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Chapter 5
What is Mathematical Proficiency and How
Can It Be Assessed?

ALAN H. SCHOENFELD

To establish a common point of departure with Jim Milgrantisyater, this
chapter is framed around the two basic questions with whiglshmapter began:

* What does it mean for a student to be proficient in mathentati@a/hat
should students be learning?)

e How can we measure proficiency in mathematics? (How can wé teé
are succeeding?)

My main emphasis is on the first question, because much ofetstearf this
volume addresses the second.

In the introduction to this volume and in the first chapterolnped to the
fact that the “cognitive revolution” (see [Gardner 198%; instance) produced
a significant reconceptualization of what it means to urtdadssubject matter
in different domains (see also [NRC 2000]). There was a foratdal shift
from an exclusive emphasis on knowledge — what does thestudew? — to
a focus on what students know and can do with their knowledige.idea was
not that knowledge is unimportant. Clearly, the more onews)ahe greater
the potential for that knowledge to be used. Rather, thewdesathat having the
knowledge was not enough; being able to use it in the apatgpeircumstances
is an essential component of proficiency.

Some examples outside of mathematics serve to make the ptanty years
ago foreign language instruction focused largely on gramraabulary, and
literacy. Students of French, German, or Spanish learneddd literature in
those languages — but when they visited France, Germanyain Shey found
themselves unable to communicate effectively in the laggsghey had studied.
Similarly, years of instruction in English classes thatueed on grammar in-
struction resulted in students who could analyze sentdnogtsre but who were
not necessarily skilled at expressing themselves effdgtin writing. Over the
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past few decades, English and foreign language instruttame focused in-
creasingly on communication skills— on mastering the Isa¢ course (e.g.,
conjugating verbs, acquiring a solid vocabulary, mastegrmammarjyndlearn-
ing the additional skills that enable them to use what thexghearned.

A similar evolution took place in mathematics. The knowledgse remains
important; it goes without saying that anyone who lacks asgiasp of facts,
procedures, definitions, and concepts is significantly ltapged in mathemat-
ics. But there is much more to mathematical proficiency theimd able to
reproduce standard content on demand. A mathematician’sgasists of at
least one of: extending known results; finding new resufid; @pplying known
mathematical results in new contexts. The problems matteiaras work on,
in academia or in industry, are not the kind of exercisesdbésolved in a few
minutes or hours; they are problems that may take days, weekghs, or years
to solve. Thus, in addition to possessing a substantial amaiuspecialized
knowledge, mathematicians possess other things as wald @mblem solvers
are flexible and resourceful. The have many ways to think apmblems —
alternative approaches if they get stuck, ways of makingyqess when they
hit roadblocks, of being efficient with (and making use of)awlthey know.
They also have a certain kind of mathematical dispositionwillangness to pit
themselves against difficult mathematical challenges wtindeassumption that
they will be able to make progress on them, and the tenacitgép at the task
when others have given up. As will be seen below, all of theseaapects of
mathematical proficiency; all of them can be learned (or mo8chool; all of
them can help explain why some attempts at problem solviagaccessful and
some not.

Proficiency, Part A: Knowledge Base

There is a long history of attempts to prescribe the mathiealatontent
that students should know. Many of those efforts have irealiraving groups
of scholars working together for a number of years. It wouddftolish for
me to try to supplant their work, especially given the smatloant of space
available. Hence | will defer to the judgments made in volarsach as the
National Council of Teachers of Mathematics’ two major gials documents
[NCTM 1989; 2000], especially the lattdPrinciples and Standards for School
Mathematicsand the National Research Council’s [NRC 2001] voluiuigling
It Up. (Note: a summary of the dimensions of mathematical profayigound
in those volumes was given in Chapter 1 of this volume, “Issared Tensions
in the Assessment of Mathematical Proficiency.”)

Instead, | will discuss different interpretations of whamieans to know that
content. A major source of controversy over the past decadérivolved not
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only the level of procedural skills expected of students,diso what is meant
by “understanding.” For example, what does it mean for ametgary school
student to understand base-ten subtraction?

