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Causes of stretching of Birkhoff sums and
mixing in flows on surfaces

ANDREY KOCHERGIN

On the Anniversary of Anatole Katok, my Friend and Teacher.

ABSTRACT. We study causes of stretching of Birkhoff sums and study their

action in the mixing of various surface flows. In so doing, we succeed in am-

plifying the result of Khanin and Sinai about mixing in the Arnold’s example

of flow with nonsingular fixed points on a two-dimensional torus.

1. Introduction

There are three known kinds of mixing flows on two-dimensional surfaces:

continuous flows without fixed points on a torus, smooth flows with singular

fixed points, and smooth flows with nonsingular fixed points (Arnold’s example).

However, in the last case mixing arises not on the whole torus but only on an

ergodic component.

We suggest a special flow S t , constructed over a circle rotation or an inter-

val exchange transformation (which we denote by T ) and under some positive

“roof” function, as an ergodic relative of a Borel measure-preserving flow on

a two-dimensional surface. In such special flows the only possible cause of

mixing is the difference in the times that various points take to get from the

“floor” to the “roof”. This can cause, as time passes, a small rectangle to be

strongly stretched and almost uniformly distributed along trajectories and hence

over the phase space.
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The divergence of adjacent points is described via Birkhoff sums of the “roof”

function

f r .x/D
r�1X

kD0

f .T kx/:

This is obvious from the relation S t .x;y/D SyCt�f r .x/.T r x; 0/, where .x;y/ It is obvious ! This is obvious

(is this what you mean?)
denotes a point in phase space. Strong and almost uniform distribution of a little

rectangle over the phase space is ensured by strong almost uniform stretching

of Birkhoff sums for r � t .

Formally this is described by the next theorem. In order to state it, we intro-

duce, for x 2 T
1 and t > 0, the notation R.t;x/ for the number of jumps that the

point .xI 0/ undergoes under the action of S t over a time t . For any measurable

X � T
1 we set

R.t;X /D
[

x2X

R.t;x/:

THEOREM 1 (SUFFICIENT CONDITION FOR MIXING). Let T be an ergodic

circle rotation and suppose t0 > 0. Assume that the following objects are fixed

for each t > t0:

– a finite partial partition �t of the circle T
1 into closed intervals: �t D fC g

with

lim
t!C1

max
C 2�t

jC j D 0; lim
t!C1

�.Œ�t �/D 1;

where Œ�t � denotes the union of elements of �t ; and

– positive functions " and H such that ".t/! 0 and H.t/! C1 for t ! C1.

If for each t > t0 for any C 2 �t and any r 2 R.t; Œ�t �/, the Birkhoff sum f r jC
is .".t/;H.t//-uniformly distributed, then the special flow constructed over T

and under the function f is mixing.

That f r jC is .";H /-uniformly distributed means that the function f r jC is,

in some sense, "-uniformly distributed in an interval of length no less then

H . The exact definition of an "-uniform distribution varies slightly with the

circumstances.

We identify three causes of stretching of Birkhoff sums which we may ten-

tatively call ergodic, resonant and individual. They exert various influences on

point divergence in various kinds of mixing flows.

2. Flows without fixed points

It is shown in my paper [5] that if f is of bounded variation, the special flow

over the circle rotation with roof function f cannot be mixing. A. Katok [3]

generalized this result to special flows over interval exchange transformations.
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In this situation one can say that the absence of mixing is a corollary of an

ergodic effect, the effect of averaging, which results in the Birkhoff sums f r ,

for certain values of r , having relatively small variation on sufficiently large

sets.

It is possible to gain mixing for a special flow over a circle rotation and under do you mean “at the cost of”?

(That is, provided with we

assume...)?continuous functions at the expense of a resonance condition on T and f .

The main idea is the following. Let pn=qn be the sequence of convergents of

the rotation angle � of the circle T
1 D R=Z. Choose � and positive sequences

an and tn such that for n ! C1

antn % C1; anC1tn & 0;
anqn

anC1qnC1

! 0; tn=qn ! 0:

Set

u0.x/D min.fxg; f1 � xg/� 1
4
; un.x/D anu0.qnx/; (2–1)

f D F C
1X

nD1

un; (2–2)

where F is a positive Lipschitz function on T
1 with unit integral.

