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Random walks derived from billiards
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To Anatoly Katok, on his 60th birthday

ABSTRACT. We introduce a class of random dynamical systems derived from

billiard maps, which we call random billiards, and study certain random walks

on the real line obtained from them. The interplay between the billiard geom-

etry and the stochastic properties of the random billiard is investigated. Our

main results are concerned with the spectrum of the random billiard’s Markov

operator. We also describe some basic properties of diffusion limits under

appropriate scaling.

1. Introduction

This work is motivated by the following problem about gas kinetics. Suppose

that a short pulse of inert gas at very low pressure is released from a point inside

a long but finite cylindrical channel. The time at which gas molecules escape

the channel through its open ends is then measured by some device such as a

mass spectrometer. The inner surface of the cylinder is not perfectly flat due

to its molecular structure, imagined as a periodic relief. It is not altogether

unreasonable to think that the interaction between the fast moving (inert) gas

molecules and the surface is essentially elastic, and that any thermal effects can

be disregarded on first approximation. (See [ACM] for a more detailed physical

justification of this assumption.) We thus think of the gas-surface interaction as

billiard-like. (M. Knudsen, in his classical theoretical and experimental studies

on the kinetic theory of gases begun around 1907, used a tennis ball metaphor

[Kn, p. 26].) The assumption of low pressure simply means that the collisions

among gas molecules are in sufficiently small numbers to be disregarded and

only collisions between gas molecules and the channel inner surface are taken

into account. The problem is now this: from the time of escape data, possibly
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for a range of values of channel length, we wish to extract information about

the microgeometry of the channel surface.

A mathematical formulation of this problem is proposed below in terms of

random dynamical systems derived from deterministic billiards. For each choice

of billiard geometry, the interaction between gas molecules and channel inner

surface is encoded in a Markov (scattering) operator, P . The study of P is

the main focus of the paper, but we also consider to a lesser extent the random

flight inside the channel derived from P , and make a number of general remarks

about the asymptotic behavior of the time of escape for long channels. More

details about the relationship between geometric properties of the billiard cells

and diffusion characteristics of (limits of) the random walk will be explored in

a future paper. (For a numerical study of this relationship, see [FY2].) The

definitions given here were introduced in essentially nonmathematical form in

our [FY1].
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Figure 1. Channel with microgeometry, showing the initial steps of a
billiard particle flight (left) and the trajectory inside a billiard cell (right).
When the billiard cell is regarded as infinitesimal in the sense defined in the
text, the initial point x on the open side pq becomes a random variable
uniformly distributed over the interval from p to q. The angle �out then
becomes a random function of �in. The transition probabilities of the events
�in ‘ �out are described by a Markov operator P canonically specified by
the cell’s shape.

The wished-for general theory, of which the present paper is only the first

step, can be seen in a nutshell with the help of a simple example. (The mainly

numerical study [FY2] shows a more detailed overview, with many more ex-

amples. See also Section 7.) Before describing the example, let us define the

time-of-escape function, f .x/, a little more precisely. Consider the quantity

�.L; r; v/, defined as the mean time of escape of a pulse of billiard particles

released from the middle point of a channel of length 2L and radius r , where
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v is the scalar velocity, assumed equal for all particles. It is convenient to work

with a dimensionless quantity f .x/, where x D L=r , given by

�.L; r; v/D r

v
f .x/:

That � indeed has such a functional form is due to the elementary observation

that for any positive number c, the mean time of escape satisfies the relations

�.cL; cr; cv/ D �.L; r; v/ and �.L; r; cv/ D �.L; r; v/=c. Notice that f .x/

depends exclusively on the microgeometry of the channel surface encoded by

P . The central problem of the theory is to extract information about this micro-

geometry from f .x/.

Let the microgeometry be that of Figure 2. There are two geometric param-

eters: h and b. It will be clear from the definition of P that it only depends on

the shape of the billiard cell up to homothety. So the only geometric parameter

we can hope to recover from this time-of-escape experiment is the ratio b=h.

h

b

θ π−θ pp

1-p

1-p

θ

Figure 2. Transition probabilities for this “fence microgeometry” are given
by the above Markov diagram. Standard random walk on R (p D 1=2)
corresponds to the projection of the random flight in a channel of radius
r D 1=2, � D �=4, and b=h D 4.

The transition probabilities, represented by p and 1�p in the diagram on the

right-hand side of Figure 2, are given as follows. Let k 2 Z denote the integer

part of 2h=b tan � , and s 2 Œ0; 1/ the fractional part, so that

2h

b tan �
D k C s:

Then, if k is even, p D 1 � s, and if k is odd, p D s. This is easily obtained by

inspecting the unfolding of the billiard cell as shown in Figure 3.

The Markov operator completely determines the microgeometry, up to scale,

for this (one-parameter) family of geometries. In other words, the quantity h=b

is known if we know the transition probabilities for all values of � . The standard

random walk on a line (which has probability 1=2 of jumping either forward or

backward by a fixed length) corresponds to the horizontal projection of a random

flight in a 2-dimensional channel of radius r D 1=2, vD 1, and box dimensions

� D �=4, and b=h D 4.

It can also be shown that the parameter b=h is recovered from the time-of-

escape function f .x/. For concreteness, let us suppose that the initial direction
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Figure 3. Unfolding of a billiard cell of Figure 2, used to determine the
transition probabilities.

is given by the angle � D �=4 and the lengths of the base, b, and height, h, of

the rectangular cell satisfy b > 2h. Then (see Section 7), for large values of x

(i.e., large ratio L=r ), we have the asymptotic expression

f .x/

x2
� 1p

2

�

b

2h
� 1

��1

:

Therefore, the single geometric parameter of this family of microgeometries,

namely the ratio b=h, can be recovered from f .x/. This follows from a central

limit theorem for Markov chains, which can also be used to show that for long

channels the probability density, u.t; z/, of finding a billiard particle at time t and

position z along the axis of the channel satisfies a standard diffusion equation

@u

@t
D D

@2u

@z2
;

where D D .1=
p

2/.b=2h � 1/rv is the diffusion constant, r is the channel

radius, and v is the constant scalar velocity of the billiard particles.

The main problem is thus to understand how much geometric information

about the billiard cell is contained in f .x/. Another, relatively simpler (though

not simple), problem is to understand how much geometric information is con-

tained in the spectrum of the operator P . As will be seen later in the paper,

P will have discrete real spectrum for a large class of billiard geometries. We

should note that the above example is not entirely representative of most mi-

crogeometries in some important ways. Most importantly, the correct asymp-

totic expression of f .x/ for large x will typically be D�1x2= ln x, rather than

D�1x2, where D is a diffusion constant. This is briefly discussed in Section 7.

The paper is organized as follows. The first section introduces the idea of

channel microgeometry and the way a point particle interacts with it. This nat-

urally leads to the definition of a random billiard map, generating a random

dynamical system on a set V . Here V stands for the interval Œ0; �� in the



RANDOM WALKS DERIVED FROM BILLIARDS 183

two-dimensional version of the problem, or the unit hemisphere in the three-

dimensional version. The microgeometry specifies a Markov chain with state

space V whose transition probabilities operator, P , replaces the ordinary reflec-

tion law of deterministic billiards. The Markov chain gives at each moment in

time the velocity component of a random flight inside the channel.

The general properties of the random billiard Markov chain are then investi-

gated. It is shown that this random process has a canonical stationary measure,

�, obtained from the Liouville measure of the associated deterministic billiard.

A simple ergodicity criterion for � is provided.

It is shown next that P is a bounded self-adjoint operator on L2.V; �/. Self-

adjointness is a consequence of time reversibility of the deterministic system,

which also implies reversibility of the Markov chain. Under more stringent as-

sumptions (essentially that the underlying deterministic billiard is a dispersing,

or Sinai, billiard) it is shown that P is a Hilbert–Schmidt operator. This is one

of the central results of the paper.

We then turn to the associated random flight. It is shown by means of an

appropriate central limit theorem how the random flight gives rise to Brownian

motion, with variance that depends on the spectrum of P , hence on the micro-

geometry of the channel. This is accomplished most easily in cases when the

stationary measure is nonergodic and does not contain the direction of the axis of

the channel in its support. The general (ergodic) case, which we consider only

briefly, mainly through one example, requires a more careful analysis as the

jumps of the random walk have infinite variance. The probability distribution of

these jumps is, nevertheless, in the domain of attraction of a normal distribution

and ordinary diffusion can still be obtained under an appropriate scaling limit.

Explicit values for the diffusion constant are derived for a few simple examples.

Finally, explicit formulas for the mean time and mean number of collisions in-

side a billiard cell are given in terms of parameters associated to the shape of

the cell.

Acknowledgment. This paper has benefited from conversations with M. Nicol

and D. Szász. I wish to express my thanks to them.

2. Main definitions

The central concepts of the paper—the definitions of a random billiard, the

microgeometry of a channel, the associated Markov operator and random flight

in a channel—are introduced here.

2.1. Reflection off a wall with infinitesimal structure. A surface (or curve)

microgeometry, and how a point particle interacts with it, is the first idea that

needs to be explained. The precise description of the particle-surface interaction
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will involve the notion of a random billiard, defined in the next subsection.

Although not logically needed, the following remark should provide a concep-

tual justification for the definitions. The key point to clarify is how to define

the reflection law for a billiard particle bouncing off a wall that has periodic

geometric features at an infinitesimal scale.

