
Section 3

What Does Assessment Assess?

Issues and Examples

It is said that a picture is worth a thousand words. When it comes to assess-
ment, an example is worth that and more. Someone may claim to assess student
understanding of X, but what does that mean? The meaning becomes clear
when one sees what is actually being tested. Examples help for many reasons.
They make authors’ intentions clear, and they teach. In working through good
examples of assessments, one learns how to think about student understanding.
This section of the book offers a wide range of examples and much to think
about.

In Chapter 6, Hugh Burkhardt takes readers on a tour of the assessment space.
He asks a series of questions related to the creation and adoption of assessments,
among them the following: Who is a particular assessment intended to inform?
What purpose will it serve? (To monitor progress? To guide instruction? To
aid or justify selection? To provide system accountability?) Which aspects of
mathematical proficiency are valued? How often should assessment take place
to achieve the desired goals? What will the consequences of assessment be, for
students, teachers, schools, parents, politicians? What will it cost, and is the
necessary amount an appropriate use of resources? Burkhardt lays out a set of
design principles, and illustrates these principles with abroad range of chal-
lenging tasks. The tasks, in turn, represent the mathematical values Burkhardt
considers central: specifically, that the processes ofmathematizingand mathe-
matical modeling are centrally important, as is the need forstudents to explain
themselves clearly using mathematical language.

In Chapter 7, Jan de Lange continues the tour of mathematicalassessments.
Like Burkhardt, he believes that assessment development isan art form, and
that like any art form, it follows certain principles, in theservice of particular
goals. He introduces the framework for the development of the Program for In-
ternational Student Assessment. PISA assessments, like those of TIMSS (which
formerly stood for Third International Mathematics and Science Study, and now
for Trends in International. . . ), are international assessments of mathematical
competence. PISA differs substantially from TIMSS in that it focuses much
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more on students’ ability to use mathematics in applied contexts. Hence, a
design characteristic of PISA problems is that they must be realistic: the mathe-
matics in the problems must correspond, in a meaningful way,to the phenomena
they characterize. De Lange also argues that valuable assessments should high-
light not only what students can do, but what they find difficult, sometimes
pinpointing significant (and remediable) omissions in curricula.

In Chapter 8, Bernard Madison makes a somewhat parallel argument regard-
ing the need for sense-making in an increasingly quantified world. For the
most part, he notes, students exposed to the traditional U.S. curriculum have
the formal mathematical tools they need in order to make sense of problems in
context; what they lack is experience in framing problems inways that make
sense. This is increasingly important, as consumers and voters are bombarded
with graphs and data that support contradictory or pre-determined positions.
Full participation in a democratic society will call for being able to sort through
the symbols to the underlying assumptions, and to see if theyreally make sense.

One virtue of cross-national studies is that is they raise questions about fun-
damental assumptions. People tend to make assumptions about what is and
is not possible on the basis of their experience in particular contexts, which are
often regional or national. Cross-national comparisons can reveal that something
thought to be impossible is not only possible, but has been achieved in another
culture. What needs to be done here to achieve it? In Chapter 9, Richard Askey
uses a range of mathematics assessments to take readers on a tour of the possible.
Some of these assessments are cross-national; others, which play the same role,
are historical. It is quite interesting, for example, to compare the mathematical
skills required of California teachers in 1875, and 125 years later!

In Chapter 10, David Foster, Pendred Noyce, and Sara Spiegelpoint to yet
another use of assessment the way in which the systematic examination of stu-
dent work can lead to teachers’ deeper understanding of mathematics, of the
strengths and weaknesses of the curricula they are using, and of student thinking.
Foster, Noyce, and Spiegel describe the work of the Silicon Valley Mathematics
Initiative (SVMI), which orchestrates an annual mathematics assessment given
to more than 70,000 students. SVMI uses the information gleaned from the
student work to produce a document calledTools for Teachers,which is the
basis of professional development workshops with teachers. As Chapter 10
shows, such attention to student thinking pays off.

Readers of a certain age may remember the warnings that accompanied trial
runs of the National Emergency Broadcast System: This is a test. This is only
a test! The chapters in this section show that, properly constructed and used,
assessments are anything but “only” tests. They are reflections of our values, and
vital sources of information about students, curricula, and educational systems.
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Chapter 6
Mathematical Proficiency:

What Is Important?
How Can It Be Measured?

HUGH BURKHARDT

This chapter examines important aspects of mathematical performance, and
illustrates how they may be measured by assessments of K–12 students, both
by high-stakes external examinations and in the classroom.We address the
following questions:

� Who does assessment inform?Students? Teachers? Employers? Universi-
ties? Governments?

� What is assessment for?To monitor progress? To guide instruction? To aid
or justify selection? To provide system accountability?

� What aspects of mathematical proficiency are important and should be as-
sessed?Quick calculation? The ability to use knowledge in a new situation?
The ability to communicate precisely?

� When should assessment occur to achieve these goals?Daily? Monthly?
Yearly? Once?

� What will the consequences of assessment be?For students? For teachers?
For schools? For parents? For politicians?

� What will it cost, and is the necessary amount an appropriateuse of re-
sources?

