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Dedicated to Henry P. McKean, a mentor and a friend

ABSTRACT. We discuss recent advances in the theory of turbulent solutions

of the Navier–Stokes equations and the existence of their associated invariant

measures. The statistical theory given by the invariant measures is described

and associated with historically-known scaling laws. These are Hack’s law

in one dimension, the Batchelor–Kraichnan law in two dimensions and the

Kolmogorov’s scaling law in three dimensions. Applications to problems in

turbulence are discussed and applications to Reynolds Averaged Navier Stokes

(RANS) and Large Eddy Simulation (LES) models in computational turbu-

lence.

1. Introduction

Everyone is familiar with turbulence in one form or another. Airplane pas-

sengers encounter it in wintertime as the plane begins to shake and is jerked in

various directions. Thermal currents and gravity waves in the atmosphere create

turbulence encountered by low-flying aircraft. Turbulent drag also prevents the

design of more fuel-efficient cars and aircrafts. Turbulence plays a role in the

heat transfer in nuclear reactors, causes drag in oil pipelines and influence the

circulation in the oceans as well as the weather.

In daily life we encounter countless other examples of turbulence. Surfers use

it to propel them and their boards to greater velocities as the wave breaks and

becomes turbulent behind them and they glide at great speeds down the unbroken

face of the wave. This same wave turbulence shapes our beaches and carries

enormous amount of sand from the beach in a single storm, sometime to dump it

all into the nearest harbor. Turbulence is harnessed in combustion engines in cars
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and jet engines for effective combustion and reduced emission of pollutants. The

flow around automobiles and downtown buildings is controlled by turbulence

and so is the flow in a diseased artery. Atmospheric turbulence is important in

remote sensing, wireless communication and laser beam propagation through

the atmosphere; see [Sølna 2002; [2003]]. The applications of turbulence await

us in technology, biology and the environment. It is one of the major problems

holding back advances of our technology.

Turbulence has puzzled and intrigued people for centuries. Five centuries

ago a fluid engineer by the name of Leonardo da Vinci tackled it. He did not

have modern mathematics or physics at his disposal but he had a very powerful

investigative tool in his possession. He explored natural phenomena by drawing

them. Some of his most famous drawings are of turbulence.

Leonardo called the phenomenon that he was observing “la turbolenza” in

1507 and gave the following description of it:

Observe the motion of the surface of the water, which resembles that of

hair, which has two motions, of which one is caused by the weight of the

hair, the other by the directions of the curls; thus the water has eddying

motions, one part of which is due to the principal current, the other to the

random and reverse motion.

This insightful description pointed out the separation of the flow into the aver-

age flow and the fluctuations that plays an important role in modern turbulence

theory. But his drawings also led Leonardo to make other astute observations

that accompany his drawings, in mirror script, such as where the turbulence

of water is generated, where it maintains for long, and where it comes to rest.

These three observations are well-known features of turbulence and they are all

illustrated in Leonardo’s drawings.

One reason why turbulence has not been solved yet is that the mathematics

or the calculus of turbulence has not been developed until now. This situation

is analogous to the physical sciences before Newton and Leibnitz. Before the

physical sciences could bloom into modern technology the mathematics being

the language that they are expressed in had to be developed. This was accom-

plished by Newton and Leibnitz and developed much further by Euler. Three

centuries later we are at a similar threshold regarding turbulence. The mathe-

matics of turbulence is being born and the technology of turbulence is bound to

follow.

The mathematics of turbulence is rooted in stochastic partial differential equa-

tions. It is the mathematical theory that expresses the statistical theory of tur-

bulence as envisioned by the Russian mathematician Kolmogorov, one of the

fathers of modern probability theory, in 1940. The basic observation is that

turbulent flow is unstable and the white noise that is always present in any phys-
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ical system is magnified in turbulent flow. In distinction, in laminar flow the

white noise in the environment is suppressed. The new mathematical theory of

turbulence expresses how the noise is magnified and colored by the turbulent

fluid. This then leads to a computation or an approximation of the associated

invariant measure for the stochastic partial differential equation. The whole

statistical theory of Kolmogorov can be expressed mathematically with this in-

variant measure in hand.

The problems that mathematicians have with proving the existence of solu-

tions of the Navier–Stokes equations in three dimensions has lead to the mis-

taken impression that turbulence is only a three dimensional phenomenon. Noth-

ing is further from the truth. Turbulence thrives in one and two dimensions as

well as in three dimensions. We will illustrate this by describing one dimensional

turbulence in rivers.

Although we will coach it in terms of river flow in his paper, this type of

modeling and theory have many other applications. One such application is

to the modeling of fluvial sedimentation that gives rise to sedimentary rock in

petroleum reserves. The properties of the flow through the porous rock turn

out to depend strongly on the structure of the meandering river channels; see

[Holden et al. 1998]. Another application is to turbulent atmospheric flow. Con-

trary to popular belief, in the presence of turbulence, the temperature variations

in the atmosphere my be highly anisotropic or stratified. Thus the scaling of the

fluid model corresponding to a river or a channel may have a close analog in the

turbulent atmosphere; see [Sidi and Dalaudier 1990].