THEOREM 2. The special flow over the rotation of the circle by � and under the

function f constructed above is mixing.

For instance, u0 could be the functions sin 2�x or cos 2�x.

The stretching and almost uniform distribution of Birkhoff sums f r for r 2
.tn=2; 2tnC1/ is ensured by the term un, because it “almost resonates” with the

rotation through the angle �: the period of un is 1=qn, and thus un.x C �/ �
un.x/, and

ur
n.x/� run.x/ for r 6 2tnC1 � qnC1/;

which yields vertical stretching of ur
n in each segment of length 1=qn, the re-

quirement antn % C1 guaranteeing strong stretching for r 2 .tn=2; 2tnC1/ and

n sufficiently large, since the amplitude of ur
n is approximately equal to ran=4.

One can call this effect ergodic.

However, the growth of f r cannot be ensured indefinitely by a single term.

In further iterations, due to the accumulation of errors in the shifts the growth of

ur
n breaks down. For example, if r � qnC1=2, the shifted function un.T

r x/ is

almost exactly half a period out of phase with un.x/. Hence the next term unC1

must be charged with the stretching in the next interval r 2 .tnC1=2; 2tnC2/;

moreover, for r � tnC1 the term ur
nC1

has to grow enough, and therefore it must

be also be taken into account in the estimates.
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This fact and the requirement that the function .ur
n C ur

nC1
/jC (where C is

an element of the partition) be stretched and almost uniformly distributed for

r 2 .tn=2; 2tnC1/ impose the additional constraints on an and qn given above.

Due to the rapid change of an and qn all other terms can, in effect, be dis-

carded: the preceding ones because their derivatives are relatively small and the

following ones because their amplitudes are not yet sufficiently large.

The construction of a mixing special flow over an arbitrary ergodic automor-

phism and under a continuous function [6] is also based on this two-term model,

and the terms in this case are related to the Rokhlin towers.

Using the model above we can construct mixing flows over circle rotations

and under the roof functions with additional regularity [9].

THEOREM 3. For any sufficiently regular modulus of continuity weaker than the

Lipschitz condition, there exists a mixing special flow over some circle rotation

and under a roof function with this modulus of continuity.

THEOREM 4. For any 
 2 .0; 1/ and � > 0, and any circle rotation through the

angle � satisfying qnC1 � q1C�
n , there exists a positive function f 2 C 
 .T1/

such that the special flow S t over this circle rotation and under f is mixing with

power-rate behavior, that is, there exist an exponent ˇ > 0, a constant M and a

time moment t� such that

j�2.S
t Q1 \ Q2/��2.Q1/ ��2.Q2/j<M t�ˇ:

for any rectangles Q1, Q2 and any t > t�.

For example we’ll construct the flow satisfying this theorem.

Let � > 0 and 0 < 
 < 1 be given. Choose � such that the sequence qn of

denominators of convergents to � satisfies

qnC1 � q1C�
n :

Choose a sequence an satisfying

an � q�

n ;

and then construct f by (2–1) and (2–2). The times for switching from one term

to another are given by tn D q~
n , where ~ and the exponent ˇ of the mixing rate

are found from some system of inequalities; moreover ˇ depends on � and 
 .

For example, if � D 1 and 
 D 1=2, we may set ˇ D 1=9, and for � D 0:754,


 D 0:57 one may set ˇ � 0:118.

Bassam Fayad cleverly implemented this two-term model in the construction

of an analytical mixing special flow over a translation on T
2 [2]. He represents

each term in (2–2) as un.x;y/D Xn.x/CYn.y/ and thus arranges the shifts in

each direction on T
2 so that two successive terms do not interfere: the terms
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Xn.x/, Yn.y/, XnC1.x/, YnC1.y/ consequently charge with stretching, and

functions of different variables change one another; as a result unC1 can be

substantially smaller than un, and f can be made analytical.

To summarize this section we can say that the mixing in the model above

is obtained with a resonant effect which is in a certain sense stronger than the

ergodic one. In this case rapid growth is needed for qn.

The natural question is for which moduli of continuity is it possible to obtain

a mixing special flow over a circle rotation by a typical angle. Perhaps it is

necessary to construct another model realizing the resonant effect, if possible.

