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On Hadwiger Numbers of Direct Products

of Convex Bodies

ISTVÁN TALATA

Abstract. The Hadwiger number H(K) of a d-dimensional convex body
K is the maximum number of mutually nonoverlapping translates of K
that can touch K. We define H∗(K) analogously, with the restriction that
all touching translates of K are pairwise disjoint. In this paper, we verify
a conjecture of Zong [1997] by showing that for any d1, d2 ≥ 3 there exist
convex bodies K1 and K2 such that Ki is di-dimensional, i = 1, 2, and
H(K1 ×K2) > (H(K1)+1)(H(K2)+1)− 1 holds, where K1 ×K2 denotes
the direct product of K1 and K2. To obtain the inequality, we prove that if
K is the direct product of n convex discs in the plane and there are exactly
k parallelograms among its factors, then H∗(K) = 4k(4·6n−k+1)/5. Based
on this formula, we also establish that for every d ≥ 3 there exists a strictly
convex d-dimensional body K fulfilling H(K) ≥ 16

35
(
√

7)d−1.

1. Introduction and Main Results

The Hadwiger number H(K) of a d-dimensional convex body K is the maxi-

mum number of mutually nonoverlapping translates of K that can be arranged

so that all touch K. Often H(K) is called the translative kissing number of K as

well. H∗(K) is defined analogously with the restriction that all touching trans-

lates of K are pairwise disjoint. Trivially, H∗(K) ≤ H(K). It is known that

H(K) ≤ 3d − 1 [Hadwiger 1957], with equality attained only for parallelotopes

[Groemer 1961].

Let Ai ⊆ R
di , i = 1, 2 . . . , n, for some positive integer n. We denote by

A1 × A2 × . . . × An the direct product of the Ai’s in their given order, which is

the collection of the ordered n-tuples {(x1, x2, . . . xn) | xi ∈ Ai, 1 ≤ i ≤ n}, and
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it is identified with a subset of R
d, where d =

∑n
i=1 di, by writing the coordinates

of the xi’s consecutively in one d-tuple. It is also called the Cartesian product

of the Ai’s, and sometimes it is denoted by
∏n

i=1 Ai as well. Clearly, the direct

product of convex bodies is also a convex body. If A ⊆ R
d, then An stands for

the direct product of n copies of A.

Let Ki be a di-dimensional convex body, for i = 1, 2. Observe that if Ci is a

packing with translates of Ki, i = 1, 2, then C1(×)C2 = {A×B | A ∈ C1, B ∈ C2}
is a packing with translates of K1×K2. By looking at which translates of K1×K2

touch each other in C1(×)C2, we get the general inequality

H(K1 × K2) ≥ (H(K1) + 1)(H(K2) + 1) − 1. (1–1)

Zong [1997] proved that there is equality in (1–1) when min(d1, d2) ≤ 2. He

also conjectured that there are some large integers d1, d2 for which inequality

(1–1) is strict for suitable di-dimensional convex bodies Ki, i = 1, 2. In the

following theorem, we verify Zong’s conjecture, and we even show that more is

true: We provide examples for a strict inequality in (1–1) for every d1, d2 ≥ 3.

Theorem 1.1. For every d1, d2 ≥ 3, there is a d1-dimensional convex body K1

and a d2-dimensional convex body K2 such that

H(K1 × K2) ≥ (H(K1) + 1)(H(K2) + 1) + 16 · 3d1+d2−6 − 1 (1–2)

holds.

To prove Theorem 1.1, we rely on the value of H∗(K) when K is the direct

product of two circles. In the following proposition, we determine that quan-

tity in a more general setting when the convex body is the direct product of

finitely many arbitrary convex discs. (By a convex disc we always mean a two-

dimensional convex body.)

Proposition 1.2. Let D1, D2, . . . Dn be convex discs, n ≥ 1. If there are exactly

k parallelograms among the discs, then

H∗(D1 × D2 × . . . × Dn) = 4k

(

4(6n−k) + 1

5

)

(1–3)

holds.

Note that one can prove

H∗(K1 × K2) ≥ H∗(K1)H
∗(K2) (1–4)

the same way as (1–1). Proposition 1.2 shows that there can be strict inequality

in (1–4), e.g., that is the case when K1 and K2 are convex discs that are different

from parallelograms.

