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ABSTRACT. Given a constrained minimization problem, under what condi-

tions does there exist a related, unconstrained problem having the same mini-

mum points? This basic question in global optimization motivates this paper,

which answers it from the viewpoint of statistical mechanics. In this context,

it reduces to the fundamental question of the equivalence and nonequivalence

of ensembles, which is analyzed using the theory of large deviations and the

theory of convex functions.

In a 2000 paper appearing in the Journal of Statistical Physics, we gave nec-

essary and sufficient conditions for ensemble equivalence and nonequivalence

in terms of support and concavity properties of the microcanonical entropy.

In later research we significantly extended those results by introducing a class

of Gaussian ensembles, which are obtained from the canonical ensemble by

adding an exponential factor involving a quadratic function of the Hamiltonian.

The present paper is an overview of our work on this topic. Our most important

discovery is that even when the microcanonical and canonical ensembles are

not equivalent, one can often find a Gaussian ensemble that satisfies a strong

form of equivalence with the microcanonical ensemble known as universal

equivalence. When translated back into optimization theory, this implies that

an unconstrained minimization problem involving a Lagrange multiplier and a

quadratic penalty function has the same minimum points as the original con-

strained problem.

The results on ensemble equivalence discussed in this paper are illustrated

in the context of the Curie–Weiss–Potts lattice-spin model.

Keywords: Equivalence of ensembles, Gaussian ensemble, microcanonical entropy, large deviation principle,

Curie–Weiss–Potts model.
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1. Introduction

Oscar Lanford, at the beginning of his groundbreaking paper [Lanford 1973],

describes the underlying program of statistical mechanics:

The objective of statistical mechanics is to explain the macroscopic prop-

erties of matter on the basis of the behavior of the atoms and molecules of

which it is composed. One of the most striking facts about macroscopic

matter is that in spite of being fantastically complicated on the atomic

level — to specify the positions and velocities of all molecules in a glass of

water would mean specifying something of the order of 1025 parameters —

its macroscopic behavior is describable in terms of a very small number of

parameters; e.g., the temperature and density for a system containing only

one kind of molecule.

Lanford shows how the theory of large deviations enables this objective to be

realized. In statistical mechanics one determines the macroscopic behavior of

physical systems not from the deterministic laws of Newtonian mechanics, but

from a probability distribution that expresses both the behavior of the system

on the microscopic level and the intrinsic inability to describe precisely what is

happening on that level. Using the theory of large deviations, one shows that,

with probability converging to 1 exponentially fast as the number of particles

tends to 1, the macroscopic behavior is describable in terms of a very small

number of parameters

The success of this program depends on the correct choice of probability

distribution, also known as an ensemble. One starts with a prior measure on

configuration space, which, as an expression of the lack of information con-

cerning the behavior of the system on the atomic level, is often taken to be

the uniform measure. As Boltzmann recognized, the most natural choice of

ensemble is the microcanonical ensemble, obtained by conditioning the prior

measure on the set of configurations for which the Hamiltonian per particle

equals a constant energy u. Boltzmann also introduced a mathematically more

tractable probability distribution known as the canonical ensemble, in which

the conditioning that defines the microcanonical ensemble is replaced by an

exponential factor involving the Hamiltonian and the inverse temperature ˇ, a

parameter dual to the energy parameter u [Gibbs 1902].

Among other reasons, the canonical ensemble was introduced in the hope

that in the limit n ! 1 the two ensembles are equivalent; i.e., all macroscopic

properties of the model obtained via the microcanonical ensemble could be re-

alized as macroscopic properties obtained via the canonical ensemble. While

ensemble equivalence is valid for many standard and important models, ensem-

ble equivalence does not hold in general, as numerous studies cited later in this
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introduction show. There are many examples of statistical mechanical mod-

els for which nonequivalence of ensembles holds over a wide range of model

parameters and for which physically interesting microcanonical equilibria are

often omitted by the canonical ensemble.

The present paper is an overview of our work on this topic. One of the beau-

tiful aspects of the theory is that it elucidates a fundamental issue in global op-

timization, which in fact motivated our work on the Gaussian ensemble. Given

a constrained minimization problem, under what conditions does there exist a

related, unconstrained minimization problem having the same minimum points?

In order to explain the connection between ensemble equivalence and global

optimization and in order to outline the contributions of this paper, we introduce

some notation. Let X be a space, I a function mapping X into Œ0;1�, and QH a

function mapping X into R. For u 2 R we consider the following constrained

minimization problem:

minimize I.x/ over x 2 X subject to the contraint QH .x/D u: (1-1)

A partial answer to the question posed at the end of the preceding paragraph

can be found by introducing the following related, unconstrained minimization

problem for ˇ 2 R:

minimize I.x/Cˇ QH .x/ over x 2 X: (1-2)

The theory of Lagrange multipliers outlines suitable conditions under which the

solutions of the constrained problem (1-1) lie among the critical points of I C

ˇ QH . However, it does not give, as we will do in Theorems 3.1 and 3.3, necessary

and sufficient conditions for the solutions of (1-1) to coincide with the solutions

of the unconstrained minimization problem (1-2) and with the solutions of the

unconstrained minimization problem appearing in (1-5).

We denote by Eu and Eˇ the respective sets of solutions of the minimization

problems (1-1) and (1-2). These problems arise in a natural way in the context of

equilibrium statistical mechanics [Ellis et al. 2000], where u denotes the energy

and ˇ the inverse temperature. As we will outline in Section 2, the theory of

large deviations allows one to identify the solutions of these problems as the

respective sets of equilibrium macrostates for the microcanonical ensemble and

the canonical ensemble.