Two dimensionless numbers the Reynolds number and the Froude number

are used to characterize turbulent flow in rivers and streams. If we model the

river as an open channel with x parameterizing the downstream direction, y the

horizontal depth and U is the mean velocity in the downstream direction, then

the Reynolds number

R D
fturbulent

fviscous

D
Uy

�

is the ratio of the turbulent and viscous forces whereas the Froude number

F D
fturbulent

fgravitational

D
U

.gy/1=2

is the ratio of the turbulent and gravitational forces. � is the viscosity and g is the

gravitational acceleration. Other forces such as surface tension, the centrifugal

force and the Coriolis force are insignificant in streams and rivers.

The Reynolds number indicates whether the flow is laminar or turbulent with

the transition to turbulence starting at R D 500 and the flow usually being fully

turbulent at R D 2000. The Froude number measures whether gravity waves,

with speed c D .gy/1=2 in shallow water, caused by some disturbance in the
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flow, can overcome the flow velocity and travel upstream. Such flow are called

tranquil flows, c > U , in distinction to rapid or shooting flows, c < U , where

this cannot happen; they correspond to the Froude numbers

(i) F < 1, subcritical, c > U ,

(ii) F D 1, critical, c D U ,

(iii) F > 1, supercritical, c < U .

Now for streams and rivers the Reynolds number is typically large (105–106),

whereas the Froude numbers is small typically (10�1–10�2); see [Dingman

1984]. Thus the flows are highly turbulent and ought to be tranquil. But this is

not the whole story, as we will now explain.

In practice streams and rivers have varied boundaries which are topologically

equivalent to a half-pipe. These boundaries are rough and resist the flow and this

had lead to formulas involving channel resistance. The most popular of these

are Chézy’s law, where the average velocity V is

V D ucC r1=2s1=2
o ; uc D 0:552m=s

and Manning’s law, with

V D um
1

n
r2=3s1=2

o ; um D 1:0m=s

where so is the slope of the channel and r is the hydraulic radius. C is called

Chézy’s constant and measures inverse channel resistance. The number n is

Manning’s roughness coefficient; see [Dingman 1984]. We get new effective

Reynolds and Froude numbers with these new averaged velocities V ,

R� D
g

3u2
cC 2

R; F� D

�

g

u2
cC 2so

�1=2

F

from Chézy’s law.

It turns out that in real rivers the effective Froude number is approximately

one and the effective Reynolds number is also one, when R D 500 for typical

channel roughness C D 73:3. Thus the transition to turbulence typically occurs

in rivers when the effective turbulent forces are equal to the viscous forces.

The reason for the transition to turbulence is that at this value of R� the

amplification of the noise that grows into fully developed turbulence is no longer

damped by the viscosity of the flow. The damping by the effective viscosity is

overcome by the turbulent forces.

Now let us ignore the boundaries of the river. The point is that in a straight

segment of a reasonably deep and wide river the boundaries do not influence the

details of the river current in the center, except as a source of flow disturbances.

We will simply assume that these disturbances exist, in the flow at the center of
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the river and not be concerned with how they got there. For theoretical purposes

we will conduct a thought experiment where we start with an unstable uniform

flow and then put the disturbances in as small white noise. Then the mathe-

matical problem is to determine the statistical theory of the resulting turbulent

flow. The important point is that this is now a theory of the water velocity u.x/

as a function of the one-dimensional distance x down the river. Thus if u is

turbulent it describes one-dimensional turbulence in the downstream direction

of the river.

The flow of water in streams and rivers is a fascinating problem with many

application that has intrigued scientists and laymen for many centuries; see [Levi

1995]. Surprisingly it is still not completely understood even in one or two-

dimensional approximation of the full three-dimensional flow. Erosion by water

seems to determine the features of the surface of the earth, up to very large scales

where the influence of earthquakes and tectonics is felt, see [Smith et al. 1997a;

1997b; 2000; Birnir et al. 2001; 2007a; Welsh et al. 2006]. Thus water flow

and the subsequent erosion gives rise to the various scaling laws know for river

networks and river basins; see [Dodds and Rothman 1999; 2000a; 2000b; 2000c;

2000d].

One of the best known scaling laws of river basins is Hack’s law [1957]

that states that the area of the basin scales with the length of the main river to an

exponent that is called Hack’s exponent. Careful studies of Hack’s exponent (see

[Dodds and Rothman 2000d]) show that it actually has three ranges, depending

on the age and size of the basin, apart from very small and very large scales

where it is close to one. The first range corresponds to a spatial roughness

coefficient of one half for small channelizing (very young) landsurfaces. This

has been explained, see [Birnir et al. 2007a] and [Edwards and Wilkinson 1982],

as Brownian motion of water and sediment over the channelizing surface. The

second range with a roughness coefficient of 2
3

corresponds to the evolution of a

young surface forming a convex (geomorphically concave) surface, with young

rivers, that evolves by shock formation in the water flow. These shocks are called

bores (in front) and hydraulic jumps (in rear); see [Welsh et al. 2006]. Between

them sediment is deposited. Finally there is a third range with a roughness

coefficient 3
4

. This range that is the largest by far and is associated with what

is called the mature landscape, or simply the landscape because it persists for a

long time, is what this paper is about. This is the range that is associated with

turbulent flow in rivers and we will develop the statistical theory of turbulent

flow in rivers that leads to Hack’s exponent.