There are, of course, multiple answers to each of these interrelated questions.
Each collection of answers creates a collection of constraints whose satisfaction
may require a mix of different kinds of assessment: summative tests, assessment
embedded in the curriculum, and daily informal observationand feedback in the

Malcolm Swan and Rita Crust led the design of many tasks in this chapter. The tasks were developed and
refined in classrooms in the U.K. and the U.S. by the Mathematics Assessment Resource Service team. I have
been fortunate to work with them all.
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classroom. Rather than discuss each type of assessment, this chapter describes
principles that should guide the choice of a system of assessment tasks created
with these questions in mind, particularly the third:What aspects of mathemat-
ical proficiency are important and should be assessed?Every assessment is
based on a system of values, often implicit, where choices have to be made (see
[NRC 2001], for example); here I seek to unpack relationships between aspects
of mathematical proficiency and types of assessment tasks, so the choices can
be considered and explicit.

The discussion will mix analysis with illustrative examples. Specific assess-
ment tasks are, perhaps surprisingly, a clear way of showingwhat is intended —
a short item cannot be confused with a long, open investigation, whereas “show
a knowledge of natural numbers and their operations” can be assessed by ei-
ther type of task, although each requires very different kinds of mathematical
proficiency.

Assessment Design Principles

Measure what is important, not just what is easy to measure.This is a key
principle — and one that is widely ignored. Nobody who knows mathematics
thinks that short multiple-choice items really represent mathematical perfor-
mance. Rather, many believe it makes little difference whatkinds of perfor-
mance are assessed, provided the appropriate mathematicaltopics are included.
The wish for cheap tests that can be scored by machines is thendecisive, along
with the belief that “Math tests have always been like this.”1 This approach
is widely shared in all the key constituencies, but for very different reasons.
Administrators want to keep costs down. Psychometricians are much more in-
terested in the statistical properties of items than what isassessed. Moreover,
the assumptions underlying their procedures are less-obviously flawed for short
items. Teachers dislike all tests and want to minimize the time spent on them
as a distraction from “real teaching” — ignoring the huge amounts of time they
now spend on test preparation that is not useful for learningto do mathemat-
ics. Parents think “objectively scored” multiple-choice tests are “fairer” than
those scored by other methods, ignoring the values and biases associated with
multiple-choice tasks. None of these groups seems to be aware that assessment
may affect students’ learning of, view of, and attitude to mathematics. This
chapter describes tasks that assess aspects of mathematical proficiency that may
be difficult or impossible to assess by multiple-choice tasks.

1Only in the U.S., particularly in mainstream K–12 education. Other countries use much more substantial
tasks, reliably scored by people using carefully developedscoring schemes.
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Assess valued aspects of mathematical proficiency, not justits separate com-
ponents. Measuring the latter tells you little about the former — because, in
most worthwhile performances, the whole is much more than the sum of the
parts. Is a basketball player assessed only through “shooting baskets” from
various parts of the court and dribbling and blocking exercises? Of course
not — scouts and sports commentators watch the player in a game. Are pianists
assessed only through listening to scales, chords and arpeggios (though all music
is made of these)? Of course not — though these may be part of the assessment,
the main assessment is on the playing of substantial pieces of music. Mathe-
matical performance is as interesting and complex as music or basketball, and
should by the same token be assessed holistically as well as analytically. When
we don’t assess in this way (which, for U.S. school mathematics, is much of the
time), is it any surprise that so many students aren’t interested? No intelligent
music student would choose a course on scales and arpeggios.

What do these principles imply for assessment in K–12 mathematics? Con-
sider the following simple task:

A triangle has angles2x, 3x and4x.

(a) Write an expression in terms ofx for the sum of the angles.

(b) By forming an equation, find the value ofx.

If a 16-year-old cannot findx without being led through the task by (a) and (b),
is this worthwhile mathematics? For the student who can do the task without
the aid of (a) and (b), this already-simple problem is further trivialized by frag-
mentation. Compare the triangle task to the following task,modified from the
Balanced Assessment for the Mathematics Curriculum Project Middle Grades
Assessment Package 1[BAMC 1999, p. 40], for students of the same age:

Consecutive Addends

Some numbers equal the sum of consecutive natural numbers:

5 D 2 C 3

9 D 4 C 5

D 2 C 3 C 4

� Find out all you can about sums of consecutive addends.

This is anopen investigationof a surprisingly rich pure mathematical micro-
cosm, where students have to formulate questions as well as answer them. It is
a truly anopen-endedtask, i.e., one where diverse (and incomplete) solutions
are expected, and can be used and assessed at various grade levels. (Note the
crucial difference between an open-ended task and aconstructed response.)
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Scaffolding can be added to give students easier access, anda well-engineered
ramp of difficulty, as illustrated by the following version.

� Find a property of sums of two consecutive natural numbers.
� Find a property of sums of three consecutive natural numbers.
� Find a property of sums ofn consecutive natural numbers.
� Which numbers are not a sum of consecutive addends?

In each case, explain why your results are true.

The proof in the last part is challenging for most people. However, the scaf-
folding means students only have toanswerquestions, not topose them —
an essential part of doing mathematics. Is this the kind of task 16-year-old
students should be able to tackle effectively? What about the following task,
modified from theBe a Paper Engineermodule of [Swan et al. 1987–1989]? Is
it worthwhile, and does it involve worthwhile mathematics?

Will It Fold Flat?

Diagram A is a side view of a pop-up card.

� Look at the diagrams below.
� Which cards can be closed without creasing in the wrong place?
� Which can be opened flat without tearing?
� Make up some rules for answering such questions.
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What about the following, more practical, task, adapted from the high-school
level materials from the Balanced Assessment for the Mathematics Curriculum
Project [BAMC 2000, p. 78]?