3. Singular fixed points

Another variant of mixing flow on a surface is a smooth flow with singular

fixed points. Such a flow is isomorphic to a special flow over an interval ex-

change with a roof function which is smooth everywhere except the break point

of T , which are power singularities of the function. point!points (is this what you

mean?)
To describe precisely the effects arising from singular points, we introduce

after [7] (with some simplifications) a class of functions, denoted by F.a; b/.

Let M W .0; 1� ! RC be a nondecreasing function with M.1/ > 1, let and

! W .0; 1/! RC be a nondecreasing function such that limx!C0 !.x/D 0. We

say that ' 2 FM;!.a; b/ if

(1) ' 2 C 2.a; b/,

(2) for any x;y 2 .a; b/ and any � 2 .0; 1/, if �.x � a/6 y � a 6
x � a

�
then

'00.x/

M.�/
6 '00.y/6 M.�/'00.x/;

and

(3) for any x 2 .a; b/,

'00.x/>
1

.x � a/2!.x � a/
:

Then we set

F.a; b/D
[

M;!

FM;!.a; b/:

THEOREM 5. Let T be an ergodic interval exchange of the circle T
1, and let

Nx1; : : : ; NxK be a finite set of points containing all the break points of T . Assume

that for x 2 T
1 n [i Nxi we have f .x/> c > 0 and

f .x/D f0.x/C
KX

iD1

.fi.fx � Nxig/C gi.f Nxi � xg// ;
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where fi ; gi 2 F.0; 1/, and f0 2 C 2.T1/. Then the special flow over T with

roof function f is mixing.

I’m put this in parentheses

since I think “In this case”

below doesn’t not refer only to

the specific example of this

paragraph

(Functions of type x˛.A C o.1// for ˛ 2 .0; 1/ and A> 0 belong to F.0; 1/, so

flows with singular fixed points are mixing.)

In this case, for large r , the strong and almost uniform stretching of Birkhoff

sums f r in the interval of continuity .a; b/ is provided by two terms having

singularities at the points a and b; the other terms do not oppose it. One can say

that the mixing in the flow is provided by the individual effect of fixed points.

This statement is supported by two following facts (for simplicity we suppose

that a D 0).

LEMMA 1. Suppose ' 2 FM;!.0; 1/, 0 < b < 1, and 0 6 hj < 1 � b for

j D 0; : : : ;N . Then

NX

jD0

'.x C hj / 2 FM;!.0; b/:

LEMMA 2. Suppose '; 2 FM;!.0; b/. If b is small enough then '.x/C .b �
x/j.0; b/ is almost uniformly distributed in a long enough interval.

(For exact statements see [7].)

This fact is interesting since it implies that the presence of nonsingular fixed is this what you mean?

points in the flow on surfaces (or logarithmic singularities of roof function) isn’t

sufficient for mixing.

4. Functions with logarithmic singularities

We say that a roof function has logarithmic singularities if it suffices the next

conditions:

(1) f has K singular points Nx1; : : : ; NxK .

(2) f 2 C 1
�
T

1 n
KS

iD1

Nxi

�
and f .x/> c > 0.

(3) For any i D 1; : : : ;K

f 0.x/D 1

fx � Nxig
.�Ai C o.1// for x ! Nxi C 0;

f 0.x/D 1

f Nxi � xg.Bi C o.1// for x ! Nxi � 0;

where Ai , Bi > 0.
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We set

A D
KX

iD1

Ai ; B D
KX

iD1

Bi :

The function f is called symmetric if A D B ¤ 0, asymmetric if A ¤ B, and

strongly asymmetric if

sign.Ai � Bi/D sign.A � B/¤ 0 for any i :

For symmetric functions there is the following theorem [8].

THEOREM 6. If

f .x/D f0.x/C
KX

iD1

�
Ai log

1

fx � Nxig
C Bi log

1

f Nxi � xg

�
;

where f0 has a bounded variation, A D B, and � allows approximation by ra-

tionals with rate const=.q2 log q/, then the special flow over the circle rotation

by � with roof function f is not mixing.

So, the deceleration of points and the stretching of a little rectangle in the neigh-

borhood of a regular fixed point are not sufficient for mixing: the stretching

produced by moving on one side of a fixed point is compensated while moving

on the other side.

