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An aperiodic tiling using a dynamical system
and Beatty sequences

STANLEY EIGEN, JORGE NAVARRO, AND VIDHU S. PRASAD

ABSTRACT. Wang tiles are square unit tiles with colored edges. A finite set

of Wang tiles is a valid tile set if the collection tiles the plane (using an unlim-

ited number of copies of each tile), the only requirements being that adjacent

tiles must have common edges with matching colors and each tile can be put

in place only by translation. In 1995 Kari and Culik gave examples of tile

sets with 14 and 13 Wang tiles respectively, which only tiled the plane ape-

riodically. Their tile sets were constructed using a piecewise multiplicative

function of an interval. The fact the sets tile only aperiodically is derived from

properties of the function.

1. Introduction

There is a vast literature connecting dynamical systems and tilings of the

plane. In this paper, we give an exposition of the work of Kari [7] and Culik

[3] to show how by starting with a piecewise multiplicative function f , with

rational multiplicands defined on a finite interval, we can produce a finite set of

Wang tiles which tiles the plane. Further, a choice of multiplicands and interval,

so that the dynamical system f has no periodic points, results in a set of Wang

tiles that can only tile the plane aperiodically. In this manner, Kari and Culik

produce a set of 13 Wang tiles. This is currently, the smallest known set of Wang

tiles which only tiles the plane aperiodically.

The Kari–Culik construction is different from earlier constructions of aperi-

odic tilings — see Grunbaum and Shephard’s book [5, Chapt 11] for a survey of

these earlier results. Johnson and Madden [6], provide an accessible presentation
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of Robinson’s 1971 [11] example of 6 polygonal tiles which force aperiodicity

(allowing rotation and reflection). These 6 tiles convert to a set of 56 Wang tiles

which allow only aperiodic tilings of the plane. Kari and Culik’s construction

uses a dynamical system and Beatty sequences to label the sides of the Wang

tiles. The properties of the dynamical system are used to conclude the collection

tiles the plane and does so only aperiodically.

1.1. The Kari–Culik tile set. Consider the dynamical system given by the

function f defined on the interval Œ1
3
; 2/,

f .x/ D

(

2x; 1
3

� x < 1
1
3
x; 1 � x < 2 .

This gives rise (Section 5 shows how) to a set T of thirteen Wang tiles, which

we call the K-C tile set (see figure below). These thirteen tiles do tile the plane,

but only aperiodically.
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K-C Tile Set.

The proof that the tile set tiles the plane will follow from the existence of

infinite orbits for f . The proof that the tile set tiles only aperiodically relies

on the fact that f has no periodic points on the interval Œ1
3
; 2/. We note that

Kari and Culik [3; 7] use Mealy machines describe these tile sets. We give

their description at the end of this paper. In the language of computer science

a Mealy machine is a finite state machine where the output is associated with a

transition; in symbolic dynamics a Mealy machine is referred to as a finite-state

code [8].
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2. Wang tiles: definitions and history

Wang tiles are square unit tiles with colored edges. All tiles in this paper

are assumed to be Wang tiles. In Kari and Culik’s tile set, numbers are used

to color the edges: edges will have a color and a numerical value. Thus, the

colored edges 0, 00 and 0
3

are considered different colors, but these edges have

a numerical value, which in this case is zero.

A tiling set T consists of a collection of finitely many Wang tiles T 2 T, each

of which may be copied as much as needed. When used to tile the plane, the

tiles must be placed edge-to-edge with common edges having matching colors.

Rotations and flips (reflections) of the tiles are not permitted.

A tiling set T which can tile the plane is said to have a valid tiling, and T is

called a valid tile set. A valid tiling is a map on the integer lattice, � W Z �Z ! T

such that, at each lattice point .i; j / we have a tile �.i; j / D Ti;j 2 T whose

neighboring tiles have matching colors along common edges.

If rotations were permitted, then any tile and its 180 degree rotation forms

a valid tile set for the plane, as the following argument shows. Label the four

colors of a tile a; b; c; d , (not necessarily distinct). Take two copies of the tile

and two copies of its rotation through 180 degrees and construct the following

two-by-two block.
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Rotation Example.