Starting with the three basic assumption on river networks: that the their

structure is self-similar, that the individual streams are self-affine and the drain-

age density is uniform (see [Dodds and Rothman 2000a]), river networks possess
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several scalings laws that are well documented; see [Rodriguez-Iturbe and Ri-

naldo 1997]. These are self-affinity of single channels, which we will call the

meandering law, Hack’s law, Horton’s laws [1945] and their refinement Toku-

naga’s law, the law for the scaling of the probability of exceedance for basin

areas and stream lengths and Langbein’s law. The first two laws are expressed

in terms of the meandering exponent m, or fractal dimension of a river, and the

Hack’s exponent h. Horton’s laws are expressed in terms of Horton’s ratio’s of

link numbers and link lengths in a Strahler ordered river network, Tokunaga’s

law is expressed in term of the Tokunaga’s ratios, the probability of exceedance

is expressed by decay exponents and Langbein’s law is given by the Langbein’s

exponents [Dodds and Rothman 2000a].

Dodds and Rothman [1999; 2000a; 2000b; 2000c; 2000d] showed that all

the ratios and exponents above are determined by m and h, the meandering and

Hack’s exponents; see [Hack 1957; Dodds and Rothman 1999]. The origin of

the meandering exponent m has recently been explained [Birnir et al. 2007b]

but in this paper we discuss how it and Hack’s exponent are determined by

the scaling exponent of turbulent one-dimensional flow. Specifically, m and h

are determined by the scaling exponent of the second structure function [Frisch

1995] in the statistical theory of the one-dimensional turbulent flow.

The breakthrough that initiated the theoretical advances discussed above was

the proof of existence of turbulent solutions of the full Navier–Stokes equation

driven by uniform flow, in dimensions one, two and three. These solutions

turned out to have a finite velocity and velocity gradient but they are not smooth

instead the velocity is Hölder continuous with a Hölder exponent depending

on the dimension; see [Birnir 2007a; 2007b]. These solutions scale with the

Kolmogorov scaling in three dimensions and the Batchelor–Kraichnan scaling

in two dimensions. In one dimensions they scale with the exponent 3
4

, that is

related to Hack’s law [1957] of river basins; see [Birnir et al. 2001; 2007a].

The existence of these turbulent solutions is then used to proof the existence

of an invariant measure in dimensions one, two and three; see [Birnir 2007a;

2007b]. The invariant measure characterizes the statistically stationary state of

turbulence and it can be used to compute the statistically stationary quantities.

These include all the deterministic properties of turbulence and everything that

can be computed and measured. In particular, the invariant measure determines

the probability density of the turbulent solutions and this can be used to develop

accurate subgrid modeling in computations of turbulence, bypassing the prob-

lem that three-dimensional turbulence cannot be fully resolved with currently

existing computer technology.
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2. The initial value problem

Consider the Navier–Stokes equation

wt C w � rwD��w � rp (2-1)

w.x; 0/Dwo;

where � D �0=VL, V being a typical velocity, L the length of a segment of

the river and �0 the kinematic viscosity of water, with the incompressibility

condition

r � w D 0: (2-2)

Eliminating the pressure p using (2-2) gives the equation

wt C w � rw D ��w C rf��1Œtrace.rw/2�g (2-3)

We want to consider turbulent flow in the center of a wide and deep river and

to do that we consider the flow to be in a box and impose periodic boundary

conditions on the box. Since we are mostly interested in what happens in the

direction along the river we take our x axis to be in that direction.

We will assume that the river flows fast and pick an initial condition of the

form

w.0/ D Uoe1 (2-4)

where Uo is a large constant and e1 is a unit vector in the x direction. Clearly

this initial condition is not sufficient because the fast flow may be unstable and

the white noise ubiquitous in nature will grow into small velocity and pressure

oscillations; see for example [Betchov and Criminale 1967]. But we perform a

thought experiment where white noise is introduced into the fast flow at t D 0.

This experiment may be hard to perform in nature but it is easily done numeri-

cally. It means that we should look for a solution of the form

w.x; t/ D Uoe1 C u.x; t/ (2-5)

where u.x; t/ is smaller that Uo but not necessarily small. However, in a small

initial interval Œ0; to� u is small and satisfies the equation (2-3) linearized about

the fast flow Uo

ut C Uo@xuD�u C f (2-6)

u.x; 0/D0

driven by the noise

f D
X

k¤0

h
1=2

k
dˇk

t ek

The ek D e2� ik�x are (three-dimensional) Fourier components and each comes

with its own independent Brownian motion ˇk
t . None of the coefficients of the
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vectors h
1=2

k
D .h

1=2
1

; h
1=2
2

; h
1=2
3

/ vanish because the turbulent noise was seeded

by truly white noise (white both is space and in time). f is not white in space

because the coefficients h
1=2

k
must have some decay in k so that the noise term

in (2-6) makes sense. However to determine the decay of the h
1=2

k
s will now be

part of the problem. The form of the turbulent noise f expresses the fact that

in turbulent flow there is a continuous sources of small white noise that grows

and saturates into turbulent noise that drives the fluid flow. The decay of the

coefficients h
1=2

k
expresses the spatial coloring of this larger noise in turbulent

flow. We have set the kinematic viscosity � equal to one for computational

convenience, but it can easily be restored in the formulas.

This modeling of the noise is the key idea that make everything else work.

The physical reasoning is that the white noise ubiquitous in nature grows into the

noise f that is characteristic for turbulence and the differentiability properties

of the turbulent velocity u are the same as those of the turbulent noise.

