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Quantitative symplectic geometry
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Dedicated to Anatole Katok on the occasion of his sixtieth birthday

A symplectic manifold(M, w) is a smooth manifold/ endowed with a
nondegenerate and closedorm . By Darboux’s Theorem such a manifold
looks locally like an open set in sonfi&” =~ C” with the standard symplectic
form

n
wo = Y _dxj ndy;. (0-1)
j=1

and so symplectic manifolds have no local invariants. Téis sharp contrast to
Riemannian manifolds, for which the Riemannian metric ddivarious curva-
ture invariants. Symplectic manifolds do however admit ynglobal numerical

invariants, and prominent among them are the so-called ptip capacities.
Symplectic capacities were introduced in 1990 by |. EkekamdiH. Hofer [18;

19] (although the first capacity was in fact constructed byGromov [39]).
Since then, lots of new capacities have been defined [16; 943 48; 58;

59; 88; 97] and they were further studied in [1; 2; 8; 9; 25; 28; 30; 34;

36; 37; 40; 41; 42; 45; 47; 49; 51; 55; 56; 57; 60; 61; 62; 63; B5; 72;
73; 86; 87; 89; 90; 92; 95; 96]. Surveys on symplectic capeire [44; 49;
54; 66; 95]. Different capacities are defined in differenysjaand so relations
between capacities often lead to surprising relations éetvdifferent aspects
of symplectic geometry and Hamiltonian dynamics. Thislissttated in Sec-
tion 2, where we discuss some examples of symplectic cagmeind describe
a few consequences of their existence. In Section 3 we preseattempt to
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better understand the space of all symplectic capacitiesgiscuss some further
general properties of symplectic capacities. In Sectiowel describe several
new relations between certain symplectic capacities guseilds and polydiscs.
Throughout the discussion we mention many open problems.

As illustrated below, many of the quantitative aspects afighectic geometry
can be formulated in terms of symplectic capacities. Of sedhere are other
numerical invariants of symplectic manifolds which coulglibcluded in a dis-
cussion of quantitative symplectic geometry, such as tveriants derived from
Hofer’s bi-invariant metric on the group of Hamiltonianfdibmorphisms, [43;
79; 82], or Gromov—Witten invariants. Their relation to gylettic capacities is
not well understood, and we will not discuss them here.

We start out with a brief description of some relations of pigutic geometry
to neighboring fields.

1. Symplectic geometry and its neighbors

Symplectic geometry is a rather new and vigorously devatppiathematical
discipline. The “symplectic explosion” is described in [2Examples of sym-
plectic manifolds are open subsets (82", wy), the torusR*”/Z>" endowed
with the induced symplectic form, surfaces equipped witlaea form, Kahler
manifolds like complex projective spa¢#” endowed with their Khler form,
and cotangent bundles with their canonical symplectic fdvtany more exam-
ples are obtained by taking products and through more ed&boonstructions,
such as the symplectic blow-up operation. A diffeomorphison a symplectic
manifold (M, w) is calledsymplecticor asymplectomorphisnif ¢*w = .

A fascinating feature of symplectic geometry is that it kshe crossroad of
many other mathematical disciplines. In this section wetinara few examples
of such interactions.

Hamiltonian dynamics. Symplectic geometry originated in Hamiltonian dy-
namics, which originated in celestial mechanics. A timpatelent Hamiltonian
function on a symplectic manifoldV/, w) is a smooth functiodd: Rx M — R.
Sincew is nondegenerate, the equation

w(Xpg.-) = dH(-)

defines a time-dependent smooth vector figjg on M . Under suitable assump-
tion on H, this vector field generates a family of diffeomorphisqzrg called
the Hamiltonian flowof H. As is easy to see, each maf is symplectic. A
Hamiltonian diffeomorphisnp on M is a diffeomorphism of the forrrp}q.
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Symplectic geometry is the geometry underlying Hamiltangystems. It
turns out that this geometric approach to Hamiltonian sgstes very fruitful.
Explicit examples are discussed in Section 2 below.

Volume geometry. A volume form£2 on a manifoldM is a top-dimensional
nowhere vanishing differential form, and a diffeomorphignof M is volume
preservingif ¢*§2 = §2. Ergodic theory studies the properties of volume pre-
serving mappings. Its findings apply to symplectic mappiriggleed, since a
symplectic formw is nondegenerate)” is a volume form, which is preserved
under symplectomorphisms. In dimensba symplectic form is just a volume
form, so that a symplectic mapping is just a volume presgrvirapping. In
dimensions2n > 4, however, symplectic mappings are much more special.
A geometric example for this is Gromov's Nonsqueezing Theoistated in
Section 2.2 and a dynamical example is the (partly solvedpld conjecture
stating that Hamiltonian diffeomorphisms of closed symfitemanifolds have

at least as many fixed points as smooth functions have ¢ipiéats. For another
link between ergodic theory and symplectic geometry seg [81

Contact geometry. Contact geometry originated in geometrical optics. A con-
tact manifold (P, «) is a (2n — 1)-dimensional manifoldP endowed with a
1-form « such thawx A (da)”~! is a volume form onP. The vector fieldY on

P defined byda (X, -) =0 anda(X) = 1 generates the so-called Reeb flow. The
restriction of a time-independent Hamiltonian system teaeargy surface can
sometimes be realized as the Reeb flow on a contact manifaldta€ mani-
folds also arise naturally as boundaries of symplectic folds. One can study

a contact manifold P, «) by symplectic means by looking at its symplectization
(P xR.d(e'a)), see e.g. [46; 22].

Algebraic geometry. A special class of symplectic manifolds aratder mani-
folds. Such manifolds (and, more generally, complex méaéfocan be studied
by looking at holomorphic curves in them. M. Gromov [39] olveel that some

of the tools used in the &hler context can be adapted for the study of symplectic
manifolds. One part of his pioneering work has grown into tweanow called
Gromov—Witten theory, see e.g. [70] for an introduction.

Many other technigues and constructions from complex gégmaee useful
in symplectic geometry. For example, there is a sympleaisien of blowing-
up, which is intimately related to the symplectic packinglgem, see [64; 68]
and 4.1.2 below. Another example is Donaldson’s conswuatf symplectic
submanifolds [17]. Conversely, symplectic techniques/@douseful for study-
ing problems in algebraic geometry such as Nagata's cang¢b; 6; 68] and
degenerations of algebraic varieties [7].
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Riemannian and spectral geometry.Recall that the differentiable structure of
a smooth manifoldi/ gives rise to a canonical symplectic form on its cotangent
bundle7* M . Giving a Riemannian metrig on M is equivalent to prescribing
its unit cosphere bundlS;fM C T*M, and the restriction of the canonical
1-form from T* M gives S* M the structure of a contact manifold. The Reeb
flow on S;,‘M is the geodesic flow (free particle motion).

In a somewhat different direction, each symplectic fesran some manifold
M distinguishes the class of Riemannian metrics which areeofdrmaw(J-, -)
for some almost complex structude

These (and other) connections between symplectic and Ri@arageometry
are by no means completely explored, and we believe thetdl iglenty to be
discovered here. Here are some examples of known reswtsweRiemannian
and symplectic aspects of geometry.

Lagrangian submanifoldsA middle-dimensional submanifold of (M, w)
is calledLagrangianif w vanishes orf'L.

(i) Volume. Endow complex projective spadeP” with the usual Kahler
metric and the usual &ler form. The volume of submanifolds is taken with
respect to this Riemannian metric. According to a result we@al-Kleiner—
Oh, the standar@®P” in CP” has minimal volume among all its Hamiltonian
deformations [74]. A partial result for the Clifford torus€P” can be found in
[38]. The torusS! x S c $2 x S? formed by the equators is also volume min-
imizing among its Hamiltonian deformations, [50].Afis a closed Lagrangian
submanifold of(RZ”, a)o), there exists according to [98] a constahtiepending
on L such that

vol (¢g (L)) = C  for all Hamiltonian deformations aof.. (1-1)

(i) Mean curvature.The mean curvature form of a Lagrangian submanifold
L in a Kahler—Einstein manifold can be expressed through symplegariants
of L, see [15].

The first eigenvalue of the Laplaciarsymplectic methods can be used to
estimate the first eigenvalue of the Laplace operator ontifume for certain
Riemannian manifolds [80].

Short billiard trajectories.Consider a bounded domalin C R” with smooth
boundary. There exists a periodic billiard trajectoryl@rof length/ with

" < Cyvol(U) (1-2)

whereC,, is an explicit constant depending only ensee [98; 30].
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2. Examples of symplectic capacities

In this section we give the formal definition of symplectigaaities, and
discuss a number of examples along with sample applications

2.1. Definition. Denote bySymp" the category of all symplectic manifolds of
dimension2n, with symplectic embeddings as morphismssyinplectic cate-
gory is a subcategor§ of Symp" such that M, w) € € implies (M, aw) € €
forall a > 0.

CONVENTION. We will use the symbeb- to denote symplectic embeddings and
— to denote morphisms in the categ&ywhich may be more restrictive).

Let B%"(r?) be the open ball of radiusin R?” and Z2"(r?) = B?(r?) x R?"*~2
the open cylinder (the reason for this notation will becomjesaient below). Un-
less stated otherwise, open subset®df are always equipped with the canon-
ical symplectic formw, = 27=1 dy; A dxj. We will suppress the dimension
2n when it is clear from the context and abbreviate

B := B>"(1), Z = Z>"(1).