Consider a family of piecewise differentiable surfaces, or curves, Sa, which

approximates (in Hausdorff metric) another piecewise differentiable surface S

as indicated by Figure 4. Each Sa can be thought of as superposing to S a

periodic geometry scaled down in size, with scale parameter a, and slightly

deformed to account for the curvature of S . A procedure that yields a well-

defined limit for the billiard reflection as a ! 0 is the following. As a first step,

we replace the incoming velocity v with a random variable V" whose probability

distribution has smooth density and is sharply concentrated around v, approach-

ing v as "! 0. The distribution of reflected velocities is then obtained, resulting

in a random variable with probability measure �va;". The reflection law for the

incident velocity, v, is now defined by the limit (in the weak* topology)

�v WD lim
"!0

lim
a!0

�va;":

It can be shown that the limit exits and the resulting measure is uniquely deter-

mined by the scaled down geometry. It is not difficult to obtain, using elemen-

tary facts about oscillatory integrals, that the limit has a very explicit form. In

dimension two (writing �v D �� ) it is given by

�� .h/D
Z 1

0

h.	x.�// dx;

where � 2 .0; �/ is the incidence angle measured with respect to the tangent

line to S at the point of collision, x 2 Œ0; 1� parametrizes a point on the open

Sa

v

w

p

q

S

v

V

p

q

weak limit

Figure 4. S is fixed and Sa varies so that bumps scale down to zero in
size. As sets, Sa ! S , but reflection law becomes probabilistic, represented
by a scattering operator.
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side of one of the ”microscopic” indentations of Sa inside of which the particle

executes a billiard ball motion (see Figure 4), 	x.�/ is the angle that the particle

makes with S as it leaves the indentation, and �� .h/ denotes the integral of an

arbitrary continuous function h on Œ0; �� with measure �� . (See [FY1] for more

details about the above limit.) In dimension 3, dx is Lebesgue measure over the

unit square.

The key observation here is that the direction of reflection for an incoming

velocity v should be regarded as a random variable. Its probability law, �v , is

obtained by assuming that the point on the open side of the indentation through

which the particle passes is a random variable uniformly distributed over the

area (or length) of that open side. The indentations are the billiard cells of the

random billiard, as defined next.

2.2. Random billiards. The billiard table with an open side that goes into the

definition of a random billiard should be thought as representing the individual

indentations of the surface Sa for a very small a. Consider an ordinary billiard

system consisting of a billiard table B. The boundary of B is the union of a

finite number of smooth curves, called the sides of the table. One of the sides is

distinguished, and for our purposes it will always be a segment of line (or the

2-torus in dimension 3; see below), which will be called the open side. This is

the segment pq of the billiard cell on the right-hand side of Figure 1.

Choose a number s 2 Œ0; 1� at random with uniform probability and set the

initial point of the billiard trajectory to be x D p C s.q � p/. Denote by

	x W Œ0; �� ! Œ0; �� the angle component of the first return map of the billiard

trajectory back to the open side. Referring to Figure 1 (right-hand side), we

have �out D	x.�in/. We often identify the open side with the interval Œ0; 1�. The

first return map to pq of the ordinary billiard is a map T from the rectangle

Œ0; 1� � Œ0; �� to itself such that T .x; �/ D .y; 	x.�//: The random billiard is

then the random dynamical system .f	x W x 2 Œ0; 1�g;B; �/;where � is Lebesgue

measure on the unit interval and B is the Borel � -algebra.

Figure 5 provides one interpretation for the iteration of a random billiard map.

The table B is doubled over its flat side; a trajectory of the random billiard is

Figure 5. Doubling of billiard table with a random map.
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an ordinary billiard trajectory until it crosses the separation line between the

two copies of B (the dashed line in Figure 5), at which moment it jumps to a

randomly chosen point on the line, keeping the velocity unchanged.

As an example of random billiard map, consider the (doubled up) triangular

table shown in Figure 6. Let ˛ < �=6. Define maps Ti W Œ0; ��! R by

T1.�/D � C 2˛

T2.�/D �� C 2� � 4˛

T3.�/D � � 2˛

T4.�/D �� C 4˛:

The random billiard map T W Œ0; �� ! Œ0; �� is given by T .�/ D Ti.�/ with

probability pi.�/. To specify pi , first define the function

u˛.�/D 1

2

�

1 C tan˛

tan �

�

:

Now define

p1.�/D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 � 2 Œ0; ˛/
u˛.�/ � 2 Œ˛; � � 3˛/

2 cos.2˛/u2˛.�/ � 2 Œ� � 3˛; � � 2˛/

0 � 2 Œ� � 2˛; ��

p2.�/D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 � 2 Œ0; � � 3˛/

u˛.�/� 2 cos.2˛/u2˛.�/ � 2 Œ� � 3˛; � � 2˛/

u˛.�/ � 2 Œ� � 2˛; � �˛/
0 � 2 Œ� �˛; ��

p3.�/D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 � 2 Œ0; 2˛/
2 cos.2˛/u2˛.��/ � 2 Œ2˛; 3˛/
u˛.��/ � 2 Œ3˛; � �˛/
1 � 2 Œ� �˛; ��

p4.�/D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 � 2 Œ0; ˛/
u˛.��/ � 2 Œ˛; 2˛/
u˛.��/� 2 cos.2˛/u2˛.��/ � 2 Œ2˛; 3˛/
0 � 2 Œ3˛; ��:

Figure 6 shows the graph of the random map T .

If ˛Dp�=q, for p; q positive integers, the maps Ti generate a dihedral group,

Dm (of order 2m), where m D q if q is odd, and m D q=2 if q is even. The

random dynamical system can be regarded as a random walk on an orbit Dm �� ,

for � 2 Œ0; ��. The generators of the random walk are T1;T2;T3 D T m�1
1

;T4 D
T2 ı T m�4

1
, chosen with probabilities pi.�

0/, for � 0 on the orbit of � . Notice

that any pair .P; s/, where P is a rational polygon in the plane (specified up to
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θin

θout

P1

P3
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P4

α 2α 3α π−3α π−2α π−α π

Figure 6. Random billiard map (left) for the shallow triangular table (lower
half of the figure on the right).

a similarity transformation) and s is a choice of side of P, determines such a

position dependent random walk on a dihedral group.

2.3. Dimension 3. In dimension 3, the boundary surface of the billiard table will

be a piecewise smooth surface without boundary, contained in T
2 � Œ0; a�, that

separates the top and bottom tori; that is, any geodesic segment in T
2�Œ0; a� that

starts in T
2 �fag and ends in T

2 �f0g must intersect the surface. The top torus,

denoted simply by T
2, assumes the same

Figure 7. 3-D billiard cell.

role as the distinguished side of the two di-

mensional billiard. A trajectory of the three

dimensional open billiard might look like

the one shown in Figure 7. Incoming and

outgoing velocities are parametrized by the

upper half (unit) hemisphere,

SC WD fv D .v1; v2; v3/ W v3 > 0; jvj D 1g:

The random dynamical system is now a ran-

dom map on SC, denoted 	x W SC ! SC,

for x 2 T
2. The torus is given the nor-

malized Lebesgue measure. Notice that any

choice of a (greater than the height of the

surface itself) will produce the same ran-

dom dynamical system.
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The random billiard can be expressed as an ordinary (deterministic) dynami-

cal system on an extended state space, as follows. In dimension 2, let˝D Œ0; 1�N

and � D �N, where � is the Lebesgue measure on the unit interval. Define the

shift map � W ˝ ! ˝ by �.!/i WD !iC1 and 	! WD 	!1
. This gives a map

	 W˝ � Œ0; ��!˝ � Œ0; ��. The n-th iterate of 	 is

	n.!; �/D .	�n.!/ ı � � � ı	�.!/ ı	!/.�/:

The three-dimensional case is similarly defined.

We summarize here some notation about billiards that will be used consis-

tently throughout the paper. Let .X;B; �/ denote the measure space Œ0; 1� or

T
2 with the normalized Lebesgue measure and the Borel � -algebra. Let V

denote, respectively, Œ0; �� or SC, and 	x W V ! V , the random billiard maps.

At times it will be convenient to write Fv.x/ WD 	x.v/. In what follows, �

will denote (unless explicitly stated otherwise) the probability measure on V

defined by d�.�/ D 1
2

sin �d� if V D Œ0; ��, and d�.v/ D v � n dA.v/, for

V D SC, where dA is the area element of SC. In spherical coordinates,

d�.�; �/D .1=2�/ sin.2�/d�d�; for 0 � � � �=2 and 0 � � � 2� .

Let E D X �V denote the phase space of the open side of the (deterministic)

billiard table, both in dimension 2 and dimension 3. The projection to second

component will be written �2 W E ! V . The Liouville measure of the determin-

istic billiard gives, after restriction and normalization, the measure � D �˝�

on E. Notice that � is invariant under the first return map T W E ! E.

The random system can also be studied as a Markov chain, which is the point

of view we mostly take. This will be described shortly, after we explain the

connection between the random billiard and random flights in a channel. For

detailed definitions and basic properties about random dynamical systems, we

refer the reader to [Ar] and [Re].

2.4. Channels with microgeometry and random flights. By a channel we

mean either a pair of parallel lines (dimension 2) or a cylinder (dimension 3). It

may be of finite or infinite length. A channel with microgeometry is a channel

with a choice of random billiard. In dimension 3, we could more generally define

a surface with microgeometry to be a triple .S; �; 	/, where S is a piecewise

smooth embedded surface in R
3, � is a piecewise smooth orthonormal framing

of S , and 	 is a random billiard. For cylindrical channels, the framing is always

the one represented by the vectors e1; e2; n of Figure 8. The normal vector, n,

is taken so as to point into the region enclosed by the surface and e2 is parallel

to the axis of the cylinder.

To a channel with microgeometry it is associated a random flight in the ob-

vious way: a particle with a given initial velocity moves along a straight line in

uniform motion until it hits a point on the channel surface. It then reflects at an
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angle specified by the random billiard. Vectors at the point of collision are iden-

tified with vectors at the open side of a billiard cell by means of the orthonormal

frame. In other words, we assume that the random billiard is “attached” to the

frame in this sense: defining C W .v1; v2; v3/ ‘ .v1; v2;�v3/, a particle that

hits the surface at p with velocity v D v1e1.p/C v2e2.p/C v3n.p/ follows

the direction specified by w D w1e1.p/Cw2e2.p/Cw3n.p/ after reflection,

where .w1; w2; w3/D C	x.v1; v2; v3/; for a randomly chosen x.

Geometric parameters of the channel (its radius and length) are not commen-

surate with those of the billiard cell. Consequently, any geometric characteristic

of the cell that can affect the behavior of the random flight must be invariant

under homothety, such as length ratios and angles.

It is, perhaps, not entirely obvious that iterations of the random billiard indeed

correspond to the velocity process of the random flight in a cylindrical channel.