The justification for considering the initial value problem (2-6) is that for a

short time interval Œ0; to� we can ignore the nonlinear terms

�u � ru C rf��1Œtrace.ru/2�g

in the equation (2-3). But this is only true for a short time to, after this time we

have to start with the solution of (2-6)

uo.x; t/ D
X

k¤0

h
1=2

k

Z t

0

e.�4�2jkj2C2� iUok1/.t�s/dˇk
s ek.x/ (2-7)

as the first iterate in the integral equation

u.x; t/ D uo.x; t/ C

Z t

to

K.t � s/ � Œ�u � ru C r��1.trace.ru/2/�ds (2-8)

where K is the (oscillatory heat) kernel in (2-7). In other words to get the

turbulent solution we must take the solution of the linear equation (2-6) and use

it as the first term in (2-8). It will also be the first guess in a Picard iteration.The

solution of (2-6) can be written in the form

uo.x; t/ D
X

k¤0

h
1=2

k
Ak

t ek.x/

where the

Ak
t D

Z t

0

e.�4�2jkj2C2� iUok1/.t�s/dˇk
s (2-9)

are independent Ornstein–Uhlenbeck processes with mean zero; see for example

[Da Prato and Zabczyk 1996].
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Now it is easy to see that the solution of the integral equation (2-8) u.x; t/

satisfies the driven Navier–Stokes equation

ut C Uo@xu D �u � u � ru C r��1.trace.ru/2/

C
P

k¤0

h
1=2

k
dˇk

t ek ; t > t0;

ut C Uo@xu D �u C
X

k¤0

h
1=2

k
dˇk

t ek ; u.x; 0/ D 0; t � t0;

(2-10)

and the argument above is the justification for studying the initial value problem

(2-10). We will do so from here on. The solution u of (2-10) still satisfies the

periodic boundary conditions and the incompressibility condition

r � u D 0 (2-11)

The mean of the solution uo of the linear equation (2-6) is zero by the formula

(2-7) and this implies that the solution u of (2-10) also has mean zero

Nu.t/ D

Z

T3

u.x; t/ dx D 0 (2-12)

Figure 1. The traveling wave solution of the heat equation for the flow

velocity Uo D 85. The perturbations are frozen in the flow. The x axis is

space, the y axis time and the z axis velocity u.

Stability. The uniform flow w D Uoe1 seem to be a stable solution of (2-6)

judging from the solution (2-7). Namely, all the Fourier coefficients are decay-

ing. However, this is deceiving, first the Brownian motion ˇk is going to make

the amplitude of the k-th Fourier coefficient large in due time with probability
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one. More importantly if Uo is large then (2-6) has traveling wave solutions that

are perturbations ”frozen in the flow”, and for Uo even larger these traveling

waves are unstable and start growing. For Uo large enough this happens after

a very short initial time interval and makes the flow immediately become fully

turbulent. The role of the white noise is then not to cause enough growth even-

tually for the nonlinearities to become important, but rather to immediately pick

up (large) perturbations that grow exponentially. These are the large fluctuations

that are observed in most turbulent flows. In Figure 1, we show the traveling

wave solution of the transported heat equation (2-6), with Uo D 85. In Figure 2,

where the flow has increased to Uo D94, the traveling wave has become unstable

and grows exponentially. Notice the difference in vertical scale between the

figures.

Thus the white noise grows into a traveling wave that grows exponentially.

This exponential growth is saturated by the nonlinearities and subsequently the

flow becomes turbulent. This is the mechanism of explosive growth of turbu-

lence of a uniform stream and describes what happens in our thought experiment

described in Section 2.

Figure 2. The traveling wave solution of the heat equation for the flow

velocity Uo D 94. The perturbations are growing exponentially. The x axis

is space, the y axis time and the z axis velocity u.

3. One-dimensional turbulence

In a deep and wide river it is reasonable to think that the directions transverse

to the main flow, y the direction across the river, and z the horizontal direction,

play a secondary role in the generation of turbulence. As a first approximation
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to the flow in the center of a deep and wide, fast-flowing river we will now drop

these directions. Of course y and z play a role in the motion of the large eddies

in the river but their motion is relatively slow compared to the smaller scale

turbulence. Thus our initial value problem (2-10) becomes

ut C Uoux

D uxx � uux C @�1
x ..ux/2/ �

Z 1

0

@�1
x ..ux/2/ dx C

X

k¤0

h
1=2

k
dˇk

t ek ; (3-1)

We still have periodic boundary condition on the unit interval but the incom-

pressibility condition can be dropped at the price of subtracting the term

b D

Z 1

0

@�1
x ..ux/2/ dx

from the right hand side of the Navier–Stokes equation. This term keeps the

mean of u, Nu D
R 1

0 udx D 0, equal to zero, see Equation (2-12). This equation

(3-1) now describes the turbulent flow in the center of relative straight section

of a fast river. The full three-dimensional flow will be treated in [Birnir 2007b].

The following theorem and corollaries are proved in [Birnir 2007a]. It states

the existence of turbulent solutions in one dimension. First we write the initial

value problem (3-1) as an integral equation

u.x; t/ D uo.x; t/ C

Z t

to

K.t � s/ �
�

�1
2
.u2/x C @�1

x .ux/2 � b
�

ds: (3-2)

Here K is the oscillatory heat kernel (2-7) in one dimension and

uo.x; t/ D
X

k¤0

h
1=2

k
Ak

t ek.x/

the Ak
t s being the Ornstein–Uhlenbeck processes from Equation (2-9).