Now let€ c Symp" be a symplectic category containing the baland the
cylinder Z. A symplectic capacityon € is a covariant functor from € to the
category([0, oc], <) (with a < b as morphisms) satisfying

(MONOTONICITY): ¢(M,w) <c(M', o) if there exists a morphistV, w) —
(M, 0);

(CONFORMALITY): ¢(M,aw) =ac(M,w) for a > 0;

(NONTRIVIALITY ): 0 < ¢(B) andc(Z) < oo.

Note that the (Monotonicity) axiom just states the funetity of ¢c. A sym-
plectic capacity is said to beormalizedif

(NORMALIZATION): ¢(B) = 1.

As a frequent example we will use the §g7" of open subsets iR?". We make

it into a symplectic category by identifyind/, «?w,) with the symplectomor-
phic manifold(aU, wy) for U ¢ R?" anda > 0. We agree that the morphisms
in this category shall be symplectic embeddings inducedjlbipal symplec-
tomorphisms ofR?”. With this identification, the (Conformality) axiom above
takes the form

(CONFORMALITY): ¢(aU) = a?c(U) for U € Op", a > 0.
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2.2. Gromov radius. In view of Darboux’s Theorem one can associate with
each symplectic manifol@), w) the numerical invariant

cp(M,®) := sup{a > 0| B*"(a) = (M, w)}

called theGromov radiusof (M, w), [39]. It measures the symplectic size
of (M, w) in a geometric way, and is reminiscent of the injectivity ivesdof

a Riemannian manifold. Note that it clearly satisfies the ifbtonicity) and
(Conformality) axioms for a symplectic capacity. It is eliwabvious that
CB(B) =1.

If M is 2-dimensional and connected, theag (M, w) = fMa), i.e.cpis
proportional to the volume oM, see [89]. The following theorem from Gro-
mov’s seminal paper [39] implies that in higher dimensidms Gromov radius
is an invariant very different from the volume.

NONSQUEEZINGTHEOREM (GROMOV, 1985).The cylinderZ € Symp" sat-
isfiescp(Z) = 1.

Therefore the Gromov radius is a normalized symplectic ciagpan Sympg".
Gromov originally obtained this result by studying projestof moduli spaces
of pseudo-holomorphic curves in symplectic manifolds.

It is important to realize that the existence of at least omgacity ¢ with
¢(B) = ¢(Z) alsoimpliesthe Nonsqueezing Theorem. We will see below
that each of the other important techniques in symplectamrgery (such as
variational methods and the global theory of generatingtions) gave rise
to the construction of such a capacity, and hence an indepémioof of this
fundamental result.

It was noted in [18] that the following result, originallyteablished by Eliash-
berg and by Gromov using different methods, is also an easgetuence of
the existence of a symplectic capacity.

THEOREM (ELIASHBERG, GROMOV). The group of symplectomorphisms of a
symplectic manifoldM, ) is closed for the compact-ope&n’-topology in the
group of all diffeomorphisms o7 .

2.3. Symplectic capacities via Hamiltonian systemsThe next four examples
of symplectic capacities are constructed via Hamiltonigtesns. A crucial role
in the definition or the construction of these capacitieslaggd by the action
functional of classical mechanics. For simplicity, we amsuthat(M, w) =
(R?", wg). Given a Hamiltonian functiod: S x R?” — R which is periodic
in the time-variable € S! = R/Z and which generates a global flqufgi, the
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action functional on the loop spac&® (S, R?") is defined as

1
Ag(y) = /ydx—](; H(t,y(t))dt. (2-1)
y

Its critical points are exactly the-periodic orbits oﬁqu. Since the action func-
tional is neither bounded from above nor from below, critigaints are saddle
points. In his pioneering work [83; 84], P. Rabinowitz desd special minimax

principles adapted to the hyperbolic structure of the adiimctional to find such

critical points. We give a heuristic argument why this workensider the space
of loops

E = H'/X (SR = {zeL2 (s':m2")

IR <oo}

kez

wherez = 3", o, 2% 23 2, € R?", is the Fourier series of and J is the
standard complex structure Bf” >~ C”. The spaceE is a Hilbert space with
inner product

(z.w) = (z0.wo) + 2w >_ k| {zk. wi).

kez

and there is an orthogonal splitting= E- @ E° @ ET,z =274+ 204z T,
into the spaces of € E having nonzero Fourier coefficients € R?” only for
k <0,k =0,k > 0. The action functionat{zr: C*®(S!, R*") — R extends to
E as

1
A ) = (31417 =3 1=70%) - /0 H(.z@)dr.  (2-2)

Notice now the hyperbolic structure of the first tesfg(x), and that the second
term is of lower order. Some of the critical point&) = const of sy should
thus persist forH # 0.

2.3.1. Ekeland—Hofer capacities.The first construction of symplectic capac-
ities via Hamiltonian systems was carried out by Ekeland ldoter [18; 19].
To give the heuristics, we consider a bounded dondaic R2” with smooth
boundarydU. A closed characteristioz on dU is an embedded circle ial/
tangent to the characteristic line bundle

Py = {(x,£) € TAU | wo(E, 1) =0 forall ne TxdU}.

If 0U is represented as a regular energy suri{ace R2" | H(x) = cons} ofa
smooth functionH on R?”, then the Hamiltonian vector fieldz restricted to
oU is a section offy;, and so the traces of the periodic orbitsXy§ onoU are
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the closed characteristics 88/. Theactionof a closed characteristic on U
is defined asi(y) = ‘ f,y dx). The set

YWU) =4tkdAly)|k=1,2,...; yisaclosed characteristic &/}

is called theaction spectrunof U. Now one would like to associate withi
suitable elements of (U). Without further assumptions dn, however, the set
Y (U) may be empty (see [32; 33; 35]), and there is no obvious waghteae
(Monotonicity). To salvage this naive idea, Ekeland andddaonsidered for
each bounded open subgebf R?” the spacér (U ) of time-independent Hamil-
tonian functionsH: R?” — [0, co) satisfying

e H =0 on some open neighbourhood G and
e H(z) =alz|? for |z| large, where: > 7, a & Nr.

Notice that the circleS! acts on the Hilbert spac& by time-shift x () —
x(t+0)for§ e S =R/Z. The special form off € %(U) guarantees that for
eachk € N the equivariant minimax value

cH k= inf {SU?&@H(V) | € C E is S'-equivariant and ing) > k}
ye

is a critical value of the action functional (2—-2). Here, (&ddenotes a suitable
Fadell-Rabinowitz index [26; 19] of the intersectiom S of £ with the unit
sphereS™ C E*. Thek-th Ekeland-Hofer capacity;" on the symplectic
categoryOp" is now defined as

cEU) = infleg i | He F(U))
if U C R?" is bounded and as
ceH(U) == sup{cf"(V) | V C U bounded

in general. It turns out that these numbers are indeed sytippleapacities.
Moreover, they realize the naive idea of picking out sugadiements ofZ (U)
for manyU: A bounded open subsét of R?” is said to be ofestricted con-
tact type if its boundarydU is smooth and if there exists a vector fialcon
R2" which is transverse t8U and whose Lie derivative satisfids,wg = wy.
Examples are bounded star-shaped domains with smooth agund

PROPOSITION(EKELAND AND HOFER, 1990). If U is of restricted contact
type, thenFH(U) € X(U) for eachk € N.
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Since the index appearing in the definitioncgf 5 is monotone, it is immedi-
ate from the definition that?H < ¢f" < ¢EH <. form an increasing sequence.
Their values on the ball and cylinder are

k+n—1
<fWB)=[—i§——]n and  EN(Z) =k,

where[x] denotes the largest integer x. Hence the existence ef" gives
an independent proof of Gromov’s Nonsqueezing TheorermdJsie capacity
cEH, Ekeland and Hofer [19] also proved the following nonsqiegzesult.

THEOREM (EKELAND AND HOFER, 1990).The cube
P=B*(1)x...xB*(l)cC"

can be symplectically embedded into the Bal'(+2) if and only ifr? > n.

Other illustrations of the use of Ekeland—Hofer capacitiestudying embed-
ding problems for ellipsoids and polydiscs appear in Sactio

2.3.2. Hofer-Zehnder capacity.(See [48; 49].) Given a symplectic manifold
(M, w) we consider the class(M ) of simple Hamiltonian functiong/: M —
[0, 0) characterized by the following properties:

e H = 0 near the (possibly empty) boundary &f;
e The critical values off are0 and maxH.

Such a function is calleddmissibleif the flow go}l of H has no nonconstant
periodic orbits with period” < 1.
The Hofer—Zehnder capacityz on Symp" is defined as

cuz(M) = sup{maxH | H € $(M) is admissiblé

It measures the symplectic sizeMdf in a dynamical way. Easily constructed ex-
amples yield the inequalityyz(B) > 7. In [48; 49], Hofer and Zehnder applied
a minimax technique to the action functional (2—-2) to shost thz(Z) < x, so

cHz(B) = cnz(Z2) = =,

providing another independent proof of the Nonsqueezirgpiém. Moreover,
for every symplectic manifoldAM, w) the inequalityrcg (M) < cyz(M) holds.

The importance of understanding the Hofer-Zehnder capaoitnes from
the following result proved in [48; 49].

THEOREM (HOFER AND ZEHNDER, 1990). Let H: (M, w) — R be a proper
autonomous Hamiltonian. Hyz(M) < oo, then for almost every € H(M)
the energy leve ! (¢) carries a periodic orbit.
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Variants of the Hofer—Zehnder capacity which can be useeteat periodic
orbits in a prescribed homotopy class where consideredangs].

