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Chapter 5
What is Mathematical Proficiency and How

Can It Be Assessed?
ALAN H. SCHOENFELD

To establish a common point of departure with Jim Milgram’s chapter, this
chapter is framed around the two basic questions with which his chapter began:

� What does it mean for a student to be proficient in mathematics? (What
should students be learning?)

� How can we measure proficiency in mathematics? (How can we tell if we
are succeeding?)

My main emphasis is on the first question, because much of the rest of this
volume addresses the second.

In the introduction to this volume and in the first chapter, I pointed to the
fact that the “cognitive revolution” (see [Gardner 1985], for instance) produced
a significant reconceptualization of what it means to understand subject matter
in different domains (see also [NRC 2000]). There was a fundamental shift
from an exclusive emphasis on knowledge — what does the student know? — to
a focus on what students know and can do with their knowledge.The idea was
not that knowledge is unimportant. Clearly, the more one knows, the greater
the potential for that knowledge to be used. Rather, the ideawas that having the
knowledge was not enough; being able to use it in the appropriate circumstances
is an essential component of proficiency.

Some examples outside of mathematics serve to make the point. Many years
ago foreign language instruction focused largely on grammar, vocabulary, and
literacy. Students of French, German, or Spanish learned toread literature in
those languages — but when they visited France, Germany, or Spain, they found
themselves unable to communicate effectively in the languages they had studied.
Similarly, years of instruction in English classes that focused on grammar in-
struction resulted in students who could analyze sentence structure but who were
not necessarily skilled at expressing themselves effectively in writing. Over the
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past few decades, English and foreign language instructionhave focused in-
creasingly on communication skills — on mastering the basics, of course (e.g.,
conjugating verbs, acquiring a solid vocabulary, mastering grammar)and learn-
ing the additional skills that enable them to use what they have learned.

A similar evolution took place in mathematics. The knowledge base remains
important; it goes without saying that anyone who lacks a solid grasp of facts,
procedures, definitions, and concepts is significantly handicapped in mathemat-
ics. But there is much more to mathematical proficiency than being able to
reproduce standard content on demand. A mathematician’s job consists of at
least one of: extending known results; finding new results; and applying known
mathematical results in new contexts. The problems mathematicians work on,
in academia or in industry, are not the kind of exercises thatget solved in a few
minutes or hours; they are problems that may take days, weeks, months, or years
to solve. Thus, in addition to possessing a substantial amount of specialized
knowledge, mathematicians possess other things as well. Good problem solvers
are flexible and resourceful. The have many ways to think about problems —
alternative approaches if they get stuck, ways of making progress when they
hit roadblocks, of being efficient with (and making use of) what they know.
They also have a certain kind of mathematical disposition — awillingness to pit
themselves against difficult mathematical challenges under the assumption that
they will be able to make progress on them, and the tenacity tokeep at the task
when others have given up. As will be seen below, all of these are aspects of
mathematical proficiency; all of them can be learned (or not)in school; all of
them can help explain why some attempts at problem solving are successful and
some not.

Proficiency, Part A: Knowledge Base

There is a long history of attempts to prescribe the mathematical content
that students should know. Many of those efforts have involved having groups
of scholars working together for a number of years. It would be foolish for
me to try to supplant their work, especially given the small amount of space
available. Hence I will defer to the judgments made in volumes such as the
National Council of Teachers of Mathematics’ two major standards documents
[NCTM 1989; 2000], especially the latter,Principles and Standards for School
Mathematics; and the National Research Council’s [NRC 2001] volumeAdding
It Up. (Note: a summary of the dimensions of mathematical proficiency found
in those volumes was given in Chapter 1 of this volume, “Issues and Tensions
in the Assessment of Mathematical Proficiency.”)

Instead, I will discuss different interpretations of what it means to know that
content. A major source of controversy over the past decade has involved not
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only the level of procedural skills expected of students, but also what is meant
by “understanding.” For example, what does it mean for an elementary school
student to understand base-ten subtraction?