The two-by-two block has the same colors on the top as the bottom, and the

same colors on the left as the right. The two-by-two block tiles the plane.

2.1. Periodicity. A valid tiling is periodic with period .h; v/ 2 Z
2 n f.0; 0/g if

the tile at position .i; j / is the same as the tile at position .i C h; j C v/ for all

.i; j / 2 Z
2. That is, �.i; j / D Ti;j D TiCh;jCv D �.i C h; j C v/.

Needless to say a tile set may have more than one valid tiling; some of which

may be periodic and some of which may not. A tile set is called aperiodic if it

has at least one valid tiling, but does not have a valid tiling which is periodic.

The K-C tile set is aperiodic (Theorem 10).
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Hao Wang [14] conjectured in 1961 that if a set of tiles has a valid tiling � then

it has a valid tiling � 0 which is periodic. However, in 1966 R. Berger showed

that there exists a tile set which only tiles aperiodically, and this aperiodic tile

set contained 20,426 tiles. Since that time, the size of the smallest known set of

aperiodic Wang tiles has been reduced considerably. By 1995, J. Kari [7] and K.

Culik [3] constructed a set of 14 and 13 Wang tiles respectively that tiles only

aperiodically.

An open problem is to determine W such that any set of Wang tiles T of size

w � W which has a valid tiling must also have a periodic tiling. As far as the

authors are aware, 4 � W < 13.

2.2. One-dimensional result. In one dimension, Wang’s conjecture that any

valid tile set for the line must have a periodic tiling, is true. In one dimension

the tiles are unit intervals colored on the left and right. A valid tiling is a map

� W Z ! T with adjoining left right edges having the same color. Periodicity of

T, in this case, means there exists a p > 0 so that �.i/ D �.i C p/ for all i .

THEOREM 1 (WANG). If a set of one-dimensional tiles T has a valid tiling of

the line, then T has a periodic tiling of the line.

Let � be a valid tiling for T, � W Z ! T. Since there are only a finite number

of tiles in T, there must be an n > 0 such that �.0/ D �.n/. Hence the block of

tiles �.0/�.1/ � � � �.n � 1/, endlessly repeated, tiles the line.

A slight strengthening of the hypotheses yields one-dimensional tiling sets

that tile only periodically — this shows how different the two-dimensional ape-

riodic tiling sets are.

PROPOSITION 2. If T is valid tile set of one-dimensional tiles and no proper

subset of T is a valid tile set of the line, then the tiles can tile only periodically.

The proof follows the previous argument. Let m be the shortest length from

any tile to its first repetition in a valid tiling � of the line. Clearly the pigeon-

hole principle implies m � jTj C 1, where jTj is the cardinality of T. The

hypothesis that no proper subset is a valid tile set implies that m D jTjC1. Let

�.1/�.2/ � � � �.m/ D �.1/, be a shortest repeated block. Note that the right colors

of all of these tiles in the block must be distinct. Indeed, suppose that two tiles

�.i/ and �.j / were the same, so that �.1/ � � � �.i/ � � � �.j /�.k/ � � � �.1/ could be

replaced by �.1/ � � � �.i/�.k/ � � � �.1/, where the tile �.j / does not appear. But

then �.j / is not needed for a valid tiling. Hence all right hand colors are distinct,

and similarly we can show all left colors are distinct. Hence, there is exactly one

way for these tiles to fit together, and that is with the block �.1/�.2/ � � � �.m�1/

endlessly repeated.
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A minimal tiling set is one that is a valid tile set but no proper subset is a

valid tile set. It is an open question whether the K-C tile set is minimal.

2.3. Rectangular tilings. In the Rotation Example given in Section 1.1, the

constructed two-by-two block extends to a valid tiling of the plane which has

the two linearly independent periods .2; 0/ and .0; 2/. A rectangular tiling of

the plane is a valid tiling � which has two periods .n; 0/, .0; m/, n; m > 0, that

is, �.i; j / D �.i C n; j / and �.i; j / D �.i; j C m/. In other words, it has a

rectangular block of size n � m which tiles the plane.

It is well known that having a rectangular tiling is not stronger than having a

periodic tiling [5].

PROPOSITION 3. If a set of tiles admits a periodic tiling � of the plane, then it

also admits a rectangular tiling.