The paper [Ellis et al. 2000] analyzes equivalence of ensembles in terms of

relationships between Eu and Eˇ . In turn, these relationships are expressed in

terms of support and concavity properties of the microcanonical entropy

s.u/D � inffI.x/ W x 2 X; QH .x/D ug: (1-3)

The main results in [Ellis et al. 2000] are summarized in Theorem 3.1. Part

(a) of that theorem states that if s has a strictly supporting line at an energy
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value u, then full equivalence of ensembles holds in the sense that there exists

a ˇ such that Eu D Eˇ . In particular, if s is strictly concave on dom s, then s

has a strictly supporting line at all u 2 dom s except possibly boundary points

[Theorem 3.2(a)] and thus full equivalence of ensembles holds at all such u. In

this case we say that the microcanonical and canonical ensembles are universally

equivalent.

The most surprising result, given in part (c), is that if s does not have a

supporting line at u, then nonequivalence of ensembles holds in the strong sense

that Eu \ Eˇ D ? for all ˇ 2 R
� . That is, if s does not have a supporting line

at u — equivalently, if s is not concave at u — then microcanonical equilibrium

macrostates cannot be realized canonically. This is to be contrasted with part (d),

which states that for any x 2 Eˇ there exists u such that x 2 Eu; i.e., canonical

equilibrium macrostates can always be realized microcanonically. Thus of the

two ensembles, in general the microcanonical is the richer.

The paper [Costeniuc et al. 2005b] addresses the natural question suggested

by part (c) of Theorem 3.1. If the microcanonical ensemble is not equivalent

with the canonical ensemble on a subset of energy values u, then is it possi-

ble to replace the canonical ensemble with another ensemble that is universally

equivalent with the microcanonical ensemble? We answered this question by

introducing a penalty function 
 Œ QH .x/�u�2 into the unconstrained minimization

problem (1-2), obtaining the following:

minimize I.x/Cˇ QH .x/C 
 Œ QH .x/� u�2 over x 2 X: (1-4)

Since for each x 2 X

lim

 !1


 Œ QH .x/� u�2 D

�

0 if QH .x/D u

1 if QH .x/ 6D u;

it is plausible that for all sufficiently large 
 minimum points of the penalized

problem (1-4) are also minimum points of the constrained problem (1-1). Since

ˇ can be adjusted, (1-4) is equivalent to the following:

minimize I.x/Cˇ QH .x/C 
 Œ QH .x/�2 over x 2 X: (1-5)

The theory of large deviations allows one to identify the solution of this prob-

lem as the set of equilibrium macrostates for the so-called Gaussian ensemble. It

is obtained from the canonical ensemble by adding an exponential factor involv-

ing 
h2
n, where hn denotes the Hamiltonian energy per particle. The utility of

the Gaussian ensemble rests on the simplicity with which the quadratic function


u2 defining this ensemble enters the formulation of ensemble equivalence.

Essentially all the results in [Ellis et al. 2000] concerning ensemble equivalence,

including Theorem 3.1, generalize to the setting of the Gaussian ensemble by
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replacing the microcanonical entropy s.u/ by the generalized microcanonical

entropy

s
 .u/D s.u/� 
u2: (1-6)

The generalization of Theorem 3.1 is stated in Theorem 3.3, which gives all

possible relationships between the set Eu of equilibrium macrostates for the

microcanonical ensemble and the set Eˇ;
 of equilibrium macrostates for the

Gaussian ensemble. These relationships are expressed in terms of support and

concavity properties of s
 .

For the purpose of applications the most important consequence of Theorem

3.3 is given in part (a), which states that if s
 has a strictly supporting line at an

energy value u, then full equivalence of ensembles holds in the sense that there

exists a ˇ such that Eu D Eˇ;
 . In particular, if s
 is strictly concave on dom s,

then s
 has a strictly supporting line at all u 2 dom s except possibly boundary

points [Theorem 3.4(a)] and thus full equivalence of ensembles holds at all such

u. In this case we say that the microcanonical and Gaussian ensembles are

universally equivalent.

In the case in which s is C 2 and s00 is bounded above on the interior of dom s,

then the strict concavity of s
 is easy to show. In fact, the strict concavity is a

consequence of

s00

 .u/D s00.u/� 2
 < 0 for all u 2 int(dom s/;

and this in turn is valid for all sufficiently large 
 [Theorem 4.2]. For such


 it follows, therefore, that the microcanonical and Gaussian ensembles are

universally equivalent.

Defined in (2.6), the Gaussian ensemble is mathematically much more tract-

able than the microcanonical ensemble, which is defined in terms of condition-

ing. The simpler form of the Gaussian ensemble is reflected in the simpler

form of the unconstrained minimization problem (1-5) defining the set Eˇ;


of Gaussian equilibrium macrostates. In (1-5) the constraint appearing in the

minimization problem (1-1) defining the set Eu of microcanonical equilibrium

macrostates is replaced by the linear and quadratic terms involving QH .x/. The

virtue of the Gaussian formulation should be clear. When the microcanonical

and Gaussian ensembles are universally equivalent, then from a numerical point

of view, it is better to use the Gaussian ensemble because in contrast to the

microcanonical one, the Gaussian ensemble does not involve an equality con-

straint, which is difficult to implement numerically. Furthermore, within the

context of the Gaussian ensemble, it is possible to use Monte Carlo techniques

without any constraint on the sampling [Challa and Hetherington 1988a; Challa

and Hetherington 1988b].
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By giving necessary and sufficient conditions for the equivalence of the three

ensembles in Theorems 3.1 and 3.3, we make contact with the duality theory

of global optimization and the method of augmented Lagrangians [Bertsekas

1982, ~ 2.2], [Minoux 1986, ~ 6.4]. In the context of global optimization the

primal function and the dual function play the same roles that the microcanon-

ical entropy (resp., generalized microcanonical entropy) and the canonical free

energy (resp., Gaussian free energy) play in statistical mechanics. Similarly,

the replacement of the Lagrangian by the augmented Lagrangian in global op-

timization is paralleled by our replacement of the canonical ensemble by the

Gaussian ensemble.