This is because, in principle, one would need to apply a random rotation to	x.v/

after each collision, to account for the fact that the moving frame � rotates from

a point on the channel to the next. To clarify this point, we first suppose that the

channel is an unspecified orientable differentiable surface embedded in R
3, with

a given framing � D .e1; e2; n/. Denote by p.�n.!//, ! 2˝, the point of n-th

collision with the surface for a random trajectory. Define Ip W .v1; v2; v3/ ‘
v1e1 C v2e2 C v3n and write

R.�n.!// WD .Ip.�nC1.!///
�1 ı Ip.�n.!// ı C:

The velocity after n collisions is given by

v‘.Ip.�n!//
�1ı	�n.!/ıR.�n�1.!//ı	�n�1.!/ı� � �ı	�.!/ıR.!/ı	!ıIp.!/v:

If the surface is a cylinder and the moving frame is chosen as indicated in

Figure 8, then an elementary geometric argument shows that the orthogonal

transformations R.!/ are equal to the identity matrix. Therefore, the random

dynamical system defined by f	x W x 2 T
2g actually describes the changing

velocity of a particle in a random flight inside the cylinder as claimed.

v

v

n
n

e1

e1

e2

e2

p

q

Figure 8. Standard frame over cylindrical surface.
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2.5. The associated Markov chain. Define a Markov chain with state space V

and transition probabilities

P .Ajv/ WD .Fv/��.A/ WD �.F�1
v .A//D �N .f! 2˝ W 	!.v/ 2 Ag/ :

The conditional expectation of a function f , given v, is

EŒf jv�D
Z

X

f .Fv.x// d�.x/:

The transition probability P .Ajv/ should be interpreted as the probability that

a particle will reflect with a velocity in A given that the pre-collision velocity

is v. More generally, define Pk.Ajv/D �N
�

f! 2˝ W 	k
! .v/ 2 Ag

�

; for k 2 N.

These k-step transition probabilities define a homogeneous Markov chain (see

[Ar]). We have, in particular, the Chapman–Kolmogorov equation

PkCl.Ajv/D
Z

V

Pk.Ajv0/Pl.dv
0jv/;

for k; l 2 N.

If� is a probability measure on V (not necessarily, for the moment, the veloc-

ity component of the Liouville measure), then there exists a unique probability

measure, P�, on the space ˝V D V N with the product � -algebra such that the

coordinate functions, �k W˝V ! V , �k.v1; v2; : : :/D vk , constitute a Markov

process with respect to the natural filtration Fk (generated by the coordinates

�1; : : : ; �k) with transition probabilities Pk and initial distribution �. That is,

such that for any l � k and any measurable f W V ! R
C,

E�Œf ı�k jFl �.!/D .P k�lf /.vl/

for P� almost all !, where .P kf /.v/D
R

V f .w/Pk.dwjv/ is the semigroup of

positive linear operators corresponding to the kernel .Pk/k2N and P� is given

on cylinders U D f! 2˝V W �i.!/ 2 Ai ; i D 0; 1; : : : ; kg by

P�.U /D
Z

A0

Z

A1

� � �
Z

Ak

P .dvk jvk�1/ � � � P .dv2jv1/�.dv1/:

Notice that .�0/�P� D �.

The measure P� is shift invariant if and only if � is stationary, or P k-

invariant, for k D 1; 2; : : :; that is, if

�D
Z

V

Pk.�jv/�.dv/:

A bounded measurable function f on V is said to be P k-invariant if P kf D f

�-almost everywhere, for all k. A stationary measure � is ergodic if invariant

functions are �-almost everywhere constant. It can be shown that � is ergodic
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if and only if the shift map on˝V is ergodic for the invariant measure P�. This

is also equivalent to invariance in the sense

�D
Z

X

.	x/�� d�.x/:

(See below. Also see [Ki] or [Ar].)

Suppose, now, that � is a measure on V such that � WD �˝� is a T -invariant

measure on E. The next remark is that � is an invariant measure of the random

billiard, hence also a stationary measure for the associated Markov chain.

PROPOSITION 2.1. Suppose that � is a measure on V such that � D �˝ �

is a T -invariant measure on E. Then � is an invariant measure of the random

billiard. In particular, � is a stationary measure of the associated Markov chain.

PROOF. Let f be any �-integrable function on V . Then, from the equation

T�� D � applied to f ı�2, we obtain

�.f /D �.f ı�2/D T��.f ı�2/D �.f ı�2 ı T /

D
Z

X

Z

V

f .�2.T .x; v/// d�.v/d�.x/

D
Z

X

Z

V

f .	x.v// d�.v/d�.x/D
Z 1

0

.	x/��.f / d�.x/:

Since f is arbitrary, we have � D
R

X .	x/�� d�.x/ as claimed. That � is a

stationary measure for the Markov chain is now a standard fact. We show it

here for the sake of completeness. The claim is that

�.A/D
Z

V

P .Ajv/ d�.v/;

for all measurable A � V . This is a consequence of the following calculation:

Z

V

P .Ajv/ d�.v/D
Z

V

Z

X

�A.	x.v// d�.x/d�.v/

D
Z

X

Z

V

�A.	x.v// d�.v/d�.x/D
Z

X

.	x/��.A/ d�.x/

D �.A/;

for all measurable A 2 V . �

From now on, we resume the earlier convention that � denotes the velocity

component of the Liouville measure on E.
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3. Examples

We illustrate the concepts introduced above with a few simple examples. The

simplest, shown in Figure 2, was discussed in the introduction.

3.1. Three-dimensional boxes. The billiard cell is defined by the surface of a

parallelepiped without its top face, with sides h (height), b1 and b2. Using the

vectors e1; e2; n as in Figure 8, the base of the parallelepiped is oriented as in

Figure 9.

If vDv0
1
u1Cv0

2
u2�v3n is an incoming velocity expressed in the orthonormal

frame aligned with the box, then the velocity after reflection is

v D "1v
0
1u1 C "2v

0
2u2 C v3n;

where "1 and "2 are independent random variables taking values in f1;�1g with

probabilities to be specified. Write

A D
�

cos˛ �sin˛

sin˛ cos˛

�

and let v D v1e1 C v2e2 � v3n be an incoming velocity, now expressed in the

frame of the channel. The velocity after reflection can now be written as a

random variable V ."1; "2/Dw1e1 Cw2e2 C v3n such that

�

w1

w2

�

D A

�

"1 0

0 "2

�

At

�

v1

v2

�

:

n

u1

u2

α

h

b2

b1

e1

Figure 9. Geometry of microcubicles.
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This can also be written as follows. Let u be the orthogonal projection of v to

the linear span of fe1; e2g. Then vD kuk.cosˇe1 Csinˇe2/�v3n (ˇ is defined

by this expression) and V ."1; "2/D kukU."1; "2/C v3n, where

U."1; "2/D
"1C"2

2
.cosˇe1Csinˇe2/C

"1�"2

2
.cos.2˛�ˇ/e1Csin.2˛�ˇ/e2/:

For a given initial v, the velocity after any later collision of the random flight

in a cylindrical channel is one of the four vectors ˙u C v3n;˙u0 C v3n, where

u0 is defined by

u0 D kuk.cos.2˛�ˇ/e1 C sin.2˛�ˇ/e2/

and the frame vectors are based at the collision point.

We assume that v is not parallel to u1 or u2 (the easier case of v parallel to

either vector can be treated separately). Let

2hhv; ni
bihv;uii

DW ki.v/C si.v/;

where ki is the integer part and si is the fractional part of the number on the

left-hand side of the equation. Define pi.v/D si.v/ if ki.v/ is odd and pi.v/D
1 � si.v/ if ki.v/ is even. The probability that "i D 1, given that v is the pre-

collision velocity, is pi.v/.

For simplicity of notation, we write below pi.u/ instead of pi.u˙v3n/. We

make explicit the dependence of "i on w 2 f˙u C v3n;˙u0 C v3ng (the pre-

collision velocity) by writing "i.w/. Define ki ; si as the integral and fractional

e1

e2

β

2(α−β)
u

-u

u'

-u'

Figure 10. Possible values of the orthogonal projection of the reflected
velocity.
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u u'

-u' -u

a b

c d

a

a a

c c c

b

b

b

d

d

d

Figure 11. Transition probabilities for the velocity process.

parts of the numbers

2hv3=

q

1 � v2
3

b1 cos.ˇ�˛/ D k1 C s1;
2hv3=

q

1 � v2
3

b2 sin.ˇ�˛/ D k2 C s2:

It can now be calculated that pi.u/D pi.u
0/D pi.�u/D pi.�u0/DW pi , where

pi D
�

si if ki is even,

1 � si if ki is odd.

Setting a D p1p2; b D p1.1 � p2/; c D .1 � p1/p2; d D .1 � p1/.1 � p2/,

the transition probabilities can now be seen to be as shown in Figure 11.

The random walk on the real line, obtained by projecting the random flight

inside the cylinder on a line parallel to e2, can be described as follows. We

suppose that the initial velocity is v D u � v3n. From any particular time and

position, a particle moves a distance ı, which can be one of the four values:

ı1; ı2; ı3 D �ı2; ı4 D �ı1, where

ı1 D 2rv3kuk sinˇ

v2
3

C kuk2 cos2 ˇ
;

ı2 D 2rv3kuk sin.2˛�ˇ/
v2

3
C kuk2 cos2.2˛�ˇ/

:

A jump by ˙ıi takes time �i , where

�1 D 2rv3

v2
3

C kuk2 cos2 ˇ
;

�2 D 2rv3

v2
3

C kuk2 cos2.2˛�ˇ/
:
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Jumps of different lengths occur with probabilities specified by the transition

matrix

P D .p.ıi jıj //D

0

B

B

@

a b c d

b a d c

c d a b

d c b a

1

C

C

A

;

where a; b; c; d are as above. The spectral decomposition of the transition matrix

is easily obtained. If R is the orthogonal matrix

R D 1

2

0

B

B

@

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1

C

C

A

;

then P D RDRt , where D D diag.�1; �2; �3; �4/, with

�1 D a C b C c C d D 1;

�2 D a C b � c � d D 2p1 � 1;

�3 D a � b C c � d D 2p2 � 1;

�3 D a � b � c C d D .2p1 � 1/.2p2 � 1/:

In particular, the stationary distribution assigns equal probability to each of the

ıi . By allowing different values of the initial velocity we can recover the geo-

metric parameters, b1=h; b2=h; ˛, from the spectrum.

