strictly convex rational cone in Řd and σ̌ ⊂ Rd its dual. We

need not assume that σ is regular, or even simplicial. Let m1, . . . ,mq be integral

points in σ̌, corresponding to monomials um1

, . . . , umq

in the algebra k[σ̌ ∩ M ].

The integral closure M in k[σ̌ ∩M ] of the ideal M generated by the monomials

ums

is the ideal generated by the monomials un such that n is in the convex hull

of the set E =
⋃q

s=1(m
s + σ̌). What we have just said about the connectedness

of E extends immediately.

Theorem 4.3 (Monomial Briançon–Skoda theorem). Let k be a field and

let σ be a strictly convex rational cone in Rd. Given a monomial ideal M in

k[σ̌ ∩ M ], we have the inclusion of ideals

M d ⊂ M .

Proof. (Compare with [Teissier 1988].) Let y1, . . . , yN be a system of homo-

geneous generators of the graded k-algebra k[σ̌ ∩ M ] and let ym1

, . . . , ymq

be

generators of M in k[σ̌ ∩ M ]. Set E =
⋃

1≤s≤q(m
s + σ̌) ⊂ σ̌. Thanks to Propo-

sition 4.2 and the fact that E is connected, it suffices to show that any point

n ∈ σ̌ ∩ M which is the barycenter of d points x1, . . . , xd, each of which is the
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sum of d points of E, is in E. But then n/d is also, as a barycenter of barycen-

ters of points of E, in the convex hull of E, and therefore, by Proposition 4.2,

the barycenter of d points of E. Write n/d =
∑d

i=1 riei with ei ∈ E, ri ≥ 0

and
∑d

i=1 ri = 1. At least one of the ri, say r1, must be at least 1/d, so that

n ∈ e1 + σ̌ ⊂ E, which proves the result. �

Exercise. Prove by the same method that for each integer λ ≥ 1 we have

M d+λ−1 ⊂ M
λ.

Remark. It is not difficult to check that

E = lim
n→∞

nE

n
=

⋃

n∈N

nE

n
,

where nE is the Minkowski multiple (the set of all sums of n elements of E)

and division by n means a homothety of ratio 1/n. In fact, the inclusion⋃
n∈N

(nE/n) ⊂ E is clear, and the first set is also clearly convex, so they

are equal. The combinatorial avatar of the weak form of the Briançon–Skoda

theorem, which states that x ∈ M implies xd ∈ M , is the existence of a uniform

bound for the n such that x ∈ E implies nx ∈ E, namely n = d.

The Briançon–Skoda theorem is the statement M d ⊂ M for an ideal in a d-

dimensional regular local ring. The rings k[σ̌ ∩ M ] are not regular in general,

nor are they local, but the monomial Briançon–Skoda theorem for ideals in their

localizations k[σ̌∩M ]m follows from the results of [Lipman and Teissier 1981] in

the case where M contains an ideal generated by a regular sequence and with the

same integral closure, since k[σ̌ ∩M ] has only rational singularities (see [Kempf

et al. 1973]) and hence k[σ̌ ∩ M ]m is a pseudorational local ring.

The Briançon–Skoda theorem was originally proved [Skoda and Briançon

1974] by analytic methods for ideals of C{z1, . . . , zd}, and has been the sub-

ject of many algebraic proofs and generalizations. The first algebraic proof was

given in [Lipman and Teissier 1981], albeit for a restricted class of ideals in an

extended class of rings (pseudorational ones). See [Hochster 2004] and [Blickle

and Lazarsfeld 2004] in this volume for references and recent developments.

5. Polynomial Ideals and Nondegeneracy

The hypothesis of nondegeneracy of a polynomial with respect to its Newton

polyhedron has a fairly ancient history in the sense that it was made more or

less implicitely by authors trying to compute various invariants of a projective

hypersurface from its Newton polyhedron. In the nineteenth century one may

mention Minding and Elliott, and in the twentieth Baker (1905) and Hodge

(1930). The last three were interested in computing the geometric genus of a

projective curve or surface with isolated singularities from its Newton polygon

or polyhedron. This is a special case of computation of a multiplier ideal. See
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[Merle and Teissier 1980], and compare its Theorem of Hodge 2.3.1 with the

recent work of J. Howald expounded in [Blickle and Lazarsfeld 2004]; see also

[Howald 2001].

The modern approach to nondegeneracy was initiated essentially by Kush-

nirenko [1976] and Khovanskii, who made the nondegeneracy condition explicit

and computed from the Newton polyhedron invariants of a similar nature. In

particular Khovanskii gave the general form of Hodge’s result. The essential

facts behind the classical computations turned out to be that nondegenerate sin-

gularities have embedded toric (pseudo-)resolutions which depend only on their

Newton polyhedron and from which one can read combinatorially various inter-

esting invariants, and that in the spaces of coefficients of all those functions or

systems of functions having given polyhedra, those which are nondegenerate are

Zariski-dense.

Let f =
∑

p fpu
p be an arbitrary polynomial or power series in d variables with

coefficients in the field k. Let Supp f = {p ∈ Rd : fp 6= 0} be its support.

The affine Newton polyhedron of f in the coordinates (u1, . . . , ud) is the bound-

ary N (f) of the convex hull in Rd
≥0 of the support of f . The local Newton

polyhedron is the boundary N+(f) of

P+(f) = convex hull of (Supp f + Rd
≥0).

It has finitely many compact faces and its noncompact faces of dimension at

most d − 1 are parallel to coordinate hyperplanes. Both polyhedra depend not

only on f but also on the choice of coordinates. Remark also that the local

Newton polyhedron is of no interest if f has a nonzero constant term.

We can define the affine and the local support functions associated with the

function f as follows (in the affine case, this is the same definition as before,

applied to the set of monomials appearing in f):

For the affine Newton polyhedron it is the function defined on Řd by

hN (f)(`) = minp∈N (f) `(p),

and for the local Newton polyhedron it is defined on the first quadrant Řd
≥0 by

hN+(f)(`) = minp∈N+(f) `(p).

Both functions are piecewise linear in their domain of definition, meaning that

there is a decomposition of the domain of definition into convex cones such that

the function is linear in each cone. These collections of cones are actually fans,

in Řd and Řd
≥0 respectively. These fans are “dual” to the Newton polyhedra in

the following sense:

Consider, say for the local polyhedron, the following equivalence relation be-

tween linear functions:

` ≡ `′ ⇐⇒
{
p ∈ N+(f) : `(p) = hN+(f)(`)

}
=

{
p ∈ N+(f) : `′(p) = hN+(f)(`

′)
}
.
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Its equivalence classes form a decomposition of the first quadrant into strictly

convex rational cones, and by definition the support function is linear in each of

them, given by ` 7→ `(p) for any p in the set
{
p ∈ N+(f) : `(p) = hN+(f)(`)

}
.

These sets are faces of the Newton polyhedron, and the collection of the cones

constitutes a fan ΣN in Rd
≥0, called the dual fan of the Newton polyhedron.

This establishes a one-to-one decreasing correspondence between the cones of the

dual fan of a Newton polyhedron and the faces of all dimensions of that Newton

polyhedron. Corresponding to noncompact faces of the Newton polyhedron meet

coordinate hyperplanes outside the origin.

We have now associated to each polynomial f =
∑

p fpu
p a dual fan in Řd cor-

responding to the global Newton polyhedron, and another in Řd
≥0 corresponding

to the local Newton polyhedron. The local polyhedron is also defined for a series

f =
∑

p fpu
p, and the combinatorial constructions are the same. For the mo-

ment, let’s restrict our attention to the local polyhedron, assuming that f0 = 0,

and let’s choose a regular refinement Σ of the fan associated to it.