2.3.3. Displacement energy(See [43; 55].) Next, let us measure the sym-
plectic size of a subset by looking at how much energy is ree¢aleisplace it
from itself. Fix a symplectic manifoldM, w). Given a compactly supported
Hamiltonian H:[0, 1] x M — R, set

1
IH| = / (sup H(t,x)— inf H(z,x)) dt.
0 \xeM xeM
Theenergy of a compactly supported Hamiltonian diffeomorphignis

E(p) = inf{| H|| | ¢ = o} |
Thedisplacement energyf a subsetd of M is now defined as
e(A, M) := inf{E(p) |p(A)NA =0}
if 4 is compact and as
e(A, M) := sup{e(K, M) | K C Ais compact

for a general subset of M.

Now consider the special cag¥l, w) = (R?", wg). Simple explicit examples
showe(Z, R?") < x. In [43], H. Hofer designed a minimax principle for the
action functional (2—2) to show that B, R?") > x, so that

e(B,R*) = e¢(Z,R*") = 7.

It follows thate (-, R2") is a symplectic capacity on the symplectic categopy”
of open subsets d&?".
One important feature of the displacement energy is theuizléy

chz(U) <e(U, M) (2-3)

holding for open subsets of many (and possibly all) symmlentnifolds, in-

cluding (R?”, wy). Indeed, this inequality and the Hofer—Zehnder Theorem

imply existence of periodic orbits on almost every energyeae of any Hamil-

tonian with support irU provided only thatU is displaceable il . The proof

of this inequality uses the spectral capacities introdusegiection 2.3.4 below.
As an application, consider a closed Lagrangian submahifaf (R2”, w,).

Viterbo [98] used an elementary geometric constructiorhtmsthat

e (L,[RRZ”) < G, (VOI(L))2/™
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for an explicit constan€,,. By a result of Chekanov [12}, (L, R*") > 0. Since
e (pu (L), R*") = e (L, R?") for every Hamiltonian diffeomorphism of, we
obtain Viterbo’s inequality (1-1).

2.3.4. Spectral capacities(See [31; 45; 49; 75; 76; 77; 86; 97].) For simplicity,
we assume agaitM, w) = (R?",w,). Denote by# the space of compactly
supported Hamiltonian function&: S! x R>” — R. An action selectoro
selects for eaclti! € ¥ the actioro (H) = A g (y) of a “topologically visible” 1-
periodic orbity of ¢, in a suitable way. Suchction selectorsvere constructed
by Viterbo [97], who applied minimax to generating funcspand by Hofer and
Zehnder [45; 49], who applied minimax directly to the actfanctional (2-2).
An outline of their constructions can be found in [30].

Given an action selectar for (R2", wy), one defines thepectral capacity
¢ on the symplectic catego@p’" by

¢o(U) := sup{o(H) | H is supported inS' x U}.

It follows from the defining properties of an action seledtwt given here) that
cqz(U) < ¢x(U) for any spectral capacity,. Elementary considerations also
imply ¢, (U) < e(U,R?"), see [30; 45; 49; 97]. In this way one in particular
obtains the important inequality (2-3) fof = R?".

Here is another application of action selectors:

THEOREM (VITERBO, 1992). Every nonidentical compactly supported Ham-
iltonian diffeomorphism O(Rzn,a)o) has infinitely many nontrivial periodic
points.

Moreover, the existence of an action selector is an impoitagredient in
Viterbo’s proof of the estimate (1-2) for billiard trajecies.

Using the Floer homology ofM, w) filtered by the action functional, an
action selector can be constructed for many (and concgivaball) symplectic
manifolds(M, w), [31; 75; 76; 77; 86]. This existence result implies the gger
capacity inequality (2—3) for arbitrary open subs&tof such (M, w), which
has many applications [87].

2.4. Lagrangian capacity. In [16] a capacity is defined on the category of
2n-dimensional symplectic manifold9/, w) with 1 (M) = 7, (M) = 0 (with
symplectic embeddings as morphisms) as follows. Miremal symplectic area
of a Lagrangian submanifolfl C M is

Amin(L) := inf{[ a)‘o € 1y (M, L),/ ® >0} € [0, 00,
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ThelLagrangian capacityof (M, w) is defined as
cr.(M,w) := sup{Amin(L) | L C M is an embedded Lagrangian tojus
Its values on the ball and cylinder are
cr.(B) =n/n, cr.(Z2)=m.

As the cubeP = B?(1) x ... x B?(1) contains the standard Clifford torus
T" c C", and is contained in the cylindé, it follows thatcy (P) = =. To-
gether withcy (B) = x/n this gives an alternative proof of the nonsqueezing
result of Ekeland and Hofer mentioned in Section 2.3.1. &laee also applica-
tions of the Lagrangian capacity to Arnold’s chord conjeetand to Lagrangian
(non)embedding results into uniruled symplectic mansdItb].

3. General properties and relations between symplectic cagities

In this section we study general properties of and relatiostsveen sym-
plectic capacities. We begin by introducing some more iwtatDefine the
ellipsoidsandpolydiscs

|21 ]2 |zn|?
E(a):=E(al,...,an):z{ze(@" —+...+ <1}

P(a):= P(ay,...,an) := Bz(al) X ...x B*(ay)

for 0 < a; <... <a, < oco. Note that in this notation the ball, cube and
cylinder areB = E(1,...,1), P = P(1,...,1)andZ = E(1,00,...,0) =
P(l,00,...,00).

BesidesSymp" andOp?", two symplectic categories that will frequently play
a role below are

Ell’": the category of ellipsoids ift2”, with symplectic embeddings induced
by global symplectomorphisms &”" as morphisms,

Pol’": the category of polydiscs iR?”, with symplectic embeddings induced
by global symplectomorphisms &”" as morphisms.

3.1. Generalized symplectic capacitiesFrom the point of view of this work,

it is convenient to have a more flexible notion of symplectpacities, whose
axioms were originally designed to explicitly exclude sumlariants as the vol-
ume. We thus definegeneralized symplectic capacity a symplectic category
% as a covariant functar from € to the category[0, co], <) satisfying only the

(Monotonicity) and (Conformality) axioms of Section 2.1.
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Now examples such as tivelume capacitpn Symp" are included into the
discussion. It is defined as
vol(M, a)))l/”

cvol(M, w) = ( vol(B)

where vo(M, w) := [;, 0" /n! is the symplectic volume. For > 2 we have
cvol(B) = 1 andeyo(Z) = 00, SOy is a normalized generalized capacity but
not a capacity. Many more examples appear below.

3.2. Embedding capacities. Let 6 be a symplectic category. Every object
(X, £2) of 6 induces two generalized symplectic capacitieséon

cx, o) (M, w) = sup{a > 0| (X, a82) > (M, )},
XD (M ) = infla>0] (M, 0)—> (X,a2)},

Here the supremum and infimum over the empty set are $etitaloo, respec-
tively. Note that

-1
cx,2) (M. w) = (M) (X, 2)). (3-1)
EXAMPLE 1. Suppose thatX, a2) — (X, £2) for somea > 1. Then
C(X’_Q)(X, 2)=00 and C(X"Q)(X, ) =0,
o]

M _ Jooif (X,B882)— (M,w) for somef > 0,
caM0) =10 (v 80) s (M.w) forno f > 0,
(X.9) ) 0 if (M, 0)— (X,B$2) for somep > 0,
M, 0) = {oo it (M, w)— (X,B82) fornof >0,

The following fact follows directly from the definitions.

FACT 1. Suppose that there exists no morphi&kh «2) — (X, £2) for any
a > 1. Thencx.o) (X, 2) = XD (X, 2) = 1, and for every generalized
capacityc with 0 < ¢(X, £2) < oo,

M,
<WM0) XD (yrw)  forall (M) e

c(X,Q)(M,a)) = C(X ,Q) =

In other words¢(x. ) (resp.cX+$)) is the minimal (resp. maximal) generalized
capacityc withc(X, £2) = 1.
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Important examples o8ymp" arise from the ballB = B2"(1) and cylinder
Z = Z*"(1). By Gromov's Nonsqueezing Theorem and volume reasons we
have forn > 2:

cg(Z)=1, ZB)=1, BZ)=00, ¢z(B)=0.
In particular, for every normalized symplectic capacity
cg(M,w) <c(M,») <c(Z)c? (M,0)  forall (M,w») e Symp". (3-2)

Recall that the capacityp is the Gromov radius defined in Section 2.2. The
capacities'g andc? are not comparable dp?": Example 3 below shows that
for everyk € N there is a bounded star-shaped donigjnof R?” such that

cg(Up) <27 and % (Uy) = nk?,

see also [42].
We now turn to the question which capacities can be repredeasembed-
ding capacities:(x, @) or ¢X>9).

EXAMPLE 2. Consider the subcategofyc Op?” of connected open sets. Then
every generalized capacityon ¢ can be represented as the capacit*?) of
embeddings into a (possibly uncountable) uniah £2) of objects in®.

For this, just defing.X, £2) as the disjoint union of allX,, £2,) in the category
@ with c(X,, 2) =0o0rc(X,, £2) = 1.

PROBLEM 1. Which (generalized) capacities can be representecd(&s?) for
a connectedgsymplectic manifold X, £2)?

PrROBLEM 2. Which (generalized) capacities can be represented as thaoiiy
c(x,) of embeddingérom a symplectic manifoldX, £2)?