Since H(K) < 3d − 1 for any convex body K different from a parallelotope

[Groemer 1961], one may ask how large H(K) can be, when K belongs to some

specific class of convex bodies, in which the shapes of the bodies are very different
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from a parallelotope, for example, when the bodies are strictly convex, i.e., their

boundaries contain no segment. Based on Proposition 1.2, for every d ≥ 3 we

are able to show the existence of a strictly convex d-dimensional body, having

relatively large Hadwiger number, as d → ∞.

Theorem 1.3. For every d ≥ 3 there exists a strictly convex d-dimensional body

S such that

H(S) ≥ 16

35
(
√

7)d ≈ 2.6457d−o(d) (1–5)

holds.

The lattice kissing number HL(K) is the maximum number of those translates

that touch K in a lattice packing of K. Trivially, HL(K) ≤ H(K). Although

in several cases H(K) = HL(K) holds (for example, it holds for every convex

disc by [Grünbaum 1961]), it can happen that H(K)−HL(K) > 0 [Zong 1994].

In fact, H(K) − HL(K) ≥ 2d−1 holds for some d-dimensional convex body K,

for every d ≥ 3 [Talata 1998a], showing that there can be exponentially large

gap between H(K) and HL(K). Minkowski [1896/1910] (see also [Cassels 1959])

showed that HL(K) ≤ 2d+1 − 2 holds for strictly convex d-dimensional bodies;

thus Theorem 1.3 implies new asymptotic bounds showing that both the gap

and the ratio between H(K) and HL(K) can be relatively large.

Corollary 1.4. For every integer d ≥ 1, denote by Kd the collection of all

d-dimensional convex bodies. Then

max
K∈Kd

(H(K)−HL(K)) ≥ (
√

7)d−1− 2d+1+ 2 ≈ 2.6457d−o(d) (1–6)

and

max
K∈Kd

(H(K)/HL(K)) ≥ 8
35

(
√

7/2
)d ≈ 1.3228d−o(d) (1–7)

hold .

We would like to note that the proofs of Theorems 1.1 and 1.3 (and the proof

of the lower bound part for H∗
(
∏n

i=1 Di

)

in Proposition 1.2) are constructive:

thus, general methods are given to construct bodies of different shapes, based

on some initially given convex discs and some parameters, implying for example,

that with respect to the Hausdorff metric, in every neighbourhood of any d-

dimensional parallelotope there are convex bodies which possess the properties

described in the Theorems 1.1 and 1.3. Furthermore, when the initial discs are

unit circles, we can calculate the actual values for those parameters to make the

definitions of those bodies.

We conclude this section with two conjectures. First, we suggest that there

may not be any kind of analogue of Zong’s formula [1997] for H(K1 × K2)

when K1 and K2 are sufficiently high dimensional convex bodies. That is, we

conjecture that H(K1 × K2) can not be expressed as a function of H(K1) and

H(K2) in general.



520 ISTVÁN TALATA

Conjecture 1.1. For some d1, d2 ≥ 3, there exist a pair (K1,K
′
1) of d1-dim-

ensional convex bodies and a pair (K2,K
′
2) of d2-dimensional convex bodies such

that H(K1) = H(K ′
1) and H(K2) = H(K ′

2), but H(K1 × K2) 6= H(K ′
1 × K ′

2).

Second, we consider a quantity similar to H(K): The touching number t(K)

of a d-dimensional convex body K is defined as the maximum number of mu-

tually touching translates of K. We have t(K) ≤ 2d, with equality exactly for

parallelotopes [Danzer and Grünbaum 1962]. It is conjectured in [Füredi et al.

1991] that for strictly convex bodies t(K) ≤ (2 − ε)d holds for some ε > 0. We

conjecture the analogous inequality for H(K) in case of strictly convex bodies.

Conjecture 1.2. There exists an absolute constant ε > 0 such that

H(K) ≤ (3 − ε)d (1–8)

holds whenever K is a strictly convex d-dimensional body .

We organize the remaining part of the paper in the following way: In Section 2

we introduce notation and recall some facts. Then we prove Proposition 1.2,

Theorem 1.1 and Theorem 1.3 in Sections 3, 4 and 5, respectively. In those sec-

tions we usually prove various statements organized in lemmas and propositions

so that we can combine them to get the desired theorem or proposition.

2. Preliminaries

For arbitrary A,B ⊆ R
d and α, β ∈ R, let αA+βB = {αa+βb | a ∈ A, b ∈ B}.