For some people —notably, those who wrote the current Galdomath-
ematics standards, understanding a concept means bemgoatbmpute the
answers to exercises that employ that concept. For exaimgle,are the Cali-
fornia mathematics standards related to arithmetic inggBfCSBE 1997]:

2.0 Students calculate and solve problems involving amfdisubtraction, mul-

tiplication, and division:

2.1 Find the sum or difference of two whole numbers betweemd01®,000.

2.2 Memorize to automaticity the multiplication table farmbers between
1 and 10.

2.3 Use the inverse relationship of multiplication and siwh to compute
and check results.

2.4 Solve simple problems involving multiplication of midlgit numbers by
one-digit numberg3, 671 x3=__).

2.5 Solve division problems in which a multidigit number i®sly divided

by a one-digit numbe€135+-5=__).
2.6 Understand the special properties of 0 and 1 in mulapbn and divi-
sion.

2.7 Determine the unit cost when given the total cost and murobunits.
2.8 Solve problems that require two or more of the skills noer@d above.

and the California Grade 5 number sense standards:

2.0 Students perform calculations and solve problemswwgladdition, sub-
traction, and simple multiplication and division of framtis and decimals:

2.1 Add, subtract, multiply, and divide with decimals; ad@hanegative
integers; subtract positive integers from negative integand verify the
reasonableness of the results.

2.2 Demonstrate proficiency with division, including dieis with positive
decimals and long division with multidigit divisors.

2.3 Solve simple problems, including ones arising in cotecs@éuations, in-
volving the addition and subtraction of fractions and mixeanbers (like
and unlike denominators of 20 or less), and express answ#rs simplest
form.

2.4 Understand the concept of multiplication and divisiéfractions.

2.5 Compute and perform simple multiplication and divisidfractions and
apply these procedures to solving problems.
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Although the term “problem solving” is used in thes@ndards,it refers to
computational proficiency: For example, in the third gra@dmdard 2.4, we are
told that students will be able to “solve” the “problert®, 671 x3=___).

This approach stands in stark contrast to the one taken Matienal Council
of Teachers of Mathematics volunfeinciples and Standards for School Math-
ematicNCTM 2000]. Consider, for example, the language used icrigEag
the Number and Operations Standard for grades 3-5, from&. 14

Instructional programs from prekindergarten through grag should enable
all students to:

Understand numbers, ways of representing numbers, relstips among
numbers, and number systems

In grades 3-5 all students should
« understand the place-value structure of the base-ten masybiem and be
able to represent and compare whole numbers and decimals;

e recognize equivalent representations for the same nunrzkrganerate
them by decomposing and composing numbers;

» develop understanding of fractions as parts of unit whadasparts of a
collection, as locations on number lines, and as divisidmgole numbers;

* use models, benchmarks, and equivalent forms to judge tleeo$ifrac-
tions;

» recognize and generate equivalent forms of commonly usetidns, dec-
imals, and percents;

* explore numbers less than 0 by extending the number line lanodigh
familiar applications;

» describe classes of numbers according to characteristitsas the nature
of their factors.

Understand meanings of operations and how they relate tcaonéher

(detail omitted)

Compute fluently and make reasonable estimates

(detail omitted)
The differences in terminology, meaning, and intended cziBmxies are clear,
as is the exemplification iRrinciples and Standard$Now the question is, does
such a difference in setting standards make a difference® daes it make a
difference in assessment?

The simple answer is that it can make a great deal of differeRor example,
consider the following statistics from [Ridgway et al. 2D00
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In 2000, the Silicon Valley Mathematics Assessment Collatiee gave two
tests to a total of 16,420 third, fifth, and seventh graderse @as the SAT-
9, a skills-oriented test consistent with the Californiatimeanatics standards.
The other was the Balanced Assessment test, a much broatiémtuding
questions that focus on skills, concepts and problem sg)virat is aligned with
NCTM’s (1989)Curriculum and Evaluation Standards for School Mathensatic
the precursor térinciples and StandardsThe simplest analysis assigns each
student a score of “proficient” or “not proficient” on each miaation. Need-
less to say, student scores on any two mathematics assassarefikely to be
highly correlated — but, the differences between studeotescon the SAT-9
and Balanced Assessment tests are very informative. Gamgable 1.

SAT-9
Balanced
Assessment Not proficient Proficient
Not proficient 29% 22%
Proficient 4% 45%

Table 1. Aggregated scores for 16,420 Students on the SAT-9 and Bal-
anced Assessment tests (grades 3, 5, and 7). From [Ridgway et al. 2000].