For some people — notably, those who wrote the current California math-
ematics standards, understanding a concept means being able to compute the
answers to exercises that employ that concept. For example,here are the Cali-
fornia mathematics standards related to arithmetic in grade 3 [CSBE 1997]:

2.0 Students calculate and solve problems involving addition, subtraction, mul-
tiplication, and division:

2.1 Find the sum or difference of two whole numbers between 0 and 10,000.

2.2 Memorize to automaticity the multiplication table for numbers between
1 and 10.

2.3 Use the inverse relationship of multiplication and division to compute
and check results.

2.4 Solve simple problems involving multiplication of multidigit numbers by
one-digit numbers.3; 671 � 3 D /.

2.5 Solve division problems in which a multidigit number is evenly divided
by a one-digit number.135 � 5 D /.

2.6 Understand the special properties of 0 and 1 in multiplication and divi-
sion.

2.7 Determine the unit cost when given the total cost and number of units.

2.8 Solve problems that require two or more of the skills mentioned above.

and the California Grade 5 number sense standards:

2.0 Students perform calculations and solve problems involving addition, sub-
traction, and simple multiplication and division of fractions and decimals:

2.1 Add, subtract, multiply, and divide with decimals; add with negative
integers; subtract positive integers from negative integers; and verify the
reasonableness of the results.

2.2 Demonstrate proficiency with division, including division with positive
decimals and long division with multidigit divisors.

2.3 Solve simple problems, including ones arising in concrete situations, in-
volving the addition and subtraction of fractions and mixednumbers (like
and unlike denominators of 20 or less), and express answers in the simplest
form.

2.4 Understand the concept of multiplication and division of fractions.

2.5 Compute and perform simple multiplication and divisionof fractions and
apply these procedures to solving problems.
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Although the term “problem solving” is used in thesestandards,it refers to
computational proficiency: For example, in the third grade standard 2.4, we are
told that students will be able to “solve” the “problem”.3; 671 � 3 D /.

This approach stands in stark contrast to the one taken in theNational Council
of Teachers of Mathematics volumePrinciples and Standards for School Math-
ematics[NCTM 2000]. Consider, for example, the language used in describing
the Number and Operations Standard for grades 3–5, from p. 148:

Instructional programs from prekindergarten through grade 12 should enable
all students to:

Understand numbers, ways of representing numbers, relationships among
numbers, and number systems.

In grades 3–5 all students should

� understand the place-value structure of the base-ten number system and be
able to represent and compare whole numbers and decimals;

� recognize equivalent representations for the same number and generate
them by decomposing and composing numbers;

� develop understanding of fractions as parts of unit wholes,as parts of a
collection, as locations on number lines, and as divisions of whole numbers;

� use models, benchmarks, and equivalent forms to judge the size of frac-
tions;

� recognize and generate equivalent forms of commonly used fractions, dec-
imals, and percents;

� explore numbers less than 0 by extending the number line and through
familiar applications;

� describe classes of numbers according to characteristics such as the nature
of their factors.

Understand meanings of operations and how they relate to oneanother

(detail omitted)

Compute fluently and make reasonable estimates

(detail omitted)

The differences in terminology, meaning, and intended competencies are clear,
as is the exemplification inPrinciples and Standards. Now the question is, does
such a difference in setting standards make a difference? And does it make a
difference in assessment?

The simple answer is that it can make a great deal of difference. For example,
consider the following statistics from [Ridgway et al. 2000].
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In 2000, the Silicon Valley Mathematics Assessment Collaborative gave two
tests to a total of 16,420 third, fifth, and seventh graders. One was the SAT-
9, a skills-oriented test consistent with the California mathematics standards.
The other was the Balanced Assessment test, a much broader test (including
questions that focus on skills, concepts and problem solving) that is aligned with
NCTM’s (1989)Curriculum and Evaluation Standards for School Mathematics,
the precursor toPrinciples and Standards. The simplest analysis assigns each
student a score of “proficient” or “not proficient” on each examination. Need-
less to say, student scores on any two mathematics assessments are likely to be
highly correlated — but, the differences between student scores on the SAT-9
and Balanced Assessment tests are very informative. Consider Table 1.

SAT-9
Balanced
Assessment Not proficient Proficient

Not proficient 29% 22%

Proficient 4% 45%

Table 1. Aggregated scores for 16,420 Students on the SAT-9 and Bal-
anced Assessment tests (grades 3, 5, and 7). From [Ridgway et al. 2000].