ExAMPLE 3. Embedding capacities give rise to some curious genethtiapac-
ities. For example, consider the capacity of embeddings into the symplectic
manifoldY := LIy B2 (k2). It only takes value8 andoo, with ¢¥ (M, w) =0

if and only if (M, w) embeds symplectically int&'; see Example 1. 1M is
connected, valM, w) = oo implies ¢¥ (M, w) = co. On the other hand, for
every e > 0 there exists an open subsgt c R?”, diffeomorphic to a ball,
with vol(U) < ¢ andc¢¥ (U) = oo. To see this, consider fdr € N an open
neighbourhoodj, of volume < 27 ¥¢ of the linear cone over the Lagrangian
torus 9B%(k?) x ... x dB?(k?). The Lagrangian capacity df} clearly sat-
isfiescy (Uy) > mk?. The open sel := U,y Uy satisfies vall) < & and
¢r.(U) = oo, henceU does not embed symplectically into any ball. By appro-
priate choice of thd/, we can arrange thdt is diffeomorphic to a ball; see
[86, Proposition A.3]. O
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Special embedding spacesGiven an arbitrary pair of symplectic manifolds
(X, 2) and (M, w), it is a difficult problem to determine or even estimate
cx.2) (M, ) andcX?) (M, w). We thus consider two special cases.

1. Embeddings of skinny ellipsoidsssumegM, w) is an ellipsoidE (a, . . .,a, 1)
with 0 < a < 1, and(X, £2) is connected and has finite volume. Upper bounds
for the function

XDy = XD (E@,....a,1), ac(01],

are obtained from symplectic embedding results of elligsdnto (X, §2), and
lower bounds are obtained from computing other (genemizapacities and
using Fact 1. In particular, the volume capacity yields

n
(e(X,.Q)(a)) N vol(B)
a1 ~ vol(X, Q)
The only known general symplectic embedding results fapsdids are ob-

tained via multiple symplectic folding. The following rdsis part of Theorem 3
in [86], which in our setting reads

FACT 2. Assume thatX, §2) is a connecte@nr-dimensional symplectic mani-
fold of finite volume. Then

im (¥ D@)"  vol(B)

a—0 an—1 ~ vol(X, )
For arestricted class of symplectic manifolds, Fact 2 casobeewhat improved.
The following result is part of Theorem 6.25 of [86].

FACT 3. Assume thatX is a bounded domain ifR?", w,) with piecewise
smooth boundary or thatX, £2) is a compact connectetk:-dimensional sym-
plectic manifold. Ifn < 3, there exists a constarf > 0 depending only on
(X, £2) such that

(¢*D@)’ vol(B)
<
a1 ~ vol(X, £2) (1—Cal'/")

These results have their analogues for polydiB¢s, . .., a, 1). The analogue
of Fact 3 is known in all dimensions.

1
forall a < o

2. Packing capacitiesGiven an objec( X, £2) of ¢ andk € N, we denote by
[ [ (X, £2) the disjoint union ofc copies of(X, £2) and define

cx,2:0)M,w) = SUD{O[ >0

[[(X.a22) = (a1, a))}.
k
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If vol (X, £2) is finite, we see as in Fact 1 that

1
Cvol (]_[k (X, -Q))

We say that M, w) admits &ull k-packingby (X, §2) if equality holds in (3-3).
Forky,...,kn € N a full k; ---kn-packing of B2"(1) by E (%/%) is
given in [94]. E. Ophstein recently showed in [78] that foesvclosed sym-
plectic manifold(M, w) with [w] € H?(M ; Q) there exists a full -packing by
some ellipsoid. Fulk-packings by balls and obstructions to filpackings by
balls are studied in [3; 4; 39; 53; 63; 68; 86; 94].

Assume that also voM, ) is finite. Studying the capacity x,o.x)(M, »)
is equivalent to studying thegacking number

vol ([ (X, x£2))
vol (M, w)

cx,2:0M,0) = vl (M, ). (3-3)

Px,2:) (M, w) = sup
o

where the supremum is taken over allfor which [ [, (X,«$2) symplecti-
cally embeds intd M, w). Clearly, pix,0:.k)(M,w) < 1, and equality holds
if and only if equality holds in (3—3). Results in [68] togethwith the above-
mentioned full packings of a ball by ellipsoids from [94] ilpp

FACT 4. If X is an ellipsoid or a polydisc, then
Pxk)(M,0) > 1 ask — oo

for every symplectic manifoldV/, ) of finite volume.

Note that if the conclusion of Fact 4 holds f&r andY’, then it also holds for
X xY.

PROBLEM 3. For which bounded convex subséfsof R?” is the conclusion of
Fact4 true?

In [68] and [3; 4], the packing numbeys y x)(M ) are computed fox” = B4
and M = B* or CP2. Moreover, the following fact is shown in [3; 4]:

FACT 5. If X = B*, then for every closed connected sympledtimanifold
(M, w) with [w] € H*(M ; Q) there existsg( (M, w) such that

Pxj) (M w)=1 forall k > ko(M, w).

PROBLEM 4. For which bounded convex subséfsf R2” and which connected
symplectic manifoldéM, w) of finite volume is the conclusion of Fagtrue?
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3.3. Operations on capacities.We say that a functiory": [0, co]* — [0, co] is
homogeneousindmonotoneif

flaxy,...,axy) =af(x1,...,Xn) forall a > 0,
Fx1,coooxiy oo xn) < (X1, 0 Vis o Xn) for x; < y;.

If f is homogeneous and monotone and.. ., ¢, are generalized capacities,
then f(cq,...,cy) is again a generalized capacity. If in addition

0< f(,...,1)<o0

andcy, ..., ¢, are capacities, thefi(cy, .. ., ¢y) is a capacity. Compositions and
pointwise limits of homogeneous monotone functions arenalgamogeneous
and monotone. Examples include nay, ..., x,), min(xy,...,x,), and the
weighted (arithmetic, geometric, harmonic) means

o 1

AMX1 4 AnXp, XM xhe —_
p M 4k
My otk

withAq,..., A, >0, A1 +...+ A, = L.

There is also a natural notion of convergence of capacitigs.say that a
sequence, of generalized capacities &hconverges pointwise® a generalized
capacityc if ¢,(M,w) — ¢(M, w) for every(M, w) € 6.

These operations yield lots of dependencies between ¢egsaeind it is natu-
ral to look for generating systems. In a very general forns, ¢an be formulated
as follows.

PROBLEM 5. For a given symplectic categorg, find a minimal generating
systeni for the (generalized) symplectic capacities@nThis means that every
(generalized) symplectic capacity &his the pointwise limit of homogeneous
monotone functions of elements4nand no proper subcollection & has this
property.

This problem is already open f&il?" andPol’". One may also ask for generat-
ing systems allowing fewer operations, e.g. only max and onionly positive
linear combinations. We will formulate more specific versiof this problem
below. The following simple fact illustrates the use of aggems on capacities.

FACT 6. Let¢ be a symplectic category containimg (resp. P). Then every
generalized capacity on %6 with ¢(B) # 0 (resp.c(P) # 0) is the pointwise
limit of capacities.

Indeed, ifc(B) # 0, thenc is the pointwise limit a& — oo of the capacities

¢ = min(c,kcp),
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and likewise withc(P), cp instead ofc(B), cp.

EXAMPLE 4. (i) The generalized capacity= 0 on Op?" is not a pointwise
limit of capacities, and so the assumptidiB) # 0 in Fact 6 cannot be omitted.

(i) The assumptior(B) # 0 is not always necessary:
(a) Define a generalized capacityn Op?" by

{0 if vol(U) < oo,
() = {cB(U) it vol (U) = oc.

Thenc(B) = 0 andce(Z) = 1, andc is the pointwise limit of the capacities
Cyp = max(c, %CB).
(b) Define a generalized capacityon Op”" by

[0 ifep(U) < oo,
() = {oo if cg(U) = oo.

Thenc(B) = 0 = ¢(Z) andc(R?") = oo, ande = limy_, 7.¢B-
(i) We do not know whether the generalized capadaifg, on Op?" is the
pointwise limit of capacities.

PROBLEM 6. Given a symplectic categof¢ containing B or P and Z, char-
acterize the generalized capacities which are pointwiset$ of capacities.

3.4. Continuity. There are several notions of continuity for capacities oenop
subsets ofR?”, see [1; 18]. For example, consides@aooth family of hyper-
surfaces(S;)_s<r<¢ iN R?", each bounding a compact subset with intefigr
Recall thatS is said to be ofestricted contact typéf there exists a vector field
v onR?” which is transverse t§, and whose Lie derivative satisfisw = wy.
Let ¢ be a capacity oOp?. As the flow ofv is conformally symplectic, the
(Conformality) axiom implies the following (see [49, p. 116

FACT 7. If Sy is of restricted contact type, the functiom> ¢(U;) is Lipschitz
continuous ab.

Fact 7 fails without the hypothesis of restricted contapety For example, if
Sy possesses no closed characteristic (stglexist by [32; 33; 35]), then by
Theorem 3 in Section 4.2 of [49] the functien— cyz(U;) is not Lipschitz
continuous ab. V. Ginzburg [34] presents an example of a smooth family of
hypersurfacegsS;) (albeit not inR?") for which the functiort — cpz(U;) is

not smoother tham/2-Holder continuous. These considerations lead to

PROBLEM 7. Are capacities continuous on all smooth families of dombmm-
ded by smooth hypersurfaces?
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3.5. Convex setsHere we restrict to the subcategd@pn" c Op?" of convex
open subsets d&>”, with embeddings induced by global symplectomorphisms
of R2" as morphisms. Recall that a subset R?” is star-shapedf U contains

a point p such that for every € U the straight line betweep andq belongs

to U. In particular, convex domains are star-shaped.

FACT 8. (Extension after Restriction Principle [18)ssume thap: U — R?"
is a symplectic embedding of a bounded star-shaped dothairiR?”. Then for
any compact subset of U there exists a symplectomorphigbnof R?” such
thath|K = (le.