The Gaussian ensemble is a special case of the generalized canonical ensem-

ble, which is obtained from the canonical ensemble by adding an exponential

factor involving g.hn/, where g is a continuous function that is bounded below.

Our paper [Costeniuc et al. 2005b] gives all possible relationships between the

sets of equilibrium macrostates for the microcanonical and generalized canon-

ical ensembles in terms of support and concavity properties of an appropriate

entropy function. Our paper [Touchette et al. 2006] shows that the generalized

canonical ensemble can be used to transform metastable or unstable nonequi-

librium macrostates for the standard canonical ensemble into stable equilibrium

macrostates for the generalized canonical ensemble.

Equivalence and nonequivalence of ensembles is the subject of a large litera-

ture. An overview is given in the introduction of [Lewis et al. 1995]. A number

of theoretical papers on this topic, including [Deuschel et al. 1991; Ellis et al.

2000; Eyink and Spohn 1993; Georgii 1993; Lewis et al. 1994; Lewis et al.

1995; Roelly and Zessin 1993], investigate equivalence of ensembles using the

theory of large deviations. In [Lewis et al. 1994, ~ 7] and [Lewis et al. 1995,

~ 7.3] there is a discussion of nonequivalence of ensembles for the simplest

mean-field model in statistical mechanics; namely, the Curie–Weiss model of

a ferromagnet. However, despite the mathematical sophistication of these and

other studies, none of them except for our papers [Costeniuc et al. 2005b; El-

lis et al. 2000] explicitly addresses the general issue of the nonequivalence of

ensembles.

Nonequivalence of ensembles has been observed in a wide range of systems

that involve long-range interactions and that can be studied by the methods of

[Costeniuc et al. 2005b; Ellis et al. 2000]. In all of these cases the micro-

canonical formulation gives rise to a richer set of equilibrium macrostates. For

example, it has been shown computationally that the strongly reversing zonal-

jet structures on Jupiter as well as the Great Red Spot fall into the nonequiva-

lent range of an appropriate microcanonical ensemble [Turkington et al. 2001].

Other models for which ensemble nonequivalence has been observed include a
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number of long-range, mean-field spin models including the Hamiltonian mean-

field model [Dauxois et al. 2002], the mean-field X-Y model [Dauxois et al.

2000], and the mean-field Blume–Emery–Griffiths model [Barré et al. 2002;

2001; Ellis et al. 2004b]. For a mean-field version of the Potts model called

the Curie–Weiss–Potts model, equivalence and nonequivalence of ensembles is

analyzed in detail in [Costeniuc et al. 2005a; Costeniuc et al. 2006a]. Ensemble

nonequivalence has also been observed in models of turbulent vorticity dynamics

[DiBattista et al. 2001; Dibattista et al. 1998; Ellis et al. 2002a; Eyink and Spohn

1993; Kiessling and Lebowitz 1997; Robert and Sommeria 1991], models of

plasmas [Kiessling and Neukirch 2003; Smith and O’Neil 1990], gravitational

systems [Gross 1997; Hertel and Thirring 1971; Lynden-Bell and Wood 1968;

Thirring 1970], and models of the Lennard–Jones gas [Borges and Tsallis 2002;

Kiessling and Percus 1995]. A detailed discussion of ensemble nonequivalence

for models of coherent structures in two dimensional turbulence is given in [Ellis

et al. 2000, ~ 1.4].

Gaussian ensembles were introduced in [Hetherington 1987] and studied fur-

ther in [Challa and Hetherington 1988a; Challa and Hetherington 1988b; Het-

herington and Stump 1987; Johal et al. 2003; Stump and Hetherington 1987].

As these papers discuss, an important feature of Gaussian ensembles is that

they allow one to account for ensemble-dependent effects in finite systems. Al-

though not referred to by name, the Gaussian ensemble also plays a key role

in [Kiessling and Lebowitz 1997], where it is used to address equivalence-of-

ensemble questions for a point-vortex model of fluid turbulence.

Another seed out of which the research summarized in the present paper

germinated is the paper [Ellis et al. 2002a]. There we study the equivalence

of the microcanonical and canonical ensembles for statistical equilibrium mod-

els of coherent structures in two-dimensional and quasigeostrophic turbulence.

Numerical computations demonstrate that, as in other cases, nonequivalence of

ensembles occurs over a wide range of model parameters and that physically

interesting microcanonical equilibria are often omitted by the canonical ensem-

ble. In addition, in Section 5 of [Ellis et al. 2002a], we establish the nonlinear

stability of the steady mean flows corresponding to microcanonical equilibria via

a new Lyapunov argument. The associated stability theorem refines the well-

known Arnold stability theorems, which do not apply when the microcanonical

and canonical ensembles are not equivalent. The Lyapunov functional appearing

in this new stability theorem is defined in terms of a generalized thermodynamic

potential similar in form to I.x/Cˇ QH .x/C
 Œ QH .x/�2, the minimum points of

which define the set of equilibrium macrostates for the Gaussian ensemble [see

(2.14)].
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Our goal in this paper is to give an overview of our theoretical work on en-