Examples of smooth flows on the two-dimensional torus with nonsingular

fixed points appear naturally in Arnold’s paper [1]. The phase space of such

a flow decomposes into cells bounded by closed separatrices of regular fixed

points and filled with periodic orbits, and an ergodic component in which orbits “and an... the other” is garbled

move on one side of a fixed point frequently then on the other. The ergodic

component of such a flow is isomorphic to a special flow over a circle rotation

and under a roof function with an asymmetric logarithmic singular point. A

conjecture about the possibility of mixing in such flows was proposed in [8].

Khanin and Sinai proved it with a certain restriction on the rotation angle.

Due to estimates of the ergodic and resonant effects on the stretching of

Birkhoff sums, it is possible to weaken this restriction in the case of an asym-

metric function and to prove mixing for any irrational angle in the case of a

strongly asymmetric function.

Let �D Œk1; : : : ; ks; : : :� be the expansion � in a continued fraction. Let ps=qs

be the s-th convergent to �.

THEOREM 7. [10] Let f be an asymmetric function with logarithmic singulari-

ties and � an irrational satisfying

log knC1 D o .log qn/ : .�/
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Then the special flow over the circle rotation through the angle � under the roof

function f is mixing.

In [4], the restriction on � is stronger: knC1 6 const n1C
 , where 0< 
 < 1. It

is easy to show that, if for some 
 > 0, perhaps great than 1, we have knC1 6

const n1C
 for all n, then � satisfies .�/.

THEOREM 8. [10] If f is a strongly asymmetric function with logarithmic sin-

gularities and � is an arbitrary irrational angle then the special flow over a

circle rotation through � with roof function f is mixing.

In a special flow with an asymmetric roof function, a new relationship between

the ergodic and resonant effects is detected. To illustrate this we’ll describe the

main ideas of the proof of the previous two theorems. The full presentation

takes about fifty pages.

To estimate the stretching of Birkhoff sums f r , we estimate their derivatives

.f r /0. The idea is that, since

v:p:

Z

T1

f 0.x/ d x D C1 or � 1;

it would be very nice if “according to the ergodic theorem” almost everywhere

.f r /0 ! C1 or .f r /0 ! �1, and this would ensure the stretching of Birkhoff

sums. Moreover, one would want to give this “proof” for the interval exchange.

As we’ll see, the ergodic component in the expansion of .f r /0 is really present.

But the additional term arising from the frequent return of the orbit to a neigh-

borhood of the singularity can essentially violate the “ergodic theorem for non-

summable functions”. This additional term is large when � is well approximable

by rationals, and we call this term “resonant”.

For such a flow over a circle rotation one can estimate ergodic, resonant and

other terms and prove mixing in the cases stated in the theorems.

Let u, v W R ! R be the functions with period 1 defined thus:

u.x/D 1=x

v.x/D 1=.1 � x/

if x 2 .0; 1�;
if x 2 Œ0; 1/:

The point x0 D 0 in T
1 is a singular point of both. One can show, that for every Is this what you mean?

x, except singular points of f r ,

.f r /0.x/D
KX

iD1

�
ur .x � Nxi/.�Ai C˛�

i .r;x//C vr .x � Nxi/.Bi C˛C
i .r;x//

�
;

(4–1)

where j˛˙
i .r;x/j 6 ˛.r/, ˛.r/! 0 for r ! C1.



STRETCHING OF BIRKHOFF SUMS AND MIXING IN SURFACE FLOWS 137

Let

qs 6 r < qsC1; r D lsqs C : : :C l0q0

be the expansion of r by denominators qn with integer nonnegative coefficients,

such that

1 6 ls 6 ksC1; 0 6 ln 6 knC1 for n D 0; 1; : : : ; s � 1;

ln�1qn�1 C : : :C l0q0 < qn for n D 1; : : : ; s:

Then

ur .x/D ulsqs .x/C : : :C ulnqn.T rnC1x/C : : :C ul0q0.T r1x/;

where rn D lsqs C : : :C lnqn.

We set

�n D min
06i<j<qn

jT ix0 � T j x0j; ın D qn�� pn:

Let us expand u in two terms:

Oun.x/D u.x/; Lun.x/D 0 for x 2 .0; �n/;

Oun.x/D 0; Lun.x/D u.x/ for x … .0; �n/:

Then ulnqn.T rnC1x/D Oulnqn

n .T rnC1x/C Lulnqn

n .T rnC1x/.