As expected, 74% of the students at grades 3, 5, and 7 wene tifigesame
“proficient” or “not proficient” ratings on the two tests. Bebmpare the second
row of data to the second column. More than 90% of the studehtswere
declared proficient on the Balanced Assessment test wetardéqroficient
on the SAT-9 —that is, doing well on the Balanced Assessnests tis a rea-
sonably good guarantee of doing well on the SAT-9. The ceevées not true:
approximately one third of the students declared profiaenthe SAT-9 exam
were declared to be not proficient on the Balanced Assesdemnt

This is critically important, and entirely consistent watsmall but growing
body of literature comparing “reform” and “traditional” gicula in mathemat-
ics. (See, for example, [Senk and Thompson 2003], which @&esrthe per-
formance of students who studied curricula that had beealojeed with sup-
port from the National Science Foundation with more tradil, skills-oriented
curricula.) In brief, the findings in that literature are afidws. Students who
experience skills-focused instruction tend to master éhevant skills, but do
not do well on tests of problem solving and conceptual unidading. Students
who study more broad-based curricula tend to do reasonaéllyon tests of
skills (that is, their performance on skills-oriented $eist not statistically dif-
ferent from the performance of students in skills-oriertedrses), and they do
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much better than those students on assessments of corlegqteestanding and
problem solving.

In short, one’s concept of what counts as mathematics rsatgreat deal —
and, what you assess counts a great deal. First, studemstdikely to learn
what they are not taught. Hence teaching a narrow currichlasrconsequences.
Second, one only finds out about what students don’'t knowef assesses for
that knowledge. Thus, for example, the SAT-9 does not rebegbroblem with
a narrow curriculum: 22% of the total population is declgpeaficient although
a more broad-based test calls that proficiency into question

In what follows | shall briefly delineate additional aspeofsnathematical
proficiency.

Proficiency, Part B: Strategies

One of the strands of mathematical proficiency describefdiding It Upis
“strategic competence- ability to formulate, represent, and solve mathematical
problems” [NRC 2001, p. 5]. It goes without saying that “knog/ mathemat-
ics, in the sense of being able to produce facts and defisitiand execute
procedures on command, is not enough. Students should betabise the
mathematical knowledge they have.

The starting place for any discussion of problem solvingtsties is the work
of George Blya. In 1945, with the pioneering first edition bliow to Solve It
Pblya opened up the study of problem solving strategies. ‘bhe of the book
was devoted to a “short dictionary of heuristic.” To quotanirFolya, “The aim
of heuristic is to study the methods and rules of discover iavention. The
present book is an attempt to revive heuristic in a modernraadest form”
[Polya 1945, pp. 112-113]. “Modern Heuristic endeavors toeusihnd the
process of solving problems, especially thental operations typically useful
in this process” [Blya 1945, pp. 129-130]. IHow to Solve ItPblya described
powerful problem solving strategies such as making use afogy, making
generalizations, re-stating or re-formulating a problemploiting the solution
of related problems, exploiting symmetry, and working heaids. Polya’s
subsequent volumesjathematics and Plausible Reasonifigplya 1954] and
Mathematical DiscoverjPolya 1981], elaborated substantially on the ideas in
How to Solve Itshowing how one could marshal one’s mathematical knovdedg
in the service of solving problems.

To cut along story short (see [Schoenfeld 1985; 1992] faifethe heuristic
strategies Blya describes are more complex than they appear. Conéater,
example, a strategy such as “if you cannot solve the proposddem .. .could
you imagine a more accessible related problem?8hj& 1945, p. 114]. The
idea is that although the problem you are trying to solve meatob difficult for
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now, you might be able to solve a simpler version of it. You mithen use the
result, or the idea that led to the solution of the simplebpem, to solve the
original problem.

At this level of generality, the strategy sounds straighwird — but the devil
is in the details. For examplepRa [1945, p. 23] discusses the solution of this
problem:

Using straightedge and compass, and following the trawitioules for
geometric constructions, inscribe a square in a givenghéantwo vertices
of the square should be on the base of the triangle, the otlevdrtices
of the square on the other two sides of the triangle, one on.eac

That s, you are given a triangle such as in the left diagrasa;wish to produce
a square such as seen on the right, using only straightedgecampass.