3.2. Cavities and effusion. The example we give now is in a sense more rep-

resentative than those seen so far in that the measure � is ergodic, as explained

later. Furthermore, its Markov operator admits a simple approximation that will

allow for some explicit calculations in Section 7. The approximate operator,

which by itself does not correspond to any random billiard system, is defined

by

PMaxwell D .1 �˛/P�C˛I;

where ˛ is a constant in .0; 1/ and P�.dwjv/ D d�.w/. This is a model of

gas-solid interaction proposed by Maxwell well-known in the gas kinetics and

Boltzmann equation literature (except for the fact that we do not include an

exponential term involving temperature) [C1]. The interpretation is that a par-

ticle will reflect in mirror-like fashion with probability ˛, and with probability

1�˛ it forgets the pre-collision velocity and rebounds along a random direction

specified by the probability �.

Notice that P� can be described as the orthogonal projection on the one-

dimensional subspace spanned by � in the Hilbert space, H , of signed measures
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do

Figure 12. Randomizing cavity; o is the length of the open side and d

is the length of the mirror-reflecting, flat side. The inside of the circular
cavity is lined with some ergodic microgeometry.

with square integrable densities with respect to �. Then

PMaxwell D P�C˛P�? ;

where �? denotes the subspace of H orthogonal to �.

We now show in what sense PMaxwell can be regarded as approximating the

Markov operator of an actual billiard microgeometry. (Proposition 3.1 will not

be used later in the paper other than for its heuristic value, so we only give a

sketch of the proof.) Consider the contour shown in Figure 12. It represents

an array of billiard cells consisting of circular cavities with a small opening on

top. The inner surface of each cavity is itself lined with some other kind of

microgeometry at a much smaller scale. The bumps lining the inner surface of

the cavity are assumed to be so small that collisions with it are well approxi-

mated by a “second order” random billiard map, which we denote by 	 . We

assume that the associated Markov operator, Pbumps, is ergodic and aperiodic

(see Section 5). In particular, P k
bumps converges to � as k ! 1. This is the case

for the particular example of circular bumps shown in the figure, according to

the ergodicity criterion given in Section 5.

The random dynamical system, ˚ , is defined as follows. Let v be an initial

velocity and x 2 Œ0; 1� a random point on the open side of the cavity chosen

with probability �. Set a D o= l , where l is the perimeter of the circular cavity

and o is the length of its open side. With probability 1, a particle that falls into

the cavity leaves it after a finite number, #a, of collisions. This number is a

random variable depending on v. It can be shown that the limit, as a ! 0, of the

probability of the event f#a < ng is 0 for each finite n. Let �1; �2; : : : ; �#a
be

the post-collision random angles inside the cavity, measured with respect to the

tangent line at each (random) collision point. Let W denote the random vector

in R
2 corresponding to the angle �#a

. Then ˚.v/ is the angle of W measured

relative to the direction parallel to open side. For small a, ˚.v/ is very nearly

�#a
.
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Notice that �i is both the post-collision velocity of the i-th collision and

the pre-collision velocity of the i C 1-st collision. (This might not hold were

the cavities not circular.) Therefore, P k
bumps actually describes the probability

distribution of post-collision velocity after k collisions inside the cavity.

Let, now, Pa be the Markov operator of the random billiard conditioned on the

particle actually entering the cavity. This is an event of probability o=.o C d/.

Let ˛ D d=.o C d/ be the probability of an incident particle being reflected

specularly. Then, the Markov operator associated to ˚ can be written as P D
.1 � ˛/Pa C ˛I , where I is the identity operator. By the above argument,

Pa D P
#a

bumps. Thus we conclude:

PROPOSITION 3.1. Denote by Pa.�jv/D Pcav.�jv/ the conditional measures for

a cavity with ratio o= l D a. Suppose that 	 has a unique stationary measure,

�, and that the conditional measures are absolutely continuous with respect to

�. (See Section 5; the “microbumps” of Figure 12 are one example for which

these assumptions hold.) Then, for �-a.e. v 2 V , lima!0 Pa.�jv/D �:

Thus, it makes sense to think of PMaxwell D .1�˛/P�C˛I as an approximation

to the Markov operator of the random billiard of Figure 12, for a small opening

at the top.

Another interpretation of Proposition 3.1 has to do with the phenomenon of

effusion from cavities. If we imagine the circular cavity filled with gas at low

pressure, then gas will escape through the small opening with a distribution

of directions given by the probability density d�=d� D 1
2

sin � . Here � is the

angle measured counterclockwise from the direction parallel to the open side.

In particular, the probability of leaving at shallow angles approaches 0.

4. Reversibility and self-adjointness

The deterministic billiard system has the property of being reversible. In

dimension 2, this means:

T .x; �/D .y; �/” T .y; � ��/D .x; � � �/;

and in dimension 3, replace v for � , �w for ���, etc, in the above expression.

This can also be written as T �1 ı J D J ı T , where J.x; v/ D .x;�v/ is the

flip map. If ˚t is a flow describing the time evolution of, say, a conservative

mechanical system on its phase space or a geodesic flow, then reversibility means

that ˚t .x; v/ D .y; w/ ” ˚t .y;�w/ D .x;�v/ for all .x; v/ and t . In this

case, J ı˚t D ˚�t ı J .

Reversibility of the deterministic billiard system implies reversibility of the

random billiard as well, in the following sense. First recall that a Markov process
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with state space V and transition probability measure P is said to be reversible

with respect to a probability measure � on X if

P .dwjv/d�.v/D P .dvjw/d�.w/;

as measures on V � V . More precisely,

Z

V

Z

V

f .v; w/P .dwjv/ d�.v/D
Z

V

Z

V

f .v; w/P .dvjw/ d�.w/

for any integrable function f .v; w/ on V 2.

PROPOSITION 4.1. The Markov process of a random billiard is reversible.

PROOF. We actually show that P .dwjv/d�.v/D P .dvjw/d�.w/ for any mea-

sure � on V such that � WD �˝� is invariant under the billiard first return map

T W E ! E and the flip map J . First observe that

Z

V

Z

V

f .v; w/P .dwjv/ d�.v/D
Z

V

Z

X

f .v; 	x.v// d�.x/d�.v/

D
Z

E

F.�;T .�// d�.�/;

where F.�1; �2/ D f .�2.�1/; �2.�2// for all �1; �2 2 E. Therefore, the claim

amounts to the property

Z

E

F.�;T .�// d�.�/D
Z

E

F.T .�/; �/ d�.�/:

But this is a consequence of the invariance of � under T �1 and the flip map. �

Notice the following well-known consequence of reversibility of the Markov

process with respect to the stationary measure �.

PROPOSITION 4.2. Let hf;gi D
R �

0 f Ng d� denote the inner product on the

Hilbert space H D L2.V; �/. Then, the linear operator P on H defined by

.Pf /.v/ WD
Z

X

f .	x.v// d�.x/

is self-adjoint.

We regard H as the space of densities of signed measure on V absolutely con-

tinuous with respect to �. With this in mind, we write P� for the action of the

Markov operator P on a probability measure � on V . If � describes the proba-

bility distribution of incoming directions of a particle, then P� is interpreted as

the probability distribution of reflected directions.
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5. Ergodicity

Given a Markov process with state space V and transition probability measure

P , let Pn.Ajv/ denote the transition probability measure after n steps. We are

interested in the convergence of Pn.Ajv/ to �.A/, where � is the velocity com-

ponent of the Liouville measure � on E. Recall that � is a stationary measure

for P .

LEMMA 5.1. Suppose that a measurable A � V satisfies P .Ajv/D 1 for �-a.e.

v 2 A. Let NA D X � A. Then, after possibly changing A on a set of measure 0,

we have that NA is T -invariant.

PROOF. For almost all v 2 A, �.fx 2 X W 	x.v/ 2 Ag/D P .Ajv/D 1: Conse-

quently, for almost all .x; v/ 2 NA, we have T .x; v/ 2 NA. By changing NA on a

set of measure zero it can be insured that NA is T -invariant. �

We say that the process is indecomposable if any measurable set A � V such

that P .Ajv/D 1 for almost all v 2 A either has measure zero or its complement

has measure zero.

COROLLARY 5.2. Suppose that T W E ! E is ergodic with respect to the

Liouville measure. Then the Markov process of the random billiard is indecom-

posable.

PROOF. Apply the previous proposition to NA D X � A, where P .Ajv/D 1 for

�-a.e. v to conclude that NA D X �A has measure either zero or one. Therefore,

A has measure either zero or one. �

COROLLARY 5.3. If T W E ! E is ergodic (in particular, if the billiard dy-

namical system on the closed table, with its top side included, is ergodic), then

� is the unique stationary distribution of the billiard Markov operator, and the

Markov process with initial distribution � is ergodic.

PROOF. See [Br], Theorem 7.16. �

Applying the previous result to powers of T , gives the next proposition.

PROPOSITION 5.4. Suppose that all the iterates T n of T are ergodic. Then

Markov process is aperiodic, that is, V is indecomposable for all the iterates

P n.�jv/, n D 1; 2; : : :.

COROLLARY 5.5. Suppose that T n is ergodic for n D 1; 2; 3; : : :, and that

P .�jv/ is absolutely continuous with respect to �, for almost all v. Then

lim
n!1

P n.Ajv/D �.A/

for all measurable A and almost all v 2 V .
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PROOF. This is a consequence of [Br], Theorem 7.18. �

As an example, if the doubling of the billiard table at its open side gives a Sinai

(dispersing) billiard, then the Markov process has a unique stationary measure

given by �.

It is to be expected that ergodicity and aperiodicity should hold under very

general conditions. It is certainly clear that it is a much more general (and

easier to prove) property for the random billiard than it is for the corresponding

deterministic billiard. We give next a sufficient condition that is easy to verify

in many examples.

We say that p is a point of maximal height of the (open) billiard cell if the

entire cell is contained in one of the two closed half-spaces bounded by the plane

through p parallel to the distinguished, or top, side. We also say that the billiard

is nondegenerate at p if the height function (relative to the normal direction to

the open side) is nondegenerate there. This means that at the point p of maximal

height the billiard surface, or curve, the curvature is defined and nonzero.

PROPOSITION 5.6. Suppose that the billiard table contains a point of maxi-

mal height at which the billiard is nondegenerate. Then the associated random

billiard is ergodic and aperiodic, and it admits a unique stationary probability

measure, which is � (the velocity factor of the Liouville measure).