One can show that for any x

Lulnqn

n .x/D lnqn log qn C P �
lnqn

.T rnC1x/; jP �
lnqn

.T rnC1x/j< 4lnqn:

The term lnqn log qn is called the ergodic component of ulnqn . This component

does not depend on x and for a given qn is proportional to ln.

We’ll present the term Oulnqn

n as a sum

Oulnqn

n .T rnC1x/D I�
n .x/C Z�

n .x/

by the following way. We denote by x�
n .x/ the singular point of the function

Oulnqn.T rnC1x/ nearest to x on its left hand side, if such exists, and set

I�
n .x/D u.x � x�

n .x//; Z�
n .x/D Oulnqn.T rnC1x/� I�

n .x/:

If x�
n .x/ does not exist, then we set I�

n .x/ D 0, Z�
n .x/ D 0. Thus, we obtain

the expansion

ulnqn.T rnC1x/D lnqn log qn C I�
n .x/C Z�

n .x/C P �
n .T

rnC1x/:

We conditionally call the term Z�
n .x/ resonant. Its value essentially depends

on arrangement of the point x and the singular points of Oulnqn

n .T rnC1x/. Its

maximal value is approximately qnC1 log knC1, which depends on the precision



138 ANDREY KOCHERGIN

of the approximation of � by pn=qn. We take the sum over n of the expansion

above and denote

e.r/D
sX

nD1

lnqn log qn; Z�.x/D
sX

nD0

Z�
n .x/ P �.x/D

sX

nD0

P �
n .T

rnC1x/:

It is not difficult to show that

sX

nD0

I�
n .x/D I�.x/C Irem.x/;

where 0 6 I�.x/6 2=fx�.x/� xg, 0 6 Irem.x/6 2qs.log s C 1/.

Similar estimates are valid for vr . Thus we get

ur .x/D e.r/C Z�.x/C I�.x/C o.e.r//;

vr .x/D e.r/C ZC.x/C IC.x/C o.e.r//;

where

ZC.x/D
sX

nD0

ZC
n .x/; Z�.x/D

sX

nD0

Z�
n .x/:

For jP ˙.x/j and I˙.x/ we have the estimates

jP ˙.x/j 6 4r; 0< I˙.x/ <
2

jx˙.x/� xj ;

where x�.x/ and xC.x/ are the nearest singular points of ur and vr respectively

to x on its left and right hand sides respectively.

In the expansion given, all three components are present: ergodic e.r/, res-

onant Z˙ and individual I˙. The last becomes inessential after a slight re-

striction of the set on which it is considered. The ergodic component would be

enough for stretching of Birkhoff sums if the resonant terms “wouldn’t oppose”

or “would help” it. It turns out that in the case log knC1 D o.log qn/ the resonant

terms are small in comparison with the ergodic term, and in the case of a strongly

asymmetric function they go with the ergodic term on a large set.

We consider this assertion more explicitly. Choose a sequence �n, n 2 ZC,

depending on � and satisfying the conditions

�n & 0I �n > .log qn/
�1=4 . for n> 1/; �2

n log qn % C1:

If log knC1 D o.log qn/, it is easy to show that �n can satisfy an additional

condition log knC1 6 �2
n log qn.
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Fix t large enough and choose m such that
p

2qm 6 t <
p

2qmC1. Define

Vm D fx W jx � T �j x0j > 3�m=qm

V 0
m D fx W jx � T �j x0j > 3�m=qmC1

for j D 0; 1; : : : ; 2qm � 1g;
for j D 0; 1; : : : ; 2qmC1 � 1g:

Also set

m0 D m; V .t/D Vm; for
p

2qm 6 t <
p

2�mqmC1;

m0 D m C 1; V .t/D V 0
m; for

p
2�mqmC1 6 t <

p
2qmC1:

The set V .t/ consists of disjoint closed intervals (or isolated points); the number

of these intervals is no more than 2qm0 ; � .V .t// > 1�12�mI the length of each

interval is no more 2=qm0 .

