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Some Facts About Canonical Subalgebra Bases

ANA BRAVO

Abstract. This is a brief exposition of canonical subalgebra bases, their

uses and their computation.
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3. When Are SAGBI Bases Finite? 249
4. Finite SAGBI Bases 250
5. An Algorithm to Compute SAGBI bases 252
6. Geometric Interpretation 252
Acknowledgments 253
References 253

1. Introduction

Let k be a field, let R ⊂ k[x1, . . . , xn] be a finitely generated subalgebra,

and let > be a term ordering in k[x1, . . . , xn]. A subset B of R is said to be a

canonical subalgebra basis, or SAGBI basis, of R, if

in>B := {in>f : f ∈ B}

generates the subalgebra in>R := {in>g : g ∈ R} of k[x1, . . . , xn]. If B is a

SAGBI basis for R, it generates R as a k-algebra.

The abbreviation SAGBI stands for “subalgebra analog to Gröbner basis for

ideals”; as we will see in Section 2 there are several similarities between canonical

subalgebra bases and Gröbner bases.

The simplest example occurs when R ⊂ k[x1, . . . , xn] is generated by a single

element, in which case this same generator is also a canonical subalgebra basis.

The notion was introduced by Kapur and Madlener [1989] and independently

by Robbiano and Sweedler [1990]. SAGBI bases are used to test subalgebra
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membership. Algorithms for computing canonical subalgebra bases are presented

in both [Kapur and Madlener 1989] and [Robbiano and Sweedler 1990].

From the algebraic point of view, canonical bases are very interesting. For

instance, if in>R is finitely generated, the study of in>R is simpler than that of

R, and in many cases both algebras share the same properties. As an example,

in [Conca et al. 1996] it is shown that if in>R is normal, Cohen–Macaulay, and

has rational singularities, R has the same properties.

From the geometric perspective, SAGBI bases also offer interesting possibili-

ties. When in>R is finitely generated, it can be regarded as the associated graded

ring of a suitable degree filtration of R. As a consequence in>R can be inter-

preted as the special fiber of a one-parameter family with R as a general fiber.

In this case the general fiber and the special fiber of the family share geometric

properties. See [Conca et al. 1996; Sturmfels 1996] and also Section 6 below for

discussion.

This philosophy appears, in the analytic case, in [Teissier 1975] and [Goldin

and Teissier 2000], as an approach to resolution of singularities of plane curves:

Given a suitable parametrization of a plane curve, construct a flat family of

curves in such a way that the general fiber is isomorphic to the original curve,

and the special fiber is a monomial curve. Then a toric resolution of singularities

of the special fiber induces a resolution of the generic fiber [Goldin and Teissier

2000, § 6].

Canonical subalgebra bases have also been studied for algebras over arbitrary

rings in [Miller 1996] and [Stillman and Tsai 1999]. For other applications and

examples, see [Göbel 2002; 2001; 2000; 1999c; 1999b; 1999a; 1998; Göbel and

Maier 2000; Miller 1998; Nordbeck 2002].

2. SABGI Bases Versus Gröbner Bases

As pointed out in the introduction, canonical subalgebra bases and Gröbner

bases play similar roles in two different contexts: The first are used to test

subalgebra membership while the second do the same work for ideals.

This similarity can be carried out one step further in two different directions:

The computational point of view and the geometric interpretation.

The Subduction Algorithm described in [Sturmfels 1996, Chapter 11] cor-

responds to the subalgebra analog of the Division Algorithm for ideals (which

produces, for any element f in an ideal I, an expression of f as a linear combi-

nation of a Gröbner basis of I):

Algorithm 2.1 (Subduction Algorithm for a Canonical Basis C ).