As expected, 74% of the students at grades 3, 5, and 7 were given the same
“proficient” or “not proficient” ratings on the two tests. But, compare the second
row of data to the second column. More than 90% of the studentswho were
declared proficient on the Balanced Assessment test were declared proficient
on the SAT-9 — that is, doing well on the Balanced Assessment tests is a rea-
sonably good guarantee of doing well on the SAT-9. The converse is not true:
approximately one third of the students declared proficienton the SAT-9 exam
were declared to be not proficient on the Balanced Assessmenttest.

This is critically important, and entirely consistent witha small but growing
body of literature comparing “reform” and “traditional” curricula in mathemat-
ics. (See, for example, [Senk and Thompson 2003], which examines the per-
formance of students who studied curricula that had been developed with sup-
port from the National Science Foundation with more traditional, skills-oriented
curricula.) In brief, the findings in that literature are as follows. Students who
experience skills-focused instruction tend to master the relevant skills, but do
not do well on tests of problem solving and conceptual understanding. Students
who study more broad-based curricula tend to do reasonably well on tests of
skills (that is, their performance on skills-oriented tests is not statistically dif-
ferent from the performance of students in skills-orientedcourses), and they do
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much better than those students on assessments of conceptual understanding and
problem solving.

In short, one’s concept of what counts as mathematics matters a great deal —
and, what you assess counts a great deal. First, students arenot likely to learn
what they are not taught. Hence teaching a narrow curriculumhas consequences.
Second, one only finds out about what students don’t know if one assesses for
that knowledge. Thus, for example, the SAT-9 does not revealthe problem with
a narrow curriculum: 22% of the total population is declaredproficient although
a more broad-based test calls that proficiency into question.

In what follows I shall briefly delineate additional aspectsof mathematical
proficiency.

Proficiency, Part B: Strategies

One of the strands of mathematical proficiency described inAdding It Upis
“strategic competence— ability to formulate, represent, and solve mathematical
problems” [NRC 2001, p. 5]. It goes without saying that “knowing” mathemat-
ics, in the sense of being able to produce facts and definitions, and execute
procedures on command, is not enough. Students should be able to use the
mathematical knowledge they have.

The starting place for any discussion of problem solving strategies is the work
of George Ṕolya. In 1945, with the pioneering first edition ofHow to Solve It,
Pólya opened up the study of problem solving strategies. The core of the book
was devoted to a “short dictionary of heuristic.” To quote from Ṕolya, “The aim
of heuristic is to study the methods and rules of discovery and invention. The
present book is an attempt to revive heuristic in a modern andmodest form”
[Pólya 1945, pp. 112–113]. “Modern Heuristic endeavors to understand the
process of solving problems, especially themental operations typically useful
in this process” [Ṕolya 1945, pp. 129–130]. InHow to Solve It, Pólya described
powerful problem solving strategies such as making use of analogy, making
generalizations, re-stating or re-formulating a problem,exploiting the solution
of related problems, exploiting symmetry, and working backwards. Polya’s
subsequent volumes,Mathematics and Plausible Reasoning[Pólya 1954] and
Mathematical Discovery[Pólya 1981], elaborated substantially on the ideas in
How to Solve It, showing how one could marshal one’s mathematical knowledge
in the service of solving problems.

To cut a long story short (see [Schoenfeld 1985; 1992] for detail), the heuristic
strategies Ṕolya describes are more complex than they appear. Consider,for
example, a strategy such as “if you cannot solve the proposedproblem . . . could
you imagine a more accessible related problem?” [Pólya 1945, p. 114]. The
idea is that although the problem you are trying to solve may be too difficult for
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now, you might be able to solve a simpler version of it. You might then use the
result, or the idea that led to the solution of the simpler problem, to solve the
original problem.

At this level of generality, the strategy sounds straightforward — but the devil
is in the details. For example, Pólya [1945, p. 23] discusses the solution of this
problem:

Using straightedge and compass, and following the traditional rules for
geometric constructions, inscribe a square in a given triangle. Two vertices
of the square should be on the base of the triangle, the other two vertices
of the square on the other two sides of the triangle, one on each.

That is, you are given a triangle such as in the left diagram; you wish to produce
a square such as seen on the right, using only straightedge and compass.