PROOF. Given A�V measurable, define I.A/D f	x.v/ Wx 2 X; v2 Ag �V . If

the billiard table is differentiable at a point p of maximal height, then A � I.A/,

since v D 	x.v/ for an x such that the ray with initial condition .x; v/ reflects

at p. We claim that, for all v 2 V ,

V D
1
[

nD1

I
n.v/:

Granted the claim, it follows that P n is indecomposable for n D 1; 2; : : :. In

fact, let A � V satisfy P .Ajv/D 1 for �-a.e. v 2 A. By Lemma 5.1, NA D X �A

is T -invariant. Consequently, for almost all v 2 A, I
n.v/ � A, up to sets of

measure 0. Therefore, A D V up to a set of measure 0.

We now turn to the proof of the claim. The description below applies to

dimension 3, although it should be clear what modifications are need for dimen-

sion 2. The surface boundary of the billiard table will be denoted by M . This

is a smooth surface near p. Recall that V is the open hemisphere of unit radius.

Let ˘ W V ! D denote the orthogonal projection onto the open unit disc. The

essential point is that, for any compact subset, K �V , there is ">0 such that for

any v 2 K, the set ˘.I.v// contains a disc of radius " centered at ˘.v/. To see

this, it suffices to show that the Jacobian of x 2 T
2 ‘ ˘.	x.v// is uniformly

bounded away from 0 for v in any compact subset of V .
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Let 
 .s/ be a differentiable curve in T
2 such that the ray with initial condition

.
 .0/; v/ hits M at p. By varying s, for s small enough, a differentiable path,

�, through p is traced on M . The reflected angle is given by

	
.s/.v/D v� 2hv; n.�.s//in.�.s//:

Let G W M ! S2 denote the Gauss map of M near p. Note that, by definition,

the differential of G at p is

dGp�
0.0/D d.n ı �/

ds
jsD0:

We can now write

d

ds
˘ ı	
.s/.v/jsD0 D˘.�2hv; dGp�

0.0/in.p/� 2hv; n.p/idGp�
0.0//

D �2hv; n.p/i˘dGp�
0.0/:

The norm of ˘ at n is 1 and 
 0.0/D �0.0/. Consequently,












d

ds
˘ ı	
.s/.v/jsD0













� 2jhv; n.p/ij minfk1; k2gk
 0.0/k;

where k1 and k2 are the principal curvatures of M at p, that is, the eigenvalues

of dGp , which are necessarily positive. Since the term jhv; n.p/ij is bounded

away from 0 for all v on a compact K � V , the claim holds. �

We have so far assumed that the particle undergoing a random flight is point-

like. There is obviously no loss of generality in making this assumption since a

spherical billiard ball can be regarded as point-like by following the motion of

its center. If we wish to vary the size of the probing particle, then the problem we

are studying is the same as having a one parameter family of microgeometries

parametrized by the particle radius, and billiard balls that are point-like. Figure

13 illustrates this. The thick contour represents the actual surface relief, and the

thin line represents this geometry as viewed by the center of a disc-like billiard

ball.

It is interesting to remark that if p is a point of maximal height at which

the billiard is not-differentiable, say, a cone point, then viewed by the center of

a spherical particle of positive radius, there is a point of maximal height (just

above p) which is nondegenerate. Thus, for example, the comb geometry of

Figure 13 does not correspond to an ergodic random billiard, but when probed

Figure 13. Microgeometry for positive particle radius.
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by particles of arbitrary nonzero radius, the thickened table (represented by the

thin line in the figure) does.

6. Spectrum

A fundamental issue to address is the relationship between the geometry of

the billiard cell and the spectrum of the (self-adjoint) Markov operator P on

L2.V; �/. We take here a first step in this direction.

As before, � refers to the (velocity part of the) Liouville measure on V . Let

�2 W E ! V denote the projection map. By duality, P acts on signed measures

on V with square integrable densities with respect to �. If � is such a measure,

we write �P . (The notation P� was also used earlier.)

6.1. Generalities.

LEMMA 6.1. Let '; 2 L2.V; �/, and � the signed measure such that d� D
' d�. Then

Z

V

 d.�P /D
Z

E

. ı�2/.' ı�2 ı T �1/ d�:

PROOF. Let  be any element of L2.V; �/. Then

Z

V

 
d.�P /

d�
d�D

Z

V

 d Œ.�2 ı T /��˝ ��D
Z

E

 ı�2 ı T d.�˝ �/

D
Z

E

. ı�2 ı T /.' ı�2/ d�

D
Z

E

. ı�2/.' ı�2 ı T �1/ d�: �

PROPOSITION 6.2. The spectrum of the Markov operator P is contained in

the interval Œ�1; 1�, and 1 is an eigenvalue. If the associated Markov chain is

ergodic, then 1 is a simple eigenvalue of P .

PROOF. Clearly, 1 is the eigenvalue associated to the stationary measure �, and

is a simple eigenvalue if the Markov chain is ergodic. That kPk2 � 1 is shown

by the following standard calculation:

k�Pk2 D sup
 2L2.V;�/;k k2D1

Z

V

 
d.�P /

d�
d�
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D sup
 2L2.V;�/

k k2D1

Z

E

. ı�2/.' ı�2 ı T �1/ d�

� sup
 2L2.V;�/

k k2D1

s

Z

E

. ı�2/2 d�

s

Z

E

.' ı�2 ı T �1/2 d�

D

s

Z

E

.' ı�2/2 d� D

s

Z

V

'2 d�D k�k2:

Therefore, k�Pk2 � k�k2, for all �. As P is self-adjoint, its spectrum is real,

contained in Œ�1; 1�. �

PROPOSITION 6.3. Suppose that the conditional measure P .�jv/ is absolutely

continuous with respect to �, for �-almost every v 2 V , and that the function

�.wjv/ WD P .dwjv/=d�.v/ (the Radon–Nikodým derivative of P .�jv/ with re-

spect to �) is in L2.V 2; � ˝ �/. Then, P W H ! H is a Hilbert–Schmidt

operator.

PROOF. Under these assumptions,

.Pf /.v/D
Z

V

f .w/�.wjv/ d�.w/:

Since � is in L2.V 2; �˝�/, P is a Hilbert–Schmidt operator. �

6.2. Integral kernel and spectrum. We make at this point more specific and

stronger assumptions about the deterministic billiard than we have so far. We

restrict ourselves to the 2-dimensional case. One simple example for which all

the assumptions to be made here hold is the billiard cell shown in Figure 14. It

consists of two arcs of circle of positive curvature meeting at an angle 
 >�=2,

and forming angles ˛ and ˇ with the line segment representing the open side,

where ˛; ˇ 2 Œ0; �=2/. Notice that every trajectory collides with the curved

sides at most twice before returning to the open side. Also notice that for each

initial condition .x0; �/ at which the return map is differentiable, the function

of x defined by F� .x/ WD	x.�/ is differentiable at x0 and jF 0
�
.x0/j is bounded

away from 0 by a constant that depends on � and on the curvatures of the two

sides.

α

γ

β

Figure 14. A simple example satisfying the requirements of this section.
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The results to be proved later under the following assumptions are by no

means optimal. They should be expected to hold for much more general billiard

geometries.

ASSUMPTION 1. For each � 2 .0; �/ there exists a countable set, X� D fx�i g,

where 0 D x�
0
< x�

1
< � � � < x�

l
D 1 and l D l� � 1, such that

(1) F� is differentiable and F 0
�

¤ 0 over each interval .x�i ;x
�
iC1

/; and

(2) if E� D f C
0
;  �

1
;  C

1
;  �

2
;  C

2
; : : :g denotes the set of right and left limits

of F� at the x�i , then

X

x2F �1

�
. /

jF 0
� .x/j

�1 <1

for each  2 .0; �/r E� for which F�1
�
. / is nonempty.

ASSUMPTION 2. There exists a constant c>0 such that all sides have curvature

bounded below by c. In particular, all sides are concave.

ASSUMPTION 3. Above a certain height, which is strictly below the height of

the open side, the billiard table contour consists of two smooth, concave curves

with nonzero curvature at the endpoints p and q. (See Figure 15.) The angles ˛

and ˇ lie in the interval Œ0; �=2/.

α β
p q

Figure 15. Assumption 3.

These assumptions are satisfied by the example of Figure 14. The number of

x�i , not counting 0 and 1, is at most 2 for each � , and jF 0
�
.x/j is bounded away

from zero by a constant that depends on theta and on the curvatures of the arcs of

circles. It should be noted that the sum increases with 1= sin � as � approaches

0 and � .

LEMMA 6.4. Fix � 2 .0; �/. Under Assumption 1, the push-forward measure

.F� /�� is absolutely continuous with respect to �. The Radon–Nikodým deriv-

ative, �. j�/D Œd.F� /��=d��. /, is given by

�. j�/D

8

<

:

2

sin 

P

x2F �1

�
. / jF 0

�
.x/j�1 if F�1

�
. / is nonempty;

0 if F�1
�
. / is empty,
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p

n(η(s))

γ(s)

η(s)

Ψγ(s)(v)

v

Figure 16. Reflection near a point of maximum height.

for all  2 .0; �/rE� . If, moreover, f is a bounded measurable function on V ,

Z 1

0

f .F� .x// d�.x/D
Z �

0

f . /�. j�/ d�. /:

PROOF. This is an immediate consequence of the definitions. �

LEMMA 6.5. Under Assumption 2, for all � 2 .0; �/ and  2 .0; �/r E� , the

function �. j�/ satisfies

�. j�/� N=c

sin sin �
:

PROOF. Denote by c.�/ the infimum of fjF 0
�
.x/j W x 2 .0; 1/g. From the expres-

sion of � given in Lemma 6.4, it follows that �. j�/ � 2N =.c.�/ sin /. The

lemma will be proved if we show that c.�/� 2c sin � .

Since all sides of the billiard table are strictly concave, we can estimate

jF 0
�
.x/j by estimating the change of direction of the billiard trajectory due to

the first collision only; the subsequent collisions can only magnify the angle

variation to first order. Let F.x/D F�;1.x/ denote the angle immediately after

the first collision, measured with respect to some direction, say, a tangent vector

to the side at the point of first collision. (This choice is immaterial since we are

interested in the derivative of F.x/.)

