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A Conformal Energy for Simplicial Surfaces

ALEXANDER I. BOBENKO

Abstract. A new functional for simplicial surfaces is suggested. It is in-
variant with respect to Möbius transformations and is a discrete analogue
of the Willmore functional. Minima of this functional are investigated. As
an application a bending energy for discrete thin-shells is derived.

1. Introduction

In the variational description of surfaces, several functionals are of primary

importance:

• The area A =
∫

dA, where dA is the area element, is preserved by isometries.

• The total Gaussian curvature G =
∫

K dA, where K is the Gaussian curvature,

is a topological invariant.

• The total mean curvature M =
∫

H dA, where H is the mean curvature,

depends on the external geometry of the surface.

• The Willmore energy W =
∫

H2 dA is invariant with respect to Möbius trans-

formations.

Geometric discretizations of the first three functionals for simplicial surfaces are

well known. For the area functional the discretization is obvious. For the local

Gaussian curvature the discrete analog at a vertex v is defined as the angle defect

G(v) = 2π −
∑

i

αi,

where the αi are the angles of all triangles (see Figure 2) at vertex v. The total

Gaussian curvature is the sum over all vertices G =
∑

v
G(v). The local mean
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curvature at an edge e is defined as

M(e) = lθ,

where l is the length of the edge and θ is the angle between the normals to

the adjacent faces at e (see Figure 6). The total mean curvature is the sum

over all edges M =
∑

e
M(e). These discrete functionals possess the geometric

symmetries of the smooth functionals mentioned above.

Until recently a geometric discretization of the Willmore functional was miss-

ing. In this paper we introduce a Möbius invariant energy for simplicial surfaces

and show that it should be treated as a discrete Willmore energy.

2. Conformal Energy

Let S be a simplicial surface in 3-dimensional Euclidean space with set of

vertices V , edges E and (triangular) faces F . We define a conformal energy for

simplicial surfaces using the circumcircles of their faces. Each (internal) edge

e ∈ E is incident to two triangles. A consistent orientation of the triangles

naturally induces an orientation of the corresponding circumcircles. Let β(e)

be the external intersection angle of the circumcircles of the triangles sharing e,

which is the angle between the tangent vectors of the oriented circumcircles.

Definition 1. The local conformal (discrete Willmore) energy at a vertex v is

the sum

W (v) =
∑
e3v

β(e) − 2π

over all edges incident on v. The conformal (discrete Willmore) energy of a

simplicial surface S without boundary is the sum

W (S) =
1

2

∑
v∈V

W (v) =
∑
e∈E

β(e) − π |V |,

over all vertices; here |V | is the number of vertices of S.

βi

βi

αi

v

β1

β2

βn

Figure 1. Definition of the conformal (discrete Willmore) energy.
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Figure 1 presents two neighboring circles with their external intersection angle βi

as well as a view “from the top” at a vertex v showing all n circumcircles passing

through v with the corresponding intersection angles β1, . . . , βn. For simplicity

we will consider only simplicial surfaces without boundary.

The energy W (S) is obviously invariant with respect to Möbius transforma-

tions. This invariance is an important property of the classical Willmore energy

defined for smooth surfaces (see below).

Also, W (S) is well defined even for nonoriented simplicial surfaces, because

changing the orientation of both circles preserves the angle β(e).

The star S(v) of the vertex v is the subcomplex of S comprised by the triangles

incident with v. The vertices of S(v) are v and all its neighbors. We call S(v)

convex if for any its face f ∈ F (S(v)) the star S(v) lies to one side of the plane

of F , and strictly convex if the intersection of S(v) with the plane of f is f itself.

Proposition 2. The conformal energy is nonnegative:

W (v) ≥ 0.

It vanishes if and only if the star S(v) is convex and all its vertices lie on a

common sphere.

The proof is based on an elementary lemma:

Lemma 3. Let P be a (not necessarily planar) n-gon with external angles βi.

Choose a point P and connect it to all vertices of P. Let αi be the angles of the

triangles at the tip P of the pyramid thus obtained (see Figure 2). Then

n∑
i=1

βi ≥

n∑
i=1

αi,

and equality holds if and only if P is planar and convex and the vertex P lies

inside P.

The pyramid obtained is convex in this case; note that we distinguish between

convex and strictly convex polygons (and pyramids). Some of the external angles

βi of a convex polygon may vanish. The corresponding side-triangles of the

pyramid lie in one plane.