If q=p is a rational number let .q=p/ C denote any real number greater than

q=p, and let E the expectation with a probability measure P on a set of events

˝.

THEOREM 3.1. If the solution of the linear equation (2-6) satisfies the condition

E.kuok2
. 5

4

C
;2// D

X

k¤0

.1 C .2�k/.5=2/C

/hkE.jAk
t j2/ (3-3)

�
1

2

X

k¤0

.1 C .2� ik/.5=2/C

/

.2�k/2
hk < 1
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and U0 is sufficiently large, then the integral equation (3-2) has a unique solu-

tion in the space C
�

Œ0; 1/I L
2
. 5

4

C
;2/

�

of stochastic processes with

kuk2

L
2

. 5
4

C
;2/

< 1:

COROLLARY 3.1. The solution of the linearized equation (2-6) uniquely deter-

mines the solution of the integral equation (3-2).

COROLLARY 3.2 (ONSAGER’S CONJECTURE). The solutions of the integral

equation (3-2) are Hölder continuous with exponent 3
4

.

REMARK. Hypothesis (3-3) is the answer to the question posed in Section 2

about how fast the coefficients h
1=2

k
have to decay in Fourier space. They have

to decay sufficiently fast for the supremum in t of the expectation of the

H
5

4

C

D W . 5

4

C
;2/

Sobolev norm of the initial function uo, to be finite. In other words the sup in t

of the L
2
. 5

4

C
;2/

norm has to be finite.

4. The existence and uniqueness of the invariant measure

We can define the invariant measure d� for a stochastic partial differential

equation (SPDE) by the limit

lim
t!1

E.�.u.t/// D

Z

L2.Tn/

�.u/ d�.u/ (4-1)

where E denotes the expectation, u.t/ is the solution of the SPDE, parametrized

by time, and � is any bounded function on L2.T
n/. L2.T

n/ is the space of

square integrable functions on a torus T
n which means that we are imposing

periodic boundary conditions on an interval, rectangle or a box, respectively

n D 1; 2; 3 dimensions. However, the theory also carries over to other boundary

conditions. One first uses the law L of the solution u.t/

Pt .w; � / D L.u.w; t//.� /; � � E;

where w D uo is the initial condition for the SPDE and E is the � algebra

generated by the Borel subsets � of L2.T
n/, to define transition probabilities

Pt .w; � / on L2.T
n/. A stochastically continuous Markovian semigroup is

called a Feller semigroup [Da Prato and Zabczyk 1996], and for such Feller

semigroups

1

T

Z T

0

Pt .w; � / dt
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defines a probability measure. This is how one forms probability measures on

L2.T
n/ by taking these time averages of the transition probabilities and then one

uses the Krylov–Bogoliubov Theorem [Da Prato and Zabczyk 1996] to show

that the sequence of the resulting probability measures, indexed by time T , is

tight. This is the first step, then the invariant measure exists and is the (weak)

limit

d�. � / D lim
T !1

1

T

Z T

0

Pt .w; � / dt

Once the existence of the invariant measure has been established, one wishes to

prove that it is unique. To prove this one first has to prove that Pt is in fact a

strong Feller semigroup or that for all T > 0 there exists a constant C > 0, such

that for all ' 2 B.L2/, the space of bounded functions on L2, and t 2 Œ0; T �

jPt'.x/ � Pt'.y/j � C k'k1kx � yk; x; y 2 L2:

Here k �k denotes the norm in L2. Then one must prove the irreducibility of the

Pt , namely that for any � � L2 and w 2 �

Pt .w; � / D Pt�� .w/ > 0;

where �� is the characteristic function of � . The strong Feller property and

irreducibility are usually defined for a fixed t but by the semigroup property, if

these hold at one t they also hold at any other t . Now if the transition semi-

group Pt associated with the equation (5-1) below is a strong Feller semigroup

and irreducible, then by Doob’s theorem on invariant measures [Da Prato and

Zabczyk 1996],

(i) The invariant measure � associated with Pt is unique.

(ii) � is strongly mixing and

lim
t!1

Pt .w; � / D �.� /;

for all w 2 L2 and � 2 E where E.L2/ denotes the sigma field generated by

the Borel subsets of L2.

(iii) � is equivalent to all measures Pt .w; � /, for all w 2 L2 and all t > 0.

5. The statistical theory

The invariant measure can be used to compute statistical quantities character-

izing the turbulent state. The mathematical model consists of the Navier–Stokes

equation where we have used the incompressibility condition to eliminate the

pressure,
@u

@t
C u � ru D ��u C r��1Œtrace.ru/2� C f; (5-1)
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� is the kinematic viscosity and f represents turbulent noise as in Equation

(2-6). The velocity also satisfies the incompressibility condition

r � u D 0: (5-2)

In one dimension, modeling a fast turbulent flow in a relatively narrow river,

one can ignore the dimension transverse to the flow and the equation becomes,

ut C uux D �uxx C @�1
x .ux/2 � b C f; (5-3)

as discussed above. The existence of turbulent solutions of this equation and

their associated invariant measures was established in [Birnir 2007a], following

the method of McKean [2002]. The existence of invariant measures for the one-

dimensional Navier–Stokes equation (dissipative Burger’s equation) with sto-

chastic forcing was established by Sinai [1996] (see also [Kuksin and Shirikyan

2001]) and McKean [2002]. The existence in the two-dimensional case was

established by Flandoli [1994]; see also [Flandoli and Maslowski 1995; Mat-

tingly 1999; Weinan et al. 2001; Bricmont et al. 2000; Hairer and Mattingly

2004; Hairer et al. 2004].