The given triangle The desired construction

In an idealized discussion,0Ba shows how the right kind of questioning
can lead a student to consider an easier related problemaabng only that
three of the corners of the desired square lie on the givangk), noting that
there are infinitely many squares that meet this conditionl, that the locus
of the fourth vertices of such squares can be used to find thesoch square
that has its fourth (and hence all four) vertices on the sideke triangle. The
discussion is logical and straightforward — and, once oee #ge solution, it is
wonderfully elegant. But the question is, what will nonadistudents do?

| have told undergraduates that the problem can be solvedgigitng the
solution to an easier related problem, and asked them wkarealated prob-
lem they might want to try to solve. Typically, they will suegs inscribing the
square in a “special” triangle (such as an equilateral osastes triangle) or
inscribing the square in a circle. Unfortunately, both afsl approaches lead to
dead ends. The former problem is no easier to solve than ifjealr the latter
can be solved (it is a standard construction) but | know of ag @ exploit it to
solve the given problem. With further prodding, studentésuiggest inscribing
a rectangle in the given triangle. They recognize that theeenfinitely many
rectangles that can be inscribed, and that one of them mustsijgiare — but
this is an existence proof, and it does not generate a catisinu Then, students
may suggest either (a) requiring only that three verticebefquare lie on the
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sides of the triangle, or (b) trying to circumscribe a squeith a triangle similar
to the given triangle. Each of these approaches does yietduéian, but not
without some work.

In short, to use the strategyRa describes, the problem solver needs to

a. think to use the strategy,

b. generate a relevant and appropriate easier relatedepnobl

c. solve the related problem, and

d. figure out how to exploit the solution or method to solvedhginal problem.

All of these can be nontrivial.

The evidence, however, is that accomplished mathemadicia@ such strate-
gies (see not only®ya’s books but [DeFranco 1991]) and that high school and
college students can learn to master such strategies; @eexdmple, [Lester
1994; Schoenfeld 1985; 1992].

Proficiency, Part C: Metacognition
(Using What You Know Effectively)

Picture someone stepping into a bog, and beginning to sirktimen taking
a second step forward and then a third, rather than turnick. bRy the time
the person realizes that he or she is in quicksand, all is@s¢ has to wonder,
why didn’t that person take stock before it was too late?

Now consider the following time-line graph (Figure 1) of tstmdents work-
ing a problem.

In the specific problem session represented here (see [Sfeltehd 985] for
detail), the students read the problem statement and yhastile a decision
about what to do next. Despite some clear evidence that ppioach was not
productive for them, they persevered at it until they ran @utime. When
they did, | asked them how the approach they had taken —thehasen to
calculate a particular area—was going to help them. Theywaable to say.

As it happens | knew these students well, and knew that eatteai had
enough mathematical knowledge to solve the given probleniciwwas similar
to a problem on a final examination the students had takerajustek or two
earlier). The point is that there is just so much that a stucdem be doing at any
one time. Because the students were focused on doing ayartomputation,
and they had never stopped to consider how wise it was totitives time in
doing so, they never reconsidered — and thus never got tohesknowledge
they had.

Reflecting on progress while engaged in problem solving, @etthg ac-
cordingly (“monitoring and self-regulation”) is one aspe€what is known as
metacognition — broadly, taking one’s thinking as an obgdnquiry. As the
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Activity

Read .

Analyze
expiore | NN

Plan

Implement

Verify

I I I
5 10 . 15 20
Elapsed Time (Minutes)

Figure 1. A time-line representation of a problem solving attempt.
Reprinted from [Schoenfeld 1992], with permission.

graph above indicates, failing to do so can guarantee é&étiproblem solving:
if one is fully occupied doing things that do not help to sallve problem, one
may never get to use the “right” knowledge in the right ways.

Although I have told this story as an anecdote, there areolotisita to back
it up. Over more than 25 years, more than half of the hundrégsablem
sessions that my research assistants and | have videotapeté&en of the type
represented in Figure 1. This kind of finding has been wideplicated; for a
general discussion see [Lester 1994] or [Schoenfeld 1987].

As was the case with strategies, the story here is that (ejtefé problem
solvers behave differently; and (b) students can learn tmbeh more efficient
at monitoring and self-regulation, and become more sutidga®blem solvers
thereby.

Figure 2 shows the time-line graph of a mathematician warkirtwo-part
problem in a content area he had not studied for years. Eattedfiangles
in the figure represents a time that the mathematician asbdiss state of his
solution attempt and then acted on the basis of that assesésoenetimes de-
ciding to change direction, sometimes deciding to stay these — but always
with decent reason). There is no question that he solvedrtdem because
of his efficiency. He did not choose the right approaches stt faut, by virtue
of not spending too much time on unproductive approachesage to find
productive ones.