We write A + v instead of A + {v}, and further, we write A − B instead of

A + (−1)B. The notation conv( · ) stands for the convex hull and [a, b] stands

for the segment whose endpoints are a, b ∈ R
d. If c ∈ R, then {c} denotes

the fractional part of c, that is, {c} = c − [c], where [c] is the largest integer

which does not exceed c. In the text, we always avoid confusion with the similar

notation for a one-element set by using fractional parts only in inequalities. We

denote by |S| the cardinality of a set S. We use the notation od for the origin of

R
d.

We denote by ∂K the boundary of a convex body K. For an od-symmetric

convex body K, let distK be the distance function of the Minkowski metric whose

unit ball is K. Note that we denote the usual Euclidean distance simply by dist.

Recall that distK1×K2×...×Kn
= max1≤i≤n(distKi

). In a metric space, a set S

is called r-discrete for some r > 0 if the distance between any two points of S

is at least r in the given metric. If the distance is larger than r we say S is

r+-discrete.

A Hadwiger configuration of a convex body K is a collection of mutually

nonoverlapping translates of K which all touch K. It is easy to see that any

collection {K + vi}n
i=1 of translates of a convex body K is a Hadwiger config-

uration of K if and only if vi ∈ ∂(K − K) and distK−K(vi, vj) ≥ 1, for every

i 6= j [Talata 1998b]. Clearly, K + vi and K + vj are touching if and only if
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distK−K(vi, vj) = 1. Thus H(K) is the maximum cardinality of a 1-discrete

subset of ∂(K − K) in the metric distK−K . Furthermore, it is not difficult to

see that H(K)+1 is the maximum cardinality of a 1-discrete subset S ⊆ K −K

in the metric distK−K , and |S| = H(K) + 1 holds only if od ∈ S. (To see this,

observe that if S ⊆ K − K is 1-discrete with respect to distK−K , then replac-

ing each p ∈ S \ {od} with that q ∈ ∂(K − K) for which p ∈ [od, q], we get a

1-discrete set with respect to distK−K .) Similarly, one can obtain that H∗(K) is

the maximum cardinality of a 1+-discrete subset of K−K in the metric distK−K .

Note if K is od-symmetric, then K − K can be replaced by K in the preceding

characterizations of H(K) and H∗(K), since then K − K = 2K.

3. Determining H∗(K) for Direct Products of Convex Discs

In this section, we prove Proposition 1.2. First we prove several lemmas, then

we combine those to get the actual proof of the proposition. Note that in some

cases we even allow 0-dimensional convex bodies to appear as factors in direct

products for sake of completeness. Observe that K1 × K2
∼= K2 when K1 is a

0-dimensional convex body (i.e., K1 is a point).

Lemma 3.1. Let K be a d-dimensional convex body , d ≥ 0, and let I be a

segment . Then H∗(K × I) = 2H∗(K).

Proof. We may assume that K is od-symmetric and I = [−1, 1]. If S ⊆ K is 1+-

discrete in the metric distK , then S×{−1, 1} is 1+-discrete in the metric distK×I ,

implying H∗(K × I) ≥ 2H∗(K). On the other hand, if S ⊆ K × I is 1+-discrete

in the metric distK×I , then let S1 = S ∩ (K × [−1, 0]), and S2 = S ∩ (K × [0, 1]).

Now, let π : K × I → K be the projection of the direct product body to the first

factor. Then both π(S1) and π(S2) are 1+-discrete subsets of K in the metric

distK , implying H∗(K × I) ≤ 2H∗(K). ˜

Observe that an immediate consequence of Lemma 3.1 is that H∗(K × P ) =

2nH(K) holds if P is an n-dimensional parallelotope, n ≥ 1.

Lemma 3.2. Let K be a d-dimensional convex body , d ≥ 0, and let D be a

convex disc. Then H∗(K × D) ≤ 6H∗(K) − 1.

Proof. We may assume that both K and D are symmetric about the origin.

Let S ⊆ K × D be 1+-discrete in the metric distK×D, and let s0 ∈ S. Define

π1 : K ×D → K and π2 : K ×D → D as projections of the direct product body

to its first and second factor, respectively. Consider an affine regular hexagon

H inscribed to D, having vertices v1, v2, . . . , v6. We may even assume that H is

chosen in a way that π2(s0) ∈ [o2, v1]; see [Fejes Tóth 1972]. Then the segments

[o2vi], 1 ≤ i ≤ 6, divide H into six regions Ui, 1 ≤ i ≤ 6, such that their diameters

are equal to 1 in the metric distD, and
⋃6

i=1 Ui = D. Let Si = S ∩ (K × Ui).