Design a Tent

Your task is to design a tent like
the one in the picture. It must be
big enough for two adults to sleep
in (with baggage). It should also
be big enough so that someone
can move around while kneeling
down. Two vertical poles will
hold the tent up.

Would the following more scaffolded version of the prompt inDesign a Tent be
a more suitable performance goal, or does it lead them by the hand too much?
(Feedback in development of tasks with students guides suchdesign decisions.)
One might ask:

� Estimate the relevant dimensions of a typical adult.

� Estimate the dimensions of the base of your tent.

� Estimate the length of the vertical tent poles you will need.

� Show how you can make the top and sides of the tent from a singlepiece
of material. Show all the measurements clearly.

Calculate any lengths or angles you don’t know.
Explain how you figured these out.

This version is a typical fairly closeddesign task, requiring sensible estima-
tion of quantities, geometric analysis, and numerical calculations (and even the
Pythagorean Theorem).

These tasks (particularly Will It Fold Flat? and Design a Tent) are also seen
as worthwhile by people who arenot mathematicians or mathematics teachers.
(Most people will not become either — but theyall have to take high school
mathematics.) The choice of performance targets, illustrated by the exemplars
above, is at the heart of determining the content and nature of the K–12 math-
ematics curriculum. All sectors of society have an interestin these choices;
mathematicians and mathematics educators need their views, and their informed
consent. This requires the kind of well-informed debate that remains rare —
and, too often, is obfuscated by the emotional over-simplifications of partisans
on both sides of the “math wars.”
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Correlation Is Not Enough

It is often argued that, though tests only measure a small part of the range
of performances we are interested in, the results correlatewell with richer mea-
sures. Even if that were true (it depends on the meaning of “correlate well”),
it is not a justification for narrow tests. Why? Because assessment plays three
major roles:

� A. to measure performance — i.e. “to enable students to show what they
know, understand and can do;”

but also, with assessment that has high stakes for students and teachers,inev-
itably

� B. to exemplify the performance goals. Assessment tasks communicate
vividly to teachers, students and their parents what is valued by society.

Thus

� C. to drive classroom learning activities via the WYTIWYG principle:
What You Test Is What You Get.

The roles played by assessment have implications for test designers. Correlation
is never enough, because it only recognizes A. The effects through C of cheap
and simple tests of short multiple-choice items can be seen in classrooms —
the fragmentation of mathematics, the absence of substantial chains of reason-
ing, the emphasis on procedure over assumptions and meaning, the absence of
explanation and mathematical discourse . . .The list goes on.

Balanced assessmenttakes A, B, and C into account. The roles played by
assessment suggest that a system of assessment tasks shouldbe designed to
have two properties:

� Curriculum balance, such that teachers who “teach to the test” are led to
provide a rich and balanced curriculum coveringall the learning and per-
formance goals embodied by state, national, or international standards.

� Learning value— because such high-quality assessment takes time, the
assessment tasks should be worthwhile learning experiences in them-
selves.

Assessment with these as prime design goals will, through B and C above,
support rather than undermine teaching and learning high-quality mathematics.
This is well recognized in some countries, where assessmentis used to actively
encourage improvement. In the U.S., a start has been made. The Mathematics
Assessment Resource Service [Crust 2001–2004; NSMRE 1998]have devel-
oped better-balanced assessment, as have some states. However, cost consider-
ations too often lead school systems to choose cheap multiple-choice tests that
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assess only a few aspects of mathematical performance, and that drive teaching
and learning in the wrong directions. This is despite the fact that only a tiny
fraction of educational spending is allocated to assessment.

It follows from B and C that choosing the range of task types touse in an
assessment system together with lists of mathematical content is a rather clear
way to determine a curriculum. (Lists of mathematics content alone, while
essential, do not answer many key questions about the aspects of mathemati-
cal performance that are valued, so do not specify the types and frequency of
assessment tasks. For example: What should be the balance ofshort items,
15-minute tasks, or three-week projects?) This issue and its relationship with a
more analytic approach, are discussed in a later section.

Some common myths about assessment are worth noting:

Myth 1: Tests are precision instruments.They are not, as test-producers’ fine
print usually makes clear. Testing and then retesting the same student on par-
allel forms, “equated” to the same standard, can produce significantly different
scores. This is ignored by most test-buyers who know that measurement un-
certainty is not politically palatable, when life-changing decisions are made on
the basis of test scores. The drive for precision leads to narrow assessment
objectives and simplistic tests. (This line of reasoning suggests that we should
test by measuring each student’s height, a measure which is well-correlated with
mathematics performance for students from ages 5 to 18.)

Myth 2: Each test should cover all the important mathematicsin a unit or grade.
It does not and cannot, even when the range of mathematics is narrowed to short
content-focussed items; testing is always a sampling exercise. This does not
matter as long as the samples in different tests range acrossall the goals —
but some object: “We taught (or learned) X but it wasn’t tested this time.”
(Such sampling is accepted as the inevitable norm in other subjects. History
examinations, year-by-year, ask for essays on different aspects of the history
curriculum; final examinations in literature or poetry courses do not necessarily
expect students to write about every book or poem studied.)

Myth 3: “We don’t test that but, of course, all good teachers teach it.” If so,
then there are few “good teachers;” the rest take very seriously the measures
by which society chooses to judge them and, for their own and their students’
futures, concentrate on these.