γi

βi

P

βi+1

δi

αi
αi+1

γi+1

Figure 2. Toward the proof of Lemma 3.
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Proof. Denote by γi and δi the angles of the side-triangles at the vertices of P

(see Figure 2). The claim of Lemma 3 follows from adding over all i = 1, . . . , n

the two obvious relations

βi+1 ≥ π − (γi+1 + δi), π − (γi + δi) = αi.

All inequalities become equalities only in the case when P is planar, convex and

contains P . ˜

As a corollary we obtain a polygonal version of Fenchel’s theorem [1929].

Corollary 4.
n∑

i=1

βi ≥ 2π.

Proof. For a given P choose the point P varying on a straight line encircled

by P. There always exist points P such that the star at P is not strictly convex,

and thus
∑

αi ≥ 2π. ˜

Proof of Proposition 2. The claim of Proposition 2 is invariant with respect

to Möbius transformations. Applying a Möbius transformation M that maps the

vertex v to infinity, we make all circles passing through v into straight lines and

arrive at the geometry shown in Figure 2, with P = M(∞). Now the result

follows immediately from Corollary 4. ˜

Theorem 5. Let S be a simplicial surface without boundary . Then

W (S) ≥ 0,

and equality holds if and only if S is a convex polyhedron inscribed in a sphere.

Proof. Only the second statement needs to be proved. By, Proposition 2, the

equality W (S) = 0 implies that all vertices and edges of S are convex (but not

necessarily strictly convex). Deleting the edges that separate triangles lying in

one plane one obtains a polyhedral surface SP with circular faces and all strictly

convex vertices and edges. Proposition 2 implies that for every vertex v there

exists a sphere Sv with all vertices of the star S(v) lying on it. For any edge

(v1, v2) of SP two neighboring spheres Sv1
and Sv2

share two different circles of

their common faces. This implies Sv1
= Sv2

and finally the coincidence of all the

spheres Sv. ˜

The discrete conformal energy W defined above is a discrete analogue of the

Willmore energy [1993] for smooth surfaces, which is given by

W(S) =
1

4

∫
S

(k1 − k2)
2 dA =

∫
S

H2 dA −

∫
S

K dA.

Here dA is the area element, k1, k2 the principal curvatures, H = 1

2
(k1 + k2)

the mean curvature, K = k1k2 the Gaussian curvature of the surface. Here we
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prefer a definition for W with a Möbius-invariant integrand. It differs from the

one in the introduction by a topological invariant.

We mention two important properties of the Willmore energy:

• W(S) ≥ 0, and W(S) = 0 if and only if S is the round sphere.

• W(S) (together with the integrand (k1−k2)
2 dA) is Möbius-invariant [Blaschke

1929; Willmore 1993].

Whereas the first statement follows almost immediately from the definition, the

second is a nontrivial property. We have shown that the same properties hold

for the discrete energy W ; in the discrete case Möbius invariance is built into

the definition, and the nonnegativity of the energy is nontrivial.

In the same way one can define conformal (Willmore) energy for simplicial

surfaces in Euclidean spaces of higher dimensions and space forms.

The discrete conformal energy is well defined for polyhedral surfaces with

circular faces (not necessarily simplicial).

3. Computation of the Energy

Consider two triangles with a common edge. Let a, b, c, d ∈ R
3 be their

other edges, oriented as in Figure 3. Identifying vectors in R
3 with imaginary

quaternions Im H one obtaines for the quaternionic product

ab = −〈a, b〉 + a × b, (3–1)

where 〈a, b〉 and a × b are the scalar and vector products in R
3.

b

d

a

c
β

Figure 3. Formula for the angle between circumcircles.

Proposition 6. The external angle β ∈ [0, π] between the circumcircles of the

triangles in Figure 3 is given by one of the equivalent formulas:

cos(β) = −
Re q

|q|
= −

Re abcd

|abcd|
=

〈a, c〉〈b, d〉 − 〈a, b〉〈c, d〉 − 〈b, c〉〈d, a〉

|a| |b| |c| |d|
,

where q = ab−1cd−1 is the cross-ratio of the quadrilateral .

Proof. Since Re q, |q| and β are Möbius-invariant it is enough to prove the first

formula for the planar case a, b, c, d ∈ C, mapping all four vertices to a plane

by a Möbius transformation. In this case q becomes the classical complex cross-

ratio. Considering the arguments a, b, c, d ∈ C one easily arrives at β = π−arg q.
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The second representation follows from the identity b−1 = −b/|b| for imaginary

quaternions. Finally, applying (3–1) we obtain

Re abcd = 〈a, b〉〈c, d〉 − 〈a×b, c×d〉 = 〈a, b〉〈c, d〉 + 〈b, c〉〈d, a〉 − 〈a, c〉〈b, d〉. ˜

4. Minimizing Discrete Conformal Energy

Similarly to the smooth Willmore functional W, minimizing the discrete con-

formal energy W makes the surface as round as possible.