Then π1(Si) ⊆ K is 1+-discrete in the metric distK , implying |Si| ≤ H∗(K) for

each i. But s0 is contained in two Si’s, implying H∗(K × I) ≤ 6H∗(K) − 1. ˜
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Lemma 3.3. Let C be a centrally symmetric convex disc, different from a par-

allelogram, and let k be a positive integer . Let m = 6k − 1. Then there exists a

sequence S = 〈si〉m−1
i=0 of points of ∂C such that for every i ≥ j, distC(si, sj) > 1

holds if and only if 1
6 < { i−j

m } < 5
6 is satisfied .

Proof. If C is a circle, then it is easy to check that 〈si〉m−1
i=0 can be chosen as

consecutive vertices of a regular m-gon. For general C, we describe a little bit

more sophisticated construction for S. Pick an affine regular hexagon H that

is inscribed to C. Since C is not a parallelogram, it can be seen that we can

choose H in a way that no side of H is longer than any segment in ∂C which

is parallel to that side. Fix a positive constant ε < 1. If s′i is already defined,

let vi+1 be the first point chosen on ∂C in counterclockwise direction for which

distC(vi, vi+1) = 1 + ε. Let V = 〈vi〉m−1
i=0 . It is easy to check that if ε is small

enough, then every point of V lies in a small neighbourhood of some vertex of

H, and v0, v6, v12, . . . v1, v7 . . . etc. are consecutive points on ∂C. Now, to get S,

order the points of V consecutively in counterclockwise direction, starting with

v0, so s0 = v0, s1 = v6, s2 = v12 . . . etc. It is easy to check that for any i ≥ j,

distC(si, sj) > 1 holds if and only if min(|i− j|, |m + j − i|) ≥ k, from which one

can get that S has the property required in the lemma. ˜

Lemma 3.4. Let n and q be integers, n ≥ 1, q ≥ 3. Let

m =
(q − 2) · qn + 1

q − 1
.

Then for every positive integer j ≤ m − 1, there is an integer i, 1 ≤ i ≤ n, such

that
1

q
<

{

qn−ij

m

}

<
q − 1

q
.

Proof. Define a sequence by a0 = 1 and ai = qai−1 − 1, for every i ≥ 1. It

is easy to check that an = qn −
∑n−1

i=0 qi = ((q − 2)(qn) + 1)/(q − 1), for every

n ≥ 0. That is, m = an.

Let 1 ≤ j ≤ an − 1. We claim that there are integers t, z, j1 ≥ 0 such

that j = (q − 2)qtz + j1, 1 ≤ t ≤ n − 1, at−1 ≤ j1 ≤ at − at−1 and z ≤
∑n−t−1

i=0 qi hold. To see this, we express j in the number system of base q as

(bn−1, bn−2, . . . , b1, b0)q. That is, j =
∑n−1

i=0 biq
i, where bi ∈ {0, 1, . . . , q − 1} for

every i. Note an−1 =
∑n−1

i=0 (q−2)qi. If k ≤ n−1, then ak −ak−1 = (q−2)qk−1

and ak−1 = (q−1)+
∑k−2

i=1 (q−2)qi also hold. We distinguish three cases. First,

if bi ∈ {0, q − 2} for every i, then let t = 1 + min{k | bk = q − 2}. Second, if

k0 6= q − 1, where k0 = max{k | bk /∈ {0, q − 2}}, then let t = k0 + 1. Third, if

k0 = q − 1, then let t = min{k | k > k0, bk = 0}. In all cases, let j1 =
∑t−1

i=0 biq
i

and z =
∑n−t−1

i=0 ciq
i, where ci = bi+t/(q − 2) ∈ {0, 1} for 1 ≤ i ≤ n − t − 1. It

is easy to check that the defined t, z and j1 all have the claimed properties.

We show that the lemma holds for i = t. Clearly, qn−tj = (q−2)qnz + qn−tj1
holds, thus (q − 2)qnz = ((q − 1)an − 1)z implies the equality {qn−tj/an} =



ON HADWIGER NUMBERS OF DIRECT PRODUCTS OF CONVEX BODIES 523

{(qn−tj1−z)/an}. Now, on one hand, qn−tj1/an < (q−1)/q by j1 ≤ (q−2)qt−1.