Myth 4: Testing takes too much time.This is true if testing is a distraction from
the curriculum. It need not be, if the assessment tasks are also good learning
(i.e., curriculum) tasks. Feedback is important in every system; in a later section
we shall look at the cost-effectiveness of assessment time.
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What Should We Care About?

We now take a further look at this core question. Is “Will these students be
prepared for our traditional undergraduate mathematics courses?” still a sound
criterion for judging K–12 curricula and assessment? What other criteria should
be considered? (Personal viewpoint: the traditional imitative algebra–calculus
route was a fine professional preparation for my career as a theoretical physi-
cist2; however, for most people it is not well-matched to their future needs —
except for its “gatekeeping” function which could be met in various ways. (Latin
was required for entrance to both Oxford and Cambridge Universities when I
was an undergraduate. All now agree that this is an inappropriate gatekeeper.)

In seeking a principled approach to goal-setting, it is useful to start with a look
at societal goals — what capabilities people want kids to have when they leave
school. Interviews with widely differing groups produce surprisingly consis-
tent answers, and their priorities are not well-served by the current mathematics
curriculum. I have space to discuss just a few key aspects.

Automata or thinkers? Which are we trying to develop? Society’s demands
are changing, and will continue to change, decade by decade —thus students
need to develop flexibility and adaptability in using skillsand concepts, and in
self-propelled learning of new ones. American economic prosperity is said to de-
pend on developingthinkersat all levels of technical skill, whether homebuilder,
construction-site worker, research scientist, or engineer. Equally, it is absurd
economics to spend the approximately $10,000 required for aK–12 mathematics
education to develop the skills of machines that can be purchased for between
$5 and $200.Thinkersappear to have more fun than drones, which is important
for motivation. So, how do we assessthinkers? We give them problems that
make themthink, strategically, tactically, and technically — as will manyof the
problems student will face after they leave K–12 education,where mathematics
can help.

Mathematics: Inward- or outward-looking? Mathematicians and many good
mathematics teachers are primarily interested in mathematics itself. For them,
its many uses in the world outside mathematics are a spin-off. Mathematics and
mathematics teaching are two admirable and important professions — but their
practitioners are a tiny minority of the population, in school and in society as a
whole. They rightly have great influence on the design of the K–12 mathematics
curriculum, but should the design priorities be theirs, or more outward-looking
ones that reflect society’s goals? The large amount of curriculum time devoted

2Not surprising, since it was essentially designed by Isaac Newton — and not much changed in content
since.
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to mathematics arose historically because of its utility inthe outside world.3

That priority, which now implies that the mathematics curriculum must change,
should continue to be respected.

Mathematical Literacy

Mathematical literacyis an increasing focus of attention, internationally (see,
e.g., [PISA 2003]) and in the U.S. (see, e.g., [Steen 2002]).The Organisation for
Economic Co-operation and Development Programme of International Student
Assessment, seeks to assess mathematical literacy, complementing the mathe-
matically inward-looking student assessments of the ThirdInternational Math-
ematics and Science Study (see de Lange’s chapter for more discussion of the
design of these tests). Various terms4 are used for mathematical literacy. In the
U.S. “quantitative literacy” is common; in the U.K., where the term “numeracy”
was coined [Crowther 1959], it is now being called “functional mathematics”
[UK 2004b]. Each of these terms has an inherent ambiguity. Isit literacy about
or in usingmathematics? Is it functionalityinsideor with mathematics? The
latter is the focus:

Functional mathematicsis mathematics that mostnonspecialist adults will
benefit from using in their everyday livesto better understand and operate
in the world they live in, and to make better decisions.

Secondary school mathematics is not functional mathematics for most people.
(If you doubt this, ask nonspecialist adults, such as English teachers or admin-
istrators, when they last used some mathematics they first learned in secondary
school.) Functional mathematics is distinct from the “specialized mathematics”
important for various professions.

The current U.S. curriculum is justifiable as specialized mathematics for some
professions. However, as a gatekeeper subject, which is a key part of everyone’s
education, should mathematics education not have a large component of func-
tional mathematics that every educated adult will actuallyuse?

I shall outline what is needed to make the present U.S. high school mathe-
matics functional, the core of which is the teaching of modeling. Modeling also
reinforces the learning of mathematical concepts and skills (see [Burkhardt and
Muller 2006]. This is not a zero-sum game.

3The argument that mathematics is an important part of human culture is clearly also valid — but does it
justify more curriculum time than, say, music? Music currently gives much more satisfaction to more people.

4Each of these terms each has an inherent ambiguity. Is it literacy about or usingmathematics? Is it
functionalityinsideor with mathematics? It is the latter that is the focus of those concerned with mathematical
literacy.
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Modeling

Skill in modeling is a key component in “doing mathematics.”The figure
below shows a standard outline of its key phases; see, for example, [Burkhardt
1981].5 In current mathematics assessment and teaching, only the SOLVE phase
gets much attention. (The situation is sometimes better in statistics curricula.)

problem
situation

COMMU-
NICATE
solution

FORMULATE
mathematical

model

EVALUATE
Is solution
adequate?

INTERPRET
solution

in problem
situation

SOLVE
mathematical

model

yesno

Key phases in modeling

Mathematical modeling is not an everyday term in school mathematics; in-
deed, it is often thought of as an advanced and sophisticatedprocess, used only
by professionals. That is far from the truth; we do it whenever we mathematize
a problem. The following tasks illustrate this:

� Joe buys a six-pack of coke for $5.00 to share among his friends. How much
should he charge for each bottle?