If one considers the second structure function

S2.y/ D EŒju.x C y/ � u.x/j2�

of the solution, one can show that it scales with the power 3
2

in the lag variable

y for the equation (5-3), in one dimension (see [Birnir et al. 2001; 2007a; Birnir

2007a], and 2
3

for equation (5-1), in three dimensions, the latter is Kolmogorov’s

theory. The Kolmogorov scaling of the second structure function is usually

written as

S2.y/ D C "2=3y2=3:

where " is the dissipation rate. In two dimensions the scaling is more compli-

cated due to the existence of the inverse cascade (see [Kraichnan 1967]), and

two scaling regimes may exist [Kraichnan 1967; Batchelor 1969; Kolmogorov

1941]. It is still an open problem to examine the higher moments for different

scalings or multifractality [Frisch 1995; Lavallée et al. 1993], and the scalings

at very small scales below the Kolmogorov scale. The latter is the scale below

which dissipation and dissipative scaling is supposed to dominate. Finally, one

needs to examine the scaling in time, that we have suppressed in the above

formula, to see if one can characterize the transients to the stationary (fully

developed turbulence) state.

If � is a bounded function on L2.T
1/, then the invariant measure d� for the

SPDEs (3-1) is given by the limit

lim
t!1

E.�.u.t/// D

Z

L2.T1/

�.u/ d�.u/I (5-4)
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see (4-1). In [Birnir 2007a] we proved that this limit exists and is unique. We

get the following theorem, as explained in Section 4,

THEOREM 5.1. The integral equation (3-2) possesses a unique invariant mea-

sure.

COROLLARY 5.1. The invariant measure d� is ergodic and strongly mixing.

The corollary follows immediately from Doob’s theorem for invariant measures;

see for example [Da Prato and Zabczyk 1996].

The equations describing the erosion of a fluvial landsurface consist of a

system of PDEs, one (u) equation describing the fluid flow, the other equation

describing the sediment flow; see [Birnir et al. 2001]. Using these equations,

Hack’s law is proven in the following manner. In [Birnir et al. 2007a] the

equations describing the sediment flow are linearized about convex (concave in

the terminology of geomorphology) surface profiles describing mature surfaces.

Then the colored noise generated by the turbulent flow (during big rainstorms)

drives the linearized equations and the solutions obtain the same color (scaling),

see Theorem 5.3 in [Birnir et al. 2007a]. The resulting variogram (second struc-

ture function) of the surfaces scales with the roughness exponent � D 3
4

, see

Theorem 5.4 in the same reference. This determines the roughness coefficient

� of mature landsurfaces.

The final step is the following derivation of Hack’s law is copied from [Birnir

et al. 2001].

The origin of Hack’s law. The preceding results allow us to derive some of

the fundamental scaling results that are known to characterize fluvial landsur-

faces. In particular, the avalanche dimension computed in [Birnir et al. 2001]

and derived in [Birnir et al. 2007a], given the roughness coefficient �, allows us

to derive Hack’s Law relating the length of a river l to the area A of the basin

that it drains. This is the area of the river network that is given by the avalanche

dimensions

A � lD

and the avalanche dimensions is D D 1C�. This relation says that if the length

of the main river is l then the width of the basin in the direction, perpendicular

to the main river, is l�. Stable scalings for the surface emerge together with the

emergence of the separable solutions describing the mature surfaces; see [Birnir

et al. 2001]. We note that in this case � D 3
4

, hence we obtain

l � A
1

1C� � A0:57; (5-5)

a number that is in excellent agreement with observed values of the exponent of

Hack’s law of 0:58; see [Gray 1961].
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It still remains to explain how the roughness of the bottom and boundary of

a river channel gets spread to the whole surface of the river basin over time.

In [Birnir et al. 2007b] it is shown that the mechanism for this consists of the

meanderings of the river. As the rivers meanders over time it sculpts a roughness

of the surface with the roughness exponent 3
4

.

6. Invariant measures and turbulent mixing

Now how does the existence of the invariant measure help in determining

the turbulent mixing properties on a small scale? First, the invariant measure is

not only ergodic but in fact strongly mixing; see [Birnir 2007a]. Secondly, the

invariant measure allows one to compute the statistical properties, in particular

the mixing rates. This, of course sounds, a little too good to be true so what is

the problem?

The main problem one has to tackle first is that no explicit formula exist for

the invariant measure, such as the explicit formula one has for the Gaussian

invariant measure of Brownian motion. Indeed no such formula can exist, no

more than one can have an explicit formula for a general turbulent solution of the

Navier–Stokes equation. However, since the invariant measure is both ergodic

and weakly mixing, by Doob’s theorem (see [Da Prato and Zabczyk 1996],

for example) one can use the ergodic theorem and approximate the invariant

measure by taking the long-time time average. In practice this means that we

take the limit of the expectation of a computed solution or rather it substitute:

an ensemble average of many computed solutions and the time average of this

ensemble average, when time becomes large. Roughly speaking this means that

we can approximate the invariant measure to the same accuracy as the com-

puted solution. However, this means that we also have an approximation of the

probability density and this can be used to make a subgrid model for (LES)

computations.