Let S denote the combinatorial data of S. The simplicial surface S is called

a geometric realization of the abstract simplicial surface S.

Definition 7. Critical points of W (S) are called simplicial Willmore surfaces.

The conformal (Willmore) energy of an abstract simplicial surface is the infimum

over all geometric realizations

W (S) = inf
S∈S

W (S).

Figure 4. Discrete Willmore spheres of inscribable (W = 0) and noninscribable

(W > 0) type, and discrete Boy surface.

Kevin Bauer implemented the proposed conformal functional with the Brakke’s

evolver [1992] and ran some numerical minimization experiments, whose results

are exemplified in Figure 4. Corresponding entries in each row show initial con-

figurations and the corresponding Willmore surfaces that minimize the conformal

energy.
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Figure 5. A discrete Willmore sphere of noninscribable type with 11 vertices and

W = 2π.

Define the discrete Willmore flow as the gradient flow of the energy W . Under

this flow the energy of the first simplicial sphere decreases to zero and the surface

evolves into a convex polyhedron with all vertices lying on a sphere. The abstract

simplicial surface of the central example is different and we obtain a simplicial

Willmore sphere with positive conformal energy.

The rightmost example in the figure is a simplicial projective plane. The

initial configuration is made from squares divided into triangles; see [Petit 1995].

We see that the minimum is close to the smooth Boy surface known (by [Karcher

and Pinkall 1997]) to minimize the Willmore energy for projective planes.

The minimization of the conformal energy for simplicial spheres is related

to a classical result of Steinitz [1928], who showed that there exist abstract

simplicial 3-polytopes without geometric realizations all of whose vertices belong

to a sphere. We call these combinatorial types noninscribable.

The noninscribable examples of Steinitz are constructed as follows [Grünbaum

2003]. Let S be an abstract simplicial sphere with vertices colored black and

white. Denote the sets of white and black vertices by Vw and Vb respectively, so

V = Vw∪Vb. Assume that |Vw| > |Vb| and that there are no edges connecting two

white vertices. It is easy to see that S with these properties cannot be inscribed

in a sphere. Indeed, assume that we have constructed such an inscribed convex

polyhedron. Then the equality of the intersection angles at both ends of an edge

(see left Figure 1) implies that

2π |Vb| ≥
∑
e∈E

β(e) ≥ 2π |Vw|.

This contradiction of the assumed inequality implies the claim.

To construct abstract polyhedra with |Vw| > |Vb|, take a polyhedron P whose

number of vertices does not exceed the number of faces, |F̂ | > |V̂ |. Color all

the vertices black, add white vertices at the faces and connect them to all black

vertices of a face. This yields a polyhedron with black (original) edges and

|Vw| = |F̂ | > |Vb| = |V̂ |. The example with minimal possible number of vertices

|V | = 11 is shown in Figure 5. The starting polyhedron P here consists of two

tetrahedra identified along a common face: F̂ = 6, V̂ = 5.
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Hodgson, Rivin and Smith [Hodgson et al. 1992] have found a characterization

of inscribable combinatorial types, based on a transfer to the Klein model of

hyperbolic 3-space. It is not clear whether there exist noninscribable examples

of non-Steinitz type.

Numerical experiments lead us to:

Conjecture 8. The conformal energy of simplicial Willmore spheres is quan-

tized :

W = 2πN, for N ∈ N.

This statement belongs to differential geometry of discrete surfaces. It would be

interesting to find a (combinatorial) meaning of the integer N . Compare also

with the famous classification of smooth Willmore spheres by Bryant [1984], who

showed that the energy of Willmore spheres is quantized by W = 4πN , N ∈ N.

The discrete Willmore energy is defined for ambient spaces (Rn or Sn) of any

dimension. This leads to combinatorial Willmore energies

Wn(S) = inf
S∈S

W (S), S ⊂ Sn,

where the infimum is taken over all realizations in the n-dimensional sphere.

Obviously these numbers build a nonincreasing sequence Wn(S) ≥ Wn+1(S)

that becomes constant for sufficiently large n.

