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Convex Geometry of Orbits

ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

Abstract. We study metric properties of convex bodies B and their polars
B◦, where B is the convex hull of an orbit under the action of a compact
group G. Examples include the Traveling Salesman Polytope in polyhe-
dral combinatorics (G = Sn, the symmetric group), the set of nonnegative
polynomials in real algebraic geometry (G = SO(n), the special orthogonal
group), and the convex hull of the Grassmannian and the unit comass ball
in the theory of calibrated geometries (G = SO(n), but with a different
action). We compute the radius of the largest ball contained in the sym-
metric Traveling Salesman Polytope, give a reasonably tight estimate for
the radius of the Euclidean ball containing the unit comass ball and review
(sometimes with simpler and unified proofs) recent results on the structure
of the set of nonnegative polynomials (the radius of the inscribed ball, vol-
ume estimates, and relations to the sums of squares). Our main tool is
a new simple description of the ellipsoid of the largest volume contained
in B◦.

1. Introduction and Examples

Let G be a compact group acting in a finite-dimensional real vector space V

and let v ∈ V be a point. The main object of this paper is the convex hull

B = B(v) = conv
(
gv : g ∈ G

)

of the orbit as well as its polar

B◦ = B◦(v) =
{
` ∈ V ∗ : `(gv) ≤ 1 for all g ∈ G

}
.

Objects such as B and B◦ appear in many different contexts. We give three

examples below.

Example 1.1 (Combinatorial optimization polytopes). Let G = Sn be

the symmetric group, that is, the group of permutations of {1, . . . , n}. Then

Mathematics Subject Classification: 52A20, 52A27, 52A21, 53C38, 52B12, 14P05.

Keywords: convex bodies, ellipsoids, representations of compact groups, polyhedral combina-
torics, Traveling Salesman Polytope, Grassmannian, calibrations, nonnegative polynomials.

This research was partially supported by NSF Grant DMS 9734138.

51



52 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

B(v) is a polytope and varying V and v, one can obtain various polytopes of

interest in combinatorial optimization. This idea is due to A.M. Vershik (see

[Barvinok and Vershik 1988]) and some polytopes of this kind were studied in

[Barvinok 1992].

Here we describe perhaps the most famous polytope in this family, the Travel-

ing Salesman Polytope (see, for example, Chapter 58 of [Schrijver 2003]), which

exists in two major versions, symmetric and asymmetric. Let V be the space of

n×n real matrices A = (aij) and let Sn act in V by simultaneous permutations of

rows and columns: (ga)ij = ag−1(i)g−1(j) (we assume that n ≥ 4). Let us choose

v such that vij = 1 provided |i − j| = 1 mod n and vij = 0 otherwise. Then,

as g ranges over the symmetric group Sn, matrix gv ranges over the adjacency

matrices of Hamiltonian cycles in a complete undirected graph with n vertices.

The convex hull B(v) is called the symmetric Traveling Salesman Polytope (we

denote it by STn). It has (n− 1)!/2 vertices and its dimension is (n2 − 3n)/2.

Let us choose v ∈ V such that vij = 1 provided i− j = 1 mod n and vij = 0

otherwise. Then, as g ranges over the symmetric group Sn, matrix gv ranges over

the adjacency matrices of Hamiltonian circuits in a complete directed graph with

n vertices. The convex hull B(v) is called the asymmetric Traveling Salesman

Polytope (we denote it by ATn). It has (n − 1)! vertices and its dimension is

n2 − 3n + 1.

A lot of effort has been put into understanding of the facial structure of the

symmetric and asymmetric Traveling Salesman Polytopes, in particular, what

are the linear inequalities that define the facets of ATn and STn, see Chapter

58 of [Schrijver 2003]. It follows from the computational complexity theory

that in some sense one cannot describe efficiently the facets of the Traveling

Salesman Polytope. More precisely, if NP 6= co-NP (as is widely believed), then

there is no polynomial time algorithm, which, given an inequality, decides if it

determines a facet of the Traveling Salesman Polytope, symmetric or asymmetric,

see, for example, Section 5.12 of [Schrijver 2003]. In a similar spirit, Billera and

Sarangarajan proved that any 0-1 polytope (that is, a polytope whose vertices

are 0-1 vectors), appears as a face of some ATn (up to an affine equivalence)

[Billera and Sarangarajan 1996].

Example 1.2 (Nonnegative polynomials). Let us fix integers n ≥ 2 and

k ≥ 1. We are interested in homogeneous polynomials p : Rn → R of degree 2k

that are nonnegative for all x = (x1, . . . , xn). Such polynomials form a convex

cone and we consider its compact base:

Pos2k,n =
{

p : p(x) ≥ 0 for all x ∈ R
n and

∫

Sn−1

p(x) dx = 1
}

, (1.2.1)

where dx is the rotation-invariant probability measure on the unit sphere Sn−1.

It is not hard to see that dimPos2k,n =
(
n+2k−1

2k

)
− 1.
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It is convenient to consider a translation Pos′2k,n, p 7→ p− (x2
1 + · · ·+ x2

n)k of

Pos2k,n:

Pos′2k,n =
{

p : p(x) ≥ −1 for all x ∈ R
n and

∫

Sn−1

p(x) dx = 0
}

. (1.2.2)

Let Um,n be the real vector space of all homogeneous polynomials p : Rn → R

of degree m such that the average value of p on Sn−1 is 0. Then, for m = 2k,

the set Pos′2k,n is a full-dimensional convex body in U2k,n.

One can view Pos′2k,n as the negative polar −B◦(v) of some orbit.

We consider the m-th tensor power (Rn)
⊗m

of Rn, which we view as the vector

space of all m-dimensional arrays
(
xi1,...,im

: 1 ≤ i1, . . . , im ≤ n
)
. For x ∈ Rn,

let y = x⊗m be the tensor with the coordinates yi1,...,im
= xi1 · · ·xim

. The group

G = SO(n) of orientation preserving orthogonal transformations of Rn acts in

(Rn)
⊗m

by the m-th tensor power of its natural action in Rn. In particular,

gy = (gx)⊗m for y = x⊗m.

Let us choose e ∈ Sn−1 and let w = e⊗m. Then the orbit {gw : g ∈ G}
consists of the tensors x⊗m, where x ranges over the unit sphere in Rn. The

orbit {gw : g ∈ G} lies in the symmetric part of (Rn)
⊗m

. Let q =
∫

Sn−1 gw dg

be the center of the orbit (we have q = 0 if m is odd). We translate the orbit by

shifting q to the origin, so in the end we consider the convex hull B of the orbit

of v = w − q:

B = conv
(
gv : g ∈ G

)
.

A homogeneous polynomial

p(x1, . . . , xn) =
∑

1≤i1,...,im≤n

ci1,...,im
xi1 · · ·xim

of degree m, viewed as a function on the unit sphere in Rn, is identified with the

restriction onto the orbit {gw : g ∈ G
}

of the linear functional ` : (Rn)
⊗m → R

defined by the coefficients ci1,...,im
. Consequently, the linear functionals ` on B

are in one-to-one correspondence with the polynomials p ∈ Um,n. Moreover, for

m = 2k, the negative polar −B◦ is identified with Pos′2k,n. If m is odd, then

B◦ = −B◦ is the set of polynomials p such that |p(x)| ≤ 1 for all x ∈ Sn−1.