We propose the following higher dimensional result (which may be already be

known): If a set of n-dimensional Wang cubes has a valid tiling � of n-dimen-

sional space and this tiling has n � 1 linearly independent periods, then

(i) there is another tiling with n linearly independent periods, and

(ii) there is another tiling which is rectangular, in the sense that there are n

periods, .p1; 0; : : : ; 0/, .0; p2; 0; : : : ; 0/; : : : ; .0; : : : ; 0; pn/.

3. Aperiodicity

The aperiodicity of the K-C tile set is easy to see and does not require un-

derstanding how the tiles are derived from the dynamical system. It follows the

same reasoning as the following proof that f has no periodic points.

LEMMA 4. The dynamical system f has no periodic points.

Suppose f n.x/ D x for n > 0. From the definition of f as a piecewise multi-

plicative function, it follows that f n.x/ D qn � qn�1 � � � q1 � x where qi 2 f1
3
; 2g.

Hence

f n.x/ D
2n�k

3k
� x D x

for some 0 � k � n. Dividing by x 2 Œ1
3
; 2/ gives 2n�k=3k D 1, a contradiction.

To understand how this applies to the tiles, we consider the notion of a mul-

tiplier tile.

3.1. Multiplier tiles. A tile b
a

c
d is a multiplier tile with multiplier q > 0

if

q � a C b � d D c (3–1)
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Note that this notion requires only the numerical value of the edges. The mul-

tiplier for a tile is unique if a ¤ 0. If a D 0 then every real q is a multiplier for

the tile when b � d D c.

A direct examination of the thirteen tiles in the K-C tile set reveals two facts:

LEMMA 5. The first six tiles all have multiplier 1
3

. We call these Tile Set 1
3

.
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LEMMA 6. The last seven tiles all have multiplier 2. We call these Tile Set 20.
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Tile Set 20.

Observe that the six tiles in Tile Set 1
3

have side colors f0
3
; 1

3
; 2

3
g while the

seven tiles in Tile Set 20 have side colors f0; �1g. Since these two sets of side

colors are disjoint the next lemma is immediate (and is the reason why the two

zeros f0
3
; 0g are defined to be different colors).

LEMMA 7. If � is a valid tiling for the tiles in the K-C tile set, then each

horizontal row f�.i; j / W i 2 Zg, for j fixed, consists either exclusively of the

tiles in Tile Set 1
3

or exclusively of the tiles in Tile Set 20.

Next, consider the row directly below a given row in a valid tiling. This requires

the bottom colors of the higher row to match exactly the colors on the top of the

lower row. There are restrictions on the tiles that can appear in the lower row.

LEMMA 8. Let � be a valid tiling for the tiles in the K-C tile set. If a horizontal

row consists exclusively of tiles from Tile Set 1
3

then the row immediately below

it consists exclusively of tiles from Tile Set 20.
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The proof is simply a matter of inspecting the colors on the tiles. Suppose there

are two consecutive rows of tiles from Tile Set 1
3

. We examine the colors along

the common edge between the two rows. Since the colors along the top of tiles

from Tile Set 1
3

are f1; 2g and the colors on the bottom of these tiles are f0; 1g,

the only way the colors along the common edge can match is if they are all

1. However the tiles in Tile Set 1
3

cannot produce a complete row with all 1’s

along the bottom, and so there cannot be two consecutive rows of tiles from Tile

Set 1
3

. This lemma is related to the dynamics of f in the following manner: if

f .x/ D y D 1
3
x, then f .y/ D 2y.

LEMMA 9. Let � be a valid tiling for the tiles in the K-C tile set. Then there

must exist rows with tiles exclusively from Tile Set 1
3

.

Lemma 9 is related to the dynamics of f in the following way: given x, f .x/,

f 2.x/, at least one of these three terms must be in the interval Œ1; 2/. Any point

in Œ1; 2/ will be mapped by multiplying by 1=3. This can be used to prove the

Lemma. However, we prove the lemma by directly analyzing the tiles.