Given a canonical basis C for a subalgebra R ⊂ k[x1, . . . , xn] and given f ∈

k[x1, . . . , xn], the algorithm computes an expression for f as a polynomial in the

elements of C , provided that f ∈ R.
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Step 1. Find f1, . . . , fr ∈ C and exponents i1, . . . , ir ∈ N and c ∈ k \ {0} such

that

in>f = c · in>f i1
1
· · · in>f ir

r . (2–1)

Step 2. If it is not possible to find an expression as in (2–1) then f /∈ R, and the

algorithm stops.

Step 3. Otherwise, set g := c · f i1
1

· · · f ir

r , and replace f by f − g. Repeat the

previous steps until the algorithm stops or f is a constant in k.

In Section 5 we will also see how this algorithm can be used to produce an

algorithm to compute SAGBI bases which is similar to Buchberger’s algorithm

for computing Gröbner bases.

As for the geometric interpretation, let I ⊂ k[x1, . . . , xn] be the ideal defining

a variety X, and > a term ordering in k[x1, . . . , xn]. The question is:

How close are X and Spec (k[x1, . . . , xn]/in>I)?

The general theory of Gröbner basis says that one can construct a flat family of

varieties over a one-dimensional scheme Spec (k[t]), whose general fiber is isomor-

phic to X, and whose special fiber at t = 0 is Spec (k[x1, . . . , xn]/in>I). In this

sense we say that the original variety X deforms into Spec (k[x1, . . . , xn]/in>I).

Now let Y be a variety parametrized by equations f1, . . . , fs ∈ k[t1, . . . , tm],

and let > be a term ordering in k[t1, . . . , tm]. If {g1, . . . , gr} is a canonical

subalgebra basis of k[f1, . . . , fs], we will see in Section 6 that one can construct

a one-parameter flat family of varieties, whose general fiber is isomorphic to

Y , and whose special fiber is a toric variety; the generators of the algebras

degenerate into monomials and the relations between them into binomials.

Perhaps the main difference between Gröbner bases and canonical subalgebra

bases is that while the first are always finite, the second may fail to be so. This

point is discussed in the next section.

3. When Are SAGBI Bases Finite?

Canonical subalgebra bases are not always finite; finiteness may even depend

on the term ordering > chosen on k[x1, . . . , xn]. We examine some examples.

If R ⊂ k[x, y] is generated by {x+y, xy, xy2}, then R does not have a finitely

generated canonical subalgebra basis, no matter what term ordering we fix in

k[x, y]: If x > y, it can be shown that a SAGBI basis of R must contain the

infinite set S = {x+ y, xyn : n > 0}. If y > x, note that R is also generated by

{x+ y, xy, x2y}. It can be shown that

S = {x+ y, yxn : n > 0}

should be contained in a SAGBI basis for R [Robbiano and Sweedler 1990, Ex-

ample 1.20].
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On the opposite extreme, the symmetric algebra R ⊂ k[x1, . . . , xn] always

has a finitely generated canonical subalgebra basis B which does not depend on

the order previously chosen: In this case, B is the set of elementary symmetric

polynomials [Robbiano and Sweedler 1990, Theorem 1.14].

There are also examples of subalgebras that, depending on the order fixed,

may or may not have a finite canonical subalgebra basis: Let R ⊂ k[x, y] be the

subalgebra generated by {x, xy− y2, xy2}. If we fix a term ordering on k[x, y]

such that y > x, then B = {x, xy− y2, xy2} is indeed a canonical subalgebra

basis for R, while if we fix a term ordering such that x > y then it can be shown

that k[x, xy, xy2, . . .] ⊂ in>R, and therefore it cannot have a finite SAGBI basis

[Robbiano and Sweedler 1990, Example 4.11]. For these and other examples, we

refer the reader to [Göbel 2000; Göbel 1999b; Robbiano and Sweedler 1990].

In general, it is a hard problem to decide whether a given subalgebra does

have a finite canonical subalgebra basis. Some conditions are as follows:

Proposition 3.1 [Robbiano and Sweedler 1990, Proposition 4.7]. Suppose that

R is a subalgebra of k[x1, . . . , xn] and that C is a finitely generated subalgebra

of k[x1, . . . , xn] containing in>R. If C is integral over in>R, then R has a finite

SAGBI basis. In particular if k[x1, . . . , xn] is integral over in>R, then R has a

finite SAGBI basis.