The facial structure of Pos2k,n is well-understood if k = 1 or if n = 2, see, for

example, Section II.11 (for n = 2) and Section II.12 (for k = 1) of [Barvinok

2002b]. In particular, for k = 1, the set Pos2,n is the convex body of positive

semidefinite n-variate quadratic forms of trace n. The faces of Pos2,n are param-

eterized by the subspaces of Rn: if L ⊂ Rn is a subspace then the corresponding

face is

FL =
{
p ∈ Pos2,n : p(x) = 0 for all x ∈ L

}

and dimFL = r(r + 1)/2− 1, where r = codimL. Interestingly, for large n, the

set Pos2,n is a counterexample to famous Borsuk’s conjecture [Kalai 1995].
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For any k ≥ 2, the situation is much more complicated: the membership

problem for Pos2k,n:

given a polynomial, decide whether it belongs to Pos2k,n,

is NP-hard, which indicates that the facial structure of Pos2k,n is probably hard

to describe.

Example 1.3 (Convex hulls of Grassmannians and calibrations). Let

Gm(Rn) be the Grassmannian of all oriented m-dimensional subspaces of Rn,

n > 1. Let us consider Gm(Rn) as a subset of Vm,n =
∧m

Rn via the Plücker

embedding. Namely, let e1, . . . , en be the standard basis of Rn. We make Vm,n

a Euclidean space by choosing an orthonormal basis ei1 ∧ · · · ∧ eim
for 1 ≤ i1 <

· · · < im ≤ n. Thus the coordinates of a subspace x ∈ Gm(Rn) are indexed by

m-subsets 1 ≤ i1 < i2 < · · · < im ≤ n of {1, . . . , n} and the coordinate xi1,...,im

is equal to the oriented volume of the parallelepiped spanned by the orthogonal

projection of e11
, . . . , eim

onto x. This identifies Gm(Rn) with a subset of the

unit sphere in Vm,n. The convex hull B = conv (Gm(Rn)), called the unit mass

ball, turns out to be of interest in the theory of calibrations and area-minimizing

surfaces: a face of B gives rise to a family of m-dimensional area-minimizing

surfaces whose tangent planes belong to the face, see [Harvey and Lawson 1982]

and [Morgan 1988]. The comass of a linear functional ` : Vm,n → R is the

maximum value of ` on Gm(Rn). A calibration is a linear functional ` : Vm,n → R

of comass 1. The polar B◦ is called the unit comass ball.

One can easily view Gm(Rn) as an orbit. We let G = SO(n), the group

of orientation-preserving orthogonal transformations of Rn, and consider the

action of SO(n) in Vm,n by the m-th exterior power of its defining action in Rn.

Choosing v = e1 ∧ · · · ∧ em, we observe that Gm(Rn) is the orbit {gv : g ∈ G}.
It is easy to see that dim conv

(
Gm(Rn)

)
=
(

n
m

)
.

This example was suggested to the authors by B. Sturmfels and J. Sullivan.

The facial structure of the convex hull of Gm(Rn) is understood for m ≤ 2, for

m ≥ n − 2 and for some special values of m and n, see [Harvey and Lawson

1982], [Harvey and Morgan 1986] and [Morgan 1988]. If m = 2, then the faces

of the unit mass ball are as follows: let us choose an even-dimensional subspace

U ⊂ Rm and an orthogonal complex structure on U , thus identifying U = C2k

for some k. Then the corresponding face of conv (Gm(Rn)) is the convex hull of

all oriented planes in U identified with complex lines in C2k.

In general, it appears to be difficult to describe the facial structure of the unit

mass ball. The authors do not know the complexity status of the membership

problem for the unit mass ball:

given a point x ∈
∧m

Rn, decide if it lies in conv (Gm(Rn)),

but suspect that the problem is NP-hard if m ≥ 3 is fixed and n is allowed to

grow.
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The examples above suggest that the boundary of B and B◦ can get very

complicated, so there is little hope in understanding the combinatorics (the facial

structure) of general convex hulls of orbits and their polars. Instead, we study

metric properties of convex hulls. Our approach is through approximation of a

complicated convex body by a simpler one.

As is known, every convex body contains a unique ellipsoid Emax of the maxi-

mum volume and is contained in a unique ellipsoid Emin of the minimum volume,

see [Ball 1997]. Thus ellipsoids Emax and Emin provide reasonable “first approx-

imations” to a convex body.

The main result of Section 2 is Theorem 2.4 which states that the maximum

volume ellipsoid of B◦ consists of the linear functionals ` : V → R such that the

average value of `2 on the orbit does not exceed (dimV )−1. We compute the

minimum- and maximum- volume ellipsoids of the symmetric Traveling Salesman

Polytope, which both turn out to be balls under the “natural” Euclidean metric

and ellipsoid Emin of the asymmetric Traveling Salesman Polytope, which turns

out to be slightly stretched in the direction of the skew-symmetric matrices.

As an immediate corollary of Theorem 2.4, we obtain the description of the

maximum volume ellipsoid of the set of nonnegative polynomials (Example 1.2),

as a ball of radius
((

n + 2k − 1

2k

)

− 1

)−1/2

in the L2-metric. We also compute the minimum volume ellipsoid of the convex

hull of the Grassmannian and hence the maximum volume ellipsoid of the unit

comass ball (Example 1.3).

In Section 3, we obtain some inequalities which allow us to approximate the

maximum value of a linear functional ` on the orbit by an Lp-norm of `. We

apply those inequalities in Section 4. We obtain a reasonably tight estimate

of the radius of the Euclidean ball containing the unit comass ball and show

that the classical Kähler and special Lagrangian faces of the Grassmannian, are,

in fact, rather “shallow” (Example 1.3). Also, we review (with some proofs and

some sketches) the recent results of [Blekherman 2003], which show that for most

values of n and k the set of nonnegative n-variate polynomials of degree 2k is

much larger than its subset consisting of the sums of squares of polynomials of

degree k.

2. Approximation by Ellipsoids

Let B ⊂ V be a convex body in a finite-dimensional real vector space. We

assume that dim B = dimV . Among all ellipsoids contained in B there is a

unique ellipsoid Emax of the maximum volume, which we call the maximum

volume ellipsoid of B and which is also called the John ellipsoid of B or the

Löwner-John ellipsoid of B. Similarly, among all ellipsoids containing B there

is a unique ellipsoid Emin of the minimum volume, which we call the minimum
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volume ellipsoid of B and which is also called the Löwner or the Löwner-John

ellipsoid. The maximum and minimum volume ellipsoids of B do not depend on

the volume form chosen in V , they are intrinsic to B.

Assuming that the center of Emax is the origin, we have

Emax ⊂ B ⊂ (dimB) Emax.

If B is symmetric about the origin, that is, if B = −B then the bound can be

strengthened:

Emax ⊂ B ⊂
(√

dimB
)

Emax.

More generally, let us suppose that Emax is centered at the origin. The symmetry

coefficient of B with respect to the origin is the largest α > 0 such that −αB ⊂
B. Then

Emax ⊂ B ⊂
(√

dim B

α

)

Emax,

where α is the symmetry coefficient of B with respect to the origin.

Similarly, assuming that Emin is centered at the origin, we have

(dimB)
−1

Emin ⊂ B ⊂ Emin.

If, additionally, α is the symmetry coefficient of B with respect to the origin,

then
(√

α

dimB

)

Emin ⊂ B ⊂ Emin.

In particular, if B is symmetric about the origin, then

(dimB)
−1/2

Emin ⊂ B ⊂ Emin.

These, and other interesting properties of the minimum- and maximum- volume

ellipsoids can be found in [Ball 1997], see also the original paper [John 1948],

[Blekherman 2003], and Chapter V of [Barvinok 2002a]. There are many others

interesting ellipsoids associated with a convex body, such as the minimum width

and minimum surface area ellipsoids [Giannopoulos and Milman 2000]. The

advantage of using Emax and Emin is that these ellipsoids do not depend on the

Euclidean structure of the ambient space and even on the volume form in the

space, which often makes calculations particularly easy.