It is desirable to go beyond the above approximation and develop approx-

imations of the invariant measure that are independent of the computational

accuracy. This requires one to find an approximations of the invariant measure

by a sequence of measures that can be computed explicitly and an estimate of

the error one makes by each approximation. There are some proposals for doing

this that need to be explored. One also needs to investigate the properties of the

invariant measure, what its continuity properties are with respect to other mea-

sures, etc. The discovery of these properties that now are completely unknown

will help in determining good and efficient approximations to the invariant mea-

sure and the probability density.

If methods are found to efficiently approximate the invariant measure then

there are no limits to the spatial and temporal scales that can be resolved except
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the theoretical one given by the Kolmogorov and dissipative scales. In other

words with good methods to approximate the invariant measures the turbulent

mixing problem can be solved and the mixing rates of the various components

due to the turbulence computed. Furthermore, at least theoretically this can be

done to any desired accuracy.

7. Approximations of the invariant measure

It is imperative for application to be able to approximate the invariant measure

up a high order. This permits the computation of statistical quantities to within

the desired accuracy in experiments or simulations. The first step in the ap-

proximation procedure is to use the same method that was used to construct the

solutions to construct approximations of the invariant measure. If we linearize

the Navier–Stokes equation (5-1) around a fast unidirectional flow Uoe1 where

e1 is a unit vector in the x direction and include noise then we get a heat equation

with a convective term that has the solution

uo.x; t/ D
X

k¤0

h
1=2

k

Z t

0

e.�4�2jkj2C2� iUok1/.t�s/dˇk
s ek.x/ (7-1)

as explained in Section 2. The ˇk
t s are independent Brownian motions and the

eks are Fourier components. Then if we look for a solution of (5-1) of the form

U D Uoe1 C u then u satisfies the integral equation

u.x; t/ D uo.x; t/ C

Z t

to

K.t � s/ � Œ�u � ru C r��1.trace.ru/2/�ds (7-2)

where K is the (oscillatory heat) kernel in (2-7). The solution of the integral

equation is constructed by substituting uo as the first guess into the integral and

then iterating the result. This produces a sequence of (Picard) iterates that one

proves converges to the solution of the integral equation. No explicit formula

can exist for the limit in general but one can iterate the integral equation as often

as desired to produce an approximate solution. The formulas get more and more

complicated but it is possible that one quickly gets a good approximation to the

real solutions. This obviously depends on the rate of convergence. In any case

the mth iterate um of the integral equation with u0 D uo is an approximate

solution that can be compared to a numerical solution of the equation (5-1).

It is conceivable that these approximations can be implemented by a symbolic

or partially symbolic and partially numerical computation.

By the ergodic theorem the time average of the solution

1

T

Z T

0

u.t/ dt



46 BJÖRN BIRNIR

converges to the invariant measure. In fact,

lim
T !1

1

T

Z T

0

�.u.t// dt D

Z

L2.T1/

�.u/ d�.u/ (7-3)

where � 2 B.L2/ is any bounded function on L2. Thus we can find approxi-

mations �m to the invariant measure � by considering the sequence

1

Tm

Z Tm

0

um.t/ dt �

Z

L2.T1/

ud�m.u/

u0 in these formulas is simply the solution of the linear equation (2-6) for uni-

form flows and the invariant measure �0 obtained in the limit is a weighted

Gaussian; see [Birnir et al. 2007a]. The higher Picard iterates will give more

complicated limits. Again, these approximations can probably be implemented

by a symbolic or partially symbolic and partially numerical computation.

The problem is that this way of approximating the invariant measure may

not be very inefficient. Thus it is important to seek more efficient ways of

implementing these approximations first theoretically and then numerically.

8. RANS and LES models

The objective of RANS (Reynolds Averaged Navier Stokes) computations is

to compute the spatial distribution of the mean velocity of the turbulent flow.

To do this the velocity and pressure are decomposed into the mean Nu and the

deviation from the mean u D U � Nu (or fluctuation)

U.x; t/ D Nu.x; t/ C u.x; t/

The average denoted here by a bar is an ensemble average. Then, by definition,

the mean of u is equal to zero. Similarly, the pressure is decomposed as

P .x; t/ D Np.x; t/ C p.x; t/

The divergence condition (5-2) gives that

r � Nu D 0 D r � u

and averaging the Navier–Stokes equation (5-1) gives the equation for the mean

velocity

@ Nu

@t
C Nu � r Nu C r � u ˝ u D �� Nu � r Np (8-1)

Thus the mean satisfies an equation similar to (2-1) except for an additional term

due the Reynolds stress

R D u ˝ u
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The additional term in (8-1) acts as an effective stress on the flow due to mo-

mentum transport cause by turbulent fluctuation. Until recently it has been im-

possible to determine this term from first principle and various approximations

have been used. The simplest formulation is to set the Reynolds stress tensor to

R D ��T .x/r Nu

where �T .x/ is called the turbulent eddy viscosity. This makes the additional

term in the equation act as an additional (viscous) diffusion term. A better

approximation is to develop an evolution equation for R. This equation turns

out to depend on the u ˝ u ˝ u and so on. Thus an infinite sequence of evolution

equations for higher and higher moments is obtained and it must be closed at

some level. This is done by approximating some higher moment by a formula

depending only on lower moments. The closure problem is the problem of how

to implement this moment truncation. A good recent exposition of the RANS

models is contained in [Bernard and Wallace 2002].