A corollary of the previous proposition is that when n = 1, things become less

chaotic: Any subalgebra R of k[x] has a finite subalgebra basis [Robbiano and

Sweedler 1990, Corollay 4.8]. And when the number of generators is low, there

are even easy criteria to decide if a given set of generators of a subalgebra of k[x]

is a canonical basis:

Theorem 3.2 [Torstensson 2002, Theorems 10, 12]. Let f, g ∈ k[x] and consider

the subalgebra R ⊂ k[x] generated by them. Then:

(i) If f and g have relatively prime degrees, they form a canonical subalgebra

basis for R.

(ii) If deg f divides deg g, f and g form a canonical subalgebra basis for R if and

only if g is a polynomial in f .

For more along these lines see Propositions 6, 7, and Theorems 12 and 14 in

[Torstensson 2002].

4. Finite SAGBI Bases

Let R ⊂ k[x1, . . . , xn] be a subalgebra generated by B = {f1, . . . , fs}, let > be

a monomial ordering in k[x1, . . . , xn], and assume that R has a finite canonical

subalgebra basis. The purpose of this section is to describe a criterion to decide

whether B is a canonical basis for R. In Section 5 and 6 some consequences of

this result will be discussed. The setup that follows can be found in [Sturmfels

1996, Chapter 11].
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Consider the exact sequences

0 - I - k[t1, . . . , ts] - k[f1, . . . , fs] - 0

ti - fi

0 - IA
- k[t1, . . . , ts] - k[in>f1, . . . , in>fs] - 0

ti - in>fi

(4–1)

Since the kernel of the second map represents relations between monomials,

the ideal IA is generated by binomials— it is a toric ideal.

Let ω = (ω1, . . . , ωn) ∈ Rn be a weight vector which represents the term

ordering > for the polynomials {f1, . . . , fs}.

Assume that in>fi = xai1

1
· · ·xain

n , for i = 1, . . . , s. Then

A =







a11 . . . as1

...
. . .

...

a1n . . . asn







is an n× s matrix, and

AT ω =







a11ω1 + . . . + a1nωn

...

as1ω1 + . . . + asnωn







is a vector in Rs, which can be thought of as a weight vector defining an order

in k[t1, . . . , ts]. Therefore it can be used to form an initial ideal inAT ωI of I. In

general this will not be a monomial ideal since AT ω may not be a generic vector,

even if ω is (see Example 4.2 below).

The key point is that the comparison between IA and inAT ωI gives a criterion

for deciding whether or not {f1, . . . , fs} is a canonical basis for the subalgebra

that they generate.

In general inAT ωI ⊂ IA [Sturmfels 1996, Lemma 11.3], but if equality holds,

then {f1, . . . , fs} is a canonical basis. More precisely:

Theorem 4.1 [Sturmfels 1996, Theorem 11.4]. The set {f1, . . . , fs} is a canon-

ical basis if and only if inAT ωI = IA.

Example 4.2. Let R = k[x2 +x3, x+x2] ⊂ k[x], and let us temporarily forget

that we already know that {x2+x3, x+x2} is a canonical subalgebra basis (since

the degrees of the generators are coprime). With the notation above, we have

I = 〈t3
2
−t2

1
−t1t2〉, and that IA = 〈t3

2
−t2

1
〉. Let A = (3, 2). Then AT ω =

(

3

2

)

and

inAT ωI = 〈t3
2
− t2

1
〉 = IA. Hence, by Theorem 4.1, {x2 +x3, x+x2} is a SAGBI

basis for R.
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5. An Algorithm to Compute SAGBI bases

Theorem 4.1 can be used to construct an algorithm for computing canonical

subalgebra bases. With the same notation as in Section 4, first we state the

following corollary to Theorem 4.1:

Corollary 5.1 [Sturmfels 1996, Corollary 11.5]. Let {p1, . . . , pt} be genera-

tors for the toric ideal IA. Then {f1, . . . , fs} is a canonical basis if and only if

Algorithm 2.1 reduces pi(f1, . . . , fs) to a constant for all i = 1, . . . , t.