semble equivalence presented in [Costeniuc et al. 2005b; Ellis et al. 2000]. The

paper [Costeniuc et al. 2006b] investigates the physical principles underlying

this theory. In Section 2 of the present paper, we first state the assumptions

on the statistical mechanical models to which the theory of the present paper

applies. We then define the three ensembles — microcanonical, canonical, and

Gaussian — and specify the three associated sets of equilibrium macrostates in

terms of large deviation principles. In Section 3 we state two sets of results on

ensemble equivalence. The first involves the equivalence of the microcanoni-

cal and canonical ensembles, necessary and sufficient conditions for which are

given in terms of support properties of the microcanonical entropy s defined in

(1-3). The second involves the equivalence of the microcanonical and Gauss-

ian ensembles, necessary and sufficient conditions for which are given in terms

of support properties of the generalized microcanonical entropy s
 defined in

(1-6). Section 4 addresses a basic foundational issue in statistical mechanics.

There we show that when the canonical ensemble is nonequivalent to the mi-

crocanonical ensemble on a subset of energy values u, it can often be replaced

by a Gaussian ensemble that is universally equivalent to the microcanonical

ensemble. In Section 5 the results on ensemble equivalence discussed in this

paper are illustrated in the context of the Curie–Weiss–Potts lattice-spin model,

a mean-field approximation to the nearest-neighbor Potts model. Several of the

results presented near the end of this section are new.

2. Definitions of models and ensembles

One of the objectives of this paper is to show that when the canonical en-

semble is nonequivalent to the microcanonical ensemble on a subset of energy

values u, it can often be replaced by a Gaussian ensemble that is equivalent to the

microcanonical ensemble for all u. Before introducing the various ensembles

as well as the methodology for proving this result, we first specify the class of

statistical mechanical models under consideration. The models are defined in

terms of the following quantities.

1. A sequence of probability spaces .˝n;Fn;Pn/ indexed by n 2 N, which

typically represents a sequence of finite dimensional systems. The ˝n are

the configuration spaces, ! 2˝n are the microstates, and the Pn are the prior

measures on the � fields Fn.

2. A sequence of positive scaling constant an ! 1 as n ! 1. In general an

equals the total number of degrees of freedom in the model. In many cases

an equals the number of particles.
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3. For each n 2 N a measurable functions Hn mapping ˝n into R. For ! 2˝n

we define the energy per degree of freedom by

hn.!/D
1

an
Hn.!/:

Typically, Hn in item 3 equals the Hamiltonian, which is associated with energy

conservation in the model. The theory is easily generalized by replacing Hn by

a vector of appropriate functions representing additional dynamical invariants

associated with the model [Costeniuc et al. 2005b; Ellis et al. 2000].

A large deviation analysis of the general model is possible provided that

there exist a space of macrostates, macroscopic variables, and an interaction

representation function and provided that the macroscopic variables satisfy the

large deviation principle (LDP) on the space of macrostates. These concepts are

explained next.

4. Space of macrostates. This is a complete, separable metric space X, which

represents the set of all possible macrostates.

5. Macroscopic variables. These are a sequence of random variables Yn map-

ping ˝n into X. These functions associate a macrostate in X with each mi-

crostate ! 2˝n.

6. Interaction representation function. This is a bounded, continuous func-

tions QH mapping X into R such that as n ! 1

hn.!/D QH .Yn.!//C o.1/ uniformly for ! 2˝nI (2.1)

i.e.,

lim
n!1

sup
!2˝n

jhn.!/� QH .Yn.!//j D 0:

The function QH enable us to write hn, either exactly or asymptotically, as a

function of the macrostate via the macroscopic variables Yn.

7. LDP for the macroscopic variables. There exists a function I mapping

X into Œ0;1� and having compact level sets such that with respect to Pn the

sequence Yn satisfies the LDP on X with rate function I and scaling constants

an. In other words, for any closed subset F of X

lim sup
n!1

1

an
log PnfYn 2 Fg � � inf

x2F
I.x/;

and for any open subset G of X

lim inf
n!1

1

an
log PnfYn 2 Gg � � inf

x2G
I.x/:

It is helpful to summarize the LDP by the formal notation PnfYn 2 dxg �

expŒ�anI.x/�. This notation expresses the fact that, to a first degree of
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approximation, PnfYn 2 dxg behaves like an exponential that decays to 0

whenever I.x/ > 0.

The assumptions on the statistical mechanical models just stated, as well as a

number of definitions to appear later, follow the presentation in [Costeniuc et al.

2005b], which is adapted for applications to lattice spin systems and related

models. These assumptions and definitions differ slightly from those in [Ellis

et al. 2000], where they are adapted for applications to statistical mechanical

models of coherent structures in turbulence. The major difference is that in the

asymptotic relationship (2.1) and in the definition (2.3) of the microcanonical

ensemble P
u;r
n , hn is replaced by Hn in [Ellis et al. 2000]. In addition, in the

definition (2.4) of the canonical ensemble Pn;ˇ, anhn is replaced by Hn in [Ellis

et al. 2000]. Similarly, in the definition (2.6) of the Gaussian ensemble Pn;ˇ;
 ,

anhn and anh2
n are replaced by Hn and H 2

n to yield the Gaussian ensemble

used to study models of coherent structures in turbulence. Finally, in the present

paper the LDP for Yn is derived with respect to Pn;ˇ and Pn;ˇ;
 while in models

of coherent structures in turbulence the LDP for Yn is derived with respect to

Pn;anˇ and Pn;anˇ;an
 , in which ˇ and 
 are both scaled by an. With only these

minor changes in notation, all the results stated here are applicable to models

of coherent structures in turbulence and in turn, all the results derived in [Ellis

et al. 2000] for models of coherent structures in turbulence are applicable here.