It is not difficult to show that for any x 2V .t/ and any r 2 .t=
p

2;
p

2t/ the set

X.r/ of singular points of ur and vr together with their �m=qm0-neighborhoods

does not intersect V .t/, and thus

I˙.x/ <
2

�2
m log qm

e.r/:

(Note that �2
m log qm ! C1 for m ! C1.)

One more object is necessary to describe the properties of the resonant terms.

We decompose the set X .n/ D X .n/.r/ of singular points of ulnqn.T rnC1x/ into

subsets

X
.n/
i D

˚
T �rnC1�i�jqn ; j D 0; : : : ; ln � 1

	
; i D 0; : : : ; qn � 1;

which we call clusters of rank n. Each cluster consists of ln points, producing

an arithmetic progression with the step ın. By ŒX
.n/
i � we denote the minimal

segment containing X
.n/
i , ŒX .n/� D

S
i ŒX

.n/
i �, @ŒX .n/� is the bound of ŒX .n/�.

The length of each segment is

jX .n/
i j D .ln � 1/jınj � ln=knC1

qn
; �.ŒX .n/�/� ln=knC1:

The Segments ŒX
.n/
i � are disjoint, so @ŒX .n/� is the union of the ends of ŒX

.n/
i �.

For the set W , we define U.";W / D
S

x2W U.";x/, where U.";x/ is "-

neighborhood of x.

THEOREM 9 (ABOUT THE MAIN RESONANT TERM). For m sufficiently large,

there are the following possible situations.

(1) The main resonant term is absent: for any s <m

qsC1 log ksC1 6 �mt log qm
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and additionally log kmC1 6 �2
m log qm or

p
2qm 6 t <

p
2�mqmC1: Then

for any r 2 .t=
p

2;
p

2t/ and x 2 V .t/

0 6
X

n

Z˙
n .x/ < 20�me.r/:

(2) The main resonant term is of rank m: for any s < m qsC1 log ksC1 6

�mt log qm; and

log kmC1 > �
2
m log qm;

p
2�mqmC1 6 t <

p
2qmC1:

Then for any x X

n¤m

Z˙
n .x/ < 16�me.r/;

and for Z˙
m.x/D Z˙

m.r;x/, when r 2 .t=
p

2;
p

2t/ and

x 2 V .t/ n U.�m=qm; @ŒX
.m/.r/�/;

there is an alternative:

— if x … ŒX .m/.r/�, then Z˙
m.x/ < �me.r/I

— if x 2 ŒX .m/.r/�, then qmC1 ln kmC1��me.r/<Z˙
m.x/<qmC1 ln kmC1C

�me.r/:

(3) The main resonant term is of rank s < m: there exists s < m such that

qsC1 log ksC1 > �mt log qm: Then for any r 2 .t=
p

2;
p

2t/ and x 2 V .t/
X

n¤s

Z˙
n .x/ < �me.r/I

for Z˙
s .x/D Z˙

s .r;x/, when r 2 .t=
p

2;
p

2t/ and

x 2 V .t/ n U.�s=qs ; @ŒX
.s/.r/�/;

there is an alternative:

— if x … ŒX .s/.r/�, then Z˙
s .x/ < �me.r/I

— if x 2 ŒX .s/.r/�, then qsC1 log ksC1 ��me.r/<Z˙
s .x/< qsC1 log ksC1 C

�me.r/:

Now we may define the functions ".t/! 0, H.t/! C1 for t ! C1, for the

sufficient condition of mixing (Theorem 1). Let

˛t D max
r2.t=

p
2;

p
2t/

˛.r/;

"e.t/D 21.A C B/

jB � Aj �m C 4K

jB � Aj˛t ; "L.t/D max
16i6K

2

jAi � Bi j
˛t ;

where K is the number of singular points of f , ˛.r/ is the infinitesimal sequence

defined in (4–1).
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Next set

".t/D 2 max."e.t/; "L.t//; H.t/D jB � Aj�2
m log qm

4
:

For each of the situations (1)–(3) we’ll define a partial partition �t such that each

element is a segment and for t ! C1 they satisfies the following conditions:

(1) �.Œ�t �/! 1.

(2) maxC 2�t
jC j ! 0.