This principle continues to hold for some, but not all, syegtic embeddings
of unbounded star-shaped domains, see [86]. We say thataaityap defined
on a symplectic subcategory 6fp*" has theexhaustion propertif

¢(U) = sup{¢(V) |V C U is bounded. (3-4)

The capacities introduced in Section 2 all have this prgpéxit the capacity

in Example 3 does not. By Fact 8, all statements about cagmdefined on

a subcategory ofonv" and having the exhaustion property remain true if we
allow all symplectic embeddings (not just those coming frglobal symplec-
tomorphisms oft?*) as morphisms.

FACT 9. Let U and V be objects in Corf?. Then there exists a morphism
aU — V for everya € (0,1) if and only ifc(U) < ¢(V) for all generalized
capacitiesc on Coné".

Indeed, the necessity of the condition is obvious, and tlecEincy follows

by observing thattU — U for all « € (0,1) and1 < cy(U) < cy (V). What

happens fox = 1 is hot well understood, see Section 3.6 for related disonssi
The next example illustrates that the conclusion of Factw@rang without the
convexity assumption.

EXAMPLE 5. Consider the open annulds= B(4)\ B(1) in R2. If 3 <a? <1,
thena A cannot be embedded int by a global symplectomorphism. Indeed,
volume considerations show that any potential such glopapsectomorphism
would have to mapd homotopically nontrivially into itself. This would force
the image of the batk B(1) to cover all of B(1), which is impossible for volume
reasons. O

Assume now that is a normalized symplectic capacity @n". Using John’s
ellipsoid, Viterbo [98] noticed that there is a constahtdepending only om
such that

¢Z((U) < Cycp(U) forall U e Cons"



20 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK
and so, in view of (3-2),

cg(U) < ¢(U) < Cpe(Z)cg(U)  forall U e Cons™ (3-5)
In fact, C, < (2n)? andC, < 2n on centrally symmetric convex sets.

PrROBLEM 8. What is the optimal value of the constan appearing in 8—-5?
In particular, isC, = 1?

Note thatC, = 1 would imply uniqueness of capacities satisfyingB) =
¢(Z) =1 on Con¥". In view of Gromov’s Nonsqueezing Theoreifi, = 1
on Ell°" andPol". More generally, this equality holds for all convex Reirdtar
domains [42]. In particular, for these special classes afer sets

mcg = clEH = cpz = e(-,R*") = ¢

Z-
3.6. Recognition. One may ask how complete the information provided by all
symplectic capacities is. Consider two obje€d, w) and (X, £2) of a sym-

plectic categorys.

QUESTION 1. Assume (M, w) < c(X, £2) for all generalized symplectic ca-
pacitiesc on%6. Does it follow that(M, w) — (X, £2) or even that( M, w) —
(X, 2)?

QUESTION 2. Assume:(M,w) = c(X, £2) for all generalized symplectic ca-
pacitiesc on 6. Does it follow that(M, w) is symplectomorphic toX, £2) or
even thatl M, w) =~ (X, £2) in the category¢?

Note that if (M, xw) — (M, w) for all « € (0, 1) then, under the assumptions
of Question 1, the argument leading to Fact 9 yi€ldi§ cw) — (X, £2) for all
ae(0,1).

EXAMPLE 6. (i) SetU = B2(1) andV = B?(1)\{0}. For eachr < 1 there exists
a symplectomorphism dk? with ¢ (¢U) C V, so that monotonicity and con-
formality imply ¢(U) = ¢(V) for all generalized capacitieson Op?. Clearly,
U< V,butU - V,andU andV are not symplectomorphic.

(i) SetU = B2(1) and letV = B2(1)\{(x, y) | x >0, y =0} be the slit disc. As
is well-known,U and V' are symplectomorphic. Fact 8 impliesU) = ¢(V)
for all generalized capacities on Op?, but clearlyU — V. In dimensions
2n > 4 there are bounded convex sétsand IV with smooth boundary which
are symplectomorphic whil& -~ V', see [24].

(iii) Let U andV be ellipsoids irEll?". The answer to Question 1 is unknown
even forEll*. ForU = E(1,4) andV = B*(2) we havec(U) < ¢(V) for all
generalized capacities that can presently be computed idunknown whether
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U<V, (see 4.1.2 below). By Fact 10 below the answer to Questisriyes”
onEII?",

(iv) Let U and V be polydiscs inPo". Again, the answer to Question 1 is
unknown even foPol*. However, in this dimension the Gromov radius together
with the volume capacity determine a polydisc, so that thesvan to Question 2

is “yes” on Pol*. O

PROBLEM 9. Are two polydiscs in dimensiatn > 6 with equal generalized
symplectic capacities symplectomorphic?

To conclude this section, we mention a specific example ith(U) = ¢(V)
for all known (but possibly not for all) generalized symglecapacities.

ExAMPLE 7. Consider the subsets
U=EQ,6)x E(3,3,6) and V = E(2,6,6)x E(3,3)

of R1%. Thenc(U) = ¢(V) whenever (B) = ¢(Z) by the Nonsqueezing Theo-
rem, the volumes agree, anE*(U) = c,fH(V) for all & by the product formula
(3-8). It is unknown whethetV < V or V < U or U — V. Symplectic
homology as constructed in [28; 93] does not help in thesblenas because a
computation based on [29] shows that all symplectic hometogf U and V
agree.

3.7. Hamiltonian representability. Consider a bounded domalihcC R?” with
smooth boundary of restricted contact type (see Sectiath foBthe definition).
As in 2.3.1 we consider the action spectrum

YU) = {k|fyydx’ |k=1,2,...; yis aclosed characteristic @U}

of U. This set is nowhere denselih(compare [49, Section 5.2]), and it is easy
to see that¥’'(U) is closed and) ¢ X' (U). For many capacities constructed
via Hamiltonian systems, such as Ekeland—Hofer capaaiﬁésand spectral
capacitiex,, one hag(U) € X (U), see [19; 41]. Moreover,

ciz(U) = cEH(U) = min(Z(U)) if U is convex. (3-6)
One might therefore be tempted to ask

QUESTION 3. Is it true thatnc(U) € X (U) for every normalized symplectic
capacityc on Op" and every domair/ with boundary of restricted contact
type?

The following example due to D. Hermann [42] shows that thenaer to Ques-
tion 3 is “no”.
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EXAMPLE 8. Choose any/ with boundary of restricted contact type such that
cg(U) < cZ(U). (3-7)

Examples are bounded star-shaped domé&inaith smooth boundary which
contain the Lagrangian torus! x ... x S! but have small volume: According
to [91], cZ(U) > 1, while cg(U) is as small as we like. Now notice that for
eachr €0, 1],
¢t = (1—t)cp+ e

is a normalized symplectic capacity @p”". By (3-7), the interval

{er(U) |1 €[0,1]} = [cp(U), cZ (V)]
has positive measure and hence cannot lie in the nowhere dets(U). ¢

D. Hermann also pointed out that the argument in Example 8tiey with
(3—-6) implies that the questionC;, = 1?” posed in Problem 8 is equivalent to
Question 3 for convex sets.

3.8. Products. Consider a family of symplectic categorié$” in all dimensions
2n such that

(M,w) € 6>, (N,0)e%* — (M xN,w»®o) c¢2m+n,
We say that a collectioan: H;OZI%Z” — [0, oo] of generalized capacities has the
product propertyif
¢c(MxXN,w®o) = min{c(M,w),c(N,o)}

for all (M, w) € €*™, (N,o) € 6?". If R?> € 4% andc(R?) = oo, the product
property implies thestability property

c(M xR, 0 ®wy) = c(M,w)
for all (M, w) € €>™.

EXAMPLE 9. (i) Let X'y be a closed surface of gengsendowed with an area
form w. Then

2, =l 2 f =O,
CB(ngRz,weawo): {CB( g0) =70 (Tg) if g

00 if g>1.

While the result forg = 0 follows from Gromov’s Nonsqueezing Theorem, the
result forg > 1 belongs to Polterovich [69, Exercise 12.4] and Jiang [5#]c&
cp is the smallest normalized symplectic capacitySymp", we find that no
collectionc of symplectic capacities defined on the famijlj;, Symp" with

c (Eg, a)) < oo for someg > 1 has the product or stability property.
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(i) On the family of polydiscs] [32, Pol", the Gromov radius, the Lagran-
gian capacity and the unnormalized Ekeland—Hofer cam@iﬁ“ all have the
product property (see Section 4.2). The volume capacitpistable.

(i) Let U € Op?™and V e Op?" have smooth boundary of restricted contact
type (see Section 3.4 for the definition). The formula

EH(U X V) = minyj—s (c,.EH (U) + M (V)), (3-8)

in which we setc(')EH = (), was conjectured by Floer and Hofer [95] and has
been proved by Chekanov [13] as an application of his egaivaiFloer ho-
mology. Consider the collection of selt§ x ... x U;, where eactU; € Op*"
has smooth boundary of restricted contact type, Erfc_il n; = n. We denote
by RCT?" the corresponding category with symplectic embeddingsdad by
global symplectomorphisms d%2” as morphisms. Ii; are vector fields on
R2" with Ly, wg = wo, then Ly, 4+ 4+4,wo = wo 0N R?". Elements oRCT>"
can therefore be exhausted by elementfRGT2" with smooth boundary of
restricted contact type. This and the exhaustion prop8¢ts)(of thec,'fH shows
that (3-8) holds for alU e RCT?™andV € RCT?", implying in particular that
Ekeland—Hofer capacities are stableRGT:= [ [52, RCT*". Moreover, (3-8)
yields that

g (U x V) < min(cgH(U), g (V)),
and it shows '[hatlEH on RCT has the product property. Using (3-8) together
with an induction over the number of factors aafd* (E(ay,...,an)) <2a; we
also see thaztzEH has the product property on products of ellipsoids. Far 3,
however, the Ekeland—Hofer capaciti@?* on RCT do not have the product
property. As an example, fdf = B*(4) andV = E(3, 8) we have

U XV)=7<8=min(57(U), (V).
PROBLEM 10. Characterize the collections of (generalized) capacitiegpoly-
discs that have the product (resp. stability) property.