On the other hand, (qn−tj1−z)/an ≥ (qn−tat−1−
∑n−t−1

i=0 qi)/an. Observe that

ak = qk−iai −
∑k−i−1

i=0 qi, for every k > i. This can be proved by induction on

k−i. Consequently, (qn−tj1−z)/an ≥ an−1/an > 1/q. This completes the proof

of the lemma. ˜

Proof of Proposition 1.2. From Lemma 3.1 follows that H∗(K × P ) =

4H∗(K) for any parallelogram P , implying that in the following it is enough

to consider (1–3) for k = 0. Assume that K =
∏n

i=1 Di is a direct product of

convex discs all different from a parallelogram. We may also assume that all the

discs Di are symmetric about o2. On the one hand, for d = 0, Lemma 3.2 implies

H∗(D1) ≤ 5, thus repeated applications of Lemma 3.2 yield H∗(K) ≤ cn, where

cn is defined as c0 = 1, ci = 6ci−1 − 1 for every i ≥ 1. Since cn = (4(6n) + 1)/5,

consequently H∗(K) ≤ (4(6n) + 1)/5. On the other hand, applying Lemma 3.3

for k = cn−1, m = cn and C = Di, for any 1 ≤ i ≤ n, we obtain a sequence

〈si(j)〉m−1
j=0 of points of ∂Di such that for every j and j0, distDi

(si(j), si(j0)) >

1 is equivalent with 1/6 < {(j − j0)/m} < 5/6. Now, define a point pj =
∏n

i=1 si(b(i, j)), for every 0 ≤ j ≤ m − 1, where 0 ≤ b(i, j) ≤ m − 1, b(i, j) ≡
6n−ij (mod m). Then S = {pj}m−1

j=1 ⊆ ∂K, and S is 1+-discrete in the metric

distK = max1≤i≤n(distDi
), since for every j1 6= j2, by applying Lemma 3.4 for

q = 6 and j = j1 − j2, there is an index i such that 1/6 < {6n−i(j1 − j2)/m} <

5/6, that is equivalent with distDi

(

si(b(i, j1)), si(b(i, j2))
)

> 1. Consequently,

H∗(K) ≥ cn. ˜

4. Verifying a Conjecture of Zong

In this section, we prove Theorem 1.1. For a set S ⊆ R
d and any x ∈ R we

denote by (S, x) the set S×{x} ⊆ R
d+1. Further, if C ⊆ R

2, then let C(r) = r·C.

From now on, I stands for the interval [−1, 1] in the paper. Let C be a centrally

symmetric convex disc, 0 < ε < 1, 0 < δ ≤ 1. We define a three-dimensional

convex body as the convex hull of four suitable homothetic copies of C placed

in R
3: Let B(C, ε, δ) = conv(C1, C2,−C2,−C1), where C1 = ((1 − δ)C) × {1}

and C2 = C × {1 − ε}. Next we prove two lemmas. Combining these, first we

get Theorem 1.1 for d1 = d2 = 3 in Proposition 4.3, then we prove it in general.

Lemma 4.1. Let C be an arbitrary centrally symmetric convex disc that is

different from a parallelogram, 0 < ε ≤ 1/3, and 0 < δ < δ0, where δ0 < 1 is

a positive constant that depends on C only (when C is a circle, one can choose

δ0 = 1 − (2 sin(π
5 ))−1 ≈ 0.1493). If B = B(C, ε, δ), then H(B) = 16 holds.

Proof. We may assume that C is symmetric about the origin. Let αn be the

largest possible value for the minimum distance occuring in a set of n points of

∂C with respect to the metric distC , for any n ≥ 1. If C is a circle, then αn

is the side length of a regular n-gon insribed into C. Observe that H(C) = 6
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implies α6 ≥ 1 and α8 < 1. By Proposition 1.2 we have H∗(C) = 5, from which

α5 > 1 follows. Let δ0 = min(α8, 1 − (1/α5)).

First we show H(B) ≥ 16. Let Vi ⊆ ∂C be a set of i points that is αi-discrete

in the metric distC , for i = 5, 6. Let V = ((1−δ)V5, 1)∪(V6, 0)∪(−(1−δ)V5,−1).

It is easy to check that V is a 1-discrete subset of ∂B in the metric distB. Thus

H(B) ≥ 16.