The situation can be pictured by imagining the two-dimensional version of

Figure 16. In the present case, p denotes the point of first collision and 	
.s/.v/

should be replaced with F.
 .s//. Also, the normal vector at p is not necessarily

normal to the open side, as is the case in that figure. We continue to denote by


 .s/ a differentiable curve such that p0 D 
 .0/ is a point on the open side where

F is differentiable, and by �.s/ the curve traced on the side of first collision by
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the first segment of the billiard trajectory. If v is, as in the figure, the unit vector

representing the initial direction of the billiard trajectory, � can be written as

�.s/D 
 .s/C t.s/v, for a positive differentiable function t.s/. The trajectory’s

direction immediately after the first collision now reads

w.s/D v� 2hv; n.�.s//in.�.s//:

Notice that jF 0.x/j D kw0.0/k. Taking the square norm of w0.0/, and using that

dn=ds D k.p/�0.0/, where k.p/ denotes the curvature of the billiard contour

at p, gives

kw0.0/k2 D 4k.p/2

"

�

v;
�0.0/

k�0.0/k

�2

C hv; n.p/i2

#

k�0.0/k2:

The quantity between square brackets is the norm of v, since �0.0/ and n.p/

are orthogonal, and k�0.0/k assumes its minimum value when n.p/ and v are

parallel, in which case k�0.0/k D k
 0.0/k sin �: Therefore, jF 0.x/j D kw0.0/k �
2jk.p/j sin � , as needed to finish to proof. �

We note the following simple geometric fact derived in the proof of Lemma 6.5.

LEMMA 6.6. Using the notations defined in the proof of Lemma 6.5, it holds

that kw0.0/k D 2jk.p/jk�0.0/k.

LEMMA 6.7. Under Assumptions 1, 2 and 3, � belongs to L2.V � V; �2/.

PROOF. Due to Lemma 6.5, we only need to study the behavior of � for incident

and reflected rays having angles close to 0 or � . It is sufficient to carry the

analysis for angles close to 0; angles close to � are similarly treated. There

are four cases to study, depending on whether ˛ and ˇ are positive or 0. We

consider only two: (i) ˛ > 0 and ˇ > 0, and (ii) ˛ D ˇ D 0. The two remaining

cases follow by applying the same arguments used for these.

Case (i). The exit angle  can only be close to 0 when the incidence angle � is

close to 2˛ and x is close to the left end point of the open side. We refer to this

point as the left corner, and its opposite as the right corner. Therefore, we only

need to study �. j�/ for � near 0 and 2˛.

If �0 is sufficiently small, then for all 0 < � � �0 the function F� .x/ has

the following qualitative properties: it is smooth (assuming that the geometry of

the billiard table is smooth near the ends), and it decreases monotonically from

a maximum value,  �max, to be estimated in a moment, to a minimum value,

 �min D � C 2ˇ. Therefore, using Lemma 6.5 again, we arrive at the upper

bound for �:

�. j�/� 1

c sin sin �
�Œ min; max�. /;
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for � 2 .0; �0/ and a sufficiently small �0. Here �Œ min; max� denotes the charac-

teristic function of the interval Œ min;  max�.

We claim that  max � min � C sin � , for some constant C . Suppose for the

moment that this is the case. It easily follows that

Z �0

0

Z �

0

�. j�/2 d�. /d�.�/ � Cc2�0

2 sin.2ˇ/
:

Therefore, the proposition will be established once we justify the claim.

Using the expression of Lemma 6.6 gives

jF 0
� .x/j � 2Kk�0.x/k;

where K is the maximum value of the curvature of the side of the table contour

making an angle ˇ with the open side and �.x/ is the curve traced along that

side by the ray with initial condition .x; �/, x 2 Œ0; 1�. Let L D L.�/ denote the

length of this curve. Observe that

 max � min D
Z 1

0

jF 0
� .x/j dx:

By elementary geometry, we have

L D
Z 1

0

k�0.x/k dx � 2 sin �= sinˇ:

Therefore,  max � min � C sin � , where C D 4K= sinˇ, proving the claim.

Still in case (i), it remains to consider � near 2˛. When � is close to 2˛ from

below, and x is near the left corner,  is close to ��2ˇ> 0. Therefore, only the

interval .2˛; 2˛Ca/, for an arbitrarily small a> 0, needs to be considered. We

take a small enough that the exit angle  , after reflection on the concave side

near the left corner, satisfies 0 � ��=4 (in particular,  �
p

2 sin ), and also

small enough that .sin �/�1<S , for a constant S <1, for all � 2 .2˛; 2˛Ca/.

The same argument used in the first part of this proof gives

�. j�/� S

c sin 
�Œ min; max�. /�

p
2S

c 
�Œ min; max�. /;

θ

L

Figure 17. Definition of L.



208 RENATO FERES

where it is understood that the maximum and minimum values of are functions

of � . Therefore,

Z 2˛Ca

2˛

Z �

0

�. j�/2 d�. /d�.�/ � 2S2

c2

Z 2˛Ca

2˛

ln
 max

 min

d�:

The proof of case (i) will be concluded once we establish the following claim: if
Nk denotes the maximum curvature of the side of the table the particle is reflecting

from, then

 max

 min

� 1 C 8 Nk
sin˛

;

for all � 2 .2˛; 2˛C a/. We refer to Figure 18.

In the figure, L is the length of the segment of curve in the side of first re-

flection going from the left corner to the point of collision. Notice that the angle

˛.L/ between the tangent at that point and the horizontal direction (parallel to

the open side) satisfies ˛.L/� ˛C 2 NkL. It also holds that

L � 2 sin min= sin˛ � 2

sin˛
 min:

The maximum value of  (the angle of reflection when the collision takes place

at the left corner) is  max D � � 2˛. The minimum angle is  max D � � 2˛.L/.

Therefore

 max D  min C 2.˛.L/�˛/�  min C 8 Nk
sin˛

 min;

and the claim about the ratio of these two angles holds.

Case (ii). We suppose now that ˛ D ˇ D 0. In this case, the exit angle  can

only approach 0 as � itself approaches 0. With Lemma 6.5 in mind, to prove

that � is square integrable, it suffices to study what happens when � is close to

0. (The same argument treats the case of � close to � .)

ψmin

L

α

α(L)

θ

ψmax

Figure 18. Exit at small angles.
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In case (i) the main part of the analysis concerned values of � for which

only one collision between particle and table boundary took place. This is no

longer the case here. For a sufficiently small �0, and � 2 .0; �0/, the function

 DF� .x/ has the qualitative properties shown in Figure 19. This is a piecewise

smooth, continuous function, with two points of discontinuity of F 0
�
.x/, denoted

x1.�/;x2.�/. For simplicity, we omit reference to � in x1;x2. Over the intervals

.0;x1/ and .x2; 1/ the function is monotone decreasing, and it is monotone

increasing over .x1;x2/.

The discontinuities observed in this graph are due to the different types of

trajectories, as follows. For a small � , if x 2 .x2; 1/, the particle will collide

with the concave segment of wall adjacent to the right corner and exit the cave

with an angle  determined by this unique collision. At x D x2, the trajectory

first grazes the concave segment of wall adjacent to the left corner before hitting

the concave right end wall and exiting. For x 2 .x1;x2/, the trajectory first

bounces off this left wall, then bounces off again at the right wall, then exits.

For x 2 .0;x1/, there is only one collision, in this case with the left wall, before

exiting.

We claim that the following estimates hold, for positive constants A;B and

C , and all � 2 .0; �0/ for a sufficiently small �0:

(1)  max � A�1=2;

(2) A�1�2 �  min;

(3) jF 0
�
.x/j�1 � B��1=2, for all x 2 .x2; 1/;

(4) jF 0
�
.x/j�1 � C , for all x 2 .0;x1/[ .x1;x2/.

These estimates will be proven after it is shown how they give the desired result.

An upper bound for � can now be given by

�. j�/� 1

c sin 

�

2C C B��1=2
�

�Œ min; max�. /:

x1 x20 1

θ

ψmin

ψmax

Figure 19. Qualitative features of  D F� .x/ for small values of � .
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For small enough �0 we have 2C CB��1=2 � 2B��1=2 and sin �
p

2 . This

yields

Z �0

0

Z �

0

�. j�/2 d�. /d�.�/ � 4
p

2B2

c2

Z �0

0

Z �

0

1

 
�Œ min; max�. /d d�

D 4
p

2B2

c2

Z �0

0

ln
 max

 min

d�

� 4
p

2B2

c2

Z �0

0

ln.A2��3=2/d�

D 6
p

2B2�0

c2

�

1 � ln.A�4=3�0/
�

<1:

It remains to verify the estimates enumerated above. Let �.x; �/ denote the

angle between the normal to the boundary surface of the billiard and the vertical

direction (i.e., the direction perpendicular to the open side, oriented toward the

outside of the billiard cell). Then, for small values of � and for x 2 .x2; 1/, we

have F� .x/D � C 2j�.x; �/j. Ignoring the left wall and using concavity of the

right wall, we obtain that  max � � C 2j�.0; �/j: By an elementary geometric

argument, it can be shown that lim�!0 �.0; �/=
p
� D

p
2k, where k is the

absolute value of the curvature of the right wall at the point of tangency with

the open side. Therefore, we can find D > 0 independent of � such D�1�1=2 �
�.0; �/� D�1=2. (We note that if the right wall is replaced with a circumference

of curvature k, then it can be shown by elementary geometry that 1 � cos � C
sin � tan � D k sin � , where � D �.0; �/. It follows from this that � D �2=2k C
o.�2/.) Therefore, there exists A> 0 independent of � such that  max � A�1=2

as claimed.

The inequality A�1�2 �  min is proved in a similar way and we omit the

details. Notice that the trajectory with exit angle  min is the one that first reflects

off the left wall at a point very close to the left corner and then grazes the right

wall before exiting through the open side. In proving the second inequality, the

roles of  and � are essentially reversed, giving �2 instead of the �1=2 of the

first inequality.