Next consider a collection of generalized capacities on open subsets".
In general, it will not be stable. However, we can stabilize obtain stable
generalized capacitiest: |l op*" — [0, 00,
¢t (U) :=limsupc(U xR*), ¢~ (U) :=liminf ¢(U x R*).
k—00 k—o00
Notice thatc(U) = ¢t (U) = ¢=(U) forall U € [ [32, Op?" if and only if ¢ is
stable. Ifc consists of capacities and there exist constants > 0 such that

a< c(32"(1)) < c(zz"a)) <A forallneN,
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thenc® are collections of capacities. Thus there exist plentyatflstcapacities
on Op?". However, we have

PROBLEM 11. Decide stability of specific collections of capacities om&8 or
Op?", e.g.: Gromov radius, Ekeland—Hofer capacity, Lagrangiapacity, and
the embedding capacity of the unit cube.

PROBLEM 12. Does there exist a collection of capacities pfj>., Conv" or
[ 152, Op?" with the product property?

3.9. Higher order capacities?Following [44], we briefly discuss the concept of
higher order capacities. Consider a symplectic cate@arySymp" containing
Ell°" and fixd € {1,...,n}. A symplecticd-capacity on € is a generalized
capacity satisfying
(d-NONTRIVIALITY ): 0 < ¢(B) and

c(BZd(l) X Rz(”_d)) < 00,

C(B2(d—1)(1) x RZ(n—d-H)) = oo,

Ford = 1 we recover the definition of a symplectic capacity, anddet n the
volume capacity: is a symplectio:-capacity.

PrRoBLEM 13. Does there exist a symplecticcapacity on a symplectic cate-
gory€ containing EIf" for somed € {2,....,n—1}?

Problem 13 orSymp" is equivalent to the following symplectic embedding
problem.

PROBLEM 14. Does there exist a symplectic embedding
BZ(d—l)(l) % RZ(I’I—d-I—l) SN BZd(R) % R2(i’l—d) (3_9)
forsomeR < oc andd € {2,...,n—1}?

Indeed, the existence of such an embedding would imply thatymplecticd -
capacity can exist o8ymp". Conversely, if no such embedding exists, then the
embedding capacityZ2< into Z,; = B24(1) x R2("=4) would be an example
of a d-capacity onSymp". The Ekeland—Hofer capacitzgéH shows thatR

is at least2 if a symplectic embedding (3-9) exists. The known symptecti
embedding techniques are not designed to effectively wsanbounded factor
of the target space in (3-9). E.g., multiple symplectic ifedgdonly shows that
there exists a functiorf’: [1, oo) — R with f(a) < +/2a + 2 such that for each

a > 1 there exists a symplectic embedding

B%(1) x B*(a) x R* < B*(f(a)) x R?
of the formg x id,, see [86, Section 4.3.2].
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4. Ellipsoids and polydiscs

In this section we investigate generalized capacities ercttiegories of el-
lipsoidsElI?" and polydiscd®ol’" in more detail. All (generalized) capacities
in this section are defined on some symplectic subcategoBp8t containing
at least one of the above categories and are assumed to leestthustion
property (3—4).

4.1. Ellipsoids.

4.1.1. Arbitrary dimension. We first describe the values of the capacities
introduced in Section 2 on ellipsoids.
The values of the Gromov radiug on ellipsoids are

CB(E(al,...,a,,)) =min{ay,...,an}.

More generally, monotonicity implies that this formula tieffor all symplectic
capacitiesc on Op?" with ¢(B) = ¢(Z) = 1 and hence also fof-cF, Lz,
%e(., R2") andc?.

The values of the Ekeland—Hofer capacities on the ellipdtid, ..., a,)
can be described as follows [19]. Write the numberg;z, m e N, 1 <i <n,
in increasing order ag; < d, <..., with repetitions if a number occurs several
times. Then

c,EH(E(al, . ,an)) =dy.

The values of the Lagrangian capacity on ellipsoids aregmtsnot known.

In [16], Cieliebak and Mohnke make the following conjecture

CONJECTUREL.

cL(E(al,...,an))= id

Vay+...+1/ay

Since vo[E(ay, ..., an)) = ay -+ ayvol(B), the values of the volume capac-
ity on ellipsoids are

CvoI(E(al,...,an)) = (a; “'an)l/”,

In view of conformality and the exhaustion property, a (gatized) capacity
on ElI?" is determined by its values on the ellipsoifi§a;, ..., a,) with 0 <
a; <...<a, =1. So we can view each (generalized) capacitn ellipsoids

as a function

cay,....an—1):=c(E(@ay,...,an—1,1))
on the sef0 <a; <...<a,_; <1}. By Fact 7, this function is continuous.
This identification with functions yields a notion ohiform convergencéor
capacities orEll?".
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For what follows, it is useful to have normalized versiondle Ekeland—
Hofer capacities, so in dimensi@n we define
EH
‘k

= Tktn—1
[At=L]y

Ck - .
PROPOSITIONL. Ask — oo, for everyn > 2 the normalized Ekeland—Hofer
capacities?, converge uniformly on B! to the normalized symplectic capacity
Coo given by

n
lay+...+1/a,

REMARK. Note that Conjecture 1 asserts tlhgs agrees with the normalized
Lagrangian capacity; = ncz /7 on EI?",

oo (E(ay,...,an)) =

PROOF OFPROPOSITIONL. Fixe > 0. We need to show thé (a) — coo(@)| <
¢ for every vectore = (ay,...,ap) With 0 <a; <ap, <...<a, =1 and all
sufficiently largek. Abbreviates = ¢/n.

Case 1.a; <4. Then
cg (@) < kém, ¢r(a) <né, Coo(@) < né
from which we concludécy (a) — coo(a)| <né =eforall k > 1.
Case 2.4a; > §. Letk > 2”8;1 + 2. For the unique integerwith
wlay, < C]EH(CI) <a(l+ Day

we then have > 2. In the increasing sequence of the numbersg; (m € N,
1 <i <n), the first[/ a, /a;] multiples ofa; occur no later thata,. By the de-
scription of the Ekeland—Hofer capacities on ellipsoidsegiabove, this yields

the estimates
(l—l)anJr “+(1—1)an§k (l+1)an+”'+(1+1)an‘

aq dp aj An

With y :=ay/a; + ...+ an/a, this becomes
=Dy =k=(U+1y.
Usingy > n, we derive the inequalities

(I+1)y+n - (I+2)y
n - n

[IL_::_]]S%—HS
[’Lﬂ-l] S ko U=y
n n n
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With the definition ofc; and the estimate above fof", we find

nlay - _ C;EH(a) - n(l + Day
T2y == [Ebn=1], = a1y
n

Sincecs (@) = nay/y, this becomes

cool@) < (@) < 2

[+2 = ool
which in turn implies
_ 2¢o0(a)
6k (@) = cool@)| = =
Sincea; > § we have
n k _ ké
)/ E ) l+ 1 Z - 2 R
) y n
from which we conclude
_ 2 2n
6 (@) —coo(@)] < 777 < o <6
for k sufficiently large. O

We turn to the question whether Ekeland—Hofer capacitiesigee the space of
all capacities on ellipsoids by suitable operations. Fite some easy facts.

FACT 10. An ellipsoid E C R?" is uniquely determined by its Ekeland—Hofer
capacitiesc=(E), cSH(E), .. ..

Indeed, ifE(a) and E (b) are two ellipsoids withu; = b; for i < k anday, < by,
then the multiplicity ofaj in the sequence of Ekeland—Hofer capacities is one
higher for E(a) than for E(b), so not all Ekeland—Hofer capacities agree.

FACT 11. For everyk € N there exist ellipsoids£ and E’ with ¢FH(E) =
cFH(E') fori <k andcfR(E) # cEH(EY).

For example, we can tak&€ = E(a) and £’ = E(b) with ay = b; = 1,
a,=k—1/2,b, =k +1/2, anda; = b; = 2k for i > 3. So formally, every
generalized capacity on ellipsoids is a function of the Bkd-Hofer capaci-
ties, and the Ekeland—Hofer capacities are functionalependent. However,
Ekeland—Hofer capacities do not form a generating systemsyfimplectic ca-
pacities orEll?" (see Example 10 below), and on bounded ellipsoids each finite
set of Ekeland—Hofer capacities is determined by the (iefipimany) other
Ekeland—Hofer capacities:
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LEMMA 1. Letd; <d, <... be an increasing sequence of real numbers ob-
tained from the sequencé™(E) < ¢5H(E) < ... of Ekeland-Hofer capacities
of a bounded ellipsoid € Ell*" by removing at mos¥, numbers. Thet can

be recovered uniquely.

PrROOF We first consider the special case in whiEh= E(aq,...,a;) is such
thata; /a; e Qforalli, j. Inthis case, the sequende<d, <. .. contains infin-
itely many blocks of: consecutive equal numbers. We traverse the sequence un-
til we have foundV, + 1 such blocks, for each block, =dy 11 =...=dk1n—1
recording the numbety, := dj 1, —dy. The minimum of theg; for the Ny + 1
first blocks equalg;. After deleting each occurring positive integer multipfe o
ay once from the sequenel <d, <..., we can repeat the same procedure to
determinez,, and so on.