By the definition just given, this means that for each cone σ = 〈a1, . . . , ak〉
of the fan Σ, the primitive vectors ai form part of a basis of the integral lattice,

and all the linear forms p 7→ 〈ai, p〉, when restricted to the set {p : fp 6= 0}, take

their minimum value on the same subset, which is a face, of the (local) Newton

polyhedron of f =
∑

p fpu
p. This face may or may not be compact.

We examine the behavior of f under the map π(σ) : Z(σ) → Ad(k) corre-

sponding to a cone σ = 〈a1, . . . , ad〉 ⊂ Řd
≥0 of a regular fan which is a subdivision

of the fan associated to the local polyhedron of f . If we write h for hN+(f) we

get

f ◦ π(σ) =
∑

p

fpy
〈a1,p〉
1 . . . y

〈ad,p〉
d

= y
h(a1)
1 . . . y

h(ad)
d

∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d .

The last sum is by definition the strict transform of f by π(σ).

Exercises. Check that:

(a) In each chart Z(σ) the exceptional divisor consists (set-theoretically) of the

union of those hyperplanes yj = 0 such that aj is not a basis vector of Žd.

(b) Provided that no monomial in the ui divides f , the hypersurface

∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d = 0

is indeed the strict transform by the map π(σ) : Z(σ) → Ad(k) of the hyper-

surface X ⊂ Ad(k) defined by f(u1, . . . , ud) = 0, in the sense that it is the

closure in Z(σ) of the image of X∩(k∗)d by the isomorphism induced by π(σ)

on the tori of the two toric varieties Z(σ) and Ad(k) as well as in the sense
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that it is obtained from f ◦ π(σ) by factoring out as many times as possible

the defining functions of the components of the exceptional divisor.

Denote by f̃ the strict transform of f and note that by construction it has a

nonzero constant term: the cone σ is of maximal dimension, which means that

there is a unique exponent p such that 〈a, p〉 = h(a) for a ∈ σ.

The map π(τ) associated to a face τ of σ coincides with the restriction of

π(σ) to an open set Z(τ) ⊂ Z(σ) which is of the form yj 6= 0 for j ∈ J , where J

depends on τ ⊂ σ.

Now we can, for each cone σ of our regular fan, stratify the space Z(σ) in

such a way that π(σ)−1(0) is a union of strata. Let I be a subset of {1, 2, . . . , d}
and define SI to be the constructible subset of Z(σ) defined by yi = 0 for

i ∈ I, yi 6= 0 for i /∈ I. The SI for I ⊂ {1, 2, . . . , d} constitute a partition of

Z(σ) into nonsingular varieties, constructible in Z(σ), which we call the natural

stratification of Z(σ). If we glue up two charts Z(σ) and Z(σ′) along Z(σ ∩ σ′),

the natural stratifications glue up as well.

If we restrict the strict transform

f̃(y1, . . . , yd) =
∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d

to a stratum SI , we see that in the sum representing f̃(y1, . . . , yd) only the terms

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d such that 〈ai, p〉 − h(ai) = 0 for i ∈ I survive.

These equalities define a unique face γI of the Newton polyhedron of f , since

our fan is a subdivision of its dual fan. Given a series f =
∑

p fpu
p and a weight

vector ǎ ∈ Rd
≥0, the set

{
p ∈ Zd

≥0 : fp 6= 0 and 〈ǎ, p〉 = h(ǎ)
}

is a face of the local Newton polyhedron of f , corresponding to the cone of the

dual fan which contains ǎ in its relative interior. If all the coordinates of the

vector ǎ are positive, this face is compact.

Moreover, if we define

fγI
=

∑

p∈γI

fpu
p

to be the partial polynomial associated to the face γI , which is nothing but the

sum of the terms of f whose exponent is in the face γI , we see that we have the

fundamental equality

f̃ |SI
= f̃γI

|SI

and we remark moreover that f̃γI
is a function on Z(σ) which is independent of

the coordinates yi for i ∈ I, so that it is determined by its restriction to SI .

Now, to say that the strict transform f̃ = 0 in Z(σ) of the hypersurface

f = 0 is transversal to the stratum SI and is nonsingular in a neighborhood

of its intersection with it is equivalent to saying that the restriction f̃ |SI
of the

function f̃ defines, by the equation f̃ |SI
= 0, a nonsingular hypersurface of SI .
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By the definition of SI and what we have just seen, this in turn is equivalent to

saying that the equation f̃γI
= 0 defines a nonsingular hypersurface in the torus

(k∗)d =
{
u :

∏d
1 uj 6= 0

}
of Z(σ), and this finally is equivalent to saying that

fγI
= 0 defines a nonsingular hypersurface in the torus (k∗)d of the affine space

Ad(k) since π(σ) induces an isomorphism of the two tori.

This motivates the definition:

Definition. The series f =
∑

p fpu
p is nondegenerate with respect to its New-

ton polyhedron in the coordinates (u1, . . . , ud) if for every compact face γ of

N+(f) the polynomial fγ defines a nonsingular hypersurface of the torus (k∗)d.

Remark. By definition of the faces of the Newton polyhedron and of the dual

fan, in each chart Z(σ) of a regular fan refining the dual fan of N+(f), the

compact faces γI correspond to strata SI of the canonical stratification which

are contained in π(σ)−1(0). Each stratum SI which is not contained in π(σ)−1(0)

contains in its closure strata which are.

Proposition 5.1. If the germ of hypersurface X is defined by the vanishing

of a series f which is nondegenerate, there is a neighborhood U of 0 in Ad(k)

(a formal neighborhood if the series f does not converge) such that the strict

transform of X ∩ U by the toric map

π(Σ) : Z(Σ) → Ad(k)

associated to a regular fan refining the dual fan of its Newton polyhedron is non-

singular and transversal in each chart to the strata of the canonical stratification.

Proof. By the fundamental equality seen above, the restriction of the strict

transform to one of the strata contained in π(σ)−1(0), say SI , has the same be-

havior as the restriction of fγI
, where γI is a compact face of the Newton poly-

hedron of f , to the torus (k∗)d. As we saw, this implies that the strict transform

of X ∩U is nonsingular and transversal to SI . By openness of transversality the

same transversality holds, whithin a neighborhood of each point of π(Σ)−1(0),

for all strata.

Since the map π(Σ) : Z(Σ) → Ad(k) is proper, there is a neighborhood U of 0

in Ad(k) such that the strict transform by π(Σ) of the hypersurface X ⊂ Ad(k)

is nonsingular in π(Σ)−1(U) and transversal in each chart Z(σ) to all the strata

of the canonical stratification. �

The definition and properties of nondegeneracy extend to systems of functions

as follows. Let f1, . . . , fk be series in the variables u1, . . . , ud defining a subspace

X ⊂ Ad(k) in a neighborhood of 0. For each j = 1, . . . , k we have a local Newton

polyhedron N+(fj). Choose a regular fan Σ of Rd
≥0 compatible with all the fans

dual to the polyhedra N+(fj) for j = 1, . . . , k. We have for each j the same

correspondence as above between the strata SI of each chart Z(σ) for σ ∈ Σ and

the faces of N+(fj), the strata contained in π(σ)−1(0) corresponding to compact

faces.
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For each vector ǎ ∈ Řd
≥0 we get as above a system of equations f1,ǎ, . . . , fk,ǎ,

where

fj,ǎ =
∑

{p:〈ǎ,p〉=h(ǎ)}

fjpu
p.