Assume there are three consecutive rows of tiles from Tile Set 20. First

consider the common edge between the highest row and the middle row. In

particular, observe that the colors along the top of Tile Set 20 are f0; 00; 1g while

the numbers along the bottom of Tile Set 20 are f00; 1; 2g. To match, the com-

mon colors must be f00; 1g. The same argument shows that the colors along the

common edge between the middle and lowest row must also be f00; 1g. This

forces the middle row to be restricted to the two tiles

0

00

1

–1 –1

1

1

0

from Tile Set 20, which means the middle row has only 1 as a bottom color and

the pattern .00; 1/ repeated as the top colors.

The only way the third row can have a top row of all 1’s is if it uses one of

the two tiles

–1

1

2

–1 0

1

2

0

This forces the fourth row to be restricted to tiles in Tile Set 1
3

.

We are now able to show:

THEOREM 10. The K-C tile set does not have a valid periodic tiling of the

plane.
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The proof is by contradiction and follows the reasoning that shows the function

f has no periodic points (Lemma 4).

Let � be a periodic tiling. From Proposition 3 we can assume that � has two

periods .n; 0/ and .0; m/ with n; m > 0, and there is an n � m block with the

same colors on both the top and bottom and the same colors on the left and right.

For convenience we refer to this block as B.

Denote the top colors of Block B by ai;1, 1 � i � n and the colors along the

left side by b1;j , 1 � j � m. By the periodicity assumption, the colors along

the bottom are also fai;1g and the colors along the right side are fb1;j g.

a1;1 a2;1 � � � an;1

b1;1 � � � b1;1

b1;2 � � � b1;2

:::
:::

:::
:::

b1;m � � � b1;m

a1;1 a2;1 � � � an;1

a1;1 a2;1 � � � an;1

b1;1 � � � b1;1

c1;1 c2;1 � � � cn;1

Block B. First row of Block B.

Consider the first row of Block B. Each edge common to two tiles has the

same color for the left tile and the right tile.

a1;1 a2;1 an;1

b1;1 d1;1 d1;1 d2;1 � � � dn�1;1 b1;1

c1;1 c2;1 cn;1

First Row of Block B Expanded.

From Lemma 7, all the tiles in a row have the same multiplier q1. Apply the

multiplier rule (3–1) to each tile in the row.

q1a1;1 C b1;1 � d1;1 D c1;1

q1a2;1 C d1;1 � d2;1 D c2;1

q1a3;1 C d2;1 � d3;1 D c3;1
:::

q1an;1 C dn�1;1 � b1;1 D cn;1
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Summing results in

q1

n
X

iD1

ai;1 D

n
X

iD1

ci;1:

a1;1 a2;1 an;1

b1;1 d1;1 d1;1 d2;1 � � � dn�1;1 b1;1

c1;1 c2;1 cn;1

a1;2 a2;2 an;2

b1;2 d1;2 d1;2 d2;2 � � � dn�1;2 b1;2

c1;2 c2;2 cn;2

First Two Rows of Block B Expanded.

Similarly, all the tiles in the second row of Block B have a common multiplier

q2 giving

q2 �

n
X

i

ai;2 D

n
X

iD1

ci;2:

Combining these two equations and using ci;1 D ai;2 yields

q2q1

n
X

iD1

ai;1 D

n
X

iD1

ci;2:

Repeating for the rest of the rows in Block B results in

qm � � � q2q1

n
X

iD1

ai;1 D

n
X

iD1

ai;1:

By Lemma 9 and the periodicity of the tiling, we can assume the very top

row of the block B consists of tiles exclusively from Tile Set 1
3

. Since the top

colors of the tiles in Tile Set 1
3

are f1; 2g, we can divide by
Pn

iD1 ai;1 getting
Qm

jD1 qj D 1. As the qj 2 f2; 1
3
g we have a contradiction and conclude that no

periodicity can occur.

4. Existence of a valid tiling

In this section we show how to construct the tile set T, and prove that the tile

set thus constructed has valid tilings.

The K-C Tile Set is derived from the Basic Tile Construction (given in the

next section) resulting in a tile set Tf . The tile colors in Tf are “tweaked”, to
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give the K-C tile set. This refers to the fact that the zeros 0; 00; 0
3

are considered

different colors. We have already seen the reason 0
3

is not the same color as 0,

namely Lemma 7, which ensures that each row of tiles consists of tiles with the

same multiplier. The second “tweaking” concerns 00 and will be explained in

Section 5.2. We will see the property that Tf is a valid tile set, is preserved

even after the colors are “tweaked”.