The third inequality is obtained as follows. Fix � and let L.x/, x 2 .x2; 1/,

denote the length of the segment of wall starting at the point p.x; �/ at which

the trajectory with initial condition .x; �/ bounces off and ending at the right

corner. Then it can be shown by elementary geometry that

jL0.x/j D sin �

sin.� C �.x; �//
:



RANDOM WALKS DERIVED FROM BILLIARDS 211

We know from Lemma 6.6 that jF 0
�
.x/j D 2jk.p.x; �//jjL0.x/j. Therefore, we

can find a D0 > 0 such that

jF 0
� .x/j

�1 D 1

2jk.p.x; �//j
sin.� C �.x; �//

sin �
� D0

�

1 C �.x; �/

�

�

� D0

�

1 C �.0; �/

�

�

� D0

�

1 C D�1=2

�

�

� B��1=2;

for some B > 0, as claimed.

For x 2 .0;x2/, jF 0
�
.x/j can be bounded from below by estimating the varia-

tion on the angle of reflection after collision with the left wall. That variation can

still be written as jF 0
�
.x/j D 2jk.p.x; �//jjL0.x/j, where L.x/ is now the length

of the segment of left wall from the left corner to the point of first collision.

Due to the downward bending of the wall, it holds that jL0.x/j � jL0.0/j D 1.

Therefore jF 0
�
.x/j�1 � C for some C > 0 which depends only on the curvature

of the wall. �

THEOREM 6.8. Under Assumptions 1, 2 and 3, the Markov operator of a ran-

dom billiard is a Hilbert–Schmidt operator. In particular, its spectrum consists

of eigenvalues �i 2 Œ�1; 1�, each of finite multiplicity, with 0 as the only accu-

mulation point. Further, 1 is a simple eigenvalue.

PROOF. This is now a corollary of the previous lemma. Observe that the random

billiard system is ergodic under these assumptions, so that 1 has multiplicity one.

�

It would be interesting to try to extract from this proof an estimate of the spectral

gap of the Markov operator, something which we do not do here. In any event, it

is worth making the following remarks. We recall that P is said to have spectral

gap 
 if there is � D 1 � 
 < 1 such that, for � 2 H satisfying �.V /D 0 (that

is, such that h�; �i D 0), the inequality

kP�k2 � �k�k2

holds. In other words, .�; 1/ is the largest interval in Œ�1; 1�, having 1 as a

boundary point, that does not intersect the spectrum of P .

A large spectral gap implies fast convergence to the stationary measure �, in

the following sense: for each � 2 H (the Hilbert space of signed measures on

V with square integrable densities with respect to �) such that �.V /D 0, there

is C� such that

kP k���k2 � C��
k ;

for all n 2 N.
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It is possible to express 
 in terms of the random billiard map as follows.

Define the Dirichlet form

E.�; �/� WD h.I � P /�; �i:

Note that, for any constant c,

E.�� c�; �� c�/D E.�; �/;

since � is in the kernel of the self-adjoint operator I � P . A simple calculation

shows that if d�D �d� and ˚ D � ı�2, then

E.�; �/� D
Z

E

.˚ �˚ ı T /˚ d� D 1

2

Z

E

.˚ �˚ ı T /2 d�

D 1

2

Z

X

Z

V

Œ�.v/��.	x.v//�
2 d�.v/d�.x/:

The spectral gap of the random billiard is now given by


 D inf

�

E.�; �/�

k�k2
2

W �.V /D 0

�

D inf

�

R

E Œ�.v/��.	x.v//�
2d�

2
R

V �
2d�

W � 2 L2.V; �/;

Z

V

� d�D 0

�

:

7. Diffusion limit

From a random billiard system we obtain a random flight in a channel, as

explained in Section 2.4, and to this random flight is associated a time-of-escape

function f .x/, defined in the introduction. We expect f .x/ to contain informa-

tion about the channel surface microgeometry. We have already seen in the

introduction how such geometric information can be extracted from f .x/ in a

simple example. In that case, the mean square displacement of a billiard particle

along the axis of the channel is finite and the standard central limit theorem for

Markov chains can be used to obtain the dependence of the diffusion constant

D D lim
x!1

x2

f .x/

on the ratio b=h, which is the sole geometric parameter of the family of Figure 2.

Before showing further details of this and indicating how something similar

can be accomplished for more general geometries, it is perhaps useful to try to

describe intuitively how the microgeometry can affect the diffusion constant D

by means of the following random walk model.
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7.1. A coin model of random flight. Fix a number ˛ between 0 and 1, which

will be referred to as the surface slippage, and consider the random walk on a

one-dimensional lattice with spacing ı between neighbor cells defined as fol-

lows. A point particle moves by jumping one step of length ı either backward

or forward, the time between jumps being given by a constant Nt . The direction

of jump is decided by the rule that at each step we flip two coins simultaneously,

one biased, with probability for heads equal to ˛, and the other unbiased. If the

biased coin comes up heads the particle repeats the behavior of the previous

jump regardless of the outcome of the unbiased coin. We say in this case that it

slips with probability ˛. If the biased coin comes tails the particle forgets what

it did in the previous jump and moves forward or backward depending on the

outcome of the unbiased coin (say, heads D forward, tails D backward.)

There are only two directions of motion, represented by ˙1. The scattering

operator P for this example is the transition probabilities matrix

P D

0

B

@

1C˛
2

1�˛
2

1�˛
2

1C˛
2

1

C

A
:

The top left entry, .1 C˛/=2, is the probability that the particle direction in the

next move is C1 given that it was C1 in the last move; the lower-left entry,

.1 � ˛/=2, is the probability that the next direction is C1 given that in the last

move it was �1, etc. Zero slippage corresponds to ordinary random walk on a

one-dimensional lattice, in which no memory of past moves is kept. The case

˛D 1 corresponds to purely deterministic uniform motion forward or backward.

The Markov chain specified by P has the same unique stationary distribution

of directions for all ˛ ¤ 1, namely, probability 1=2 for both C1 and �1. The

limit diffusion process, however, has different diffusion constants depending on

˛. More precisely, let D˛ denote the constant for the process given as a limit

of this random walk, by making ı and Nt go to 0 so that the ratio D0 D ı2=Nt
remains constant. Then it can be shown, using the central limit theorem for

Markov chains (stated in the next section), that

D˛ D 1 C˛

1 �˛D0:

The reference diffusivity, D0, in that of standard random walk.

It is worth emphasizing the following property of this example: the stationary

distribution of directions is the same for all ˛, but the speed of convergence to

the stationary distribution varies greatly with slippage. In fact, the exponential

rate of convergence is proportional to 1 �˛. Therefore, as ˛ is close to 1 (high

slippage), it will take longer to reach stationarity. The diffusivity constant will be
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slow

fast

Figure 20. The top microgeometry produces relatively slow diffusion com-
pared to the one at the bottom.

proportionally larger as particles effectively move a greater distance on average

during a small interval of time.

We can draw a parallel between this example and the random flight for a ran-

dom billiard system with microgeometries such as those of Figure 20. Although

we do not yet have precise estimates, it can be seen numerically that the rate of

convergence to the stationary distribution is faster for the top microgeometry,

so that it can be assigned an effective value of ˛ smaller than for the lower

microgeometry. Numerical simulation of the random flight indicates, in fact,

that the diffusion constant for the “flatter” microgeometry has larger diffusion

constant. The example of Section 7.3 suggests that an effective measure of

slippage ˛ can be defined for random billiards as 1 �
 , where 
 is the spectral

gap of P (which is 1��, where � is the second largest eigenvalue of P after 1.)

7.2. Random flight with finite mean free path. Brownian motion on the

real line has the following property: let Bt denote the position of a particle

undergoing standard Brownian motion starting at the origin at time t D 0 and

denote by f .x/ the mean time it takes Bt to reach a distance x from 0. Then it is

well-known that D D x2=2f .x/, where D D�2=2 and �2 is the variance of B1.

If a discrete time process has finite mean square jumps and satisfies the central

limit theorem, then a limit diffusion is obtained with constant given by the limit

of x2=2f .x/ as x ! 1. Thus the key issue we face is to find a central limit

theorem that applies to the random flight of a random billiard system. Ideally,

such a theorem will allow to relate D to the spectrum of P .

The random displacement Xi between two consecutive collisions with the

channel wall has infinite mean square with respect to the stationary measure �

whenever � is ergodic. Nevertheless, there are examples where this mean square

displacement is finite, so that the considerations of the previous paragraph are

valid. In such cases Theorem 7.1 can be used. The theorem applies to examples

such as the 2 and 3-dimensional rectangular cells of the introduction and Section

3.1, as well as other rational polygonal billiard cells. This is an adaptation of

a result due to Kipnis and Varadhan, [KiVa]. A similar theorem that applies to

the more general �-ergodic case will be studied in a future paper.

We consider a particle undergoing random flight in a two or three-dimensional

channel of infinite length and radius r . Let V be, as before, the set of directions
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of the particle at the open side of a billiard cell and write ˝ D V N, with projec-

tions �k W˝ ! V . The particle has constant scalar velocity, v. We fix reference

values r0 and v0 and write r D r0=�, v D g.�/v0, where g.�/, until further

specified, is an unbounded monotone increasing function. (It is mostly the case

here that g.�/D �, but it will be convenient for later to define it more generally

at this point.) The position of the particle along the axis of the channel at time

t is represented by X �
�;t
.!/ 2 R, for any ! 2 ˝. We wish to study the limit of

X �
�;t

as � ! 1.

Let P be a bounded self-adjoint operator on L2.V; �0/, for some probability

measure �0, with spectrum in Œ�1; 1�. Let ˘ denote the spectral measure of P

and define, for a given h 2 L2.V; �0/, the measure on Œ�1; 1� given by

"h.d�/ WD hh; ˘.d�/hi:

THEOREM 7.1. Give ˝ the probability measure associated to .P; �0/, where

P is the Markov operator for a choice of random billiard and �0 is an ergodic

stationary measure. Let h.u/D 2r0u � e=u � n, juj D 1. Suppose that h is square

integrable with respect to �0, has zero mean, and that

ı2
0 WD

Z 1

�1

1 C�

1 �� "h.d�/ <1:

Also suppose that g.�/D �. Then, for any sequence �n ! 1, the process X �
�n;t

converges to Brownian motion with variance .ı2
0
=�0/t , where �0 is the mean

value of 2r0=.v0u � n/ with respect to �0. If .P; �0/ is replaced with .P; ı� /,

where the initial probability distribution is a delta-measure concentrated at an

angle � in the support of �0, then the distribution of X �
�n;t

will again converge to

Brownian motion (with same variance), the convergence now being in measure

as functions of � , relative to �0.