Definition. The system of equations f1, . . . , fk is said to be nondegenerate

of rank c with respect to the Newton polyhedra of the fj in the coordinates

(u1, . . . , ud) if for each vector ǎ ∈ Rd
>0 the ideal of k[u±1

1 , . . . , u±1
d ] generated by

the polynomials f1,ǎ, . . . , fk,ǎ defines a nonsingular subvariety of dimension d−c

of the torus (k∗)d.

Exercise. Check that, since we took ǎ ∈ Rd
>0 in the definition, it is equiva-

lent to say that for each choice of a compact face γj in each N+(fj), the ideal

generated by the polynomials f1γ1
, . . . , fkγk

defines a nonsingular subvariety of

dimension d − c of the torus (k∗)d.

Exactly as in the case of hypersurfaces, one then has:

Proposition 5.2. If the system of equations f1, . . . , fk is nondegenerate of rank

c, for any regular fan Σ of Rd
≥0 compatible with the dual fans of the polyhedra

N+(fj), there is a neighborhood U of 0 in Ad(k) (a formal neighborhood if all

the series fj do not converge) such that the strict transform X ′ ⊂ Z(Σ) by the

toric map π(Σ) : Z(Σ) → Ad(k) of the subvariety X∩U defined in U by the ideal

generated by f1, . . . , fk is nonsingular and of dimension d− c and transversal to

the strata of the natural stratification in π(Σ)−1(U).

Proof. The same as that of Proposition 5.1. �

There is a difference, however, between the birational map X ′ → X ∩U induced

by π(Σ) and a resolution of singularities; this map is not necessarily an isomor-

phism outside of the singular locus; it is therefore only a pseudoresolution in the

sense of [Goldin and Teissier 2000]. In fact, even in the nondegenerate case, and

even for a hypersurface, the Newton polyhedron contains in general far too little

information about the singular locus of X near 0. Kushnirenko introduced, for

isolated hypersurface singularities, the notion of being convenient with respect

to a coordinate system. It means that the Newton polyhedron meets all the

coordinate axis of Rd
≥0. For a hypersurface with isolated singularity, it implies

that a toric pseudoresolution associated to the Newton polyhedron is a resolu-

tion. This was extended and generalized by M. Oka for complete intersections.

The reader is referred to [Oka 1997, Ch. III] (especially Theorem 3.4) and we will

only quote here the following fact, which is also a consequence of the existence

of a toric pseudoresolution:

Theorem [Oka 1997, Ch. III, Lemma 2.2]. If k is a field and (X, 0) ⊂ Ad(k)

is a germ of a complete intersection with equations f1 = · · · = fc = 0, which

is nondegenerate with respect to the Newton polyhedra of its equations in the

coordinates u1, . . . , ud, then there is a (possibly formal) neighborhood U of 0 ∈
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Ad(k) such that the intersection of X and the torus (k∗)d has no singularities

in U .

In the formal case this should be understood as saying that formal germ at 0 of

the singular locus of X is contained in the union of the coordinate hyperplanes.

Finally, it seems that the following coordinate-free definition of nondegeneracy

is appropriate:

Definition. An algebraic or formal subscheme X of an affine space Ad(k)

is nondegenerate at a point x ∈ X if there exist local coordinates u1, . . . , ud

centered at x and an open (étale or formal) neighborhood U of x in Ad(k)

such that there is a proper birational toric map π : Z → U in the coordinates

u1, . . . , ud with Z nonsingular and such that the strict transform X ′ of X ∩ U

by π is nonsingular and transversal to the exceptional divisor at every point of

π−1(x) ∩ X ′.

If X admits a system of equations which in some coordinates is nondegenerate

with respect to its Newton polyhedra, it is also nondegenerate in this sense as

we saw. The converse will not be discussed here.

Question [Teissier 2003]. Given a reduced and equidimensional algebraic or

formal space X over an algebraically closed field k, is it true that for every point

x ∈ X there is a local formal embedding of X into an affine space AN (k) such

that X is nondegenerate in AN (k) at the point x?

A subsequent problem is to give a geometric interpretation of the systems of

coordinates in which an embedded toric resolution for X exists.

For branches (analytically irreducible curve singularities), the question is an-

swered positively, and the problem settled in Section 7 below. Recent work of

P. González Pérez [2003] also settles question and problem for irreducible quasi-

ordinary hypersurface singularities.

In [Teissier 2003] one finds an approach to the simpler problem where the

nondegeneracy is requested only with respect to a valuation of the local ring of

X at x.

In a given coordinate system, and for given Newton polyhedra, “almost all”

systems of polynomials having these given Newton polyhedra are nondegenerate

with respect to them. In this sense there are many nondegenerate singularities.

However, nondegenerate singularities are very special from the viewpoint of the

classification of singularities. A plane complex branch is nondegenerate in some

coordinate system if and only if it has only one characteristic pair, which means

that its equation can be written in some coordinate system as

up
1 − uq

0 +
∑

i/q+j/p>1

aiju
i
0u

j
1 = 0,
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where aij ∈ k and the integers p, q are coprime. The curve

(u2
1 − u3

0)
2 − u5

0u1 = 0

is degenerate in any coordinate system since it has two characteristic pairs [Smith

1873; Brieskorn and Knörrer 1986].

6. Resolution of Binomial Varieties

This section presents what is in a way the simplest class of nondegenerate

singularities, according to the results in [González Pérez and Teissier 2002]:

Let k be a field. Binomial varieties over k are irreducible varieties of the

affine space Ad(k) which can, in a suitable coordinate system, be defined by

the vanishing of binomials in these coordinates, which is to say expressions of

the form um − λmnun with λmn ∈ k∗. An ideal generated by such binomial

expressions is called a binomial ideal. These affine varieties defined by prime

binomial ideals are also the irreducible affine varieties on which a torus of the

same dimension acts algebraically with a dense orbit (see [Sturmfels 1996]); they

are the (not necessarily normal) affine toric varieties.

Binomial ideals were studied in [Eisenbud and Sturmfels 1996]; these authors

showed in particular that if k is algebraically closed their geometry is determined

by the lattice generated by the differences m − n of the exponents of the gen-

erating binomials. If the field k is not algebraically closed, the study becomes

more complicated. Here I will assume throughout that k is algebraically closed.

It is natural to study the behavior of binomial ideals under toric maps.

Let σ = 〈a1, . . . , ad〉 be a regular cone in Řd
≥0. The image of a binomial

um − λmnun

under the map k[u1, . . . , ud] → k[y1, . . . , yd] determined by ui 7→ y
a1

i

1 . . . y
ad

i

d is

given by

um − λmnun 7→ y
〈a1,m〉
1 . . . y

〈ad,m〉
d − λmny

〈a1,n〉
1 . . . y

〈ad,n〉
d .

In general this only tells us that the transform of a binomial is a binomial, which

is no news since by definition of a toric map the transform of a monomial is a

monomial.

However, something interesting happens if we assume that the cone σ is com-

patible with the hyperplane Hm−n which is the dual in the space of weights of

the vector m−n of the space of exponents, in the sense of definition on page 215,

where we remember that the origin {0} is a face of any polyhedral cone. Note

that the Newton polyhedron of a binomial has only one compact face, which is a

segment, so that for a cone in Řd
≥0, being compatible with the hyperplane Hm−n

is the same as being compatible with the dual fan of the Newton polyhedron of

our binomial.
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Let us assume that the binomial hypersurface um −λmnun = 0 is irreducible;

this means that no variable uj appears in both monomials, and the vector m−n

is primitive. In the sequel, I will tacitly assume this and also that our binomial

is really singular, that is, not of the form u1 − λum.