Suppose that a compact group G acts in V by linear transformations and that

B is invariant under the action: gB = B for all g ∈ G. Let 〈·, ·〉 be a G-invariant

scalar product in V , so G acts in V by isometries. Since the ellipsoids Emax

and Emin associated with B are unique, they also have to be invariant under the

action of G. If the group of symmetries of B is sufficiently rich, we may be able

to describe Emax or Emin precisely.

The following simple observation will be used throughout this section. Let

us suppose that the action of G in V is irreducible: if W ⊂ V is a G-invariant
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subspace, then either W = {0} or W = V . Then, the ellipsoids Emax and Emin

of a G-invariant convex body B are necessarily balls centered at the origin:

Emax =
{
x ∈ V : 〈x, x〉 ≤ r2

}
and Emin =

{
x ∈ V : 〈x, x〉 ≤ R2

}

for some r,R > 0.

Indeed, since the action of G is irreducible, the origin is the only G-invariant

point and hence both Emax and Emin must be centered at the origin. Further-

more, an ellipsoid E ⊂ V centered at the origin is defined by the inequality

E =
{
x : q(x) ≤ 1

}
, where q : V → R is a positive definite quadratic form. If

E is G-invariant, then q(gx) = q(x) for all g ∈ G and hence the eigenspaces of

q must be G-invariant. Since the action of G is irreducible, there is only one

eigenspace which coincides with V , from which q(x) = λ〈x, x〉 for some λ > 0

and all x ∈ V and E is a ball.

This simple observation allows us to compute ellipsoids Emax and Emin of the

Symmetric Traveling Salesman Polytope (Example 1.1).

Example 2.1 (The minimum and maximum volume ellipsoids of the

symmetric Traveling Salesman Polytope). In this case, V is the space

of n × n real matrices, on which the symmetric group Sn acts by simultaneous

permutations of rows and columns, see Example 1.1. Introduce an Sn-invariant

scalar product by

〈
a, b
〉

=

n∑

i,j=1

aijbij for a = (aij) and b = (bij)

and the corresponding Euclidean norm ‖a‖ =
√

〈a, a〉. It is not hard to see that

the affine hull of the symmetric Traveling Salesman Polytope STn consists of the

symmetric matrices with 0 diagonal and row and column sums equal to 2, from

which one can deduce the formula dimSTn = (n2−3n)/2. Let us make the affine

hull of STn a vector space by choosing the origin at c = (cij) with cij = 2/(n−1)

for i 6= j and cii = 0, the only fixed point of the action. One can see that the

action of Sn on the affine hull of STn is irreducible and corresponds to the Young

diagram (n− 2, 2), see, for example, Chapter 4 of [Fulton and Harris 1991].

Hence the maximum- and minimum- volume ellipsoids of STn must be balls

in the affine hull of STn centered at c. Moreover, since the boundary of the

minimum volume ellipsoid Emin must contain the vertices of STn, we conclude

that the radius of the ball representing Emin is equal to
√

2n(n− 3)/(n− 1).

One can compute the symmetry coefficient of STn with respect to the center

c. Suppose that n ≥ 5. Let us choose a vertex v of STn and let us consider the

functional `(x) = 〈v−c, x−c〉 on STn. The maximum value of 2n(n−3)/(n−1)

is attained at x = v while the minimum value of −4n/(n − 1) is attained at

the face Fv of STn with the vertices h such that 〈v, h〉 = 0 (combinatorially,

h correspond to Hamiltonian cycles in the graph obtained from the complete

graph on n vertices by deleting the edges of the Hamiltonian cycle encoded by
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v). Moreover, one can show that for λ = 2/(n− 3), we have −λ(v− c) + c ∈ Fv.

This implies that the coefficient of symmetry of STn with respect to c is equal

to 2/(n − 3). Therefore STn contains the ball centered at c and of the radius
√

8/
(
(n− 1)(n− 3)

)
(for n ≥ 5).

The ball centered at c and of the radius
√

8/
(
(n− 1)(n− 3)

)
touches the

boundary of STn. Indeed, let b = (bij) be the centroid of the set of vertices x of

STn with x12 = x21 = 0. Then

bij =







0 if 1 ≤ i, j ≤ 2,

2

n− 2
if i = 1, 2 and j > 2 or j = 1, 2 and i > 2,

2(n− 4)

(n− 2)(n− 3)
if i, j ≥ 3,

and the distance from c to b is precisely
√

8/
(
(n− 1)(n− 3)

)
.

Hence for n ≥ 5 the maximum volume ellipsoid Emax is the ball centered at c

of the radius
√

8/
(
(n− 1)(n− 3)

)
.

Some bounds on the radius of the largest inscribed ball for a polytope from a

particular family of combinatorially defined polytopes are computed in [Vyaly̆ı

1995]. The family of polytopes includes the symmetric Traveling Salesman Poly-

tope, although in its case the bound from [Vyaly̆ı 1995] is not optimal.

If the action of G in the ambient space V is not irreducible, the situation is

more complicated. For one thing, there is more than one (up to a scaling factor)

G-invariant scalar product, hence the notion of a “ball” is not really defined.

However, we are still able to describe the minimum volume ellipsoid of the convex

hull of an orbit.

Without loss of generality, we assume that the orbit
{
gv : g ∈ G

}
spans V

affinely. Let 〈·, ·〉 be a G-invariant scalar product in V . As is known, V can

be decomposed into the direct sum of pairwise orthogonal invariant subspaces

Vi, such that the action of G in each Vi is irreducible. It is important to note

that the decomposition is not unique: nonuniqueness appears when some of

Vi are isomorphic, that, is, when there exists an isomorphism Vi → Vj which

commutes with G. If the decomposition is unique, we say that the action of G

is multiplicity-free.

Since the orbit spans V affinely, the orthogonal projection vi of v onto each Vi

must be nonzero (if vi = 0 then the orbit lies in V ⊥
i ). Also, the origin in V must

be the only invariant point of the action of G (otherwise, the orbit is contained

in the hyperplane 〈x, u〉 = 〈v, u〉, where u ∈ V is a nonzero vector fixed by the

action of G).

Theorem 2.2. Let B be the convex hull of the orbit of a vector v ∈ V :

B = conv
(
gv : g ∈ G

)
.
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Suppose that the affine hull of B is V .

Then there exists a decomposition

V =
⊕

i

Vi

of V into the direct sum of pairwise orthogonal irreducible components such that

the following holds.

The minimum volume ellipsoid Emin of B is defined by the inequality

Emin =
{

x :
∑

i

dim Vi

dimV
· 〈xi, xi〉
〈vi, vi〉

≤ 1
}

, 2.2.1

where xi (resp. vi) is the orthogonal projection of x (resp. v) onto Vi.

We have
∫

G

〈x, gv〉2 dg =
∑

i

〈xi, xi〉〈vi, vi〉
dimVi

for all x ∈ V, 2.2.2

where dg is the Haar probability measure on G.

Proof. Let us consider the quadratic form q : V → R defined by

q(x) =

∫

G

〈x, gv〉2 dg.

We observe that q is G-invariant, that is, q(gx) = q(x) for all x ∈ V and all

g ∈ G. Therefore, the eigenspaces of q are G-invariant. Writing the eigenspaces

as direct sums of pairwise orthogonal invariant subspaces where the action of G

is irreducible, we obtain a decomposition V =
⊕

i Vi such that

q(x) =
∑

i

λi〈xi, xi〉 for all x ∈ V

and some λi ≥ 0. Recall that vi 6= 0 for all i since the orbit {gv : g ∈ G} spans

V affinely.