A wide variety of statistical mechanical models satisfy the assumptions listed

in items 1–7 or the modifications just discussed. Hence they can be studied by

the methods of [Costeniuc et al. 2005b; Ellis et al. 2000]. We next give six

examples. The first two are long-range spin systems, the third a class of short-

range spin systems, the fourth a model of two-dimensional turbulence, the fifth a

model of quasigeostrophic turbulence, and the sixth a model of dispersive wave

turbulence.

1. The mean-field Blume–Emery–Griffiths model [Blume et al. 1971] is one of

the simplest lattice-spin models known to exhibit both a continuous, second-

order phase transition and a discontinuous, first-order phase transition. The

space of macrostates for this model is the set of probability measures on

a certain finite set, the macroscopic variables are the empirical measures

associated with the spin configurations, and the associated LDP is Sanov’s

Theorem, for which the rate function is a relative entropy. Various features

of this model are studied in [Barré et al. 2002; Barré et al. 2001; Ellis et al.

2005; Ellis et al. 2004b].

2. The Curie–Weiss–Potts model is a mean-field approximation to the nearest-

neighbor Potts model [Wu 1982]. For the Curie–Weiss–Potts model, the

space of macrostates, the macroscopic variables, and the associated LDP

are similar to those in the mean-field Blume–Emery–Griffiths model. The
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Curie–Weiss–Potts model nicely illustrates the general results on ensemble

equivalence discussed in this paper and is discussed in Section 5.

3. Short-range spin systems such as the Ising model on Z
d and numerous gen-

eralizations can also be handled by the methods of this paper. The large

deviation techniques required to analyze these models are much more subtle

than in the case of the long-range, mean-field models considered in items 1

and 2. For the Ising model the space of macrostates is the space of translation-

invariant probability measures on Z
d , the macroscopic variables are the em-

pirical processes associated with the spin configurations, and the rate function

in the associated LDP is the mean relative entropy [Ellis 1985; Föllmer and

Orey 1988; Olla 1988].

4. The Miller–Robert model is a model of coherent structures in an ideal, two-

dimensional fluid that includes all the exact invariants of the vorticity trans-

port equation [Miller 1990; Robert 1991]. The space of macrostates is the

space of Young measures on the vorticity field. The large deviation analysis

of this model developed first in [Robert 1991] and more recently in [Boucher

et al. 2000] gives a rigorous derivation of maximum entropy principles gov-

erning the equilibrium behavior of the ideal fluid.

5. In geophysical applications, another version of the model in item 4 is pre-

ferred, in which the enstrophy integrals are treated canonically and the energy

and circulation are treated microcanonically [Ellis et al. 2002a]. In those

formulations, the space of macrostates is L2.�/ or L1.�/ depending on

the constraints on the vorticity field. The large deviation analysis is carried

out in [Ellis et al. 2002b]. The paper [Ellis et al. 2002a] shows how the non-

linear stability of the steady mean flows arising as equilibrium macrostates

can be established by utilizing the appropriate generalized thermodynamic

potentials.

6. A statistical equilibrium model of solitary wave structures in dispersive wave

turbulence governed by a nonlinear Schrödinger equation is studied in [Ellis

et al. 2004a]. The large deviation analysis given in [Ellis et al. 2004a] derives

rigorously the concentration phenomenon observed in long-time numerical

simulations and predicted by mean-field approximations [Jordan et al. 2000;

Lebowitz et al. 1989]. The space of macrostates is L2.�/, where � is a

bounded interval or more generally a bounded domain in R
d . The macro-

scopic variables are certain Gaussian processes.

We now return to the general theory, first introducing the function whose support

and concavity properties completely determine all aspects of ensemble equiva-

lence and nonequivalence. This function is the microcanonical entropy, defined

for u 2 R by

s.u/D � inffI.x/ W x 2 X; QH .x/D ug: (2.2)
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Since I maps X into Œ0;1�, s maps R
� into Œ�1; 0�. Moreover, since I is lower

semicontinuous and QH is continuous on X, s is upper semicontinuous on R
� .

We define dom s to be the set of u 2 R
� for which s.u/ > �1. In general,

dom s is nonempty since �s is a rate function [Ellis et al. 2000, Prop. 3.1(a)].

For each u 2 dom s, r > 0, n 2 N, and set B 2 Fn the microcanonical ensemble

is defined to be the conditioned measure

P u;r
n fBg D PnfB j hn 2 Œu � r;u C r �g: (2.3)

As shown in [Ellis et al. 2000, p. 1027], if u 2 dom s, then for all sufficiently

large n, Pnfhn 2 Œu � r;u C r �g > 0; thus the conditioned measures P
u;r
n are

well defined.

A mathematically more tractable probability measure is the canonical ensem-

ble. For each n 2 N, ˇ 2 R, and set B 2 Fn we define the partition function

Zn.ˇ/D

Z

˝n

expŒ�anˇhn� dPn;

which is well defined and finite, and the probability measure

Pn;ˇfBg D
1

Zn.ˇ/
�

Z

B

expŒ�anˇhn� dPn: (2.4)

The measures Pn;ˇ are Gibbs states that define the canonical ensemble for the

given model.

The Gaussian ensemble is a natural perturbation of the canonical ensemble.