If the convex cone σ of dimension d is compatible with the hyperplane Hm−n,

it is contained in one of the closed half-spaces determined by Hm−n. This means

that all the nonzero 〈ai,m−n〉 have the same sign, say positive. It also means

that, if we renumber the vectors ai in such a way that 〈ai,m−n〉 = 0 for 1 ≤ i ≤ t

and 〈ai,m−n〉 > 0 for t + 1 ≤ i ≤ d, we can write the transform of our binomial

as

um − λmnun 7→ y
〈a1,n〉
1 . . . y

〈ad,n〉
d

(
y
〈at+1,m−n〉
t+1 . . . y

〈ad,m−n〉
d − λmn

)
.

And we can see that the strict transform y
〈at+1,m−n〉
t+1 . . . y

〈ad,m−n〉
d −λmn = 0 of

our hypersurface in the chart Z(σ) is nonsingular!

It is also irreducible in view of the results of [Eisenbud and Sturmfels 1996]

because we assumed that the vector m − n is primitive and the matrix (ai
j) is

unimodular. This implies that the vector (0, . . . , 0, 〈at+1, m−n〉, . . . , 〈ad, m−n〉)
is also primitive, and the strict transform irreducible. Moreover, in the chart

Z(σ) with σ = 〈a1, . . . , ad〉, the strict transform meets the hyperplane yj = 0

if and only if 〈aj ,m−n〉 = 0. Unless our binomial is nonsingular, a case we

excluded, this implies that aj is not a vector of the canonical basis of W , so

that yj = 0 is a component of the exceptional divisor. So we see that the

strict transform meets the exceptional divisor only in those charts such that

σ ∩ Hm−n 6= {0}, and then meets it transversally.

So we have in this very special case achieved that the total transform of our

irreducible binomial hypersurface defines in each chart a divisor with normal

crossings that is, a divisor locally at every point defined in suitable local coor-

dinates by the vanishing of a monomial and whose irreducible components are

nonsingular.

Now we consider a prime binomial ideal of k[u1, . . . , ud] generated by (um` −
λ`u

n`

)`∈{1,...,L}, λ` ∈ k∗. Let us denote by L the sublattice of Zd generated

by the differences m` − n`. According to [Eisenbud and Sturmfels 1996], the

dimension of the subvariety X ⊂ Ad(k) defined by the ideal is d − r where r

is the rank of the Q-vector space L ⊗Z Q. To each binomial is associated a

hyperplane H` ⊂ Řd, the dual of the vector m` − n` ∈ Rd. The intersection W

of the hyperplanes H` is the dual of the vector subspace L ⊗ZR of Rd generated

by the vectors m` − n`; its dimension is d − r.

Let Σ be a fan with support Rd
≥0 which is compatible with each of the

hyperplanes H`. Let us compute the transforms of the generators um` − λ`u
n`

in a chart Z(σ) associated to the cone σ = 〈a1, . . . , ad〉: after renumbering the

vectors aj and possibly exchanging some m`, n` and replacing λ` by its inverse,

we may assume that a1, . . . , at are in W , that the 〈aj ,m` − n`〉 are ≥ 0 for



MONOMIAL IDEALS, BINOMIAL IDEALS, POLYNOMIAL IDEALS 231

j = t + 1, . . . , d, and that moreover for each such index j there is an ` such

〈aj ,m` − n`〉 > 0. The transforms of the binomials can be written

y
〈a1,n`〉
1 . . . y

〈ad,n`〉
d

(
y
〈at+1,m`−n`〉
t+1 . . . y

〈ad,m`−n`〉
d − λ`

)

with that additional condition. If σ∩W = {0}, we have t = 0 and the subvariety

defined by the equations just written (the strict transform of X in Z(σ)) does not

meet any coordinate hyperplane; in particular it does not meet the exceptional

divisor. In general, still assuming that none of the binomials is already in the

form uj − λum, one sees that the additional condition implies that, just like in

the case of hypersurfaces, the strict transform meets the hyperplane yj = 0 if

and only if aj is in W .

Now the claim is that in each chart Z(σ) the strict transform is either empty

or nonsingular and transversal to the exceptional divisor.

The Q-vector space generated by the m`−n` is of dimension r. Let us assume

that m1 − n1, . . . ,mr − nr generate it and let us denote by L1 the lattice which

they generate in Zd. By construction, the quotient L /L1 is a torsion Z-module.

Let us first show that the strict transform of the subspace X1 ⊂ X defined by

the first r binomial equations is nonsingular and transversal to the exceptional

divisor.

We consider then, for each cone σ = 〈a1, . . . , ad〉, the equations

y
〈a1,m1−n1〉
1 · · · · y

〈ad,m1−n1〉
d − λ1 = 0

y
〈a1,m2−n2〉
1 · · · · y

〈ad,m2−n2〉
d − λ2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y
〈a1,mr−nr〉
1 · · · · y

〈ad,mr−nr〉
d − λr = 0

of the strict transform of X1 in Z(σ).

We can compute by logarithmic differentiation their jacobian matrix J , and

find with the same definition of t as above an equality of d × r matrices:

yt+1 . . . ydJ = y
P

s
〈at+1,ms−ns〉

t+1 . . . y
P

s
〈ad,ms−ns〉

d

(
〈aj ,ms − ns〉

)
1≤j≤d,1≤s≤r

.

Lemma 6.1. Given an irreducible binomial variety X ⊂ Ad(k), with the nota-

tions just introduced , for any regular cone σ = 〈a1, . . . , ad〉 compatible with the

hyperplanes H`, the image in Matd×L(k) of the matrix

(
〈aj ,ms − ns〉

)
1≤j≤d,1≤s≤L

∈ Matd×L(Z)

has rank r.

Proof. Since the vectors aj form a basis of Qd, and the space W̌ = L ⊗Z R

generated by the ms−ns is of dimension r, the rank of the matrix
(
〈aj ,ms−ns〉

)

is r, which proves the lemma if k is of characteristic zero. If the field k is of

positive characteristic the proof is a little less direct; see [Teissier 2003, Ch. 6].
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In particular, the rank of the image in Matd×r(k) of the matrix
(
〈aj ,ms −

ns〉
)
1≤j≤d,1≤s≤r

∈ Matd×r(Z) is r. �

Lemma 6.2. The strict transform X ′
1 by π(Σ) of the subspace X ⊂ Ad(k) defined

by the ideal of k[u1, . . . , ud] generated by the binomials

um1 − λ1u
n1

, . . . , umr − λru
nr

is regular and transversal to the exceptional divisor .

Proof. Let σ be a cone of of maximal dimension in the fan Σ. In the chart

Z(σ), none of the coordinates yt+1, . . . , yd vanishes on the strict transform X ′
1

of X1 and the equations of X ′
1 in Z(σ) are independent of y1, . . . , yt. Therefore

to prove that the jacobian J of the equations has rank r at each point of this

strict transform it suffices to show that the rank of the image in Matd×L(k) of

the matrix
(
〈aj ,ms − ns〉

)
1≤j≤d,s∈L

∈ Matd×L(Z) is r, which follows from the

lemma. �

Proposition 6.3. If the regular fan Σ with support Řd
≥0 is compatible with all

the hyperplanes Hm`−n` , the strict transform X ′ under the map π(Σ) : Z(Σ) →
Ad(k) of the subspace X ⊂ Ad(k) defined by the ideal of k[u1, . . . , ud] generated

by the (um`−λ`u
n`

)`∈{1,...,L} is regular and transversal to the exceptional divisor ;

it is also irreducible in each chart .