To compute λi, we substitute x ∈ Vi and observe that the trace of

qi(x) =

∫

G

〈x, gvi〉2 dg

as a quadratic form qi : Vi → R is equal to 〈vi, vi〉. Hence we must have

λi = 〈vi, vi〉/dim Vi, which proves (2.2.2) [Barvinok 2002b].

We will also use the polarized form of (2.2.2):
∫

G

〈x, gv〉〈y, gv〉 dg =
∑

i

〈xi, yi〉〈vi, vi〉
dim Vi

, 2.2.3

obtained by applying (2.2.2) to q(x + y)− q(x)− q(y).

Next, we observe that the ellipsoid E defined by the inequality (2.2.1) contains

the orbit
{
gv : g ∈ G

}
on its boundary and hence contains B.
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Our goal is to show that E is the minimum volume ellipsoid. It is convenient

to introduce a new scalar product:

(a, b) =
∑

i

dimVi

dimV
· 〈ai, bi〉
〈vi, vi〉

for all a, b ∈ V.

Obviously (·, ·) is a G-invariant scalar product. Furthermore, the ellipsoid E

defined by (2.2.1) is the unit ball in the scalar product (·, ·).
Now,

(c, gv) =
∑

i

dimVi

dimV
· 〈ci, gv〉
〈vi, vi〉

and hence

(c, gv)2 =
∑

i,j

(dimVi)(dim Vj)

(dimV )2
· 〈ci, gv〉〈cj , gv〉

〈vi, vi〉2
.

Integrating and using (2.2.3), we get
∫

G

(c, gv)2 dg =
1

dimV

∑

i

dimVi

dimV
· 〈ci, ci〉
〈vi, vi〉

=
(c, c)

dimV
. 2.2.4

Since the origin is the only fixed point of the action of G, the minimum volume

ellipsoid should be centered at the origin.

Let e1, . . . , ek for k = dim V be an orthonormal basis with respect to the

scalar product (·, ·). Suppose that E′ ⊂ V is an ellipsoid defined by

E′ =
{

x ∈ V :
k∑

j=1

(x, ej)
2

α2
j

≤ 1
}

for some α1, . . . , αk > 0. To show that E is the minimum volume ellipsoid, it

suffices to show that as long as E′ contains the orbit
{
gv : g ∈ G

}
, we must have

volE′ ≥ volE, which is equivalent to α1 · · ·αk ≥ 1.

Indeed, since gv ∈ E′, we must have

k∑

j=1

(ej , gv)2

α2
j

≤ 1 for all g ∈ G.

Integrating, we obtain
k∑

j=1

1

α2
j

∫

G

(ej , gv)2 dg ≤ 1.

Applying (2.2.4), we get

1

dimV

k∑

j=1

1

α2
j

≤ 1.

Since k = dimV , from the inequality between the arithmetic and geometric

means, we get α1 . . . αk ≥ 1, which completes the proof. ˜
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Remark. In the part of the proof where we compare the volumes of E′ and E,

we reproduce the “sufficiency” (that is, “the easy”) part of John’s criterion for

optimality of an ellipsoid; see, for example, [Ball 1997].

Theorem 2.2 allows us to compute the minimum volume ellipsoid of the asym-

metric Traveling Salesman Polytope, see Example 1.1.

Example 2.3 (The minimum volume ellipsoid of the asymmetric Trav-

eling Salesman Polytope). In this case (compare Examples 1.1 and 2.1),

V is the space of n × n matrices with the scalar product and the action of the

symmetric group Sn defined as in Example 2.1. On can observe that the affine

hull of ATn consists of the matrices with zero diagonal and row and column sums

equal to 1, from which one can deduce the formula dimATn = n2 − 3n + 1.

The affine hull of ATn is Sn-invariant. We make the affine hull of ATn a

vector space by choosing the origin at c = (cij) with cij = 1/(n − 1) for i 6= j

and cii = 0, the only fixed point of the action. The action of Sn on the affine hull

of ATn is reducible and multiplicity-free, so there is no ambiguity in choosing the

irreducible components. The affine hull is the sum of two irreducible invariant

subspaces Vs and Va.

Subspace Vs consists of the matrices x+c, where x is a symmetric matrix with

zero diagonal and zero row and column sums. One can see that the action of

Sn in Vs is irreducible and corresponds to the Young diagram (n− 2, 2), see, for

example, Chapter 4 of [Fulton and Harris 1991]. We have dimVs = (n2− 3n)/2.

Subspace Va consists of the matrices x + c, where x is a skew-symmetric

matrix with zero row and column sums. One can see that the action of Sn in Va

is irreducible and corresponds to the Young diagram (n−2, 1, 1), see, for example,

Chapter 4 of [Fulton and Harris 1991]. We have dimVa = (n− 1)(n− 2)/2.

The orthogonal projection onto Vs is defined by x 7→ (x + xt)/2, while the

orthogonal projection onto Va is defined by x 7→ (x− xt)/2 + c.

Applying Theorem 2.2, we conclude that the minimum volume ellipsoid of

ATn is defined in the affine hull of ATn by the inequality:

(n− 1)
∑

1≤i 6=j≤n

(
xij + xji

2
− 1

n− 1

)2

+
(n− 1)(n− 2)

n

∑

1≤i 6=j≤n

(
xij − xji

2

)2

≤ n2 − 3n + 1.

Thus one can say that the minimum volume ellipsoid of the asymmetric Trav-

eling Salesman Polytope is slightly stretched in the direction of skew-symmetric

matrices.

The dual version of Theorem 2.2 is especially simple.
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Theorem 2.4. Let G be a compact group acting in a finite-dimensional real

vector space V . Let B be the convex hull of the orbit of a vector v ∈ V :

B = conv
(

gv : g ∈ G
)

.

Suppose that the affine hull of B is V .

Let V ∗ be the dual to V and let

B◦ =
{

` ∈ V ∗ : `(x) ≤ 1 for all x ∈ B
}

be the polar of B. Then the maximum volume ellipsoid of B◦ is defined by the

inequality

Emax =
{

` ∈ V ∗ :

∫

G

`2(gv) dg ≤ 1

dimV

}

.

Proof. Let us introduce a G-invariant scalar product 〈·, ·〉 in V , thus identifying

V and V ∗. Then

B◦ =
{

c ∈ V : 〈c, gv〉 ≤ 1 for all g ∈ G
}

.

Since the origin is the only point fixed by the action of G, the maximum volume

ellipsoid Emax of B◦ is centered at the origin. Therefore, Emax must be the polar

of the minimum volume ellipsoid of B.

Let V =
⊕

i

Vi be the decomposition of Theorem 2.2. Since Emax is the polar

of the ellipsoid Emin associated with B, from (2.2.1), we get

Emax =
{

c : dim V
∑

i

〈ci, ci〉〈vi, vi〉
dim Vi

≤ 1
}

.

Applying (2.2.2), we get

Emax =
{

c :

∫

G

〈c, gv〉2 dg ≤ 1

dimV

}

,

which completes the proof. ˜

Remark. Let G be a compact group acting in a finite-dimensional real vector

space V and let v ∈ V be a point such that the orbit
{
gv : g ∈ V

}
spans V

affinely. Then the dual space V ∗ acquires a natural scalar product

〈`1, `2〉 =
∫

G

`1(gv)`2(gv) dg

induced by the scalar product in L2(G). Theorem 2.4 states that the maximum

volume ellipsoid of the polar of the orbit is the ball of radius (dimV )−1/2 in this

scalar product.