(3) For any element C 2 �t there exists a constant L.C /> 0, such that for any

r 2 R.t; Œ�t �/ and x 2 C , There was a comment: “the

next equation is corrected”

.f r /0.x/D .B � A/.e.r/C L.C //.1 C
 .r;x///; j
 .r;x/j< ".t/=2: (4–2)

(4) For any element C 2 �t and r 2 .t=
p

2;
p

2t/,

jC je.r/ > �2
m log qm

2
:

Thus we’ll verify the sufficient condition for mixing.

In situation 1 we set

V .t/D
K\

iD1

.V .t/C Nxi/; L.C /D 0:

Then for any x 2 V .t/ and any i x� Nxi 2V .t/, and substituting the expansions

of ur .x � Nxi/ and vr .x � Nxi/ to (4–1) it is easy to make sure that for any

r 2 .t=
p

2;
p

2t/ the relation (4–2) is satisfied.

As elements of the partition �t we take those connected components of V .t/

whose length is at least �m=qm0 .

If log knC1 D o.log qn/, then for each t situation 1 is realized.

In situations 2 and 3, the principle of construction of �t is the same, but it is

necessary to slightly narrow the set V .t/. We show how to do it in the situation

3, for situation 2 it is necessary to replace the index s by the index m everywhere.

Let Nr D min R.t;V .t//. Set

eV .t/D
�
V .t/ n U.�m=qs; @ŒX

.s/. Nr/�/
�

\
�
Vs � Nr�

�
;

V .t/D
KT

iD1

.eV .t/C Nxi/:

As elements of the partition �t we take those connected components of V .t/

whose length is at least �m=qm0 .
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For C 2 �t set

L.C /D
� KX

iD1

Bi � Ai

B � A
�i.x/

�
qsC1 log ksC1;

where �i is the indicator function of the set ŒX .s/�C Nxi , x 2 C . This definition

does not depend on the choice of representative x 2 C , as it follows the con-

struction of �t . Also the inequality L.C /> 0 follows from the construction and

the condition that sign.Bi � Ai/D sign.B � A/¤ 0.

Note, that the partition �t depends on some fixed Nr in the situations 2 and 3,

and thus (4–2) is valid only for r closed to Nr , whereas the sufficient condition of

mixing requires it for any r 2 R.t; Œ�t �/. By estimating the oscillation of f r in

the set V .t/ it is possible to prove that the range R.t; Œ�t �/ is not too large, and

(4–2) is valid for the whole range.

5. Some problems

(1) It is not known whether the restriction .�/ on the angle in the theorem 7

is appreciable. For angles which don’t satisfy .�/, it is possible to construct achievable?

an asymmetric function f with logarithmic singularities, such that for an

unbounded set of moments t and corresponding r , the oscillation of f r on

each element C 2�t WC � .ŒX .m/�/C Nxi is small since e.r/CL.C /Do.qmC1/

in the expansion (4–2), but the oscillation of f r on each set

ŒX
.m/
i � n U.�m; @ŒX

.m/
i �/\ Œ�t �

is large enough; also the distribution of f r j
�
ŒX

.m/
i � n U.�m; @ŒX

.m/
i �/

�
is not

almost uniform, it is almost discrete. Thus we cannot use the sufficient con-

dition for mixing given above, and yet cannot prove the absence of mixing.

(2) It is not known whether the theorem 6 for symmetric function with logarith-

mic singularities is right for angles satisfying knC1 D o.log qn/ (or the same

log knC1 D o.log log qn/).

Using techniques from Fourier analysis, M. Lemańczyk has slightly ex-

tended the class of functions considered but not the class of angles.

(3) It would be interesting to clarify how for mixing special flows the modulus of

continuity of the roof function relates to the speed of rational approximation

of the angle of the rotation in the base. Maybe there exist models other

than the model of “two terms” described above, in which more terms are

simultaneously involved in the stretching of Birkhoff sums.

(4) It is also not known what the maximum rate of mixing is for special flows

over ergodic rotations and under continuous roof functions. This question
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is interesting in connection with the existence of such flows with Lebesgue

spectrum.

(5) Is the presence of only one singular fixed point, even in the presence of other

nonsingular fixed points, sufficient for mixing of an ergodic flow on a surface

? It seems the answer should be positive but it has not yet been proved.

(6) Is the mixing in the above flows mixing of all orders ?
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