Proof. The preceding discussion shows that the rank of J is r everywhere on

the strict transform of X, and by Zariski’s jacobian criterion this strict transform

is smooth and transversal to the exceptional divisor. But it is not necessarily

irreducible; we show that the strict transform of our binomial variety is one of

its irreducible components. Since the differences of the exponents in the total

transform and the strict transform of a binomial are the same, the lattice of

exponents generated by the exponents of all the strict transforms of the binomials

(um` −λmnun`

)`∈{1,...,L} is the image M(σ)L of the lattice L by the linear map

Zd → Zd corresponding to the matrix M(σ) with rows (a1, . . . , ad). Similarly

the exponents of the strict transforms of um1 − λm1n1un1

, . . . , umr − λmrnrunr

generate the lattice M(σ)L1. The lattice M(σ)L is the saturation of M(σ)L1,

and so according to [Eisenbud and Sturmfels 1996], since we assume that k

is algebraically closed, the strict transform of our binomial variety is one of

the irreducible components of the binomial variety defined by the r equations

displayed above.

The charts corresponding to regular cones σ ∈ Σ of dimension < d are open

subsets of those which we have just studied, so they contribute nothing new. �

In the case of binomial varieties one can show that the regular refinement Σ

of the fan Σ0 determined by the hyperplanes Hms−ns can be chosen in such a

way that the restriction X ′ → X of the map π(Σ) to the strict transform X ′

of X induces an isomorphism outside of the singular locus of X; it is therefore
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an embedded resolution of X ⊂ Ad(k) and not only a pseudoresolution; see

[González Pérez and Teissier 2002] and [Teissier 2003, § 6.2].

Remark. Since [Hironaka 1964], one usually seeks to achieve resolution of singu-

larities by successions of blowing-ups with nonsingular centers, which moreover

are “permissible”. According to [De Concini and Procesi 1983; 1985], toric maps

are dominated by finite successions of blowing-ups with nonsingular centers.

Now in view of the results of Section 5, we expect that if we deform a binomial

variety by adding to each of its equations terms which do not affect the Newton

polyhedron, the same toric map will resolve the deformed variety as well. How-

ever, it may be only a pseudoresolution, since the effect of the deformation on

the singular locus is difficult to control. The next section shows that in a special

case one can, conversely, present a singularity as a deformation of a toric variety,

and thus obtain an embedded toric resolution.

7. Resolution of Singularities of Branches

This section is essentially an exposition of material in [Goldin and Teissier

2000] and [Teissier 2003]. The idea is to show that any analytically irreducible

germ of curve is in a canonical way a deformation of a monomial curve, which

is defined by binomial equations. In this terminological mishap, the monomial

refers to the parametric presentation of the curve; the parametric presentation

is more classical, but the binomial character of the equations is more suitable

for resolution of singularities.

The deformation from the monomial curve to the curve is “equisingular”,

so that the toric map which resolves the singularties of the monomial curve

according to Section 6 also resolves the singularities of our original curve once

it is suitably embedded in the affine space where the monomial curve embeds.

One interpretation of this is that after a suitable reembedding, any analytically

irreducible curve becomes nondegenerate.

For example, in order to resolve the singularities at the origin of the plane

curve C with equation

(u2
1 − u3

0)
2 − u5

0u1 = 0,

a good method is to view it as the fiber for v = 1 of the family of curves Cv in

A3(k) defined by the equations

u2
1 − u3

0 − vu2 = 0,

u2
2 − u5

0u1 = 0,

as one can see by eliminating u2 between the two equations. The advantage is

that the fiber for v = 0 is a binomial variety, which we know how to resolve,

and its resolution also resolves all the fibers Cv. For v 6= 0, the fiber Cv is

isomorphic to our original plane curve C, re-embedded in A3(k) by the functions

u0, u1, u
2
1 − u3

0.
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In more algebraic terms, it gives this:

Let R be a one dimensional excellent equicharacteristic local ring whose com-

pletion is an integral domain and whose residue field is algebraically closed. A

basic example is R = k[[x, y]]/(f) where k is algebraically closed and f(x, y) is

irreducible in k[[x, y]]. Then the normalization R of R is a (discrete) valuation

ring because it is a one dimensional normal local ring. The maximal ideal of

R is generated by a single element, say t, and each nonzero element of R can

be written uniquely as utn, where u is invertible in R and n ∈ N ∪ {0}. The

valuation ν(utn) of that element is n.

In our basic example, the inclusion R ⊂ R is k[[x, y]]/(f) ⊂ k[[t]] given by

x 7→ x(t), y 7→ y(t), where x(t), y(t) is a parametrization of the plane curve with

equation f(x, y) = 0.

Since R is a subalgebra of R, the values taken by the valuation on the elements

of R (except 0) form a semigroup Γ contained in N. This semigroup has a finite

complement in N and is finitely generated. Let us write it

Γ = 〈γ0, γ1, . . . , γg〉.

The powers of the maximal ideal of R form a filtration

R ⊃ tR ⊃ t2R ⊃ · · · ⊃ tnR ⊃ · · ·

whose associated graded ring

grνR =
⊕

n∈N∪{0}

tnR/tn+1R

is a k-algebra isomorphic to the polynomial ring k[t] by the map t (mod t2R) 7→ t.

This filtration induces a filtration on the ring R itself, by the ideals Pn =

R ∩ tnR, and one defines the corresponding associated graded ring

grν R =
⊕

n∈N∪{0}

Pn/Pn+1 ⊆ grν R = k[t].

Proposition 7.1 [Goldin and Teissier 2000]. The subalgebra grν R of k[t] is

equal to the subalgebra generated by tγ0 , tγ1 , . . . , tγg . It is the semigroup algebra

over k of the semigroup Γ of the valuation ν on R; it is also the affine algebra

of the monomial curve in the affine space Ag+1(k) described parametrically by

ui = tγi for 0 ≤ i ≤ g.

There is a precise geometrical relationship between the original curve C with

algebra R and the monomial curve CΓ with algebra grν R: according to a general

principle of algebra, the ring R is a deformation of its associated graded ring.

More precisely, assume that R contain a field of representatives of its residue

field k, i.e., that we have a subfield k ⊂ R such that the composed map k ⊂
R → R/m = k is the identity. This will be the case in particular, according
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to Cohen’s theorem, if the local ring R is complete (and equicharacteristic of

course).

Start from the filtration by the ideals Pn introduced above, set Pn = R for

n ≤ 0 and consider the algebra

Aν(R) =
⊕

n∈Z

Pnv−n ⊂ R[v, v−1].

It can be shown (see [Teissier 2003]) that it is generated as a R[v]-algebra by the

ξiv
−γi , 0 ≤ i ≤ g, where ξi ∈ R is of t-adic order γi. Since Pn = R for n ≤ 0 it

contains as a graded subalgebra the polynomial algebra R[v], and therefore also

k[v].

Proposition 7.2 [Teissier 1975; Bourbaki 1983, Ch. VIII § 6, exerc. 2]; see also

[Gerstenhaber 1964; 1966].

(a) The composed map k[v] → Aν(R) is faithfully flat .

(b) The map
∑

xnv−n 7→
∑

xn,

where xn is the image of xn in the quotient Pn/Pn+1, induces an isomor-

phism

Aν(R)/vAν(R) → grν R.

(c) For any v0 ∈ k∗ the map

∑
xnv−n 7→

∑
xnv−n

0

induces an isomorphism of k-algebras

Aν(R)/(v − v0)Aν(R) → R.