For each n 2 N, ˇ 2 R, and 
 2 Œ0;1/ we define the Gaussian partition function

Zn.ˇ; 
 /D

Z

˝n

expŒ�anˇhn � an
h2
n� dPn: (2.5)

This is well defined and finite because the hn are bounded. For B 2 Fn we also

define the probability measure

Pn;ˇ;
 fBg D
1

Zn.ˇ; 
 /
�

Z

B

expŒ�anˇhn � an
h2
n� dPn; (2.6)

which we call the Gaussian ensemble. One can generalize this by replacing

the quadratic function by a continuous function g that is bounded below. This

gives rise to the generalized canonical ensemble, which the theory developed in

[Costeniuc et al. 2005b] allows one to treat.

Using the theory of large deviations, one introduces the sets of equilibrium

macrostates for each ensemble. It is proved in [Ellis et al. 2000, Theorem 3.2]
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that with respect to the microcanonical ensemble P
u;r
n ; Yn satisfies the LDP on

X, in the double limit n ! 1 and r ! 0, with rate function

Iu.x/D

�

I.x/C s.u/ if QH .x/D u

1 otherwise :
(2.7)

Iu is nonnegative on X, and for u 2 dom s, Iu attains its infimum of 0 on the

set

E
uDfx 2 X W Iu.x/D 0g (2.8)

Dfx 2 X W I.x/ is minimized subject to QH .x/D ug:

This set is precisely the set of solutions of the constrained minimization problem

(1-1).

In order to state the LDPs for the other two ensembles, we bring in the canon-

ical free energy, defined for ˇ 2 R by

'.ˇ/D � lim
n!1

1

an
log Zn.ˇ/;

and the Gaussian free energy, defined for ˇ 2 R and 
 � 0 by

'.ˇ; 
 /D � lim
n!1

1

an
log Zn.ˇ; 
 /:

It is proved in [Ellis et al. 2000, Theorem 2.4] that the limit defining '.ˇ/ exists

and is given by

'.ˇ/D inf
y2X

fI.y/Cˇ QH .y/g (2.9)

and that with respect to Pn;ˇ, Yn satisfies the LDP on X with rate function

Iˇ.x/D I.x/Cˇ QH .x/�'.ˇ/: (2.10)

Iˇ is nonnegative on X and attains its infimum of 0 on the set

EˇDfx 2 X W Iˇ.x/D 0g (2.11)

Dfx 2 X W I.x/C hˇ; QH .x/i is minimizedg:

This set is precisely the set of solutions of the unconstrained minimization prob-

lem (1-2).

A straightforward extension of these results shows that the limit defining

'.ˇ; 
 / exists and is given by

'.ˇ; 
 /D inf
y2X

fI.y/Cˇ QH .y/C 
 Œ QH .y/�2g (2.12)

and that with respect to Pn;ˇ;g, Yn satisfies the LDP on X with rate function

Iˇ;
 .x/D I.x/Cˇ QH .x/C 
 Œ QH .x/�2 �'.ˇ; 
 /: (2.13)
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Iˇ;
 is nonnegative on X and attains its infimum of 0 on the set

Eˇ;
 Dfx 2 X W Iˇ;
 .x/D 0g (2.14)

Dfx 2 X W I.x/C hˇ; QH .x/i C 
 Œ QH .x/�2 is minimizedg:

This set is precisely the set of solutions of the penalized minimization problem

(1-5).

For u 2 dom s, let x be any element of X satisfying Iu.x/ > 0. The formal

notation

P u;r
n fYn 2 dxg � e�anI u.x/

suggests that x has an exponentially small probability of being observed in the

limit n ! 1, r ! 0. Hence it makes sense to identify Eu with the set of

microcanonical equilibrium macrostates. In the same way we identify with Eˇ

the set of canonical equilibrium macrostates and with Eˇ;
 the set of generalized

canonical equilibrium macrostates. A rigorous justification is given in [Ellis

et al. 2000, Theorem 2.4(d)].

3. Equivalence and nonequivalence of the three ensembles

Having defined the sets of equilibrium macrostates Eu, Eˇ , and Eˇ;
 for the

microcanonical, canonical and Gaussian ensembles, we now show how these

sets are related to one another. In Theorem 3.1 we state the results proved

in [Ellis et al. 2000] concerning equivalence and nonequivalence of the mi-

crocanonical and canonical ensembles. Then in Theorem 3.3 we extend these

results to the Gaussian ensemble [Costeniuc et al. 2005b].

Parts (a)–(c) of Theorem 3.1 give necessary and sufficient conditions, in terms

of support properties of s, for equivalence and nonequivalence of Eu and Eˇ.

These assertions are proved in Theorems 4.4 and 4.8 in [Ellis et al. 2000]. Part

(a) states that s has a strictly supporting line at u if and only if full equivalence of

ensembles holds; i.e., if and only if there exists a ˇ such that Eu D Eˇ. The most

surprising result, given in part (c), is that s has no supporting line at u if and

only if nonequivalence of ensembles holds in the strong sense that Eu \Eˇ D ?

for all ˇ. Part (c) is to be contrasted with part (d), which states that for any

ˇ canonical equilibrium macrostates can always be realized microcanonically.

Part (d) is proved in Theorem 4.6 in [Ellis et al. 2000]. Thus one conclusion

of this theorem is that at the level of equilibrium macrostates, in general the

microcanonical ensemble is the richer of the two ensembles.

THEOREM 3.1. In parts (a), (b), and (c), u denotes any point in dom s.