Figure 3 shows the time-line graph of a pair of students waylki problem
after having taken my problem solving course. During therseul focused
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Activity

Read

Analyze

Explore

Plan I
Implement

Verify . -

I I I
5 10 15 20
Elapsed Time (Minutes)

Figure 2. A time-line representation of a mathematician's problem solving
attempt. Reprinted from [Schoenfeld 1992], with permission.

a great deal on issues of metacognition, acting as a “coatiie wgroups of
students worked problems. (That is, | would regularly imeeie to ask students
if they could justify the solution paths they had chosen. eAfa while, the
students began to discuss the rationales for their probtdwing choices as
they worked the problems.)

As Figure 3 indicates, the students hardly became “ideablem solvers.
In the particular solution represented in Figure 3, the exttsl jumped into a
solution with little consideration after reading the prail. However, they re-
considered about four minutes into the solution, and chgdauwsible solution
direction. As it happens, that direction turned out not tdrbéful; about eight
minutes later they took stock, changed directions, and wento solve the
problem. What made them effective in this case was not sirhay they had
the knowledge that enabled them to solve the problem. Itdsdht that they
gave themselves the opportunity to use that knowledge,umgc#ting attempts
that turned out not to be profitable.

Proficiency, Part D: Beliefs and Dispositions

| begin this section, as above, with a description of one efgtrands of
mathematical proficiency describedAdding It Up “productive disposition” —
an “habitual inclination to see mathematics as sensibkfutiand worthwhile,
coupled with a belief in diligence and one’s own efficacy” [NR001, p. 5].

Readers who know the research literature will find the ide& ‘theliefs and
dispositions” are aspects of mathematical proficiency isilfar —but those
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Activity

Read I

Analyze
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:&
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Veriy , , — —
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Elapsed Time (Minutes)

Figure 3. A time-line representation of two students’ problem solving at-
tempt, following the completion of a course on problem solving. Reprinted
from [Schoenfeld 1992], with permission.

who do not are likely to find it rather strange. After all, whint beliefs have
to do with doing mathematics? The simple answer is, “a great’'dAlso as
above, | shall indicate that this category of behavior maif&) for students, and
(b) for professional mathematicians.

What follows is a straightforward arithmetic problem takieom the 1983
National Assessment of Educational Progress, or NAEP [&dep et al. 1983]:

An army bus holds 36 soldiers. If 1128 soldiers are beingduliss their
training site, how many buses are needed?

The solution is simple. If you divide 1128 by 36, you get a dgmttof 31 and
a remainder of 12. Hence you need 32 buses, under the (tssitjrgtions that
each bus will be filled to capacity if possible and that no busi#i be allowed
to carry more 36 soldiers.

NAEP is a nationwide survey of U.S. students’ mathematiesfggmance,
with a carefully undertaken sampling structure. Some 4531Q0dents worked
this problem. Here is how the responses were distributed:

29% gave the answer “31 remainder 12"
18% gave the answer “31”

23% gave the correct answer, “32”

30% did the computation incorrectly.

A full 70% of the students did the computation correctly, boty 23% of the
students rounded up correctly. How could this be? How caulkipossible
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that 29% of the students answered that miuenber of buses needéavolves
a remainder? Imagine asking these same students to call ecbysany to
arrange for buses to take their school on an outing. Wouldbatiyem mention
remainders?

The brief explanation for this astounding behavior (seehf@afeld 1985;
1992] for more detail) is that these students had learneddbenterproductive
behavior in their mathematics classes. In the late 1970sard 1980s, there
was an increased emphasis on “problem solving” in mathesmatassrooms in
the U.S. The reality (and the reason for the quotation maskbat the focus was
almost entirely superficial: instead of being given pagesotd computational
problems such as

7T—4=
students were given pages of comparably rote problems df/fiee

John had 7 apples. He gave 4 apples to Mary.
How many apples does he have left?

The students soon figured out that the word problems weresfcstories” that
had little or nothing to do with the real world. The most efiti way to solve the
problems was to read the text, ignoring the “real world” esmit The students
learned to pick out the numbers, identify the operation tdgom on them,
do the computation, and write the answer. That is, a quick s¢ahe word
problem produces the following: “7 and 4 are the numberstr@at) and write
the answer down.” This procedure got students the right ansaimost all the
time. It became a habit.