Proof. Since k[v] is a principal ideal domain, to prove (a) it suffices by [Bour-

baki 1968, Ch. I § 3.1] to prove that Aν(R) has no torsion as a k[v]-module and

that for any v0 ∈ k we have (v − v0)Aν(R) 6= Aν(R). The second statement

follows from (b) and (c), which are easy to verify, and the first follows from the

fact that Aν(R) is a subalgebra of R[v, v−1]. �

This proposition means that there is a one parameter flat family of algebras

whose special fiber is the graded algebra and all other fibers are isomorphic

to R. Geometrically, this gives us a flat family of curves whose special fiber

is the monomial curve and all other fibers are isomorphic to our given curve.

This deformation can be realized in the following way. I assume for simplicity

that R is complete. Then by the definition of the semigroup Γ there are ele-

ments ξ0(t), . . . , ξg(t) in k[[t]] that belong to R and are such that their t-adic

valuations are the generators γi of the semigroup Γ. We may write ξi(t) =
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tγi +
∑

j>γi
bijt

j with bij ∈ k. Now introduce a parameter v and consider the

family of parametrized curves in Ag+1(k) described as follows:

u0 = ξ0(vt)v−γ0 = tγ0 +
∑

j>γ0

b0jv
j−γ0tj ,

u1 = ξ1(vt)v−γ1 = tγ1 +
∑

j>γ1

b1jv
j−γ1tj ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ug = ξg(vt)v−γg = tγg +
∑

j>γg

bgjv
j−γg tj .

The parametrization shows that for v = 0 we obtain the monomial curve, and

for any v 6= 0 a curve isomorphic to our given curve, as embedded in Ag+1(k) by

the functions ξ0, . . . , ξg. This is a realisation of the family of Proposition 7.2. In

order to get an equational representation of that family, we must begin by finding

the equations of the monomial curve, which we will then proceed to deform.

The equations of the monomial curve CΓ correspond to the relations between

the generators γi of Γ. They are fairly simple in the case where Γ is the semigroup

of a plane branch, and in that case CΓ is a complete intersection. The general

setup is as follows:

Consider the Z-linear map w : Zg+1 → Z determined by sending the i-th base

vector ei to γi; the image of Z
g+1
≥0 is Γ. It is not difficult to see that the kernel of

w is generated by differences m − m′, where m,m′ ∈ Z
g+1
≥0 and w(m) = w(m′).

The kernel of w is a lattice (free sub Z-module) L in Zg+1, which must be

finitely generated because Zg+1 is a noetherian Z-module and Z is a principal

ideal domain.

If we choose a basis m1−n1, . . . ,mq−nq for L , such that all the mj , nj are

in Z
g+1
≥0 , it follows from the very construction of semigroup algebras that CΓ is

defined in the space Ag+1(k) with coordinates u0, . . . , ug by the vanishing of the

binomials um1− un1

, . . . , umq− unq

.

Now the faithful flatness of the family of Proposition 7.2 implies that it can be

defined in A1(k)×Ag+1(k) by equations which are deformations of the equations

of the monomial curve [Teissier 2003, § 5, proof of 5.49]. Here I cheat a little by

leaving out the fact that one in fact defines a formal space. Anyway, our family

of (formal) curves is also defined by equations of the form

um1− un1

+
∑

w(r)>w(m1)

c(1)
r (v)ur = 0,

um2− un2

+
∑

w(r)>w(m2)

c(2)
r (v)ur = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

umq− unq

+
∑

w(r)>w(mq)

c(1)
r (v)ur = 0,
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where the c
(j)
r (v) are in (v)k[[v]], w(r) =

∑g
0 γjrj is the weight of the monomial

ur with respect to the weight vector w = (γ0, . . . , γg), that is, w(r) = 〈w, r〉.
Remember that by construction w(mi) = w(ni) for 1 ≤ i ≤ q. This means that

we deform each binomial equations by adding terms of weight greater than that

of the binomial. It is shown in [Teissier 2003] that the parametric representation

and the equation representation both describe the deformation of Proposition 7.2.

Up to completion with respect to the (u0, . . . , ug)-adic topology, the algebra

Aν(R) is the quotient of k[v][[u0, . . . , ug]] by the ideal generated by the equations

written above. It is also equal to the subalgebra k[[ξ0(vt)v−γ0 , . . . , ξg(vt)v−γg ]]

of k[v][[t]].

One may remark that, in the case where the ξj(t) are polynomials, there is a

close analogy with the SAGBI algebras bases for the subalgebra k[ξ0(t), ξ1(t)] ⊂
k[t] (see [Sturmfels 1996]). This is developed in [Bravo 2004].

This equation description is the generalization of the example shown at the

beginning of this section.

Now it should be more or less a computational exercise to check that a toric

map Z(Σ) → Ag+1 which resolves the binomial variety CΓ also resolves the

“nearby fibers”, which are all isomorphic to C re-embedded in Ag+1. There is

however a difficulty [Goldin and Teissier 2000] which requires the use of Zariski’s

main theorem.

The results of this section have been extended in [González Pérez 2003] to the

much wider class of irreducible quasi-ordinary germs of hypersurface singulari-

ties, whose singularities are not isolated in general.

This shows that a toric resolution of binomial varieties can be used, by con-

sidering suitable deformations, to resolve singularities which are at first sight far

from binomial.

Appendix: Multiplicities, Volumes and Nondegeneracy

Multiplicities and volumes. One of the interesting features of the Briançon–

Skoda theorem is that it provides a way to pass from the integral closure of an

ideal to the ideal itself, while it is much easier to check that a given element

is in the integral closure of an ideal than to check that it is in the ideal. For

this reason, the theorem has important applications in problems of effective

commutative algebra motivated by transcendental number theory. In the same

vein, this section deals, in the monomial case, with the problem of determining

from numerical invariants whether two ideals have the same integral closure,

which is much easier than to determine whether they are equal. The basic fact

coming to light is that multiplicities in commutative algebra are like volumes in

the theory of convex bodies, and indeed, for monomial ideals, they are volumes,

up to a factor of d ! (compare with [Teissier 1988]). The same is true for degrees

of invertible sheaves on algebraic varieties. Exactly as monomial ideals, and

for the same reason, the degrees of equivariant invertible sheaves generated by
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their global sections on toric varieties are volumes of compact convex bodies

multiplied by d ! [Teissier 1979].

In this appendix proofs are essentially replaced by references; for the next

four paragraphs, see [Bourbaki 1983, Ch. VIII, § 4].

Let R be a noetherian ring and q an ideal of R such that the R-module R/q

has finite length `R(R/q) = `R/q(R/q). Then the quotients q
n/q

n+1 have finite

length as R/q-modules and one can define the Hilbert–Samuel series

HR,q =
∞∑

n=0

`R/q(q
n/q

n+1)Tn ∈ Z[[T ]].

There exist an integer d ≥ 0 and an element P ∈ Z[T, T−1] such that P (1) > 0

and

HR,q = (1 − T )−dP.

From this follows:

Proposition A.1 (Samuel). Given R and q as above, there exist an integer

N0 and a polynomial Q(U) with rational coefficients such that for n ≥ N0 we

have

`R/q(R/q
n) = Q(n).

If we assume that q is primary for some maximal ideal m of R, i.e., q ⊃ mk for

large enough k, the degree of the polynomial Q is the dimension d of the local

ring Rm, and the highest degree term of Q(U) can be written e(q, R)U d/d !. In

fact, e(q, R) = P (1) ∈ N.