By duality, V acquires the dual scalar product (which we denote below by

〈·, ·〉 as well). It is a constant multiple of the product (·, ·) introduced in the

proof of Theorem 2.2: 〈u1, u2〉 = (dim V )(u1, u2). We have 〈v, v〉 = dimV and
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the minimum volume ellipsoid of the convex hull of the orbit of v is the ball of

radius
√

dimV .

As an immediate application of Theorem 2.4, we compute the maximum volume

ellipsoid of the set of nonnegative polynomials, see Example 1.2.

Example 2.5 (The maximum volume ellipsoid of the set of nonnega-

tive polynomials). In this case, U∗
2k,n is the space of all homogeneous poly-

nomials p : Rn → R of degree 2k with the zero average on the unit sphere Sn−1,

so dimU∗
2k,n =

(
n+2k−1

2k

)
−1. We view such a polynomial p as a linear functional

` on an orbit
{
gv : g ∈ G

}
in the action of the orthogonal group G = SO(n) in

(Rn)
⊗2k

and the shifted set Pos′2k,n of nonnegative polynomials as the negative

polar −B◦ of the orbit, see Example 1.2. In particular, under this identification

p←→ `, we have
∫

Sn−1

p2(x) dx =

∫

G

`2(gv) dg,

where dx and dg are the Haar probability measures on Sn−1 and SO(n) respec-

tively.

Applying Theorem 2.4 to −B◦, we conclude that the maximum volume ellip-

soid of −B◦ = Pos′2k,n consists of the polynomials p such that

∫

Sn−1

p(x) dx = 0 and

∫

Sn−1

p2(x) dx ≤
((

n + 2k − 1

2k

)

− 1

)−1

.

Consequently, the maximum volume ellipsoid of Pos2k,n consists of the polyno-

mials p such that

∫

Sn−1

p(x) dx = 1 and

∫

Sn−1

(p(x)− 1)
2

dx ≤
((

n + 2k − 1

2k

)

− 1

)−1

.

Geometrically, the maximum volume ellipsoid of Pos2k,n can be described as

follows. Let us introduce a scalar product in the space of polynomials by

〈f, g〉 =
∫

Sn−1

f(x)g(x) dx,

where dx is the rotation-invariant probability measure, as above. Then the

maximum volume ellipsoid of Pos2k,n is the ball centered at r(x) = (x2
1+· · ·+x2

n)k

and having radius
((

n + 2k − 1

2k

)

− 1

)−1/2

(note that multiples of r(x) are the only SO(n)-invariant polynomials, see for

example, p. 13 of [Barvinok 2002a]). This result was first obtained by more

direct and complicated computations in [Blekherman 2004]. In the same paper,
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G. Blekherman also determined the coefficient of symmetry of Pos2k,n (with

respect to the center r), it turns out to be equal to

((
n + k − 1

k

)

− 1

)−1

.

It follows then that Pos2k,n is contained in the ball centered at r and of the

radius
((

n + k − 1

k

)

− 1

)1/2

.

This estimate is poor if k is fixed and n is allowed to grow: as follows from results

of Duoandikoetxea [1987], for any fixed k, the set Pos2k,n is contained in a ball

of a fixed radius, as n grows. However, the estimate gives the right logarithmic

order if k � n, which one can observe by inspecting a polynomial p ∈ Pos2k,n

that is the 2k-th power of a linear function.

We conclude this section by computing the minimum volume ellipsoid of the con-

vex hull of the Grassmannian and, consequently, the maximum volume ellipsoid

of the unit comass ball, see Example 1.3.

Example 2.6 (The minimum volume ellipsoid of the convex hull of

the Grassmannian). In this case, Vm,n =
∧m

Rn with the orthonormal basis

eI = ei1 ∧ · · · ∧ eim
, where I is an m-subset 1 ≤ i1 < i2 < · · · < im ≤ n of the

set {1, . . . , n} and e1, . . . , en is the standard orthonormal basis of Rn.

Let 〈·, ·〉 be the corresponding scalar product in Vm,n, so that

〈a, b〉 =
∑

I

aIbI ,

where I ranges over all m-subsets of {1, . . . , n}. The scalar product allows us

to identify V ∗
m,n with Vm,n. First, we find the maximum volume ellipsoid of the

unit comass ball B◦, that is the polar of the convex hull B = conv (Gm(Rn)) of

the Grassmannian.

A linear functional a ∈ V ∗
m,n = Vm,n is defined by its coefficients aI . To apply

Theorem 2.4, we have to compute

∫

SO(n)

〈a, gv〉2 dg =

∫

Gm(Rn)

〈a, x〉2 dx,

where dx is the Haar probability measure on the Grassmannian Gm(Rn). We

note that
∫

Gm(Rn)

〈eI , x〉〈eJ , x〉 dx = 0

for I 6= J , since for i ∈ I \ J , the reflection ei 7→ −ei of Rn induces an isometry

of Vm,n, which maps Gm(Rn) onto itself, reverses the sign of 〈eI , x〉 and does
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not change 〈eJ , x〉. Also,

∫

Gm(Rn)

〈eI , x〉2 dx =

(
n

m

)−1

,

since the integral does not depend on I and
∑

I〈eI , x〉2 = 1 for all x ∈ Gm(Rn).

By Theorem 2.4, we conclude that the maximum volume ellipsoid of the unit

comass ball B◦ is defined by the inequality

Emax =
{

a ∈ Vm,n :
∑

I

a2
I ≤ 1

}

,

that is, the unit ball in the Euclidean metric of Vm,n. Since B◦ is centrally sym-

metric, we conclude that B◦ is contained in the ball of radius
(

n
m

)1/2
. As follows

from Theorem 4.1, this estimate is optimal up to a factor of
√

m(n−1)(1+ lnm).

Consequently, the convex hull B of the Grassmannian is contained in the unit

ball of Vm,n, which is the minimum volume ellipsoid of B, and contains a ball of

radius
(

n
m

)−1/2
. Again, the estimate of the radius of the inner ball is optimal up

to a factor of
√

m(n− 1)(1 + lnm).

3. Higher Order Estimates

The following construction can be used to get a better understanding of metric

properties of an orbit
{
gv : g ∈ G

}
. Let us choose a positive integer k and let

us consider the k-th tensor power

V ⊗k = V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

.

The group G acts in V ⊗k by the k-th tensor power of its action in V : on

decomposable tensors we have

g(v1 ⊗ · · · ⊗ vk) = g(v1)⊗ · · · ⊗ g(vk).

Let us consider the orbit
{
gv⊗k : g ∈ G

}
for

v⊗k = v ⊗ · · · ⊗ v
︸ ︷︷ ︸

k times

.

Then, a linear functional on the orbit of v⊗k is a polynomial of degree k on the

orbit of v and hence we can extract some new “higher order” information about

the orbit of v by applying already developed methods to the orbit of v⊗k. An

important observation is that the orbit
{
gv⊗k : g ∈ G

}
lies in the symmetric

part of V ⊗k, so the dimension of the affine hull of the orbit of v⊗k does not

exceed
(
dim V +k−1

k

)
.



66 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

Theorem 3.1. Let G be a compact group acting in a finite-dimensional real

vector space V , let v ∈ V be a point , and let ` : V → R be a linear functional .

Let us define

f : G→ R by f(g) = `(gv).

For an integer k > 0, let dk be the dimension of the subspace spanned by the

orbit
{
gv⊗k : g ∈ G

}
in V ⊗k. In particular , dk ≤

(
dim V +k−1

k

)
. Let

‖f‖2k =

(∫

G

f2k(g) dg

)1/2k

.

(i) Suppose that k is odd and that
∫

G

fk(g) dg = 0.