� If it takes 40 minutes to bake 5 potatoes in the oven, how long will it take to
bake one potato?

� If King Henry the Eighth had 6 wives, how many wives did King Henry the
Fourth have?

The difference between these tasks is in the appropriate choice of mathematical
model. The first is a standard proportion task. However,all the tasks in most
units on proportion need proportional models, so skill in choosing an appropri-
ate model is not developed. In the second task, the answer depends on the type
of oven (what remains constant: for traditional constant temperature ovens the
answer is about 40 minutes, and for constant power microwaveovens there is
rough proportionality, so an approximate answer would be40�5 D 8 minutes).

5The phases of pure mathematical problem solving are similar.
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For each problem, as usual, more refined models could also be discussed. For
the third task, if students laugh they pass.

Mathematics teachers sometimes argue that choosing the model is “not math-
ematics” — but it is essential for mathematics to be functional. Of course, the
situations to be modeled in mathematics classrooms should not involve specialist
knowledge of another school subject but should be, as in the examples above,
situations that children encounter or know about from everyday life. Teachers of
English reap great benefits from making instruction relevant to students’ lives;
where mathematics teachers have done the same (see, e.g., [Swan et al. 1987–
1989]), motivation is improved, particularly but not only with weaker students.
Relationships in their classrooms are also transformed.6 Mathematics acquires
human interest. Curriculum design is not a zero-sum game; the use of “math
time” in this way enhances students’ learning of mathematics itself [Burkhardt
and Muller 2006].

What Content Should We Include?

There will always be diverse views on content. This is not theplace to enter
into a detailed discussion of what mathematical topics should have what pri-
ority (for such a discussion see, [NRC 2001], for instance).Here I shall only
discuss a few aspects of U.S. curricula that, from an international perspective,
seem questionable. Is a year of Euclidean geometry a reasonable, cost-effective
use of every high school graduate’s limited time with mathematics, or should
Euclidean geometry be considered specialized mathematics— an extra option
for enthusiasts? Should not the algorithmic and functionalaspects of algebra,
including its computer implementation in spreadsheets andprogramming, now
play a more central role in high school algebra? (Mathematics everywhere is
now done with computer technology — except in the school classroom.) Should
calculus be a mainstream college course, to the exclusion ofdiscrete mathemat-
ics and its many applications, or one for those whose future lies in the physical
sciences and traditional engineering?

In the U.K., policy changes [UK 2004a; 2004b] have addressedsuch issues by
introducing “double mathematics” from age 14, with a challenging functional
“mathematics for life” course for all and additional specialized courses with
a science and engineering, or business and information technology focus. It
will be interesting to see how this develops. (The U.K. curriculum already has
separate English language and English literature courses.All students take the
first; about half take both.)

6“The Three R’s for education in the 21st century are Rigor, Relevance and Relationships,” Bill Gates,
U.S. National Governor’s Conference, 2005. Functional mathematics develops them all.
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A Framework for Balance

Mathematical Content Dimension
� Mathematical contentwill include some of:

Number and quantityincluding: concepts and representation; computation; estima-
tion and measurement; number theory and general number properties.

Algebra, patterns and functionincluding: patterns and generalization; functional
relationships (including ratio and proportion); graphical and tabular representation;
symbolic representation; forming and solving relationships.

Geometry, shape, and spaceincluding: shape, properties of shapes, relationships;
spatial representation, visualization and construction;location and movement; trans-
formation and symmetry; trigonometry.

Handling data, statistics. and probabilityincluding: collecting, representing, inter-
preting data; probability models — experimental and theoretical; simulation.

Other mathematicsincluding: discrete mathematics, including combinatorics; un-
derpinnings of calculus; mathematical structures.

Mathematical Process Dimension
� Phasesof problem solving, reasoning and communication will include, as broad

categories, some or all of:

Modeling and formulating;
Transforming and manipulating;
Inferring and drawing conclusions;
Checking and evaluating;
Reporting.

Task Type Dimensions
� Task type: open investigation; nonroutine problem; design; plan; evaluation and

recommendation; review and critique; re-presentation of information; technical ex-
ercise; definition of concepts.

� Nonroutineness: context; mathematical aspects or results; mathematical connections.
� Openness: open end with open questions; open middle.
� Type of goal: pure mathematics; illustrative application of the mathematics; applied

power over the practical situation.
� Reasoning length:expected time for the longest section of the task. (An indication

of the amount of scaffolding).

Circumstances of Performance Dimensions
� Task length: short tasks (5–15 minutes), long tasks (15–60 minutes), extended tasks

(several days to several weeks).
� Modes of presentation: written; oral; video; computer.
� Modes of working: individual; group; mixed.
� Modes of response: written; built; spoken; programmed; performed.
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Dimensions of Mathematical Performance

Whenever curriculum and assessment choices are to be made, discussion
should focus on performance as a whole, not just the range of mathematical
topics to be included. To support such an analysis, the Mathematics Assess-
ment Resource Service has developed aFramework for Balance, summarized
on the facing page. TheFrameworkincludes, as well as the familiarcontent
dimension, thephases of problem solvingfrom the figure on page 86, and var-
ious others including one holistic dimension,task type. This multidimensional
analytic framework (it is dense, and takes time to absorb) isa way to examine
how the major dimensions of performance are balanced in a particular test or
array of assessment tasks. In most current tests, balance issought only across
the content dimension, and the only task type is short exercises that require only
transforming and manipulating (the SOLVE phase).7 The ability to formulate a
problem is trivialized, and interpretation, critical evaluation and communication
of results and reasoning are rarely assessed.