The approximate invariant measure discussed above gives us a new insight

into RANS models. In particular the mean is nothing but the expectation

Nu.x; t/ �

Z

L2

ud�m.u/

This obviously does not determine Nu since u is unknown but we can now work

with the various closure approximations and improve them knowing what the

spatial average actually means. This can be done and the result simulated. The

hope is to develop RANS models that are less dependent on the available data

and the parameter regions covered by that data.

In LES (see [Meneveau and Katz 2000]) the velocity is decomposed into

Fourier modes and then the expansion truncated at some intermediate scale that

are usually given by the grid resolution. Then one computes the large scales

explicitly and models the effects of the small scales, smaller than the cutoff, on

the large scales with a subgrid model. The cutoff is usually done with a smooth

Gaussian filter. LES thus assumes that the small scale turbulence structures are

not significantly dependent on the geometry of the flow and therefore can be

represented by a general model. This method is able to handle transition to

turbulence and the resulting turbulent regimes in the flow better than RANS that

usually needs to be told explicitly where the transition occurs. Now if we let

Nu and Nu denote resolved velocity and pressure then the Navier–Stokes equation

for the resolve quantities can be written as

@ Nu

@t
C Nu � r Nu C r � . Nu ˝ Nu/ D �� Nu � r Np � r � � (8-2)
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where � represents the subgrid stress tensor (SGS)

� D u ˝ u � Nu ˝ Nu

and the resolved scales are divergence free

r � Nu D 0

� describes the effects of the subgrid scales on the resolved velocity.

The most common subgrid models use a relationship between SGS and e the

resolved strain tensor

e D 1
2
.ru C .ru/T/

where .ru/T denotes the transpose. The relationship between � and e is

� � 1
3

trace � ıij D �2�T e

Here ıij denotes Kronecker’s delta and the eddy viscosity is

�T D C "2
q

2e.e/T

The " is a characteristic length scale for the subgrid. As it stands this subgrid

model is purely dissipative and excessively so. If the constant in front of jej D
p

2e.e/T is allowed to vary with time (see [Germano et al. 1991]) a much

better result is obtained. Then the constant is computed dynamically during the

simulation and with this modification the so-called Smagorinsky subgrid model

does not produce excessive dissipation. However, it only work with situations

where the flow is homogeneous in at least one direction and thus does not permit

general geometries.

In general when modeling an experiment we want the subgrid model to re-

produce the Kolmogorov k�5=3 energy spectrum of homogeneous isotropic tur-

bulence, and the statistics of turbulent channel flow. The advantage that we

have with the approximate invariant measure is that we can base the cutoff on

the approximately correct probability density function instead of a Gaussian that

has nothing to do with the details of the small scale flow. This holds the promise

that we can reproduce the correct scaling in the subgrid model. Ultimately this

tests that the LES is producing the correct scaling down to the size of the com-

putational grid.

9. Validation of the numerical methods

Turbulent fluids are highly unstable phenomena that are sensitive to noise and

perturbation. Velocity trajectories depend sensitively on their initial conditions

and it is not clear that they can be given a deterministic interpretation. This

means that computations of such fluids are highly sensitive to truncation and
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even round-off errors. One must regards turbulent phenomena to be structurally

unstable and stochastic. Statistical quantities associated to the turbulent fluids

are deterministic and can be computed by taking appropriate statistical ensem-

bles. However, one must be careful that the numerical methods one uses can be

trusted to converge to the correct statistical quantity. It turns out that it is not

enough to check that the conventional quantities such as energy or momentum

and make sure that they converge. One must also consider the scalings of the

statistical quantities and check that they show the correct scalings over a suf-

ficiently large parameter range. In doing this one must choose the numerical

methods carefully.

In a series of papers the author and his collaborators, [Smith et al. 1997b;

Smith et al. 1997a; Birnir et al. 2001; Birnir et al. 2007a], showed that whereas

explicit methods generally fail to produce the correct scalings over a large pa-

rameter interval, implicit methods do. This reason for this is that in an implicit

method the time step is independent of the spatial discretization and does not go

to zero as the spatial discretization decreases. Explicit methods obtain stability

by inserting artificial viscosity into the problem and this artificial viscosity de-

stroys the small scale scalings. Before the scaling of the small scales is obtained

the time step goes to zero in the explicit method and the computation grinds to a

halt. This makes implicit methods the methods of choice. Although the implicit

methods also induce some viscosity, it is much smaller and does not interfere

with the small scale scaling to the same extent as for explicit methods. The

problem is that implicit methods are much slower than explicit and although this

is not a serious obstacle in one dimension it is in two dimensions and makes the

turbulence problem intractable in three dimensions. Thus it becomes impera-

tive to compute correct closure approximations for RANS and subgrid models

for LES in order to be able to solve these by implicit methods and produce

numerically the correct scalings. One way of implementing this is to use the

(approximate) invariant measure to develop tests on numerical methods to see

if they produce correct scalings down to the size of the numerical grid.
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