4.1. The basic tile. All the tiles in the example are constructed as follows. We

refer to this as the Basic Tile Construction, and it gives the values of the edges

of a Basic Tile which we call B.x; q; n/.

qb.n�1/xc�b.n�1/qxc

bnxc�b.n�1/xc

bnqxc�b.n�1/qxc

qbnxc�bnqxc

Basic Tile B.x; q; n/.

Here, x > 0 is a real number, q > 0 is a rational, n is an integer and bxc denotes

the greatest integer less than or equal to x.

A straightforward calculation gives:

LEMMA 11. The Basic Tile B.x; q; n/, is a multiplier tile with multiplier q.

Recall a tile b
a

c
d has multiplier q if q � a C b � d D c. For the Basic Tile

we have

q
�

bnxc � b.n � 1/xc
�

C
�

qb.n � 1/xc � b.n � 1/qxc
�

�
�

qbnxc � bnqxc
�

D bnqxc � b.n � 1/qxc:

4.2. A finite number of tiles. Clearly when x; q; n are fixed, one gets a single

tile. Surprisingly for q rational and x in a bounded interval one gets only a finite

number of tiles.

For example, if we set q D 1
3

and bound x 2 Œ1; 2/ then there are only six tiles

resulting from the above Basic Tile construction (see Tile Set 1
3

) — despite the
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fact that x is ranging over all reals in the interval Œ1; 2/ and n is ranging over all

integers.

THEOREM 12. Let q be a rational number and k > 0 an integer. If we restrict

x 2 Œk; k C 1/ then there are only a finite set of tiles derived from the Basic Tile

construction

To prove this, we simply show that the four sides of the Basic Tile can assume

only a finite number of values. We use this simple fact:

LEMMA 13. For all n 2 Z and for all x 2 Œk; k C 1/,

bnxc � b.n � 1/xc 2 fk; k C 1g

Lemma 13 applies to both the bottom and top of the Basic Tile. The bottom

uses the real qx which is bounded by Œqk; q.k C 1//. For example with q D 1
3

and x 2 Œ1; 2/ ) qx 2 Œ1
3
; 2

3
/ � Œ0; 1/. Hence the top of the tiles take values in

f1; 2g while the bottom of the tiles have values in f0; 1g.

LEMMA 14. For q > 0 rational, qbnxc � bnqxc takes on only a finite number

of values. To be more precise,

� if q is an integer then qbnxc � bnqxc 2 f1 � q; 2 � q; : : : ; 0g;

� if q D r
s
, in reduced form, then qbnxc � bnqxc 2 f�1�r

s
; �2�r

s
; : : : ; s�1

s
g.

First observe that if q is an integer then clearly qbnxc�bnqxc is an integer and

if q D r
s

is rational then qbnxc � bnqxc is limited to rational numbers of the

form i
s
.

It remains to show that qbnxc � bnqxc is bounded above and below. From

the definition of the greatest integer function b�c,

qbnxc � qnx < bqnxc C 1

Subtracting bqnxc gives the upper bound

qbnxc � bqnxc < 1

Again, from the definition of b�c,

bqnxc � qnx D q.nx/ < q.bnxc C 1/:

Multiplying by �1 and adding qbnxc gives the lower bound

qbnxc � bqnxc > �q

These bounds clearly place the value of qbnxc � bqnxc in the ranges listed in

the lemma.
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4.3. Applying the basic tile construction using f . For x in the domain of f ,

set

q.x/ D

(

2; 1
3

� x < 1
1
3
; 1 � x < 2

Denote by Tf D fB.x; q.x/; n/g the set of tiles constructed for fx; q.x/; ng

with x in the domain of f . Note that this is not yet the K-C tile set T because

there has been no color tweaking yet, i.e., there is only one 0 at this stage.

By Lemma 12, this is a finite set of tiles.

It can be seen quite easily that the tiles for a specific fx; q.x/g fit together,

with a “natural order”, to form a row denoted by R.x/.