GLOBAL OPTIMIZATION AND UNIVERSAL ENSEMBLE EQUIVALENCE 145

(a) Full equivalence. There exists ˇ such that Eu D Eˇ if and only if s has a

strictly supporting line at u with slope ˇ; i.e.,

s.v/ < s.u/Cˇ.v� u/ for all v 6D u :

(b) Partial equivalence. There exists ˇ such that Eu � Eˇ but Eu 6D Eˇ if

and only if s has a nonstrictly supporting line at u with slope ˇ; i.e.,

s.v/� s.u/Cˇ.v� u/ for all v with equality for some v 6D u:

(c) Nonequivalence. For all ˇ, Eu\Eˇ D? if and only if s has no supporting

line at u; i.e.,

for all ˇ there exists v such that s.v/ > s.u/Cˇ.v� u/:

(d) Canonical is always realized microcanonically. For any ˇ 2 R we have
QH .Eˇ/� dom s and

Eˇ D
[

u2 QH .Eˇ/

E
u:

We highlight several features of the theorem in order to illuminate their physical

content. In part (a) let us add the assumption that for a given u 2 dom s there

exists a unique ˇ such that Eu D Eˇ. If s is differentiable at u and s and

the double Legendre–Fenchel transform s�� are equal in a neighborhood of u,

then ˇ is given by the standard thermodynamic formula ˇ D s0.u/ [Costeniuc

et al. 2005b, Theorem A.4(b)]. The inverse relationship can be obtained from

part (d) of the theorem under the added assumption that Eˇ consists of a unique

macrostate or more generally that for all x 2 Eˇ the values QH .x/ are equal. Then

Eˇ D Eu.ˇ/, where u.ˇ/D QH .x/ for any x 2 Eˇ; u.ˇ/ denotes the mean energy

realized at equilibrium in the canonical ensemble. The relationship u D u.ˇ/

inverts the relationship ˇ D s0.u/. Partial ensemble equivalence can be seen in

part (d) under the added assumption that for a given ˇ, Eˇ can be partitioned

into at least two sets Eˇ;i such that for all x 2 Eˇ;i the values QH .x/ are equal but

QH .x/ 6D QH .y/ whenever x 2 Eˇ;i and y 2 Eˇ;j for i 6D j . Then Eˇ D
S

i Eui .ˇ/,

where ui.ˇ/D QH .x/, x 2 Eˇ;i . Clearly, for each i , Eui .ˇ/ � Eˇ but Eui .ˇ/ 6D Eˇ.

Physically, this corresponds to a situation of coexisting phases that normally

takes place at a first-order phase transition [Touchette et al. 2004].

Before continuing with our analysis of ensemble equivalence, we make a

number of basic definitions. A function f on R is said to be concave on R if f

maps R into R [ f�1g, f 6� �1, and for all u and v in R and all � 2 .0; 1/

f .�u C .1 ��/v/� �f .u/C .1 ��/f .v/:
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Let f 6� �1 be a function mapping R into R [ f�1g. We define dom f to

be the set of u for which f .u/ >�1. For ˇ and u in R the Legendre–Fenchel

transforms f � and f �� are defined by

f �.ˇ/D inf
u2R

fhˇ;ui �f .u/g and f ��.u/D inf
ˇ2R

fhˇ;ui �f �.ˇ/g:

The function f � is concave and upper semicontinuous on R and for all u we have

f ��.u/Df .u/ if and only if f is concave and upper semicontinuous on R [Ellis

1985, Theorem VI.5.3]. When f is not concave and upper semicontinuous, then

f �� is the smallest concave, upper semicontinuous function on R that satisfies

f ��.u/� f .u/ for all u [Costeniuc et al. 2005b, Prop. A.2]. In particular, if for

some u, f .u/ 6D f ��.u/, then f .u/ < f ��.u/.

Let f 6��1 be a function mapping R into R[f�1g, u a point in dom f , and

K a convex subset of dom f . We have the following four additional definitions:

f is concave at u if f .u/D f ��.u/; f is not concave at u if f .u/ < f ��.u/;

f is concave on K if f is concave at all u 2 K; and f is strictly concave on K

if for all u 6D v in K and all � 2 .0; 1/

f .�u C .1 ��/v/ > �f .u/C .1 ��/f .v/:

We also introduce two sets that play a central role in the theory. Let f be a

concave function on R whose domain is an interval having nonempty interior.

For u 2 R the superdifferential of f at u, denoted by @f .u/, is defined to be the

set of ˇ such that ˇ is the slope of a supporting line of f at u. Any such ˇ is

called a supergradient of f at u. Thus, if f is differentiable at u 2 int(dom f /,

then @f .u/ consists of the unique point ˇ D f 0.u/. If f is not differentiable at

u 2 int(dom f /, then dom @f consists of all ˇ satisfying the inequalities

.f 0/C.u/� ˇ � .f 0/�.u/;

where .f 0/�.u/ and .f 0/C.u/ denote the left-hand and right-hand derivatives

of f at u. The domain of @f , denoted by dom @f , is then defined to be the set

of u for which @f .u/ 6D ?.

Complications arise because dom @f can be a proper subset of dom f , as

simple examples clearly show. Let b be a boundary point of dom f for which

f .b/>�1. Then b is in dom @f if and only if the one-sided derivative of f at b

is finite. For example, if b is a left hand boundary point of dom f and .f 0/C.b/

is finite, then @f .b/D Œ.f 0/C.b/;1/; any ˇ 2 @f .b/ is the slope of a supporting

line at b. The possible discrepancy between dom @f and dom f introduces

unavoidable technicalities in the statements of several results concerning the

existence of supporting lines.
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One of our goals is to find concavity and support conditions on the micro-

canonical entropy guaranteeing that the microcanonical and canonical ensem-

bles are fully equivalent at all points u 2 dom s except possibly boundary points.

If this is the case, then we say that the ensembles are universally equivalent. Here

is a basic result in that direction. The universal equivalence stated in part (b)

follows from part (a) and from part (a) of Theorem 3.1. The rest of the theorem

depends on facts concerning concave functions [Costeniuc et al. 2005b, p. 1305].