Now apply it to the NAEP busing problem. A quick scan of theljem
statement produces “1128 and 36 are the numbers. Divideyatetthe answer
down.” If you do—and 29% of the students taking the exam did o4 write
that the answer is “31 remainder 12."

In short, if you believe that mathematics is not supposedakarsense, and
that working mathematics problems involves rather medegsgoperations on
symbols, you will produce nonsensical responses such as.tfence beliefs
are important— and, students pick up their beliefs aboutétere of mathemat-
ics from their experiences in the mathematics classroorerQypical student
beliefs, documented over many years (see [Lampert 199®meddbld 1992]),
include:

» Mathematics problems have one and only one right answer.
e There is only one correct way to solve any mathematics pnobleusually
the rule the teacher has most recently demonstrated todks.cl
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» Ordinary students cannot expect to understand mathemiysexpect sim-
ply to memorize it, and apply what they have learned mecladlgiand with-
out understanding.

* Mathematics is a solitary activity, done by individuals $olation.

» Students who have understood the mathematics they havedtuitl be able
to solve any assigned problem in five minutes or less.

» The mathematics learned in school has little or nothing tavith the real
world.

» Formal proof is irrelevant to processes of discovery or riios.

(Reprinted with permission from [Schoenfeld 1992, p. 359])

One might think that professional mathematicians, espigdtaose who have
earned the Ph.D. in mathematics, would have productivefisetibout them-
selves and their engagement with mathematics. Interdygtthgt is not the case.
De Franco [1991] compared the problem solving performarieggit mathe-

maticians who had achieved national or international reitimg in the mathe-

matics community with that of eight published mathematisiéhe number of
publications ranged from 3 to 52) who had not achieved sugdr ckecognition.

He also had the mathematicians fill out questionnaires deggrtheir beliefs

about and mathematics and their problem solving practiegs, (Whether they
tried alternative ways to approach problems if their ithitieethods did not pan
out). The conclusion [DeFranco 1991, p. 208]:

The responses to the questionnaire indicate that the geleiut mathe-
matics and problem solving held by subjects in group A [thengnent
mathematicians] are dissimilar to those held by the subjiecgroup B.
To the extent that beliefs impact problem solving perforogant would
appear that the beliefs acquired by group A (group B) woulsitpely
(negatively) influence their performance on the problems.

Implications for Assessment

As highlighted in this chapter, a person’s mathematicaikedge is far from
the whole story. If you are interested in someone’s mathiealadroficiency—
that is, what someone knows, can do, and is disposed to dematically —
then it is essential to consider all four aspects of mathiealgtroficiency dis-
cussed in this chapter. Knowledge plays a central role, msiét. But, an indi-
vidual’s ability to employ problem solving strategies, thdividual's ability to
make good use of what he or she knows, and his or her beliefdiapdsitions,
are also critically important. As DeFranco’s research sfthwhis is not just
the case for students as they learn mathematics. It is tleefoaprofessional
mathematicians as well.
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With regard to assessments aimed at capturing studenttematical pro-
ficiency, the key operative phrase was coined by Hugh Budtreome years
ago: the nature of assessment (or testing) is criticallyoirigmt because “What
You Test Is What You Get” (WYTIWYG).

The WYTIWYG principle operates both at the curriculum leegld at the
individual student level. Given the “high stakes” pressusétesting under the
No Child Left Behind law [U.S. Congress 2001], teacherspeessured to teach
to the test—and if the test focuses on skills, other aspdctathematical pro-
ficiency tend to be given short shrift. (This is known as awitium deformation;
see Chapter 1 for an example.) Similarly, students take testodels of what
they are to know. Thus, assessment shapes what studemd ttfeand what
they learn.

As noted in Chapter 1, skills are easy to test for, and testkité are easy
to defend legally (they have the “right” psychometric pnd@gs). However,
there are still significant issues with regard to problenviagl and conceptual
understanding. In this chapter, the comparison of stud8AE9 and Balanced
Assessment scores in my discussion of the knowledge basesntla&t point
dramatically. Aspects of strategy, metacognition, andefelare much more
subtle and difficult to assess. Yet, doing so is essentiaineSaof the chapters
in the balance of this volume will describe assessmentsatieinpt to capture
some of the aspects of mathematical proficiency discussed e the degree
that these assessments succeed in doing so, this represssrgsogress.
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