Task types. I will briefly illustrate the holistic dimension of the otherwise an-
alytic Framework for Balancewith tasks of each type. I chose to illustrate the
holistic dimension because it brings out something of the variety of challenges
that mathematics education and assessment should aim to sample (as in litera-
ture, science, social studies, music, etc.). Tasks are mostly given here in their
core form rather in a form engineered for any specific grade. The tasks are
designed to enableall students who have worked hard in a good program to
make significant progress, while offering challenges to themost able. This can
be achieved in various ways by including “open tasks” or “exponential ramps”
to greater generality, complexity, and/or abstraction. Westart the examples with
two planning tasks— the second being more open, giving less specific guidance.

Ice Cream Van

You are considering driving an ice cream van during the summer break.
Your friend, who knows everything, says that “it’s easy money.” You make
a few enquiries and find that the van costs $100 per week to lease. Typical
selling data is that one can sell an average of 30 ice creams per hour, each
costing 50 cents to make and each selling for $1.50.

How hard will you have to work in order to make this “easy money”?

7The common argument that “You need a solid basis of mathematics before you can do these things” is
simply untrue. However small or large your base of concepts and skills, you can deploy it in solving worth-
while problems — as young children regularly show, using counting. Deferring these practices to graduate
school excludes most people, and stultifies everyone’s natural abilities in real problem solving. It is also
an equity issue — such deferred gratification increases the achievement gap, probably because middle class
homes have time and resources to encourage their children topersist in school activities that lack any obvious
relevance to their current lives.
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Timing Traffic Lights

A new set of traffic lights has been installed at an intersection formed by
the crossing of two roads. Left turns arenot permitted at this intersection.
For how long should each road be shown the green light?

Treilibs et al. [1980] analyzed responses to these tasks from 120 very high-
achieving grade 11 mathematics students and found thatnoneused algebra for
the modeling involved. (The students used numbers and graphs, more or less
successfully.) These students all had five years of successful experience with
algebra but, with no education in real problem solving, their algebra was non-
functional. Modeling skill is important and, as many studies (see Swan et al.
1987–1989, for example) have shown, teachable.

The next task [Crust 2001–2004] is typical of a genre ofnonroutine problems
in pure mathematics, often based on pattern generalization, in which students
develop more powerful solutions as they mature.

Square Chocolate Boxes

Chris designs chocolate boxes.
The boxes are in different sizes.
The chocolates are always arranged in the same kind ofsquarepattern.
The shaded ovals are dark chocolates and the white ovals are milk chocolates.

Box 1 Box 2 Box 3

Chris makes a table to show how many chocolates are in each size of box.

Box number 1 2 3 4 5

number of dark chocolates 4 9

number of milk chocolates 1 4

total number of chocolates 5 13
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� Fill in the missing numbers in Chris’s table.
� How many chocolates are there in Box 9? Show how you figured it out.
� Write a rule or formula for finding the total number of chocolates in Box

n. Explain how you got your rule.
� The total number of chocolates in a box is 265. What is the box number?

Show your calculations.

The scaffolding shown for this task fits the current range of performance in good
middle school classrooms. One would hope that, as problem solving strategies
and tactics become more central to the curriculum, part 3 alone would be a suffi-
cient prompt. The following is anevaluate and recommendtask — an important
type in life decisions, where mathematics can play a major role.

Who’s For The Long Jump?

Our school has to select a girl for the long jump at the regional champion-
ship. Three girls are in contention. We have a school jump-off. These are
their results, in meters.

Elsa Ilse Olga

3.25 3.55 3.67
3.95 3.88 3.78
4.28 3.61 3.92
2.95 3.97 3.62
3.66 3.75 3.85
3.81 3.59 3.73

Hans says “Olga has the longest average. She should go to the champion-
ship.” Do you think Hans is right? Explain your reasoning.

This task provides great opportunities for discussing the merits and weaknesses
of alternative measures. Ironically, in the TIMSS video lesson (from Germany,
but it could be in the U.S.) on which this task is based, the students calculate the
mean length of jump for each girl and use that for selection. Olga wins, despite
having shorter longest jumps than either of the others. The teacher moves on
without comment! A splendid opportunity is missed — to discuss other mea-
sures, their strengths and weaknesses, the effect of a “no jump,” or any other
situational factors. (Bob Beamon — who barely qualified for the Olympics after
two fouls in qualifying jumps — would have been excluded. He set a world
record.) Is this good mathematics? I have found research mathematicians who
defend it as “not wrong.” What does this divorce from realitydo for students’
image of mathematics?
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Magazine Cover [Crust 2001–2004] is are-presentation of informationtask
(for grade 3, but adults find it nontrivial). It assesses geometry and mathematical
communication.

Magazine Cover

This pattern is to appear on the front cover of the school magazine.

You need to call the magazine editor and describe the patternas clearly as
possible in words so that she can draw it.
Write down what you will say on the phone.