LEMMA 15. Fix x in the domain of f and let n range through the integers to

produce a row of valid tiles R.x/.

� � � B.x;q.x/;n�1/ B.x;q.x/;n/ B.x;q.x/;nC1/ � � �

By “natural order” we mean that the tile constructed using n C 1 is to the

immediate right of the tile constructed using n. The tile constructed for n,

B.x; q.x/; n/, has the right side color
�

q.x/ � bnxc�bn �q.x/ �xc
�

which is the

same as the left side color of the tile constructed for n C 1, B.x; q.x/; n C 1/,
�

q.x/ � b.n C 1 � 1/xc � b.n C 1 � 1/ � q.x/ � xc
�

.

4.4. Beatty difference sequences. To complete the proof of the existence

of valid tilings we use the notion of a Beatty difference sequence. For any

real number x, the Beatty difference sequence of x is the two-sided sequence

fbnxc � b.n � 1/xc W n 2 Zg. Recalling Lemma 13, if x 2 Œk; k C 1/ then the

Beatty difference sequence for x belongs to
Q

1

�1
fk; k C 1g.

Beatty difference sequences and Beatty sequences fbnxc W n 2 Zg (see [1])

are related to the continued fraction expansion of x. There is a vast literature on

Beatty sequences and their applications; see [4] and references therein.

By using the Beatty difference sequence, we see how the rows fit together.

That is, the n-th tile in row R.x/ has top bnxc � b.n � 1/xc which is the n-th

term in the Beatty difference sequence of x.

The bottoms of the tiles in this row give the Beatty difference sequence for

q.x/ � x, i.e., fbn � q.x/ � xc � b.n � 1/ � q.x/ � xc. But this is also the top of the

row of tiles R.f .x// and the two rows fit together.

THEOREM 16. Every infinite orbit of the dynamical system f corresponds to a

valid tiling of the plane using the tiles in the tile set Tf .
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5. Tweaking the colors

Referring back to the K-C tile set there are two color changes for Tf that will

be incorporated to get T. That is, there are the three “zeros” f0
3
; 00; 0g — two

of which are color changes from the original 0. The first, 0
3

, is concerned with

side colors.

5.1. Side color changes. The purpose of changing the color 0 to color 0
3

is to

ensure that each row corresponds to a single multiplicand.

The function f is defined in two pieces:

f .x/ D

(

f1.x/ D 2x if 1
3

� x < 1,

f2.x/ D 1
3
x if 1 � x < 2,

with two different multiplicands f1
3
; 2g. When the side colors are calculated, for

the two pieces in the Basic Tile Construction one gets

1
3
bnxc�b1

3
nxc 2

˚

0; 1
3
; 2

3

	

for all n and 2bnxc�b2nxc 2 f0; �1g for all n.

The problem is that 0 appears as a side color for both pieces. This would allow

tiles with a multiplier of 1
3

to appear on the same row as tiles with multiplier 2.

The solution is to change one of the 0’s to a different color which explains the

new color 0
3

(see also Section 6).

5.2. Top-bottom color changes. In this section, we will change some of the

top and bottom 0’s to 00 in the tile set Tf : such changes are called top-bottom

changes. This is necessary because the tile set Tf (without top-bottom changes)

is not aperiodic. By introducing these top-bottom color changes (and possibly

additional tiles) periodicity may be avoided.

Note that the top-bottom color changes will not affect the multiplier property

of any tile (since the numerical value of an edge will not be changed) but will

only be concerned with the “colors” of the tiles. Thus the existence of valid

tilings will not be affected.

The final K-C tile set is obtained from Tf by incorporating both the side color

changes and the top-bottom color changes.

Consider the piece f1 of f . Recall that f1.x/ D 2x has domain Œ1
3
; 1/ and

range Œ2
3
; 2/. The Basic Tile Construction for x 2 Œ1

3
; 1/ yields the six tiles

0

0

0

0 –1

0

0

–1 0

0

1

–1 –1

1

1

0 0

1

2

0 –1

1

2

–1

Tile Set 2.
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Unfortunately, this tile set is not aperiodic. The first tile (and the second tile)

tiles the plane periodically.