Next we prove H(B) ≤ 16. First we introduce further notation. We define

the projection functions h : R
3 → R and π : R

3 → R
2 by h(x) = x3 and

π(x) = (x1, x2) if x = (x1, x2, x3) ∈ R
3. For c ∈ R, let P (c) be the plane

{x ∈ R
3 | h(x) = c}. Denote by P+(c) the open halfspace {x ∈ R

3 | h(x) > c}.
Let C be a Hadwiger configuration of B. We can partition C into {C1, C2, C3}

in a way that for B + v ∈ C we have B + v ∈ C1 if h(v) ≥ 2ε, B + v ∈ C2

if h(v) ≤ −2ε, and B + v ∈ C3 otherwise. Let ni = |Ci|, i = 1, 2, 3. We may

assume n1 ≥ n2. It is clear that for every B′ ∈ C1, B′ ∩P (1+ ε) is a translate of

(C, 1 + ε), and B′ ∩ P+(1 + ε) 6= ?, so U = {π(B′) | B′ ∈ C1} is a packing of n1

translates of C, each having common point with the C. This immediately gives

n1 ≤ 7.

Now we consider when n1 ≥ 6. Let C′ = {B′ ∈ C | B′∩P 6= ?, B′∩P+ 6= ?},
where P = P (1− 2ε) and P+ = P (1− 2ε)+. Observe that {π(B′ ∩P ) | B′ ∈ C′}
is a packing of sets all containing a translate of C(1 − δ), where δ < α8, and

having centers of symmetry on ∂(2C). This implies |C′| ≤ 7. If C ∈ U , then

at least five other members of U touch C. But if B′ = B + v ∈ C1, and π(B′)

is such a touching disc, then B′ touches B at a point p = (1/2)v for which

ε ≤ h(p) ≤ 1− ε, and thus h(v) ≤ 2−2ε. Therefore |C′∩C1| ≥ 5. By ε ≤ 1/3 we

have C3 ⊆ C′. Thus n3+5 ≤ |C′|, implying n3 ≤ 2. Therefore |C| ≤ 7+2+7 = 16.

If C /∈ U , then n1 = 6, and there are at least three members of U that touch C.

(To see this, one can replace U by a Hadwiger configuration of C similarly as we

did in Section 2 by “pushing out” the translates, and then use the description

of all possible Hadwiger configurations of six translates by [Swanepoel 2000] to

observe that at most three translates can be “pushed back”. Note that for circles

the claim be easily shown directly, using angles determined by the translation

vectors). Similarly to the case C ∈ U , we get |C′∩C1| ≥ 3, implying n3 +3 ≤ |C′|
and thus n3 ≤ 4. Then |C| ≤ 6 + 4 + 6 = 16.

Finally, we consider when n1 ≤ 5. Since for {π(B′ ∩P (0)) | B′ ∈ C3} one can

easily show by ε ≤ 1/3 that it is a packing of translates of C, all touching C, we

have n3 ≤ 6. Combining the upper bounds, we get |C| = 5 + 6 + 5 ≤ 16. ˜

Lemma 4.2. Let {Ci}n
i=1 be a collection of n centrally symmetric convex discs

that are different from parallelograms, n ≥ 1. If 0 < ε < 1, 0 < δ ≤ γ, where

γ < 1 is a positive constant that depends on {Ci}n
i=1 only , and Bi = B(Ci, ε, δ),

1 ≤ i ≤ n, then

H

( n
∏

i=1

Bi

)

≥ 4(19)n + 9n

5
− 1. (4–1)
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If every Ci is a circle, one can choose γ = δn = 1 −
(

2 sin
(

π
6 + 5π

4(6n+1)+6

))−1
.

In particular , if δ ≤ γ, then H(B1 ×B2) ≥ 304. (Note if C1, C2 are circles, then

one can choose γ = δ2 = 1 −
(

2 sin
(

5π
29

))−1 ≈ 0.030169.)