Then

d
−1/2k
k ‖f‖2k ≤ max

g∈G
f(g) ≤ d

1/2k
k ‖f‖2k.

(ii) We have

‖f‖2k ≤ max
g∈G
|f(g)| ≤ d

1/2k
k ‖f‖2k.

Proof. Without loss of generality, we assume that f 6≡ 0.

Let

Bk(v) = conv
(
gv⊗k : g ∈ G

)

be the convex hull of the orbit of v⊗k. We have dimBk(v) ≤ dk.

Let `⊗k ∈ (V ∗)
⊗k

be the k-th tensor power of the linear functional ` ∈ V ∗.

Thus fk(g) = `⊗k
(
gv⊗k

)
.

To prove Part (1), we note that since k is odd,

max
g∈G

fk(g) =
(
max
g∈G

f(g)
)k

.

Let

u =

∫

G

g
(
v⊗k

)
dg

be the center of Bk(v). Since the average value of fk(g) is equal to 0, we have

`⊗k(u) = 0 and hence `⊗k(x) = `⊗k(x − u) for all x ∈ V ⊗k. Let us translate

Bk(v)′ = Bk(v) − u to the origin and let us consider the maximum volume

ellipsoid E of the polar of Bk(v)′ in its affine hull. By Theorem 2.4, we have

E =
{

L ∈
(
V ⊗k

)∗
:

∫

G

L2
(
gv⊗k − u

)
dg ≤ 1

dimBk(v)

}

.

Since the ellipsoid E is contained in the polar of Bk(v)′, for any linear func-

tional L : V ⊗k → R, the inequality
∫

G

L2
(
gv⊗k − u

)
dg ≤ 1

dk
≤ 1

dimBk(v)
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implies the inequality

max
g∈G
L
(
gv⊗k − u

)
≤ 1.

Choosing L = λ`⊗k with λ = d
−1/2
k ‖f‖−k

2k , we then obtain the upper bound for

maxg∈G f(g).

Since the ellipsoid (dim E)E contains the polar of Bk(v)′, for any linear func-

tional L : V ⊗k → R, the inequality

max
g∈G
L
(
gv⊗k − u

)
≤ 1

implies the inequality
∫

G

L2
(
gv⊗k − u

)
dg ≤ dimBk(v) ≤ dk.

Choosing L = λ`⊗k with any λ > ‖f‖−k
2k d

1/2
k , we obtain the lower bound for

maxg∈G f(g).

The proof of Part (2) is similar. We modify the definition of Bk(v) by letting

Bk(v) = conv
(
gv⊗k,−gv⊗k : g ∈ G

)
.

The set Bk(v) so defined can be considered as the convex hull of an orbit of

G × Z2 and is centrally symmetric, so the ellipsoid (
√

dim E)E contains the

polar of Bk(v).

Part (2) is also proven by a different method in [Barvinok 2002b]. ˜

Remark. Since dk ≤
(
dim V +k−1

k

)
, the upper and lower bounds in Theorem 3.1

are asymptotically equivalent as long as k−1 dimV → 0. In many interesting

cases we have dk �
(
dim V +k−1

k

)
, which results in stronger inequalities.

Polynomials on the unit sphere. As is discussed in Examples 1.2 and 2.5,

the restriction of a homogeneous polynomial f : Rn → R of degree m onto the

unit sphere Sn−1 ⊂ Rn can be viewed as the restriction of a linear functional

` : (Rn)
⊗m → R onto the orbit of a vector v = e⊗m for some e ∈ Sn−1 in

the action of the special orthogonal group SO(n). In this case, the orbit of

v⊗k = e⊗mk spans the symmetric part of (Rn)
mk

, so we have dk =
(
n+mk−1

mk

)
in

Theorem 3.1.

Hence Part (1) of Theorem 3.1 implies that if f is an n-variate homogeneous

polynomial of degree m such that
∫

Sn−1

fk(x) dx = 0,

where dx is the rotation-invariant probability measure on Sn−1, then

(
n + mk − 1

mk

)−1/2k

‖f‖2k ≤ max
x∈Sn−1

f(x) ≤
(

n + mk − 1

mk

)1/2k

‖f‖2k,



68 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

where

‖f‖2k =

(∫

Sn−1

f2k(x) dx

)1/2k

.

We obtain the following corollary.

Corollary 3.2. Suppose that k ≥ (n− 1)max
{
ln(m + 1), 1

}
. Then

‖f‖2k ≤ max
x∈Sn−1

|f(x)| ≤ α‖f‖2k,

for some absolute constant α > 0 and all homogeneous polynomials f : Rn → R

of degree m. One can take α = exp
(
1 + 0.5e−1

)
≈ 3.27.

Proof. Applying Part(2) of Theorem 3.1 as above, we conclude that for any

homogeneous polynomial f : Rn → R of degree m,

‖f‖2k ≤ max
x∈Sn−1

|f(x)| ≤
(

n + mk − 1

mk

)1/2k

‖f‖2k.

This inequality is also proved in [Barvinok 2002b]. Besides, it can be deduced

from some classical estimates for spherical harmonics; see p. 14 of [Müller 1966].

We use the estimate

ln

(
a

b

)

≤ b ln
a

b
+ (a− b) ln

a

a− b
;

see, for example, Theorem 1.4.5 of [van Lint 1999]. Applying the inequality with

b = mk and a = n + mk − 1, we get

b ln
a

b
= mk ln

(

1 +
n− 1

mk

)

≤ n− 1

and

(a− b) ln
a

a− b
= (n− 1) ln

n + mk − 1

n− 1
≤ (n− 1)

(

ln(m + 1) + ln
k

n− 1

)

.

Summarizing,

1

2k
ln

(
n + mk − 1

mk

)

≤ 1

2
+

1

2
+

1

2ρ
ln ρ for ρ =

k

n− 1
.

Since ρ−1 ln ρ ≤ e−1 for all ρ ≥ 1, the proof follows. ˜

Our next application concerns calibrations; compare Examples 1.3 and 2.6.

Theorem 3.3. Let Gm(Rn) ⊂
∧m

Rn be the Plücker embedding of the Grass-

mannian of oriented m-subspaces of Rn. Let ` :
∧m

Rn → R be a linear func-

tional . Let

‖`‖2k =

(∫

Gm(Rn)

`2k(x) dx

)1/2k

,
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where dx is the Haar probability measure on Gm(Rn). Then, for any positive

integer k,

‖`‖2k ≤ max
x∈Gm(Rn)

|`(x)| ≤ (dk)1/2k‖`‖2k,

where dk =
∏m

i=1

∏k
j=1

n+j−i
m+k−i−j+1 .

Proof. As we discussed in Example 1.3, the Grassmannian Gm(Rn) can be

viewed as the orbit of v = e1 ∧ · · · ∧ em, where e1, . . . , en is the standard basis of

Rn, under the action of the special orthogonal group SO(n) by the m-th exterior

power of its defining representation in Rn. We are going to apply Part (2) of

Theorem 3.1 and for that we need to estimate the dimension of the subspace

spanned by the orbit of v⊗k. First, we identify
∧m

Rn with the subspace of

skew-symmetric tensors in (Rn)
⊗m

and v with the point

∑

σ∈Sm

(sgn σ)eσ(1) ⊗ · · · ⊗ eσ(m),

where Sm is the symmetric group of all permutations of {1, . . . ,m}.
Let us consider W = (Rn)⊗mk. We introduce the right action of the symmetric

group Smk on W by permutations of the factors in the tensor product:

(
u1 ⊗ · · · ⊗ umk

)
σ = uσ(1) ⊗ · · · ⊗ uσ(mk).