The rubric for Magazine Cover illustrates how complex taskscan, with some
scorer training, bereliably assessed — as is the practice in most countries and,
in the United States, in some of the problems in the Advanced Placement exams.

Magazine Cover: Grade 3 Points

Core element of performance: describe a geometric pattern

Based on these, credit for specific aspects of performance should
be assigned as follows:
A circle. 1

A triangle. 1

All corners of triangle on (circumference of) circle. 1

Triangle is equilateral. Accept: All sides are equal/the same. 1

Triangle is standing on one corner. Accept: Upside/going down. 1

Describes measurements of circle/triangle. 1

Describes color: black/white. 1

Allow 1 point for each feature up to a maximum of 6 points.

Total possible points: 6
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For our last example, we return to a type that, perhaps, best represents “doing”
both mathematics and science —investigation. Consecutive Addends (page 79)
is an open investigation in pure mathematics. Equally, there are many important
situations in everyday life that merit such investigation.One important area,
where many children’s quality of life is being curtailed by their parents’ (and
society’s) innumeracy, is tackled in:

Being Realistic About Risk

Use the Web to find the chance of death each year for an average person
of the same age and gender as

� you
� your parents
� your grandparents

List some of the things that people fear (or dream of), such asbeing

� struck by lightning
� murdered
� abducted by a stranger
� killed in a road accident
� a winner of the lottery

For each, find out the proportion of people it happens to each year.

Compare real and perceived risks and, using this information, write advice
to parents on taking appropriate care of children.

There will need to be more emphasis onopen investigations, pure and real-
world, if the quality of mathematics education, and students’ independent rea-
soning, is to improve.

The tasks above, and theFramework for Balance, provide the basis for a
response to our question, “What mathematics values should assessment reflect?”
Taken together, they give a glimpse of the diversity of assessment tasks that
enable students to show how well they can do mathematics — “making music”
not just “practicing scales.” There is a place in theFramework for Balancefor
technical exercisestoo — but even these don’t have to be boring:

Square Peg

Lee has heard of an old English proverb used when someone is doing a
job that they are not suited to. The proverb describes the person as “fitting
like a square peg in a round hole.”
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Lee wondered how much space was left if a square peg was fitted into a
round hole.
Lee constructed a square that just fit inside a circle of radius 10 cm.

45
ı

10 cm

� What percentage of the area of the circle is filled by the area of the
square?

Explain your work and show all your calculations.

Another part of this task asks for the same calculation for a circle inside a 10 cm
square hole.

Published examples of tasks of these various types include:a set of annual
tests for grades 3 through 10 [Crust 2001–2004]; theNew Standardsexam-
related tasks [NSMRE 1998], and classroom materials for assessment and teach-
ing (Balanced Assessment for the Mathematics Curriculum: see, for instance,
[BAMC 1999; 2000]). TheWorld Class Tests[MARS 2002–2004] provides a
more challenging range of tasks, aimed at high-achieving students.

Improving quality in assessment design

Designing and developing good assessment tasks, which havemeaning to
students and demand mathematics that is important for them,is among the most
difficult educational design challenges. The tasks must enable studentsto show
what they know, understand and can dowithout the help from teachers that
classroom activities can provide. Task design is usually subject to too-tight
constraints of time and form. Starting with a good mathematics problem is
necessary, but far from sufficient. As in all design:Good design principles are
not enough; the details matter.8

8The difference between Mozart, Salieri, and the many other composers of that time we have never heard
of was not in the principles (the rules of melody, harmony, counterpoint, and musical form). Students deserve
tasks with some imaginative flair, in mathematics as well as in music and literature.
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Thus it is important to recognize high quality in assessmenttasks, and to
identify and encourage the designers who regularly produceoutstanding work.
The latter are few and hard to find. [Swan 1986] contains some well-known
benchmark examples.

The emphasis in this chapter on the taskexemplarsis no accident, but it is
unconventional. However, without them the analytic discussion lacks meaning.
In a misguided attempt to present assessment as more “scientific” and accurate
than it is, most tests are designed to assess elements in a model of the domain,
which is often just a list of topics. All models of performance in mathematics
are weak, usually taking no account of how the different elements interact.

Our experience with assessment design shows that it is much better to start
with the tasks. Get excellent task designers to design and develop a wide range
of good mathematics tasks, classify them with a domain model, then fill any
major gaps needed to balance each test.

Interestingly and usefully, when people look at specific tasks, sharply differ-
ing views about mathematics education tend to soften into broad agreement as
to whether a task is worthwhile, and the consensus is, “Yeah,our kids should
be able to do that.”

Having looked in some depth at tasks that measure mathematical perfor-
mance, we now have the basis for answering the other questions with which
I began. I shall be brief and simplistic.

Who is assessment for? What is it for?Governments, and some parents, want it
for accountability. Universities and employers for selection. They all want just
one reliable number. Teachers and students, on the other hand, can use a lot of
rich and detailed feedback to help diagnose strengths and weaknesses, and to
guide further instruction. Some parents are interested in that too.

When should it happen to achieve these goals?For teachers and students in
the classroom, day-by-day — but, to do this well,9 they need much better tools.
For accountability, tests should be as rare as society will tolerate; the idea that
frequent testing will drive more improvement is flawed. Goodtests, that will
drive improvements in curriculum, need only happen every few years.