Proof. Let K =
∏n

i=1 Bi. Let Ai(j) = (Ci(1 − δ), j), for j = −1, 1, and

let Ai(0) = (Ci, j), 1 ≤ i ≤ n. Clearly, Ai(j) ⊆ Bi. Moreover, if p ∈ Ai(j)

and q ∈ Ai(k), j 6= k, then distBi
(p, q) ≥ 1. Let D =

∏n
i=1 Mi, where

Mi ∈ {Ai(j)}j=−1,0,1, and Mi is chosen in an arbitrary way. Then, there is

a permutation π of the 3n coordinates so that π(D) = U × W × Z, where

U =
∏

Mi 6=Ai(0)
Ci(1 − δ), W =

∏

Mi=Ai(0)
Ci and Z is a single vector having

coordinates from the set {−1, 0, 1}. Denote by 2m the dimension of U . By

Proposition 1.2, for some γ0 > 0 there is a (1/(1 − γ0))-discrete set S1 ⊆ U in

the metric distU having cardinality cn = (4(6m)+1)/5, and by H(Ci) = 6, there

is a 1-discrete set S2 ⊆ W in the metric distW having cardinality 7n−m. Let

X = π−1(S1×S2×Z). Let Y be the union of such sets X when Mi’s are choosen

all possible ways, and let γ be the minimum of all occuring γ0’s. Clearly, Y ⊆ K

and Y is 1-discrete in the metric distK if (1 − δ)/(1 − γ) ≥ 1, that is, δ ≤ γ.

Thus H(K) + 1 ≥ |Y |. If every Ci is a unit circle, then S1 is a subset of the

direct products of inscribed regular cn-gons Gi, and 1/(1 − γ) can be chosen as

the minimum distance that is larger than 1 and occurs among the vertices of Gi.

Corresponding to the choices of the sets Mi, we can count the cardinality of Y :

|Y | =

n
∑

m=0

(

n

m

)

4(6n−m) + 1)

5
(7m)(2n−m) =

4

5
(19n) +

1

5
(9n), (4–2)

Finally, based on H(K) ≥ |Y | − 1 and (4–2), we get (4–1). ˜

Combining Lemma 4.1 and Lemma 4.2 for n = 2, it readily implies the following.

Proposition 4.3. Let C1, C2 be arbitrary convex discs that are different from

parallelograms, 0 < ε ≤ 1/3, and 0 < δ < µ, where µ < 1 is a positive constant

that depends on C1, C2 only . Then Bi = B(Ci, ε, δ), i = 1, 2, satisfies

H(B1 × B2) ≥ (H(B1) + 1)(H(B2) + 1) + 15. (4–3)

If C1, C2 are circles, then one can choose µ = 0.03.

Proof of Theorem 1.1. For any d1, d2 ≥ 3, let Ki = B×Idi−3, i = 1, 2, where

Id−3 is a (d−3)-dimensional cube. Since H(K×In)+1 = 3n(H(K)+1) holds for

every convex body K and positive integer n by Zong [1997], from Proposition 4.3

one can immediately deduce (1–2). ˜

5. Hadwiger Numbers of Strictly Convex Bodies

In this section, we prove Theorem 1.3. First we show that for every odd integer

d ≥ 3 there exists a d-dimensional convex body for which H∗(K) is relatively
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large. After that we prove a similar statement for arbitrary d ≥ 3, which will

imply Theorem 1.3.

Proposition 5.1. For every odd integer d ≥ 3 there exists a d-dimensional

convex body K such that

H∗(K) ≥ 8(
√

7)d−1 + 2(
√

2)d−1

5
(5–1)

holds.

Proof. Let n = (d− 1)/2. Consider K0 =
∏n

i=1 Di where every Di is a strictly

convex disc that is symmetric about the origin. Let πi : K0 → Di be the pro-

jection to the ith factor of the direct product. Denote by J an arbitrary subset

of N = {1, 2, . . . , n}. Let m = |J |, PJ =
∏

i∈J Di, and let QJ =
∏

i∈NrJ Di.

Then gJ(K0) = PJ ×QJ for some permutation gJ of the coordinates. By Propo-

sition 1.2, there is a set SJ ⊆ ∂PJ of cardinality (4(6m) + 1)/5 which is a

1+-discrete set in the metric distPJ
. Let Ti(J) = πi(S), for i ∈ J , and let

Vi =
⋃

{J :i∈J} Ti(J), for every 1 ≤ i ≤ n. We may assume that πi(SJ) ⊆ ∂Di

holds for every i and J , by moving out the points of πi(SJ) towards ∂Di on a ray

emanating from the center o2 if necessary. We can even perturb the elements of

every occuring set SJ if necessary so that o2 /∈ (p+q)/2 holds for every p, q ∈ Vi,