For i = 1, . . . ,m, let Ri ⊂ Smk be the subgroup permuting the numbers 1 ≤
a ≤ mk such that a ≡ i mod m and leaving all other numbers intact and for

j = 1, . . . , k, let Ci ⊂ Smk be the subgroup permuting the numbers m(i−1)+1 ≤
a ≤ mi and leaving all other numbers intact.

Let w = e1 ⊗ · · · ⊗ em. Then

v⊗k = (k!)−mw⊗k

(
∑

σ∈R1×···×Rm

σ

)(
∑

σ∈C1×···×Ck

(sgn σ)σ

)

.

It follows then that v⊗k generates the GLn-module indexed by the rectangular

m×k Young diagram, so its dimension dk is given by the formula of the Theorem,

see Chapter 6 of [Fulton and Harris 1991]. ˜

Corollary 3.4. Under the conditions of Theorem 3.3, let

k ≥ m(n− 1)max{lnm, 1
}
.

Then

‖`‖2k ≤ comass of ` ≤ α‖`‖2k

for some absolute constant α > 0.

One can choose α = exp
(
0.5 + 0.5e−1 + 1/ ln 3

)
≈ 4.93.
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Proof. We have

dk ≤
m∏

i=1

k∏

j=1

n + j − i

k − j + 1
≤
( k∏

j=1

n + j − 1

k − j + 1

)m

=

(
n + k − 1

n− 1

)m

.

Hence

ln dk ≤ m ln

(
n + k − 1

n− 1

)

≤ m(n− 1) ln
n + k − 1

n− 1
+ mk ln

n + k − 1

k

≤ m(n− 1)
(

ln
n + k − 1

n− 1
+ 1
)

= m(n− 1)
(

ln
k

n− 1
+ 2
)

;

compare the proof of Corollary 3.2.

If m ≥ 3 then lnm ≥ 1 and k/(n − 1) ≥ m lnm. Since the function ρ−1 ln ρ

is decreasing for ρ ≥ e, substituting ρ = k/(n− 1), we get

ρ−1 ln ρ =
n− 1

k
ln

k

n− 1
≤ lnm + ln lnm

m lnm
.

Therefore, for m ≥ 3, we have

1

2k
ln dk ≤

lnm + ln lnm

2 lnm
+

1

lnm
≤ 1

2
+

1

2e
+

1

ln 3
.

If m ≤ 2 then
n− 1

k
ln

k

n− 1
≤ e−1,

since the maximum of ρ−1 ln ρ for is attained at ρ = e. Therefore,

1

2k
ln dk ≤ e−1 + 1 <

1

2
+

1

2e
+

1

ln 3

The proof now follows. ˜

To understand the convex geometry of an orbit, we would like to compute the

maximum value of a “typical” linear functional on the orbit. Theorem 3.1 allows

us to replace the maximum value by an Lp norm. To estimate the average value

of an Lp norm, we use the following simple computation.

Lemma 3.5. Let G be a compact group acting in a d-dimensional real vector space

V endowed with a G-invariant scalar product 〈 · , · 〉 and let v ∈ V be a point .

Let Sd−1 ⊂ V be the unit sphere endowed with the Haar probability measure dc.

Then, for every positive integer k, we have

∫

Sd−1

(∫

G

〈c, gv〉2k dg

)1/2k

dc ≤
√

2k〈v, v〉
d

.

Proof. Applying Hölder’s inequality, we get

∫

Sd−1

(∫

G

〈c, gv〉2k dg

)1/2k

dc ≤
(∫

Sd−1

∫

G

〈c, gv〉2k dg dc

)1/2k

.
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Interchanging the integrals, we get
∫

Sd−1

∫

G

〈c, gv〉2k dg dc =

∫

G

(∫

Sd−1

〈c, gv〉2k dc

)

dg. 3.5.1

Now we observe that the integral inside has the same value for all g ∈ G. There-

fore, (3.5.1) is equal to
∫

Sd−1

〈c, v〉2k dc = 〈v, v〉k Γ(d/2)Γ(k + 1/2)√
πΓ(k + d/2)

,

see, for example, [Barvinok 2002b].

Now we use that Γ(k + 1/2) ≤ Γ(k + 1) ≤ kk and

Γ(d/2)

Γ(k + d/2)
=

1

(d/2)(d/2 + 1) · · · (d/2 + k − 1)
≤ (d/2)−k. ˜

4. Some Geometric Corollaries

The metric structure of the unit comass ball. Let Vm,n =
∧m

Rn with

the orthonormal basis eI = ei1 ∧ · · · ∧ eim
, where I is an m-subset 1 ≤ i1 <

i2 < · · · < im ≤ n of the set {1, . . . , n}, and the corresponding scalar product

〈·, ·〉. Let Gm(Rn) ⊂ Vm,n be the Plücker embedding of the Grassmannian of

oriented m-subspaces of Rn, let B = conv (Gm(Rn)) be the unit mass ball, and

let B◦ ⊂ V ∗
m,n = Vm,n be the unit comass ball, consisting of the linear functionals

with the maximum value on Gm(Rn) not exceeding 1, see Examples 1.3 and 2.6.

The most well-known example of a linear functional ` : Vm,n → R of comass

1 is given by an exterior power of the Kähler form. Let us suppose that m and

n are even, so m = 2p and n = 2q. Let

ω = e1 ∧ e2 + e3 ∧ e4 + · · ·+ eq−1 ∧ eq

and

f =
1

p!
ω ∧ · · · ∧ ω
︸ ︷︷ ︸

p times

∈ Vm,n.

Then

max
x∈Gm(Rn)

〈f, x〉 = 1,

and, moreover, the subspaces x ∈ Gm(Rn) where the maximum value 1 is at-

tained look as follows. We identify Rn with Cq by identifying

Re1 ⊕ Re2 = Re3 ⊕ Re4 = · · · = Req−1 ⊕ Req = C.

Then the subspaces x ∈ Gm(Rn) with 〈f, x〉 = 1 are exactly those identified with

the complex p-dimensional subspaces of Cq, see [Harvey and Lawson 1982].

We note that the Euclidean length 〈f, f〉1/2 of f is equal to

(
q

p

)1/2

. In

particular, if m = 2p is fixed and n = 2q grows, the length of f grows as

qp/2 = (n/2)m/4.
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Another example is provided by the special Lagrangian calibration a. In this

case, n = 2m and

a = Re (e1 + ie2) ∧ · · · ∧ (e2m−1 + ie2m).

The length 〈a, a〉1/2 of a is 2(m−1)/2. The maximum value of 〈a, x〉 for x ∈
Gm(Rn) is 1 and it is attained on the “special Lagrangian subspaces”, see [Harvey

and Lawson 1982].

The following result shows that there exist calibrations with a much larger

Euclidean length than that of the power f of the Kähler form or the special

Lagrangian calibration a.

Theorem 4.1. (i) Let c ∈ Vm,n be a vector such that

max
x∈Gm(Rn)

〈c, x〉 = 1.

Then

〈c, c〉1/2 ≤
(

n

m

)1/2

.

(ii) There exists c ∈ Vm,n such that

max
x∈Gm(Rn)

〈c, x〉 = 1

and

〈c, c〉1/2 ≥ β
√

m(n− 1)(1 + lnm)

(
n

m

)1/2

,

where β > 0 is an absolute constant .

One can choose β = exp
(
−0.5− 0.5e−1 − 1/ ln 3

)
/
√

2 ≈ 0.14.

Proof. Part (1) follows since the convex hull of the Grassmannian contains a

ball of radius

(
n

m

)−1/2

; see Example 2.6.