The given triangle The desired construction

In an idealized discussion, Pólya shows how the right kind of questioning
can lead a student to consider an easier related problem (demanding only that
three of the corners of the desired square lie on the given triangle), noting that
there are infinitely many squares that meet this condition, and that the locus
of the fourth vertices of such squares can be used to find the one such square
that has its fourth (and hence all four) vertices on the sidesof the triangle. The
discussion is logical and straightforward — and, once one sees the solution, it is
wonderfully elegant. But the question is, what will non-ideal students do?

I have told undergraduates that the problem can be solved by exploiting the
solution to an easier related problem, and asked them what easier related prob-
lem they might want to try to solve. Typically, they will suggest inscribing the
square in a “special” triangle (such as an equilateral or isosceles triangle) or
inscribing the square in a circle. Unfortunately, both of these approaches lead to
dead ends. The former problem is no easier to solve than the original; the latter
can be solved (it is a standard construction) but I know of no way to exploit it to
solve the given problem. With further prodding, students will suggest inscribing
a rectangle in the given triangle. They recognize that thereare infinitely many
rectangles that can be inscribed, and that one of them must bea square — but
this is an existence proof, and it does not generate a construction. Then, students
may suggest either (a) requiring only that three vertices ofthe square lie on the
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sides of the triangle, or (b) trying to circumscribe a squarewith a triangle similar
to the given triangle. Each of these approaches does yield a solution, but not
without some work.

In short, to use the strategy Pólya describes, the problem solver needs to

a. think to use the strategy,
b. generate a relevant and appropriate easier related problem,
c. solve the related problem, and
d. figure out how to exploit the solution or method to solve theoriginal problem.

All of these can be nontrivial.
The evidence, however, is that accomplished mathematicians use such strate-

gies (see not only Ṕolya’s books but [DeFranco 1991]) and that high school and
college students can learn to master such strategies; see, for example, [Lester
1994; Schoenfeld 1985; 1992].

Proficiency, Part C: Metacognition
(Using What You Know Effectively)

Picture someone stepping into a bog, and beginning to sink in— then taking
a second step forward and then a third, rather than turning back. By the time
the person realizes that he or she is in quicksand, all is lost. One has to wonder,
why didn’t that person take stock before it was too late?

Now consider the following time-line graph (Figure 1) of twostudents work-
ing a problem.

In the specific problem session represented here (see [Schoenfeld 1985] for
detail), the students read the problem statement and hastily made a decision
about what to do next. Despite some clear evidence that this approach was not
productive for them, they persevered at it until they ran outof time. When
they did, I asked them how the approach they had taken — they had chosen to
calculate a particular area — was going to help them. They were unable to say.

As it happens I knew these students well, and knew that each ofthem had
enough mathematical knowledge to solve the given problem (which was similar
to a problem on a final examination the students had taken justa week or two
earlier). The point is that there is just so much that a student can be doing at any
one time. Because the students were focused on doing a particular computation,
and they had never stopped to consider how wise it was to invest their time in
doing so, they never reconsidered — and thus never got to use the knowledge
they had.

Reflecting on progress while engaged in problem solving, andacting ac-
cordingly (“monitoring and self-regulation”) is one aspect of what is known as
metacognition — broadly, taking one’s thinking as an objectof inquiry. As the
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Figure 1. A time-line representation of a problem solving attempt.
Reprinted from [Schoenfeld 1992], with permission.

graph above indicates, failing to do so can guarantee failure at problem solving:
if one is fully occupied doing things that do not help to solvethe problem, one
may never get to use the “right” knowledge in the right ways.

Although I have told this story as an anecdote, there are lotsof data to back
it up. Over more than 25 years, more than half of the hundreds of problem
sessions that my research assistants and I have videotaped have been of the type
represented in Figure 1. This kind of finding has been widely replicated; for a
general discussion see [Lester 1994] or [Schoenfeld 1987].

As was the case with strategies, the story here is that (a) effective problem
solvers behave differently; and (b) students can learn to bemuch more efficient
at monitoring and self-regulation, and become more successful problem solvers
thereby.

Figure 2 shows the time-line graph of a mathematician working a two-part
problem in a content area he had not studied for years. Each ofthe triangles
in the figure represents a time that the mathematician assessed the state of his
solution attempt and then acted on the basis of that assessment (sometimes de-
ciding to change direction, sometimes deciding to stay the course — but always
with decent reason). There is no question that he solved the problem because
of his efficiency. He did not choose the right approaches at first, but, by virtue
of not spending too much time on unproductive approaches, managed to find
productive ones.