As already noted, up to minor modifications having to do with our need to con-

sider random times, Theorem 7.1 is due to Kipnis and Varadhan, [KiVa]. Clearly,

requiring h to be square integrable with respect to �0 is very restrictive since it

excludes all systems for which �0 D �. It is an open question whether there

are any examples of billiard cells with square integrable h that are not rational

polygons. We apply below Theorem 7.1 to a couple of simple examples.

2-D boxes. This is the example of the introduction (Figure 2). For an initial

�0 2 .0; �/, the possible states are �0 and � � �0, with transition probabilities

shown on the Markov diagram of Figure 2. The transition probabilities matrix,

P D
�

p 1 � p

1 � p p

�

;
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has eigenvalues 1 and � D 2p � 1, where p depends on the geometric param-

eters as described in the introduction. The stationary probability distribution is

.1=2; 1=2/.

The function h.�/ can take values ˙2r0 cot �0, and "h is the measure sup-

ported on �, so that ı2
0

D .2r0 cot �0/
2.1 C�/=.1 ��/. The mean time be-

tween collisions is �0 D 2r0=.v0 sin �0/. Then Theorem 7.1 gives that the dif-

fusion limit is �Bt , where Bt is normalized Brownian motion (variance 1) and

�2 D 2r0v0p.1 � p/�1 cos2 �0= sin �0:

As a special case, suppose that �0 D �=4, and that b > 2h. Then k D 0,

s D 2h=b, and p D 1 � s, so that

�2 D
p

2r0v0

�

b

2h
� 1

�

:

The interpretation of this result in terms of gas kinetics is that, if a pulse of

noninteracting particles are released inside the channel with the same angle �0,

the transport along the channel can be approximated by the diffusion equation

@u

@t
D 1

2
�2 @

2u

@x2
;

where u.x; t/ is the particle linear density, t is time and x is the coordinate along

the axis of the channel.

3-D boxes. We consider now the example of Section 3.1. We refer to notation

defined there. For any given initial direction, the function h.v/ can assume only

four values: ˙ı1;˙ı2. The spectral decomposition of the function h is

0

B

B

@

ı1
ı2

�ı2
�ı1

1

C

C

A

D ı1 C ı2

2

0

B

B

@

1

1

�1

�1

1

C

C

A

C ı1 � ı2
2

0

B

B

@

1

�1

1

�1

1

C

C

A

;

where .1=2/.1; 1;�1;�1/t and .1=2/.1;�1; 1;�1/t are associated to eigenval-

ues �2 and �3, respectively. The stationary measure is given by the probability

distribution .1=4; 1=4; 1=4; 1=4/t and the mean time between collisions is �0 D
.�1 C�2/=2. We have .1C�2/=.1��2/D p1=.1�p1/ and .1C�3/=.1��3/D
p2=.1 � p2/. The diffusion limit in this case is Brownian motion with variance

�2 given by

�2 D
�

p1

1 � p1

.ı1 C ı2/
2 C p2

1 � p2

.ı1 � ı2/2
�

1

�0
:

The geometric parameters of the microgeometry are contained in the expressions

for pi , ıi and �i given in Section 3.1.
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7.3. The ideal cavity model. The passage from the random flight to the

diffusion process is in most cases not entirely standard if under the stationary

distribution � the mean square displacement is infinite. Nevertheless a central

limit theorem still holds under appropriate normalization. More precisely, one

needs here a central limit theorem that gives limit in distribution for sums of the

form .X1 C � � � C Xn/=
p

n ln n and expresses the variance of the limit random

variable as a function of the spectrum of the Markov operator P . This will be

discussed in a future paper. Here we only consider a single but representative

example.

Nonstandard central limit theorems of this kind are used in a number of other

studies. Most closely related to our concerns is [BGT]. The example discussed

later, which is the Markov process defined by PMaxwell (see Section 3.2) is essen-

tially the system studied in that paper. A central limit theorem similar to what

we need is used in [Bl] and [SV], where the Lorentz gas model with infinite

horizon is investigated See also [AD] and [Go].

We consider now the example of Section 3.2, given by P� C ˛P�? , where

P� is the orthogonal projection to the 1-dimensional subspace spanned by the

stationary measure � and P�? is orthogonal projection to the orthogonal com-

plement. Recall that ˛ is interpreted as the probability that a particle bounces

off the flat side in a specular way, and 1 �˛ the probability that it falls into the

cavity and eventually exits with a probability distribution of angles given by �.

Theorem 7.1 does not apply here since the function h.�/ D 2r0 cot � has

infinite variance with respect to �. It turns out, however, that a diffusion limit

can be obtained after appropriate scaling of the particle velocity. More precisely,

the function g.�/ that is required for the limit of X �
�;t

to be normally distributed

is g.�/D �= ln �.

PROPOSITION 7.2. Let X �
�;t

be as defined previously, now corresponding to the

Markov operator P D P� C ˛P�? . Then for any �n ! 1 and any fixed t > 0,

X �
�n;t

converges in distribution to normal distribution with variance t�2, where

�2 D C
1 C˛

1 �˛ ;

where the constant C only depends on r0 and v0.

See [BGT] for details. Although the context of that paper is different from ours,

their proof carries on to this case, with only minor modifications.

The ideal cavity model does not correspond, strictly speaking, to any micro-

geometry, but it is useful for intuitively understanding actual random billiard

systems. Observe, for example, the two geometries of Figure 20. They can be

compared with the ideal cavity by assigning a larger ˛ for the one with smaller

curvature.
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8. Remark about residence time in cells

The random walk on the line, driven by a random billiard map, only depends

on the Markov operator P . For the strict random billiard model and its diffusion

limit studied so far, the time a particle spends inside a billiard cell is considered

negligible. But if we wish to go from an infinitesimal billiard geometry, in the

strict sense defined above, to a small, but finite, deterministic billiard system

at a scale comparable to that of the channel radius, it becomes important to

estimate how much time, on average, a particle spends in the billiard cell. The

mean time spent inside billiard cells, which we refer to as the residence time of

the random billiard, would then be a numerical factor to be taken into account

when describing the diffusion limit. This mean time can be calculated exactly,

for ergodic billiards, by standard ergodic theory arguments. We show below

how this average depend on the shape of the billiard cell.

Consider an ordinary billiard system with piecewise smooth boundary of total

length l , a distinguished boundary component consisting of a line segment of

length o, and enclosed area A. The distinguished flat side is parametrized by

Œ0; 1�. Let E D Œ0; 1��Œ0; ��, as before, denote the part of the phase space for that

flat side and suppose that the billiard system is ergodic. For each .x; �/2 E, let

S.x; �/ and N.x; �/ be, respectively, the time of first return and the number of

collisions before returning to the distinguished side, counting the arrival at the

side as one collision. Denote by NE the whole unit phase space (i.e., with scalar

velocity equal to 1) and define for any .p; v/2 NE the function �.p; v/ that gives

the time duration of the free flight with velocity v from p to the point of next

collision. The average values of N , S are defined by

hN iE WD 1

2

Z 1

0

Z �

0

N.x; �/si n� d�dx;

hSiE WD 1

2

Z 1

0

Z �

0

S.x; �/si n� d�dx:

Similarly, define the average of � (over NE), by

h�i NE WD
Z

NE

�.�/d N�.�/;

where N� is the normalized Liouville measure on NE. Let B W NE ! NE denote the

billiard map for the billiard table that includes the top flat side. The first return

map to E will be written T W E ! E. The billiard flow will be denoted 't .

Elements of NE will be written � D .x; v/. Note that

S.�/D �.�/C �.B.�/C � � � C �.BN.�/�1.�//:
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A standard application of Birkhoff’s ergodic theorem gives the following an-

swer to the question posed at the top of the section.

THEOREM 8.1. Suppose that the billiard cell has finite diameter and that the

system is ergodic. Let u be the scalar velocity of the billiard particle. Then

(1) hN iE D l=o;,

(2) hSiE D A�=ou,

(3) h�i NE D A�= lu, and

(4) hSiE D hN iEh�i NE .

PROOF. We give a brief sketch of the proof, which for the most part is a standard

argument. For each � 2 E and positive integer l , define

N l.�/ WD N.�/C N.T .�//C � � � C N.T l.�//I
S l.�/ WD S.�/C S.T .�//C � � � C S.T l .�//:

Then N l.�/ is the total number of collisions with the table boundary during the

period of l returns to the distinguished (top) side, and S l .�/ is the total time

during the same period. It is immediate that liml!1 N l.�/= l D hN iE and

liml!1 S l.�/= l D hSiE . Therefore, for �-a.e. � 2 E,

hN i�1
E D lim

l!1

l

N l.�/
D lim

l!1

1

N l.�/

N l .�/
X

iD0

�E.B
i.�//

D N�.E/D length of distinguished side

total perimeter of table boundary
:

This shows (1). To obtain (4), start with

N l .�/
X

kD0

�.Bk.�//D S.�/C S.T .�//C � � � C S.T l�1.�//

and average both sides over E, using T -invariance of the measure �. This gives

� N l .�/
X

kD0

�.Bk.�//

�

E

D lhSiE :

Consequently,

hSiE D lim
l!1

��

N l .�/

l

��

1

N l.�/

N l .�/
X

kD0

�.Bk.�//

��

E

D hN iEh�i NE :
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h

Figure 21. Define Uh as the strip of width h with the distinguished side
as one of the boundary lines.

To show (2), it is convenient to first introduce the collar region Uh shown in

Figure 21, where h is a small positive number.

Except for a set of small measure (which goes to zero with h), the time it takes

for the ray with initial condition �D.x; �/2E to traverse Uh is �.�/Dh=u sin � .

An explicit integral calculation gives

lim
h!0

1

h
h�iE D �=2u:

We can now conclude that, for �-a.e. � 2 E,

hSiE

length of top side

area of billiard cell

D lim
h!0

lim
m!1

�

Sm.�/

m

� �

1

hSm.�/

Z Sm.�/

0

�Uh
.'t .�//

�

dt

D lim
h!0

lim
l!1

1

hm

Z Sm.�/

0

�Uh
.'t .�//dt

D lim
h!0

lim
l!1

1

hm

m�1
X

iD0

2�.T i.�//D lim
h!0

2

h
h�iE D �

u
:

This gives the average value of S claimed in (2). �
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