The reason is that the tile set has lost the information that the domain of

the piece f .x/ D 2x is restricted to Œ1
3
; 1/. More specifically, the Basic Tile

Construction for x 2 Œ0; 1/ yields exactly the same 6 tiles (recall Lemmas 13

and 14) and enlarging the interval would add more tiles. Hence, Tile Set 2

is really the tile set for f 0.x/ D 2x with domain Œ0; 1/ and range Œ0; 2/. The

periodic tiling � of the plane given by the single tile

�.i; j / D 0

0

0

0 ; �1 < i; j < 1;

corresponds to the fixed point f 0.0/ D 2 � 0 D 0.

More generally, any tile of the form a
0

0
a can tile the plane periodically.

Such tiles arise when there are points x 2 Œ0; 1/ in the domain of f 0 such that

f 0.x/ 2 Œ0; 1/; Lemma 13 shows that these points may give rise to tiles having

0 on both the top and bottom. It is to avoid such tiles that the additional color

changes are made (and additional tiles added to the set).

Examining a portion of a typical orbit for the function f , for example

1 )
1

3
)

2

3
)

4

3
) � � �

reveals immediately that the function f has at most two consecutive images in

the interval Œ1
3
; 1/ � Œ0; 1/.

Rewrite the function f DW F in four pieces as

F1.x/ D 2x; Œ1
3
; 1

2
/ ! Œ2

3
; 1/;

F3.x/ D 2x; Œ2
3
; 1/ ! Œ4

3
; 2/;

F2.x/ D 2x; Œ1
2
; 2

3
/ ! Œ1; 4

3
/;

F4.x/ D 1
3
x; Œ1; 2/ ! Œ1

3
; 2

3
/:

Only piece F1 has points with x; F.x/ 2 Œ0; 1/. Consequently it is only this

piece that gives rise to tiles with 0 on both the top and bottom.

In this case, we will make only one color change and that is on the interval

Œ2
3
; 1/ which is the range of F1. Specifically, any x 2 Œ2

3
; 1/ has a Beatty dif-

ference sequence using just 0; 1. We change this 0 to 00. That is, for any point

x 2 Œ2
3
; 1/, bnxc � b.n � 1/xc 2 f00; 1g.

This color change will also change the colors for tiles constructed from F3

because the domain of F3 is the interval Œ2
3
; 1/ where the color change was

performed.
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Hence the tiles constructed for F1 via the Basic Tile Construction with mul-

tiplier 2, will have top colors f0; 1g and bottom colors f00; 1g. This results in the

following four tiles.

0

0

00

0 –1

0

00

–1 –1

1

1

0 0

0

1

–1

The piece F2 will have tiles with top colors f0; 1g and bottom colors f1; 2g.

This gives the following four tiles.

0

1

2

0 –1

1

2

–1 –1

1

1

0 0

0

1

–1

The third and fourth of these two tiles are already in the tile set for F1, so the

combined tile set for F1 and F2 is only six tiles.

The piece F3 has tiles with top colors f00; 1g and bottom colors f1; 2g. This

gives the following four tiles.

0

1

2

0 –1

1

2

–1 –1

1

1

0 0

00

1

–1

The first three of these tiles are already in the set of tiles for F1 and F2. The

combined set of tiles for F1; F2; F3 consists of only seven tiles and these are

the tiles given in Tile Set 20 (see figure for Lemma 6).

Finally we examine piece F4. This will have tiles with top colors f1; 2g and

bottom colors f0; 1g, and will give the 6 tiles in Tile Set 1
3

(the side color change

has already been incorporated).

Together these result in the thirteen tiles for the K-C tile set.

6. Generalization

In this section we present generalizations of the previous work. Detailed

proofs are omitted as the essential ideas have already been given.

Consider a function

g.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

q1x if x0 � x < x1,

q2x if x1 � x < x2,
:::

qkx if xk�1 � x < xk ,

defined on a finite interval Œx0; xk/ where the fq1; : : : ; qkg are positive, rational

numbers chosen so that g is an invertible bijection of Œx0; xk/ onto itself.
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THEOREM 17. For g as above, the Basic Tile Construction defines a finite set of

tiles Tg, and every infinite two-sided orbit of g gives a valid tiling of the plane.