Complete understanding of noninscribable simplicial spheres is an interesting

mathematical problem. However the phenomenon of existence of such spheres

might be seen as a problem in using of the conformal functional for applications

in computer graphics, such as the fairing of surfaces. Fortunately the problem

disappears after just one refinement step: all simplicial spheres become inscrib-

able. Let S be an abstract simplicial sphere. Define its refinement SR as follows:

split every edge of S into two by putting additional vertices and connect these

new vertices sharing a face of S by additional edges.

Proposition 9. The refined simplicial sphere SR is inscribable, and thus

W (SR) = 0.

Proof. Koebe’s theorem (see [Ziegler 1995; Bobenko and Springborn 2004],

for example) states that every abstract simplicial sphere S can be realized as a

convex polyhedron S all of whose edges touch a common sphere S2. Starting

with this realization S it is easy to construct a geometric realization SR of the

refinement SR inscribed in S2. Indeed, choose the touching points of the edges

of S with S2 as additional vertices of SR and project the original vertices of

S (which lie outside of the sphere S2) to S2. One obtains a convex simplicial

polyhedron SR inscribed in S2. ˜

Another interesting variational problem involving the conformal energy is the

optimization of triangulations of a given simplicial surface. Here one fixes the
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vertices and chooses an equivalent triangulation (abstract simplicial surface S)

minimizing the conformal functional. The minimum

W (V ) = min
S

W (S)

yields an “optimal” triangulation for a given vertex data. In the case of S2 this

optimal triangulation is well known.

Proposition 10. Let S be a simplicial surface with all vertices V on a two-

dimensional sphere S2. Then W (S) = 0 if and only if it is the Delaunay trian-

gulation on the sphere, i .e., S is the boundary of the convex hull of V .

In differential geometric applications such as the numerical minimization of the

Willmore energy of smooth surfaces (see [Hsu et al. 1992]) it is not natural to

preserve the triangulation by minimizing the energy, and one should also change

the combinatorial type decreasing the energy.

The discrete conformal energy W is not just a discrete analogue of the Will-

more energy. One can show that it approximates the smooth Willmore energy,

although the smooth limit is very sensitive to the refinement method and must

be chosen in a special way. A computation (to be published elsewhere) shows

that if one chooses the vertices of a curvature line net of a smooth surface S for

the vertices of S and triangularizes it, W (S) converges to W(S) by natural re-

finement. On the other hand, the infinitesimal equilateral triangular lattice gives

in the limit and energy half again higher. Possibly the minimization of the dis-

crete Willmore energy with vertices on the smooth surface could be used for the

computation of the curvature line net. We will be investigating this interesting

and complicated phenomenon.

5. Bending of Simplicial Surfaces

An accurate model for the bending of discrete surfaces is important for mod-

eling in virtual reality.

Let S0 be a thin shell and S its deformation. The bending energy of smooth

thin shells is given by the integral [Grinspun et al. 2003]

E =

∫
(H − H0)

2 dA,

where H0 and H are the mean curvatures of the original and deformed surface

respectively. For H0 = 0 it reduces to the Willmore energy.

To derive the bending energy for simplicial surfaces let us consider the limit

of fine triangulation, i.e. of small angles between the normals of neighboring

triangles. Consider an isometric deformation of two adjacent triangles. Let

θ be the complement of the dihedral angle of the edge e, or, equivalently, the

angle between the normals of these triangles (see Figure 6) and β(θ) the external
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intersection angle between the circumcircles of the triangles (see Figure 1) as a

function of θ.

Proposition 11. Assume that the circumcenters of the circumcircles of two

adjacent triangles do not coincide. In the limit of small angles θ → 0, the angle

β between the circles behaves as

β(θ) = β(0) +
l

L
θ2 + o(θ3),

where l is the length of the edge and L 6= 0 is the distance between the centers of

the circles.

This proposition and our definition of conformal energy for simplicial surfaces

motivate to suggest

E =
∑
e∈E

l

L
θ2

for the bending energy of discrete thin-shells.

l

θ

L

Figure 6. Toward the definition of the bending energy for simplicial surfaces.

In [Bridson et al. 2003; Grinspun et al. 2003] similar representations for the

bending energy of simplicial surfaces were found empirically. They were demon-

strated to give convincing simulations and good comparison with real processes.

In [Grinspun et al. 2003] the distance between the barycenters is used for L in

the energy expression but possible numerical advantages in using circumcenters

are indicated.

Using the Willmore energy and Willmore flow is a hot topic in computer

graphics. Applications include fairing of surfaces and surface restoration. We

hope that our conformal energy will be useful for these applications and plan to

work on them.
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