To prove Part (2), let us choose k = bm(n − 1)(1 + lnm)c in Lemma 3.5.

Then, by Corollary 3.4,

α−1 max
x∈Gm(Rn)

〈c, x〉 ≤
(
∫

Gm(Rn)

〈c, x〉2k dx

)1/2k

,

for some absolute constant α > 1. We apply Lemma 3.5 with V = Vm,n, d =
(

n
m

)
,

G = SO(n), and v = e1 ∧ · · · ∧ em. Hence 〈v, v〉 = 1 and there exists c ∈ Vm,n

with 〈c, c〉 = 1 and such that

(∫

Gm(Rn)

〈c, x〉2k dx

)1/2k

≤
√

2k

(
n

m

)−1/2

.

Rescaling c to a comass 1 functional, we complete the proof of Part (2). ˜
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For m = 2 the estimate of Part (2) is exact up to an absolute constant, as wit-

nessed by the Kähler calibration. However, for m ≥ 3, the calibration c of Part

(2) has a larger length than the Kähler or special Lagrangian calibrations. The

gap only increases when m and n grow. The distance to the origin of the sup-

porting hyperplane 〈c, x〉 = 1 of the face of the convex hull of the Grassmannian

is equal to 〈c, c〉−1/2 so the faces defined by longer calibrations c are closer to

the origin. Thus, the faces spanned by complex subspaces or the faces spanned

by special Lagrangian subspaces are much more “shallow” than the faces defined

by calibrations c in Part (2) of the Theorem. We do not know if those “deep”

faces are related to any interesting geometry. Intuitively, the closer the face to

the origin, the larger piece of the Grassmannian it contains, so it is quite pos-

sible that some interesting classes of manifolds are associated with the “long”

calibrations c [Morgan 1992].

The volume of the set of nonnegative polynomials. Let Um,n be the

space of real homogeneous polynomials p of degree m in n variables such that the

average value of p on the unit sphere Sn−1 ⊂ Rn is 0, so dimUm,n =
(
n+m−1

m

)
−1

for m even and dimUm,n =
(
n+m−1

m

)
for m odd. As before, we make Um,n a

Euclidean space with the L2 inner product

〈f, g〉 =

∫

Sn−1

f(x)g(x) dx.

We obtain the following corollary.

Corollary 4.2. Let Σm,n ⊂ Um,n be the unit sphere, consisting of the polyno-

mials with L2-norm equal to 1. For a polynomial p ∈ Um,n, let

‖p‖∞ = max
x∈Sn−1

|p(x)|.

Then ∫

Σm,n

‖p‖∞ dp ≤ β
√

(n− 1) ln(m + 1) + 1

for some absolute constant β > 0. One can take β =
√

2 exp
(
1+ 0.5e−1

)
≈ 4.63.

Proof. Let us choose k = b(n− 1) ln(m + 1) + 1c. Then, by Corollary 3.2,

‖p‖∞ ≤ α

(∫

Sn−1

p2k dx

)1/2k

,

where we can take α = exp
(
1+0.5e−1

)
. Now we use Lemma 3.5. As in Examples

1.2 and 2.5, we identify the space Um,n with the space of linear functionals 〈c, gv〉
on the orbit

{
gv : g ∈ SO(n)

}
of v. By the remark after the proof of Theorem

2.4, we have 〈v, v〉 = dimUm,n. The proof now follows. ˜

Thus the L∞-norm of a typical n-variate polynomial of degree m of the unit

L2-norm in Um,n is O
(√

(n− 1) ln(m + 1) + 1
)
. In contrast, the L∞ norm of a

particular polynomial can be of the order of nm/2, that is, substantially bigger.
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Corollary 4.2 was used by the second author to obtain a bound on the volume

of the set of nonnegative polynomials.

Let us consider the shifted set Pos′2k,n ⊂ U2k,n of nonnegative polynomials

defined by (1.2.2). We measure the size of a set X ⊂ U2k,n by the quantity

(
volX

volK

)1/d

,

where d = dim U2k,n and K is the unit ball in U2k,n, which is more “robust” than

just the volume volX, as it takes into account the effect of a high dimension;

see Chapter 6 of [Pisier 1989].

The following result is from [Blekherman 2003], we made some trivial im-

provement in the dependence on the degree 2k.

Theorem 4.3. Let Pos′2k,n ⊂ U2k,n be the shifted set of nonnegative polynomials,

let K ⊂ U2k,n be the unit ball and let d = dimU2k,n =
(
n+2k−1

2k

)
− 1. Then

(
vol Pos2k,n

volK

)1/d

≥ γ
√

(n− 1) ln(2k + 1) + 1

for some absolute constant γ > 0. One can take γ = exp
(
−1 − 0.5e−1

)
/
√

2 ≈
0.21.

Proof. Let Σ2k,n ⊂ U2k,n be the unit sphere. Let p ∈ Σ2k,n be a point.

The ray λp : λ ≥ 0 intersects the boundary of Pos′2k,n at a point p1 such that

minx∈Sn−1 p1(x) = −1, so the length of the interval [0, p1] is |minx∈Sn−1 p(x)| ≤
‖p‖∞.

Hence
(

vol Pos′2k,n

volK

)1/d

=

(∫

Σ2k,n

∣
∣ min
x∈Sn−1

p(x)
∣
∣
−d

dp

)1/d

≥
(∫

Σ2k,n

‖p‖−d
∞ dp

)1/d

≥
∫

Σ2k,n

‖p‖−1
∞ dp ≥

(∫

Σ2k,n

‖p‖∞ dp

)−1

,

by the consecutive application of Hölder’s and Jensen’s inequalities, so the proof

follows by Corollary 4.2. ˜

We defined Pos2k,n as the set of nonnegative polynomials with the average value

1 on the unit sphere, see (1.2.1). There is an important subset Sq2k,n ⊂ Pos2k,n,

consisting of the polynomials that are sums of squares of homogeneous poly-

nomials of degree k. It is known that Pos2k,n = Sq2k,n if k = 1, n = 2, or

k = 2 and n = 3, see Chapter 6 of [Bochnak et al. 1998]. The following result

from [Blekherman 2003] shows that, in general, Sq2k,n is a rather small subset

of Pos2k,n.

Translating p 7→ p− (x2
1 + · · ·+ x2

n)k, we identify Sq2k,n with a subset Sq′2k,n

of U2k,n.
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Theorem 4.4. Let Sq′2k,n ⊂ U2k,n be the shifted set of sums of squares, let

K ⊂ U2k,n be the unit ball and let d = dimU2k,n =
(
n+2k−1

2k

)
− 1. Then

(
volSq2k,n

volK

)1/d

≤ γ24k

(
n + k − 1

k

)1/2(
n + 2k − 1

2k

)−1/2

for some absolute constant γ > 0. One can choose γ = exp
(
1 + 0.5e−1

)
≈ 3.27.

In particular, if k is fixed and n grows, the upper bound has the form c(k)n−k/2

for some c(k) > 0.

The proof is based on bounding the right hand side of the inequality of Theo-

rem 4.4 by the average width of Sq2k,n; see Section 6.2 of [Schneider 1993]. The

average width is represented by the integral
∫

Σ2k,n

max
f∈Σk,n

〈g, f2〉 dg.

By Corollary 3.2, we can bound the integrand by

α

(∫

Σk,n

〈g, f2〉2q df

)1/2q

for some absolute constant α and q =
(
n+k−1

k

)
and proceed as in the proof of

Lemma 3.5. The factor 24k comes from an inequality of [Duoandikoetxea 1987],

which allows us to bound the L2-norm f2 by 24k for every polynomial f ∈ Σk,n.
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