By definition, the integer e(q, R) is the multiplicity of the ideal q in R.

If R contains a field k such that k = R/m, we can replace `R/q(R/q
n) by its

dimension dimk(R/q
n) as a k-vector space.

Take R = k[u1, . . . , ud] and q = (um1

, . . . , umq

)R; the ideal q is primary

for the maximal ideal m = (u1, . . . , ud)R if and only if dimk R/q < ∞. Now

one sees that the images of the monomials um such that m is not contained in

E =
⋃q

i=1(m
i + Rd

≥0) constitute a basis of the k-vector space R/q:

dimk R/q = #Zd ∩ (Rd
≥0 \ E).

For the same reason we have for all n ≥ 1, since q
n is also monomial,

dimk R/q
n = #Zd ∩ (Rd

≥0 \ nE),

where nE is the set of sums of n elements of E.

From this follows, in view of the polynomial character of the first term of the

equality:

Corollary A.2. Given a subset E =
⋃q

s=1(m
s + Rd

≥0) whose complement

in Rd
≥0 has finite volume, there exists an integer N0 and a polynomial Q(n) of

degree d with rational coefficients such that for n ≥ N0 we have

#Zd ∩ (Rd
≥0 \ nE) = Q(n).
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Therefore,

lim
n→∞

Q(n)

nd
= lim

n→∞

#Zd ∩ (Rd
≥0 \ nE)

nd
= lim

n→∞
Covol

nE

n
= CovolE,

where CovolA, the covolume of A, is the volume of the complement of A in Rd
≥0.

The last equality follows from the remark made in Section 4, and the previous

one from the classical fact of calculus that as n → ∞,

Covol
nE

n
=

#Zd ∩ (Rd
≥0 \ nE)

nd
+ o(1).

Since the limit as n → ∞ of Q(n)/nd is e(q, R)/d !, we have immediately:

Corollary A.3. For a monomial ideal q = (um1

, . . . , ums

) in R = k[u1, . . . , ud]

which is primary for m = (u1, . . . , ud) , with the notations above, we have

dimk(R/q) = #Zd ∩ (Rd
≥0 \ E),

e(q, R) = d ! CovolE.

Corollary A.4 (Monomial Rees Theorem, an avatar of [Rees 1961]).

(a) For a monomial primary ideal q as above, me have

e(q, R) = e(q, R).

(b) Given two such ideals q1, q2 such that q1 ⊆ q2, we have q1 = q2 if and only

if e(q1, R) = e(q2, R).

These results hold for ideals containing a power of the maximal ideal in a noe-

therian local ring R whose completion is equidimensional [Rees 1961].

Now there is a well-known theorem in the theory of convex bodies, concerning

the volume of the Minkowski sum of compact convex sets. Recall that for K1,K2

in Rd, the Minkowski sum K1 + K2 is the set of sums {x1 + x2 : x1 ∈ K1, x2 ∈
K2}; also we set λK = {λx : x ∈ K} for λ ∈ R. Then:

Theorem A.5 (Minkowski). Given s compact convex subsets K1, . . . ,Ks of

Rd, there is a homogeneous expression for the d-dimensional volume of the pos-

itive Minkowski linear combination of the Ki, with (λi)1≤i≤s ∈ Rs
≥0:

Vold(λ1K1 + · · · + λsKs) =
∑

P

s
1

αi=d

d !

α1! . . . αs!
Vol

(
K

[α1]
1 , . . . ,K [αs]

s

)
λα1

1 . . . λαs
s ,

where the coefficients Vol(K
[α1]
1 , . . . ,K

[αs]
s ) are nonnegative and are called the

mixed volumes of the convex sets Ki.

In particular , with s = 2,

Vold(λ1K1 + λ2K2) =
d∑

i=0

(
d

i

)
Vol(K

[i]
1 ,K

[d−i]
2 )λi

1λ
d−i
2 .
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The proof is obtained by approximating the convex bodies by polytopes, and

using the Cauchy formula for the volume of polytopes. Exactly the same proof

applies to the covolumes of convex subsets of Rd
≥0 to give the corresponding

theorem:

Covold(λ1E1+· · ·+λsEs) =
∑

P

s
1

αi=d

d !

α1! . . . αs!
Covol

(
E

[α1]
1 , . . . , E[αs]

s

)
λα1

1 . . . λαs
s ,

defining the mixed covolumes of such convex subsets.

There is an analogous formula in commutative algebra:

Theorem A.6 [Teissier 1973]. Given ideals q1, . . . , qs which are primary for

a maximal ideal m in a noetherian ring R such that the localization Rm is a

d-dimensional local ring and the residue field Rm/mRm is infinite, there is for

λ1, . . . , λs ∈ Zs
≥0 an expression

e(qλ1

1 . . . qλs
s , R) =

∑
P

s
1

αi=d

d !

α1! . . . αs!
e
(
q
[α1]
1 , . . . , q[αs]

s ;R
)
λα1

1 . . . λαs
s ,

where the coefficients e
(
q
[α1]
1 , . . . , q

[αs]
s ;R

)
are nonnegative integers and are called

the mixed multiplicities of the primary ideals qi. (This name is justified by the

fact that e
(
q
[α1]
1 , . . . , q

[αs]
s ;R

)
is the multiplicity of an ideal generated by α1

elements of q1, . . . , αs elements of qs, chosen in a sufficiently general way.)

Taking s = 2 gives

e(qλ1

1 q
λ2

2 , R) =

d∑

i=0

(
d

i

)
e
(
q
[i]
1 , q

[d−i]
2 ;R

)
λi

1λ
d−i
2 .

From this and Corollary A.3 there follows immediately:

Corollary A.7. Let k be an infinite field . Given monomial ideals q1, . . . , qs

which are primary for the maximal ideal (u1, . . . , ud) in R = k[u1, . . . , ud], and

denoting by Ei the corresponding subsets generated by their exponents, we have

for all α ∈ Zs
≥0 such

∑s
1 αi = d the equality

e(q
[α1]
1 , . . . , q[αs]

s ;R) = d ! Covol
(
E

[α1]
1 , . . . , E[αs]

s

)
.

In particular, the mixed multiplicities depend only on the integral closures of the

ideals qi. Now we have the well-known Alexandrov–Fenchel inequalities for the

mixed volumes of two compact convex bodies:

Theorem A.8 (Alexandrov and Fenchel; see [Gromov 1990]).

(a) Let K1,K2 be compact convex bodies in Rd; set vi = Vol(K
[i]
1 ,K

[d−i]
2 ). For

all 2 ≤ i ≤ d,

v2
i−1 ≥ vivi−2.
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(b) Equality holds in all these inequalities if and only if for some ρ ∈ R+ we

have K1 = ρK2 up to translation. If all the vi are equal , then K1 = K2 up to

translation, and conversely .

Let Bd denote the d-dimensional unit ball, and A any subset of Rd which is

tame enough for the volumes to exist.

The problem that inspired this theorem is to prove that in the isoperimetric

inequality Vold−1(∂A)d ≥ dd Vold(B
d)Vold(A)d−1, equality should hold only if

A is a multiple of the unit ball, to which some “hairs” of a smaller dimension than

∂A have been added. In the case where A is convex, taking K1 to be the unit

ball and K2 = A, one notices that v0 = Vold(A) and v1 = d−1 Vold−1(∂A); the

isoperimetric inequality then follows very quickly by an appropriate telescoping

of the Alexandrov–Fenchel inequalities. From this telescoping follows the fact

that if we have equality in the isoperimetric inequality for a convex subset A of

Rd, then we have equality in all the Alexandrov–Fenchel inequalities for A and

the unit ball, so that A must be a ball. By the same type of telescoping, one

proves the inequalities vd
i ≥ vd−i

0 vi
d, which yields:

Theorem A.9 (Brünn and Minkowski; see [Gromov 1990]). For convex

compact subsets K1,K2 of Rd,

Vold(K1 + K2)
1/d ≥ Vold(K1)

1/d + Vold(K2)
1/d.