p /∈ q, and SJ still remains 1+-discrete in the metric distK1
and πi(SJ) ⊆ ∂Di

is still holds for every i. Let Wi = conv(Vi), 1 ≤ i ≤ n, W =
∏n

i=1 Wi, and let

K = conv((W, 1), (−W,−1)). Denote by XJ the set g−1
J (SJ × {on−m}), and let

X =
⋃

J⊆N XJ . Observe that if p, q ∈ X, p 6= q, then either p, q ∈ XJ for some

J , or p ∈ XJ , q ∈ XM for some J,M ⊆ N , J 6= M . In the first case, there is

an index i ∈ J for which distDi
(πi(p), πi(q)) > 1. In the second case, there is an

index i ∈ (J \ M) ∪ (M \ J), for which either πi(p) = o2 and πi(q) ∈ ∂Di, or

πi(q) = o2 and πi(p) ∈ ∂Di holds, implying dist(Wi−Wi)/2(πi(p), πi(q)) > 1. Let

Y = (X, 1)∪ (−X,−1). It is easy to see that Y ⊆ K and Y is 1+-discrete in the

metric distK . Counting the cardinality of Y by the corresponding choices of J ,

we get

|Y | = 2
n

∑

m=0

(

n

m

)

4(6m) + 1)

5
=

8(7n) + 2n+1

5
. (5–2)

By H∗(K) ≥ |Y |, we obtain (5–1). ˜

If d ≥ 4 is even, then one can apply Proposition 5.1 in dimension d−1 and com-

bine that with the cylindrical construction of Lemma 3.1 to get a d-dimensional

convex body K with H∗(K) ≥ (16(
√

7)d−2 + 4(
√

2)d−2)/5. Comparing this

formula with (5–1), we get the following.

Corollary 5.2. For every integer d ≥ 3 there exists a d-dimensional convex

body K such that

H∗(K) ≥ 16(
√

7)d−2 + 4(
√

2)d−2

5
≥ 16

35
(
√

7)d ≈ 2.6457d−o(d). (5–3)
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Proof of Theorem 1.3. Consider the collection Kd of all d-dimensional convex

bodies equipped with the Hausdorff metric [Schneider 1993]. Note that H∗(K) is

not decreasing in a sufficiently small neighbourhood of K (this latter is obvious

by the description of H∗(K) in terms of 1+-discrete subsets, see Section 2),

and the strictly convex bodies form a dense set in Kd. Therefore we can apply

Corollary 5.2 to get a convex body K ∈ Kd for which (5–3) holds, and we can

pick a strictly convex body S sufficiently close to it in the Hausdorff metric so

that H(S) ≥ H∗(S) ≥ H∗(K). ˜

Remark 1. Instead of proving only existence, one can also construct strictly

convex bodies of various shapes having the properties of Theorem 1.3: By the

proof of Proposition 5.1 and the paragraph following that we have a description

of an od-symmetric convex polytope K that fulfils (5–3), for every d ≥ 3. We

also have a description of a 1+-discrete set Y ⊆ ∂K in the metric distK whose

cardinality is at least the lower bound appearing in (5–3). Denote by τ the

minimum distance occuring in Y with respect to the metric distK . Then K ⊆
int(τK), therefore to each facet F of τK we can find a Euclidean ball B(F )

which touches F at a point p ∈ relintF and contains K, just the radius of the

ball needs to be sufficiently large. Let S =
⋂

{B(F ) | F is a facet of τK}. Then

S is strictly convex, and (1–5) holds.

Remark 2. In particular, when K is constructed in the proof of Proposition 5.1

by applying Proposition 1.2 for direct products of unit circles, then one can

explicitely define a strictly convex body S fulfilling (1–5): If d is odd, then K is

chosen as conv((W, 1), (−W,−1)) where W is the direct product of n copies of a

regular cn-gon, inscribed into a unit circle. One can check τ = 2/(1+cos(π/cn)),

and for every facet F of τK, the body K is contained in a ball B(F ) that

touches F at its baricenter (that is, at (1/|vert(F )|)
∑

v∈vert(F ) v) and has radius

(n+4)τ2/(τ2 −1), so S can be chosen as the intersection of such balls. To make

the definiton more expicit, one may even calculate the centers of the balls B(F )

in terms of the vertices of G. The case when d is even can be treated similarly.

Remark 3. Finally, we note that similarly to the proof of Theorem 1.3, one

can show that every dense subcollection of the space of all d-dimensional convex

bodies contains a member S for which (1–5) holds.
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