In general, we do not know whether or ngy/a; € Q for all i, j. To reduce
to the previous case, we split the sequedge< d, < ... into (at mostn)
subsequences of numbers with rational quotients. Moregalgave traverse the
sequence, grouping thé into increasing subsequencgss,, ..., where each
new number is added to the first subsequencehose members are rational
multiples of it. Furthermore, in this process we record faclesequence the
maximal length/; of a block of consecutive equal numbers seen so far. We stop
when

(i) the sum of the; equalsn, and

(i) each subsequencg contains at leas¥, + 1 blocks of/; consecutive equal
numbers.

Now the previously described procedure in the casedhat; € Q for all 7, j
can be applied for each subsequengcseparately, wherg replaces: in the
above argument. O

REMARK. If the volume ofE is known, one does not need to kndy in Fact 1.
The proof of this is left to the interested reader. O

The set of Ekeland—Hofer capacities does form a generating system for sym-
plectic capacities o&ll?". Indeed, the volume capacity, is not the pointwise
limit of homogeneous monotone functions of Ekeland—Ho&acities:

ExAMPLE 10. Consider the ellipsoid® = E(1,...,1,3" + 1) and F =
E(3,...,3)in ElI". As is easy to see,

cFMN(E) < fH(F) for all k. (4-1)



QUANTITATIVE SYMPLECTIC GEOMETRY 29

Assume thatf; is a sequence of homogeneous monotone functions of Ekeland—
Hofer capacities which converge pointwiser{g. By (4—1) and the monotonic-
ity of the f; we would find that,o (E) < cvoi(F). This is not true.

ProBLEM 15. Do the Ekeland—Hofer capacities together with the volume ca
pacity form a generating system for symplectic capacitie&k?"?

If the answer to this problem is “yes”, this is a very difficpibblem as Lemma 2
below illustrates.

4.1.2. Ellipsoids in dimension 4. A generalized capacity on ellipsoids in
dimension 4 is represented by a functiofa) := c(E(a, 1)) of a single real
variable0 < a < 1. This function has the following two properties.

() The functionc(a) is nondecreasing.
(i) The functionc(a)/a is nonincreasing.

The first property follows directly from the (Monotonicitgxiom. The second
property follows from (Monotonicity) and (Conformalitylfora <b, E(b, 1) C

E (%a, %) hencec(b) < %c(a). Note that property (ii) is equivalent to the

estimate

bh) —
ch)—c@) _ c(@) 4-2)
b—a a
for 0 < a < b, so the functiore(a) is Lipschitz continuous at adl > 0. We will
restrict our attention tmormalized (generalized) capacities, so the function

also satisfies
(i) c(1)=1.

An ellipsoid E(ay,...,a,) embeds intaE (b, ..., b,) by alinear symplectic
embedding only ifz; < b; for all i, see [49]. Hence for normalized capacities
on the categonLinEll* of ellipsoids withlinear embeddings as morphisms,
properties (i), (i) and (iii) are the only restrictions omet functionc(a). On
Ell4, nonlinear symplectic embeddings (“folding”) yield addital constraints
which are still not completely known; see [86] for the prageknown results.

By Fact 1, the embedding capacitigsanch are the smallest, resp. largest,
normalized capacities on ellipsoids. By Gromov’s Nonsgueg Theorem,
cg(a) = ¢1(a) = a. The functionc 2 () is not completely known. Fact 1 applied
to ¢, yields

cB(a)zl ifae[%,l] and cB(a)22a ifae(O,%],
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and Fact 1 applied toyo yields ¢B(a) > /a. Folding constructions provide
upper bounds foe 8 (a). Lagrangian folding [94] yields ? (a) < I(a) where

1 1
(k+ 1)a for TR LA N7 Y7 b
I(a) = 1 k(k1+1) (k 11)(k+1)

R TPy L
and multiple symplectic folding [86] yields? () < s(a) where the function
s(a) is as shown in Figure 1. While symplectically folding oncelgisc 8 (¢) <
a+1/2fora e (0,1/2], the functions(a) is obtained by symplectically folding
“infinitely many times”, and it is known that

imint @) =" (G=e) |8
e—0t &€ -7

A Ca
14 I(a) /\
s(a) /. vol(@) = Va

1]

2 cgla) =a

1]

3

1

Ly
—+— f f f f »
111 1 1 1 1
1286 4 3 2

Figure 1. Lower and upper bounds for c¢Z(a).
Let us come back to Problem 15.

LEMMA 2. If the Ekeland—Hofer capacities and the volume capacitynfer

generating system for symplectic capacities oﬁ’EthencB(%) = %

We recall thaTcB(%) = % means that the ellipsoid (1, 4) symplectically em-
beds intoB*(2 + ¢) for everye > 0.

PROOF OFLEMMA 2. We can assume that all capacities are normalized. By
assumption, there exists a sequericef homogeneous and monotone functions
in the¢y, and incyo forming normalized capacities which pointwise converge to
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cB. Asis easy to se€y (E(5.1)) <éx(B*(3)) forall k, andeyol(E (5. 1))
cvol(B*(3))- Since thef; are monotone and converge in particulart,
and B4(1) to ¢, we conclude thatB (1) = cB(E(L.1)) <cB(B*(1)) =
which proves Lemma 2.

o=l

In view of Lemma 2, the following problem is a special case wftflem 15.
PROBLEM 16. Is it true thatc B (§) = 1?

The best upper bound fof® (1) presently known is (1) ~ 0.6729. Answering
Problem 16 in the affirmative means to construct for each0 a symplectic
embeddingE (3. 1) — B*(3 +¢). We do not believe that such embeddings can
be constructed “by hand”. A strategy for studying sympteetnmbeddings of
4-dimensional ellipsoids by algebrogeometric tools is psEd in [6].

Our next goal is to represent the (normalized) Ekeland—Hodpacities as
embedding capacities. First we need some preparations.

From the above discussion of it is clear that capacities and folding also
yield bounds for the functions® () andcg; 4). We content ourselves with
noting

LEMMA 3. Let N € N be given. Then foV <b < N + 1 we have

1/b for 1/(N+1)<a=1/b,

E(Lb) () — 3
¢ (a) { for 1/b<a<l .
and
@@ for 0<a<1/b, (4-4)
CE(1,0)(@) = 1/b for 1/b<a<1/N,
see Figure 2.

REMARK. Note that (4-4) completely describeg; ») on the whole interval
(0,1]for1 <b <2.

PROOF As both formulas are proved similarly, we only prove (4-Bhe first
Ekeland—Hofer capacity gives the lower bourfd-?) (a) > a for all a € (0, 1].
Note that fore > 1/b this bound is achieved by the standard embedding, so that
the second claim follows.

Forl/(N+1)<a<1/N wehavecy4(E(a,1))=1andcy+1(E(1,b)) =
b. By Fact 1 we see that®(1:®) > 1/ on this interval, and this bound is again
achieved by the standard embedding. This completes thé pir¢6-3). O
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CE(l,b) (a)

-

-

- .
-

w|N

K ’ CEQ,b) (@)

I
T
1

I

T

1

3 2

NI

Figure 2. The functions cE1-9)(a) and cg( py(a) for b = 5.

REMARK. Consider the functions
(@) = cEP (), ae(0,1], b>1.
Notice thate! = ¢B. By Gromov’s Nonsqueezing Theorem and monotonicity,
a = cgla) = ¢Z(a) < eb(a) < cB(a), ae(0,1],b>1.

Sincee® (a) = (cew@.(E(, b)))_1 by equation (3-1), we see that for each

(0, 1] the functionb — e®(«) is monotone decreasing and continuous. By (4-3),
it satisfiese? (¢) = a for a > 1/b. In particular, we see that the family of graphs
{graph(e®) | 1 < b < oo} fills the whole region between the graphscgfand
cB; see Figure 1. O

The normalized Ekeland—Hofer capacities are represenjgudoewise linear
functionscy (a). Indeed ¢ (a) = a for all a € (0, 1], and fork > 2 the following
formula follows straight from the definition.

LEMMA 4. Settingm := [%] the functiorey: (0, 1] — (0, 1] is given by
k4+1—i i—1 i
a for -<a= -,
Ge(a) = zzq k—i—il—z k;i—l—z (4-5)
mo O T st

Herei takes integer values betweémndm.

Figure 3 shows the first six of thg and their limit functionco, according
to Proposition 1.
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EN[8)
N

A= 1+

D= 1

Hlw L
—_

Figure 3. The first six ¢x and ¢o.

In dimension 4, the uniform convergenge— ¢ IS very transparent, as can
be seen in Figure 3. One readily checks Hat co, > 0 if k is even, in which
case||cy — cooll = k+r1 and thatt;, — coo < 0if kK =2m — 1 is odd, in which
case||cy — cooll = ”}n—‘k‘ if kK > 3. Note that the sequences of the even (resp. odd)
¢y are almost, but not quite, decreasing (resp. increasing)stiV have

COROLLARY 1. Forall r, s € N, we have
C_er = EZr-

This will be a consequence of the following characterizatd Ekeland—Hofer
capacities.

LEMMA 5. Fix k£ € N and denote bya;, ;] the interval on whiche;, has the
value//[5E1]. Then

(@) ¢ <c for every capacity such thaty (a;) <c(a;) forall /=1,2,...,[EFL].