What will the consequences be?Because effective support for better teaching
is complex and costs money while pressure through test scores is simple and
cheap, test-score-based sanctions seem destined to get more frequent and more
severe. The consequences for mathematics education dependon the quality
of the tests. Traditional tests will continue to narrow the focus of teaching,
so learning, which relies on building rich connections for each new element,
will suffer. Balanced assessment will, with some support for teachers, drive

9The classroomassessment for learningmovement is relatively new. There is much to do.
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continuing improvement. Currently, with the air full of unfunded mandates, the
chances of improved large-scale assessment do not look good.

Cost and cost-effectiveness

Finally: What will assessment cost, and would this expenditure be an appro-
priate use of resources?

Feedback is crucial for any complex interactive system. Systems that work
well typically spend approximately 10% turnover on its “instrumentation.” In
U.S. education, total expenditure is approximately $10,000 per student-year,
which suggests that approximately $1,000 per student-yearshould be spent on
assessment across all subjects. Most of spending should be for assessment for
learning in the classroom,10 with about 10%, or approximately $100 a year, on
summative assessment linked to outside standards. This is an order of magnitude
more than at present but still only 1% of expenditure. Increases will be opposed
on all sides for different reasons: budget shortage for administrators and dislike
of assessment for teachers. Yet while “a dollar a student” remains the norm for
mathematics assessment, students’ education will be blighted by the influence of
narrow tests. If, for reasons of economy and simplicity, youjudge the decathlon
by running only the 100 meters, you may expect a distortion ofthe training
program!

References

[BAMC 1999] Balanced Assessment for the Mathematics Curriculum: Middle grades
Package 1, Grade 6–9, White Plains, NY: Dale Seymour Publications, 1999.

[BAMC 2000] Balanced Assessment for the Mathematics Curriculum: High school
Package 2, Grade 9–11, White Plains, NY: Dale Seymour Publications, 2000.

[Burkhardt 1981] H. Burkhardt,The real world and mathematics, Glasgow: Blackie,
1981.

[Burkhardt and Muller 2006] H. Burkhardt and E. Muller, “Applications and modelling
for mathematics”, inApplications and modelling in mathematics education, edited
by W. Blum et al., New ICMI Studies Series10, New York: Springer, 2006.

[Crowther 1959] Central Advisory Council for Education,15–18: A report of the
Central Advisory Council for Education[Crowther Report], London: Her Majesty’s
Stationery Office, 1959.

[Crust 2001–2004] R. Crust and the Mathematics Assessment Resource Service Team,
Balanced assessment in mathematics[annual tests for grades 3 through 10], Mon-
terey, CA: CTB/McGraw-Hill, 2001–2004.

10Professor, on seeing abysmal student scores a third of the way through his analysis course: “We’ve
gone so far in the semester, I don’t know what to do except to goon — even though it’s hopeless.”



6. PROFICIENCY: HOW CAN IT BE MEASURED? 97

[MARS 2002–2004] Mathematics Assessment Resource Service, World class tests of
problem solving in mathematics, science, and technology, London: Nelson, 2002–
2004. Shell Centre Team: D. Pead, M. Swan, R. Crust, J. Ridgway, & H. Burkhardt
for the Qualifications and Curriculum Authority.

[NRC 2001] National Research Council (Mathematics Learning Study: Center for
Education, Division of Behavioral and Social Sciences and Education),Adding it
up: Helping children learn mathematics, edited by J. Kilpatrick et al., Washington,
DC: National Academy Press, 2001.

[NSMRE 1998] New standards mathematics reference examination, San Antonio, TX:
Harcourt Assessment, 1998.

[PISA 2003] Programme for International Student Assessment, The PISA 2003 assess-
ment framework: Mathematics, reading, science and problemsolving knowledge
and skills, Paris: Organisation for Economic Co-operation and Development, 2003.
Available at http://www.pisa.oecd.org/dataoecd/46/14/33694881.pdf. Retrieved 13
Jan 2007.

[Steen 2002] L. A. Steen (editor),Mathematics and democracy: The case for quan-
titative literacy, Washington, DC: National Council on Education and the Disci-
plines, 2002. Available at http://www.maa.org/ql/mathanddemocracy.html. Retrieved
28 Feb 2006.

[Swan 1986] M. Swan and the Shell Centre Team,The language of functions and
graphs, Manchester, UK: Joint Matriculation Board, 1986. Reissued 2000, Notting-
ham, U.K: Shell Centre Publications.

[Swan et al. 1987–1989] M. Swan, J. Gillespie, B. Binns, H. Burkhardt, and the Shell
Centre Team,Numeracy through problem solving[Curriculum modules], Notting-
ham, UK: Shell Centre Publications, 1987–1989. Reissued 2000, Harlow, UK: Long-
man.

[Treilibs et al. 1980] V. Treilibs, H. Burkhardt, and B. Low,Formulation processes in
mathematical modelling, Nottingham: Shell Centre Publications, 1980.

[UK 2004a] Department for Education and Skills: Post-14 Mathematics Inquiry Steer-
ing Group,Making mathematics count, London: Her Majesty’s Stationery Office,
2004. Available at http://www.mathsinquiry.org.uk/report/index.html. Retrieved 28
Feb 2006.

[UK 2004b] Department for Education and Skills: Working Group on 14–19 Reform,
14–19 curriculum and qualifications reform, London: Her Majesty’s Stationery
Office, 2004. Available at http://publications.teachernet.gov.uk/eOrderingDownload/
DfE-0976-2004.pdf. Retrieved 1 Mar 2006.