Figure 3 shows the time-line graph of a pair of students working a problem
after having taken my problem solving course. During the course, I focused
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Figure 2. A time-line representation of a mathematician’s problem solving
attempt. Reprinted from [Schoenfeld 1992], with permission.

a great deal on issues of metacognition, acting as a “coach” while groups of
students worked problems. (That is, I would regularly intervene to ask students
if they could justify the solution paths they had chosen. After a while, the
students began to discuss the rationales for their problem solving choices as
they worked the problems.)

As Figure 3 indicates, the students hardly became “ideal” problem solvers.
In the particular solution represented in Figure 3, the students jumped into a
solution with little consideration after reading the problem. However, they re-
considered about four minutes into the solution, and chose aplausible solution
direction. As it happens, that direction turned out not to befruitful; about eight
minutes later they took stock, changed directions, and wenton to solve the
problem. What made them effective in this case was not simplythat they had
the knowledge that enabled them to solve the problem. It is the fact that they
gave themselves the opportunity to use that knowledge, by truncating attempts
that turned out not to be profitable.

Proficiency, Part D: Beliefs and Dispositions

I begin this section, as above, with a description of one of the strands of
mathematical proficiency described inAdding It Up: “productive disposition” —
an “habitual inclination to see mathematics as sensible, useful and worthwhile,
coupled with a belief in diligence and one’s own efficacy” [NRC 2001, p. 5].

Readers who know the research literature will find the idea that “beliefs and
dispositions” are aspects of mathematical proficiency is familiar — but those
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Figure 3. A time-line representation of two students’ problem solving at-
tempt, following the completion of a course on problem solving. Reprinted
from [Schoenfeld 1992], with permission.

who do not are likely to find it rather strange. After all, whatdo beliefs have
to do with doing mathematics? The simple answer is, “a great deal.” Also as
above, I shall indicate that this category of behavior matters (a) for students, and
(b) for professional mathematicians.

What follows is a straightforward arithmetic problem takenfrom the 1983
National Assessment of Educational Progress, or NAEP [Carpenter et al. 1983]:

An army bus holds 36 soldiers. If 1128 soldiers are being bussed to their
training site, how many buses are needed?

The solution is simple. If you divide 1128 by 36, you get a quotient of 31 and
a remainder of 12. Hence you need 32 buses, under the (tacit) assumptions that
each bus will be filled to capacity if possible and that no buses will be allowed
to carry more 36 soldiers.

NAEP is a nationwide survey of U.S. students’ mathematical performance,
with a carefully undertaken sampling structure. Some 45,000 students worked
this problem. Here is how the responses were distributed:

29% gave the answer “31 remainder 12”
18% gave the answer “31”
23% gave the correct answer, “32”
30% did the computation incorrectly.

A full 70% of the students did the computation correctly, butonly 23% of the
students rounded up correctly. How could this be? How could it be possible
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that 29% of the students answered that thenumber of buses neededinvolves
a remainder? Imagine asking these same students to call a buscompany to
arrange for buses to take their school on an outing. Would anyof them mention
remainders?

The brief explanation for this astounding behavior (see [Schoenfeld 1985;
1992] for more detail) is that these students had learned their counterproductive
behavior in their mathematics classes. In the late 1970s andearly 1980s, there
was an increased emphasis on “problem solving” in mathematics classrooms in
the U.S. The reality (and the reason for the quotation marks)is that the focus was
almost entirely superficial: instead of being given pages ofrote computational
problems such as

7 � 4 D

students were given pages of comparably rote problems of thetype

John had 7 apples. He gave 4 apples to Mary.
How many apples does he have left?

The students soon figured out that the word problems were “cover stories” that
had little or nothing to do with the real world. The most efficient way to solve the
problems was to read the text, ignoring the “real world” context. The students
learned to pick out the numbers, identify the operation to perform on them,
do the computation, and write the answer. That is, a quick scan of the word
problem produces the following: “7 and 4 are the numbers. Subtract, and write
the answer down.” This procedure got students the right answer, almost all the
time. It became a habit.