Therefore, to apply the criterion of Theorem 4.1 there is no need to compute

generators for I, since only the ones of IA are used. Let us see how this works

with an example:

Example 5.2. Consider R = [x4 +x3, x2 +x] ⊂ k[x]. By [Robbiano and

Sweedler 1990, Corollay 4.8] there is a finite SAGBI basis for R. With the

same notation as in Section 4 we have A = (4, 2), I = 〈t2
1
− 2t1t

2

2
− t1t2 + t4

2
〉,

AT ω =
(

4

2

)

and

inAT ωI = 〈t2
1
− 2t1t

2

2
+ t4

2
〉  IA = 〈t1 − t2

2
〉.

Therefore, by Theorem 4.1, the set {x4 +x3, x2 +x} is not a SAGBI basis for R.

With the notation of Corollary 5.1, p1(t1, t2) = t1− t2
2

Algorithm 2.1 does not

reduce p1(x
4+x3, x2+x) to a constant, since p1(x

4+x3, x2+x) = x3+x2. This

is as expected. Hence we need to extend our generating set to

{x4 +x3, x2 +x, x3 +x2}.

In this new setting, IA = 〈t3
2
− t2

3
, t1 − t2

2
〉 =

〈

p1(t1, t2, t3), p2(t1, t2, t3)
〉

, and

it is easy to check that, in this case, Algorithm 2.1 reduces pi(t1, t2, t3) to a

constant for i = 1, 2, and therefore, {x4 +x3, x2 +x, x3 +x2} is a SAGBI basis

for R.

Remark 5.3. The algorithm that follows from Corollary 5.1 (used in Example

5.2) is similar to Buchberger’s Algorithm to compute Gröbner bases of ideals,

provided that we ahead of time know that there is a finite SAGBI basis.

6. Geometric Interpretation

As a final note we review the geometry behind the previous statements, spe-

cially diagram (4–1) and Theorem 4.1.

Assume that X is a variety parametrized by the equations {f1, . . . , fs}. Using

the same notation as in Section 4, if {f1, . . . , fs} is a canonical subalgebra bases

then by Theorem 4.1, IA = inAT ωI.

The following corollary to Theorem 4.1 relates any reduced Gröbner basis of

IA to a suitable reduced Gröbner basis of I:
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Corollary 6.1 [Sturmfels 1996, Corollary 11.6]. With the same notation as in

Section 4, assume that {f1, . . . , fs} is a canonical subalgebra basis. Then every

reduced Gröbner basis G of IA lifts to a reduced Gröbner basis H of I, i .e. the

elements of G are the initial forms with respect to AT ω of the elements of H .

Now, the general theory of Gröbner bases tells us that we can construct a one-

parameter flat family of varieties whose general fiber is isomorphic to X and

whose special fiber is isomorphic to Spec (k[t1, . . . , ts]/inAT ωI).

Therefore, Corollary 6.1, implies that we can construct a one-parameter flat

family of varieties whose general fiber is isomorphic to X and whose special

fiber is isomorphic to Spec (k[t1, . . . , ts]/IA): The parametric equations defining

X degenerate into monomials and the relations among them into binomials.

Therefore X degenerates to a toric variety.
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[Göbel 1999a] M. Göbel, “The optimal lower bound for generators of invariant rings
without finite SAGBI bases with respect to any admissible order”, Discrete Math.

Theor. Comput. Sci. 3:2 (1999), 65–70.
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[Göbel 2002] M. Göbel, “Finite SAGBI bases for polynomial invariants of conjugates
of alternating groups”, Math. Comp. 71:238 (2002), 761–765.
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