2
(b) & > ¢ for every capacity such thaty (b)) > c(b;) forall 7 =1,2,...,[£]

and @ P
cla

lim — < .

o @ ]

PrROOF Formula (4-2) and Lemma 4 show that where a normalized B#ela
Hofer capacity grows, it grows with maximal slope. In partar, going left from
the left end pointz; of a plateau a normalized Ekeland—Hofer capacity drops
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with the fastest possible rate until it reaches the levehefriext lower plateau
and then stays there, showing the minimality. Similarlyingoright from the
right end pointh; of some plateau a normalized Ekeland—Hofer capacity grows
with the fastest possible rate until it reaches the nextdridgvel, showing the
maximality. 0

PROOF OFCOROLLARY 1. The right end points of plateaus foy, are given
by bi = 2r. i

_ i i is _ is _ i
Cap )= T = = Cors . = C2rs A
2r —1 r rs 2rs —is 2r —1

and the claim follows from the characterizationcgf by maximality. O

Lemma 3 and the piecewise linearity of tfe suggest that they may be repre-
sentable as embedding capacities into a disjoint unionitéiygrmany ellipsoids.
This is indeed the case.

PROPOSITION2. The normalized Ekeland—Hofer capacity on ElI* is the
capacityc** of embeddings into the disjoint union of ellipsoids

[5]

i ( )H E(k Jj J)

j=1
wherem = [£F1].

PROOF The proposition clearly holds fér= 1. We thus fixk > 2. Recall from

Lemma 4 thaty has[ ] plateaus, thg -th of which has helghf; and starts at
aj:=j/(k+1—j)andends ak; := j/(k—j). The j-th ellipsoid in Proposi-

tion 2 is found as follows: In view of (4—3) we first select alipsloid £ (1, b) so

that the point% corresponds td;. This ellipsoid is then rescaled to achieve the

correct height. of the plateau (note that by conformalityg £(@5) = ¢ £(1:6)

for @ > 0). We obtain the candidate ellipsoid

m m
Ei=E|l—— —).
g (k—J J)

The slope of, following its j-th plateau and the slope of’i after its plateau
both equalk L. The cylinder is added to achieve the correct behavior near
a = 0. We are thus left with showing that for eaths j < [%],

ex(a) < cFi(a) forall ae(0,1].
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According to Lemma 5 (a) it suffices to show that for edck j < [%] and
eachl </ <[%] we have

)
Clar) = - = P(ay). (4-6)

For/ > j, the estimate (4—6) follows from the fact thigt= c £/ nearb; and from
the argument given in the proof of Lemma 5 (a), and/ferj the estimate (4-6)
follows from (4-3) of Lemma 3 by a direct computation. We widal with the

other cases
k
1</ P < | —

by estimating-£7 (a;) from below, using Fact 1 with = ¢yo andc = ¢,.
Fix j and recall thatyo (E(x, y)) = /Xy, SO

E: CvoI(E(alsl)) Ljk—j) Jk—j)
ez e -
CWI(E<} -, , (k+1-0)m (k+1-1)
gives the desired estimate (4—6)jifk — j) > —I% + (k + 1)/. Computing the
roots/4 of this quadratic inequality if, we find that this is the case if

ZSL:%(k+1—\/1+2k+(k—2j)2).

Computing the normalized second Ekeland—Hofer capacitieuthe assump-
tion thata; < 4, we find thate, (E(a;. 1) = 2a; = 2 andé(Ej) < 2,
S0

Q@) 2 )
Ez(E(k -, 1)) k+1—1 m

which gives the required estimate (4-6) if

2j

, )
) z m KT

[>=k+1-2j.
Note that for% <a; <1 we havec,(E(a;, 1)) =1 and hence

c2(E(ar, 1)) J_!

> = > —
o (E(gm) mom

trivially, because we only considér< ;.
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So combining the results from the two capacities, we findttiatesired es-
timate (4-6) holds provided eithér< /_ = 1 (k F1—1+2k+ (k-2 j)2>
or/>k+1-2j. As we only considef < j, it suffices to verify that

min(j—l,k+1—2j)§%(k+l—\/1+2k+(k—2j)2)

for all positive integerg andk satisfyingl < j < [%] This indeed follows from
another straightforward computation, completing the paddroposition 2.

Using the results above, we find a presentation of the nozewtapacity. ., =
limg_ o ¢x On Ell* as embedding capacity into a countable disjoint union of
ellipsoids. Indeed, the spadg,, appearing in the statement of Proposition 2 is
obtained fromX,, by addingr more ellipsoids. Combined with Proposition 1
this yields the presentation

Coo = ¢X  on ElI%,
whereX =]]72; X, is adisjoint union of countably many ellipsoids. Together
with Conjecture 1, the following conjecture suggests a muohe efficient pre-
sentation ot as an embedding capacity.

CONJECTUREZ2. The restriction of the normalized Lagrangian capacity
to Ell* equals the embedding capacity , where X is the connected subset
B(1)U Z(%) of R*.

For the embedding capacitié®m ellipsoids, we have the following analogue
of Proposition 2.

PrROPOSITION3. The normalized Ekeland—Hofer capacity on Ell* is the
maximum of finitely many capacitieg, . of embeddings of ellipsoidsy ;,

Ek(a)zmaX{CEk,j(a)“Ejfm}’ a € (0,1],

E - m m

PrROOF. The ellipsoidsty ; are determined using (4-4) in Lemma 3. According
to Lemma’5 (b), this time it suffices to check that forlatt j </ <[£] the values

of the corresponding capacities at the right end pdints: ﬁ of plateaus of
¢y satisfy

where

with m = [5FL].

cg, (b)) < - = &b, (4-7)

m
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The casd = j follows from (4-4) in Lemma 3 by a direct computation. For
the remaining cases
1 < ] <] < |:§j|
- 12

we use three different methods, depending on the valye f j < ’%1 then
Fact 1 withc = ¢yo gives (4—7) by a computation similar to the one in the proof
of Proposition 2. Ifj > % thena; = ,{JFJT > % so that (4-4) in Lemma 3
shows thatcg, ; is constant orja;, 1], proving (4-7) in this case. Finally, if
j=%andl > j +1, thené,(Ey ;) = = andéy(by) = 1, so with Fact 1
we get

k+1—j
CE,; (D) = “om
which is smaller thaq% for the values ofj and/ we consider here. This com-
pletes the proof of Proposition 3. O

Here is the corresponding conjecture for the normalizeddwsgjan capacity.

CONJECTURES. The restriction of the normalized Lagrangian capadigyto
Ell?" equals the embedding capacity(i /n,....1/x) Of the cube of radius/ /n.

4.2. Polydiscs.

.....

4.2.1. Arbitrary dimension. Again we first describe the values of the capacities
in Section 2 on polydiscs.
The values of the Gromov radidg on polydiscs are

cg(P(ay,....an)) =minfay, ... an}.

As for ellipsoids, this also determines the values'I%T, cHz, e(-, [F\Rz”) andcZ.
According to [19], the values of Ekeland—Hofer capacitiagpolydiscs are

i (P(ay,....an)) =krmin{ay, ... an}.

Using Chekanov’s result [11] thatmin(L) < e(L,R?") for every closed La-
grangian submanifold. ¢ R?”, one finds the values of the Lagrangian capacity
on polydiscs to be

CL(P(al, ... ,an)) =amin{ay,...,ay}.

Since vo(P(ay.....an)) =ay +--a,-7" and vo[ B*") = ’;—',1 the values of the
volume capacity on polydiscs are

cvol(P(ay, ... an)) = (ay---an-n))"/".
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As in the case of ellipsoids, a (generalized) capacion Pol’" can be viewed
as a function

clay,...,an—1):=c(P(ay,...,an—1,1))
on the sef0 < a; <... <a,_1 < 1}. Directly from the definitions and the
computations above we obtain the following easy analogueraposition 1.

PrRoOPOSITIONA. Ask — oo, the normalized Ekeland—Hofer capacitigscon-
verge on PA" uniformly to the normalized Lagrangian capacity = ncy, /x.

Propositions 4 and 1 (together with Conjecture 1) give ise t

PROBLEM 17. What is the largest subcategory of ®9pn which the normalized
Lagrangian capacity is the limit of the normalized EkelaHdfer capacities?

4.2.2. Polydiscs in dimension 4.Again, a hormalized (generalized) capacity
on polydiscs in dimension 4 is represented by a functi@n := c(P(a, 1)) of

a single real variabl® < a < 1, which has the properties (i), (ii), (iii)). Con-
trary to ellipsoids, these properties are not the only ie&ins on a normalized
capacity on 4-dimensional polydiscs even if one restriotinear symplectic
embeddings as morphisms. Indeed, the linear symplectdrisonp

1
(z1,22) = —= (21 + 22,21 — 22)

/2

of R* yields a symplectic embedding

b b
P(a,b)%P(%JF\/%,a—; +Vab)

for anya, b > 0, which implies
FacT 12. For any normalized capacity on LinPof,
1 a
< — —
c(a) < 7 + 7 + Ja.
Still, we have the following easy analogues of Propositidrasd 3.

PROPOSITION5. The normalized Ekeland—Hofer capacity on Pof is the
capacityc ¥+, where
[54]
Y, =272 ,
k k

as well as the capacityylé, where

, [
Ysz( l’i )
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COROLLARY 2. The identityc;, = ¢** of Proposition2 extends to Efiu Pol*.

PrROOF Note thatYy, is the first component of the spadé of Proposition 2.
It thus remains to show that for each of the ellipsoid compt®&; of X,

¢ (P(a, 1)) < ¢Bi (P, 1), ae(01].

This follows at once from the observation that for egictve havec;H (E;) =
[£H )7, whereasE" (P(a. 1)) = kar. O

PROBLEM 18. Does the equality; = ¢** hold on a larger class of open subsets
of R*?
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