Now apply it to the NAEP busing problem. A quick scan of the problem
statement produces “1128 and 36 are the numbers. Divide, andwrite the answer
down.” If you do — and 29% of the students taking the exam did — you write
that the answer is “31 remainder 12.”

In short, if you believe that mathematics is not supposed to make sense, and
that working mathematics problems involves rather meaningless operations on
symbols, you will produce nonsensical responses such as these. Hence beliefs
are important — and, students pick up their beliefs about thenature of mathemat-
ics from their experiences in the mathematics classroom. Other typical student
beliefs, documented over many years (see [Lampert 1990; Schoenfeld 1992]),
include:

� Mathematics problems have one and only one right answer.
� There is only one correct way to solve any mathematics problem — usually

the rule the teacher has most recently demonstrated to the class.
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� Ordinary students cannot expect to understand mathematics; they expect sim-
ply to memorize it, and apply what they have learned mechanically and with-
out understanding.

� Mathematics is a solitary activity, done by individuals in isolation.
� Students who have understood the mathematics they have studied will be able

to solve any assigned problem in five minutes or less.
� The mathematics learned in school has little or nothing to dowith the real

world.
� Formal proof is irrelevant to processes of discovery or invention.

(Reprinted with permission from [Schoenfeld 1992, p. 359])

One might think that professional mathematicians, especially those who have
earned the Ph.D. in mathematics, would have productive beliefs about them-
selves and their engagement with mathematics. Interestingly, that is not the case.
De Franco [1991] compared the problem solving performance of eight mathe-
maticians who had achieved national or international recognition in the mathe-
matics community with that of eight published mathematicians (the number of
publications ranged from 3 to 52) who had not achieved such clear recognition.
He also had the mathematicians fill out questionnaires regarding their beliefs
about and mathematics and their problem solving practices (e.g., whether they
tried alternative ways to approach problems if their initial methods did not pan
out). The conclusion [DeFranco 1991, p. 208]:

The responses to the questionnaire indicate that the beliefs about mathe-
matics and problem solving held by subjects in group A [the prominent
mathematicians] are dissimilar to those held by the subjects in group B.
To the extent that beliefs impact problem solving performance, it would
appear that the beliefs acquired by group A (group B) would positively
(negatively) influence their performance on the problems.

Implications for Assessment

As highlighted in this chapter, a person’s mathematical knowledge is far from
the whole story. If you are interested in someone’s mathematical proficiency—
that is, what someone knows, can do, and is disposed to do mathematically —
then it is essential to consider all four aspects of mathematical proficiency dis-
cussed in this chapter. Knowledge plays a central role, as itmust. But, an indi-
vidual’s ability to employ problem solving strategies, theindividual’s ability to
make good use of what he or she knows, and his or her beliefs anddispositions,
are also critically important. As DeFranco’s research showed, this is not just
the case for students as they learn mathematics. It is the case for professional
mathematicians as well.
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With regard to assessments aimed at capturing students’ mathematical pro-
ficiency, the key operative phrase was coined by Hugh Burkhardt some years
ago: the nature of assessment (or testing) is critically important because “What
You Test Is What You Get” (WYTIWYG).

The WYTIWYG principle operates both at the curriculum leveland at the
individual student level. Given the “high stakes” pressures of testing under the
No Child Left Behind law [U.S. Congress 2001], teachers feelpressured to teach
to the test — and if the test focuses on skills, other aspects of mathematical pro-
ficiency tend to be given short shrift. (This is known as curriculum deformation;
see Chapter 1 for an example.) Similarly, students take tests as models of what
they are to know. Thus, assessment shapes what students attend to, and what
they learn.

As noted in Chapter 1, skills are easy to test for, and tests ofskills are easy
to defend legally (they have the “right” psychometric properties). However,
there are still significant issues with regard to problem solving and conceptual
understanding. In this chapter, the comparison of students’ SAT-9 and Balanced
Assessment scores in my discussion of the knowledge base makes that point
dramatically. Aspects of strategy, metacognition, and beliefs are much more
subtle and difficult to assess. Yet, doing so is essential. Some of the chapters
in the balance of this volume will describe assessments thatattempt to capture
some of the aspects of mathematical proficiency discussed here. To the degree
that these assessments succeed in doing so, this representsreal progress.
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