Equality holds if and only if the two sets are homothetic up to translation, or

one of them is a point , or Vold(K1 + K2)
1/d = 0.

The same constructions and proof apply to covolumes, where the inequalities are

reversed; they correspond to inequalities for the mixed multiplicities of monomial

ideals, which are in fact true for primary ideals in formally equidimensional

noetherian local rings:

Theorem A.10 [Teissier 1977; 1978; Rees and Sharp 1978; Katz 1988]. Let

q1, q2 be primary ideals in the d-dimensional noetherian local ring R. Set

wi = e(q
[i]
1 , q

[d−i]
2 ;R).

(a) We have w2
i−1 ≤ wiwi−2 for 2 ≤ i ≤ d.

(b) The inequalities e(q1q2, R)1/d ≤ e(q1, R)1/d + e(q2, R)1/d hold , with equality

if and only if the inequalities of (a) are equalities.

(c) Assuming in addition that R is formally equidimensional (quasi-unmixed),

equality holds in all these inequalities if and only if qa
1 = qb

2 for some a, b ∈ N.

If all the wi are equal , then q1 = q2, and conversely .

So in this case again, the combinatorial inequalities appear as the avatar for

monomial ideals of general inequalities of commutative algebra. One can see

that if q1 ⊆ q2, we have e(q1, R) = wd ≥ wi ≥ w0 = e(q2, R), for 1 ≤ i ≤ d − 1.

So this result implies Rees’ Theorem, which is stated after Corollary A.4.
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In fact the same happens for the Alexandrov–Fenchel inequalities, which are

the avatars for toric varieties associated to polytopes of general inequalities of

Kähler geometry known as the Hodge Index Theorem. This is because the mixed

volumes of rational convex polytopes are equal, up to a d ! factor, to the mixed

degrees of invertible sheaves (or of divisors) on certain toric varieties associated

to the collection of polytopes, exactly as in Corollary A.7. This approach to

Alexandrov–Fenchel inequalities was introduced by Khovanskii and the author;

see [Gromov 1990] for an excellent exposition of this topic, and [Khovanskii 1979;

Teissier 1979].

In all these cases, it is remarkable that, thanks to the positivity and convexity

properties of volumes and of multiplicities, a finite number of equations on a

pair (A1, A2) of objects in an infinite dimensional space (convex bodies modulo

translation or integrally closed primary ideals) suffices to ensure that A1 = A2.

Newton nondegenerate ideals in k[[u1, . . . , ud]] and multiplicities. Define

the support S(I) of an ideal I of k[[u1, . . . , ud]] to be the set of the exponents m

appearing as one of the exponents in at least one series belonging to the ideal I.

Define the Newton polyhedron N+(I) of I as the boundary of the convex hull

P+(I) of
⋃

m∈S(I)(m + Rd
≥0).

According to [Bivià-Ausina et al. 2002], a primary ideal q is said to be nonde-

generate if it admits a system of generators q1, . . . , qt such that their restrictions

to each compact face of N+(I) have no common zero in the torus (k∗)d. The

following is part of what is proved in [Bivià-Ausina et al. 2002, § 3]:

Theorem A.11. For a primary ideal q of R = k[[u1, . . . , ud]], the following

conditions are equivalent :

(a) The ideal q is nondegenerate in the coordinates u1, . . . , ud.

(b) e(q, R) = d ! CovolP+(I).

(c) The integral closure q of q is generated by monomials in u1, . . . , ud.

It follows from this that monomial ideals are nondegenerate, and that products

of nondegenerate primary ideals are nondegenerate [Bivià-Ausina et al. 2002,

Corollary 3.14]. Moreover, all the numerical facts mentioned above for monomial

ideals with respect to their Newton polyhedron are valid for nondegenerate ideals

(loc. cit.). Nondegenerate ideals behave as reductions of monomial ideals, which

in fact they are. Here we can think of a reduction (in the sense of [Northcott

and Rees 1954]; see also see [Rees 1984]) of an ideal M ⊂ k[[u1, . . . , ud]] as an

ideal generated by d sufficiently general combinations of generators of M . More

precisely, it is an ideal M ′ contained in M and having the same integral closure.

There is a close connection between this nondegeneracy for ideals and the

results of section 5; if the ideal q = (q1, . . . , qs)k[[u1, . . . , ud]] is nondegenerate,

then a general linear combination q =
∑s

i=1 λiqi is nondegenerate with respect

to its Newton polyhedron.
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There are many other interesting consequences of the relationship between

monomial ideals and combinatorics; I refer the reader to [Sturmfels 1996].

All the results of this appendix remain valid if k[u1, . . . , ud] and its completion

k[[u1, . . . , ud]] are replaced respectively by k[σ̌ ∩ Zd] and its completion, for a

strictly convex cone σ ⊂ Rd
≥0.

There are also generalizations of mixed multiplicities to collections of not

necessarily primary ideals [Rees 1986] and to the case where one of the ideals

is replaced by a submodule of finite colength of a free R-module of finite type

[Kleiman and Thorup 1996].

It would be interesting to determine how the results of this appendix extend

to monomial submodules of a free k[u1, . . . , ud]-module.
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[Grünbaum 1967] B. Grünbaum, Convex polytopes, Pure and Applied Mathematics 16,
Wiley/Interscience, New York, 1967. Second edition, Springer, 2003 (GTM 221).

[Hanner and R̊adström 1951] O. Hanner and H. R̊adström, “A generalization of a
theorem of Fenchel”, Proc. Amer. Math. Soc. 2 (1951), 589–593.

[Hironaka 1964] H. Hironaka, “Resolution of singularities of an algebraic variety over a
field of characteristic zero. I, II”, Ann. of Math. (2) 79:1–2 (1964), 109–203, 205–326.

[Hochster 2004] M. Hochster, “Tight closure theory and characteristic p methods”, pp.
181–210 in Trends in algebraic geometry, edited by L. Avramov et al., Math. Sci.
Res. Inst. Publ. 51, Cambridge University Press, New York, 2004.

[Howald 2001] J. A. Howald, “Multiplier ideals of monomial ideals”, Trans. Amer.

Math. Soc. 353:7 (2001), 2665–2671.

[Katz 1988] D. Katz, “Note on multiplicity”, Proc. Amer. Math. Soc. 104:4 (1988),
1021–1026.

[Kempf et al. 1973] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat,
Toroidal embeddings, I, Lecture Notes in Math. 339, Springer, Berlin, 1973.

[Khovanskii 1979] A. G. Khovanskii, “Geometry of convex bodies and algebraic geom-
etry”, Uspekhi Mat. Nauk 34:4 (1979), 160–161.

[Kleiman and Thorup 1996] S. Kleiman and A. Thorup, “Mixed Buchsbaum–Rim
multiplicities”, Amer. J. Math. 118:3 (1996), 529–569.

[Kouchnirenko 1976] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Mil-
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idéal de germes de fonctions holomorphes en un point de C

n”, C. R. Acad. Sci.

Paris Sér. A 278 (1974), 949–951.

[Smith 1873] H. J. S. Smith, “On the higher singularities of plane curves”, Proc. London

Math. Soc. 6 (1873), 153–182.
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