An obvious question, which we do not pursue at this time, is whether every valid

tiling corresponds to a two-sided orbit or if the tile set can be modified to have

this property.

However, we remark that one-to-oneness is not precisely necessary for the

existence of valid tilings. If g were defined as above but was only required to

be onto Œx0; xk/, it would still have a tiling set which has valid tilings; however

these valid tilings need not correspond to two-sided orbits of g. Under additional

assumptions they will correspond to the two-sided orbit of the Rokhlin invertible

extension of g.

Side-color tweaking is always possible.

LEMMA 18. Given g with pieces gi defined for xi�1 � x < xi it is always

possible to change the side colors so that the tiles for each piece have disjoint

side colors. These color changes will not affect the existence of valid tilings nor

the number of tiles in the tile set Tg.

THEOREM 19. Let g be a piecewise, rationally multiplicative, invertible func-

tion such that

(i) 1 � x0,

(ii) q
n1

1
q

n2

2
� � � q

nk

k
D 1 for ni � 0 only if ni D 0 for all i D 1; : : : ; k.

If Tg is the tile set constructed for g with side color changes incorporated then

Tg is aperiodic.

PROOF. Same as that of Theorem 10 — that is, the arguments about the colors

of the periodic block B are exactly the same. The assumption 1 � x0 means that

there are no zeros in the Beatty sequence for any x in the domain of g (Lemma

13). Which in turn means the tops of all the tiles are nonzero, and this allows

the division by
P

ai;1 ¤ 0. �

This theorem does not apply to f in the K-C tile set because x0 D 1
3

< 1. This

required the additional Top-Bottom color tweaking.

The function f has a maximum consecutive orbit of length 2 wholly con-

tained within the interval Œ0; 1/. Because of this, we used two top-bottom colors

f0; 00g.

Suppose g has a maximum consecutive orbit of length 0 � M < 1 wholly

contained within Œ0; 1/. We then use M different 0’s for the top and bottom

colors, 0; 00; 000; : : : ; 0.M �1/.
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Define

I0 D fx 2 Œ0; 1/ W g�1.x/ … Œ0; 1/g;

I1 D fx 2 Œ0; 1/ W g�1.x/ 2 Œ0; 1/; g�2.x/ … Œ0; 1/g;

:::

IM �1 D fx 2 Œ0; 1/ W g�i.x/ 2 Œ0; 1/; i D 1; � � � M � 1; g�.M /.x/ … Œ0; 1/g:

Then, for x 2 Ij , use the colors f0.j/; 1g when calculating the colors

bnxc � b.n � 1/xc

in the Basic Tile Construction.

THEOREM 20. Assume for g as above that

(i) q
n1

1
q

n2

2
� � � q

nk

k
D 1 for ni � 0 only if ni D 0 for all i D 1; : : : ; k;

(ii) there is an M � 0 such that the longest consecutive orbit wholly contained

in Œ0; 1/ is of length M .

Then by incorporating both side and top-bottom color changes the resulting tile

set Tg, is aperiodic.

7. Mealy machine representation

Kari and Culik present their tile set using Mealy machines, a type of finite-

state automaton where the output is associated with a transition. The K-C tile

set can be represented by a pair of Mealy machines, the first of which describes

Tile Set 1
3

:

0
����

3
1
����

3
2
����

3

1�0 1�0

2�1 2�1

1�1

2�0

Each edge of the graph represents a tile. The label “i=j ” gives the bottom and

top numbers of the tile respectively. The tail state (vertex) of the transition arrow

is the label of the left side of the tile. The head state (vertex) of the transition
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arrow is the label of the right side of the tile. This Mealy machine has six edges

and these edges correspond to the first six tiles of the K-C tile set.

The following Mealy machine has seven edges which in turn correspond to

the last seven tiles of the K-C tile set, namely Tile set 20.

-1 0

1�1

0’�1

0�1

0�0’ 0�0’

1�2 1�2

An infinite 2-sided path through either machine defines an infinite row of tiles.

The labels along the tops of this infinite row give an admissible input sequence to

the machine. The bottom labels of the row give an admissible output sequence.

Our analysis is essentially a discussion of when an infinite 2-sided output

sequence of either machine can be admissible as an input sequence to either

machine.
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