THEOREM 3.2. Assume that dom s is an interval having nonempty interior and

that s is strictly concave on int(dom s/ and continuous on dom s. The following

conclusions hold.

(a) s has a strictly supporting line at all u 2 dom s except possibly boundary

points.

(b) The microcanonical and canonical ensembles are universally equivalent;

i.e., fully equivalent at all u 2 dom s except possibly boundary points.

(c) s is concave on R, and for each u in part (b) the corresponding ˇ in the

statement of full equivalence is any element of @s.u/.

(d) If s is differentiable at some u 2 dom s, then the corresponding ˇ in part

(b) is unique and is given by the standard thermodynamic formula ˇ D s0.u/.

The next theorem extends Theorem 3.1 by giving equivalence and nonequiva-

lence results involving Eu and Eˇ;
 , the sets of equilibrium macrostates with

respect to the microcanonical and Gaussian ensembles. The chief innovation

is that s.u/ in Theorem 3.1 is replaced here by the generalized microcanoni-

cal entropy s.u/� 
u2. As we point out after the statement of Theorem 3.3,

for the purpose of applications part (a) is its most important contribution. The

usefulness of Theorem 3.3 is matched by the simplicity with which it follows

from Theorem 3.1. Theorem 3.3 is a special case of Theorem 3.4 in [Costeniuc

et al. 2005b], obtained by specializing the generalized canonical ensemble and

the associated set of equilibrium macrostates to the Gaussian ensemble and the

set Eˇ;
 of Gaussian equilibrium macrostates.

THEOREM 3.3. Given 
 � 0, define s
 .u/D s.u/� 
u2. In parts (a), (b), and

(c), u denotes any point in dom s.

(a) Full equivalence. There exists ˇ such that Eu D Eˇ;
 if and only if s


has a strictly supporting line at u with slope ˇ.

(b) Partial equivalence. There exists ˇ such that Eu � Eˇ;
 but Eu 6D Eˇ;
 if

and only if s
 has a nonstrictly supporting line at u with slope ˇ.

(c) Nonequivalence. For all ˇ, Eu \ Eˇ;
 D ? if and only if s
 has no

supporting line at u.
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(d) Gaussian is always realized microcanonically. For any ˇ we have

QH .Eˇ;
 /� dom s; Eˇ;
 D
[

u2 QH .Eˇ;
 /

E
u:

PROOF. For 
 � 0 and B 2 Fn we define a new probability measure

Pn;
 fBg D
1

Z

˝n

expŒ�an
h2
n� dPn

�

Z

B

expŒ�an
h2
n� dPn:

With respect to Pn;
 , Yn satisfies the LDP on X with rate function

I
 .x/D I.x/C 
 Œ QH .x/�2 � .
 /;

where  .
 / D infy2XfI.y/C 
 Œ QH .y/�2g. Replacing the prior measure Pn in

the canonical ensemble with Pn;
 gives the Gaussian ensemble Pn;ˇ;
 , which

has Eˇ;
 as the associated set of equilibrium macrostates. On the other hand,

replacing the prior measure Pn in the microcanonical ensemble with Pn;
 gives

P u;r
n;
 fBg D Pn;
 fB j hn 2 Œu � r;u C r �g;

By continuity, for ! satisfying hn.!/ 2 Œu � r;u C r �, Œhn.!/�
2 converges to u2

uniformly in ! and n as r ! 0. It follows that with respect to P
u;r
n;
 , Yn satisfies

the LDP on X, in the double limit n ! 1 and r ! 0, with the same rate function

Iu as in the LDP for Yn with respect to P
u;r
n . As a result, the set of equilibrium

macrostates corresponding to P
u;r
n;
 coincides with the set Eu of microcanonical

equilibrium macrostates.

It follows from parts (a)–(c) of Theorem 3.1 that all equivalence and non-

equivalence relationships between Eu and Eˇ;
 are expressed in terms of support

properties of the function Qs
 obtained from s by replacing the rate function I

by the new rate function I
 . The function Qs
 is given by

Qs
 .u/D� inffI
 .x/ W x 2 X; QH .x/D ug

D� inffI.x/C 
 QH .x/2 W x 2 X; QH .x/D ug C .
 /

Ds.u/� 
u2 C .
 /:

Since Qs
 .u/ differs from s
 .u/D s.u/�
u2 by the constant  .
 /, we conclude

that all equivalence and nonequivalence relationships between E
u and Eˇ;
 are

expressed in terms of the same support properties of s
 . This completes the

derivation of parts (a)–(c) of Theorem 3.3 from parts (a)–(c) of Theorem 3.1.

Similarly, part (d) of Theorem 3.3 follows from part (d) of Theorem 3.1. ˜
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The importance of part (a) of Theorem 3.3 in applications is emphasized by the

following theorem, which will be applied in the sequel. This theorem is the

analogue of Theorem 3.2 for the Gaussian ensemble, s in that theorem being

replaced by s
 . The functions s and s
 have the same domains. The universal

equivalence stated in part (b) of the next theorem follows from part (a) and from

part (a) of Theorem 3.3.

THEOREM 3.4. For 
 � 0, define s
 .u/D s.u/�
u2. Assume that dom s is an

interval having nonempty interior and that s
 is strictly concave on int(dom s/

and continuous on dom s. The following conclusions hold.

(a) s
 has a strictly supporting line at all u 2 dom s except possibly boundary

points.

(b) The microcanonical ensemble and the Gaussian ensemble defined in terms

of this 
 are universally equivalent; i.e., fully equivalent at all u 2 dom s except

possibly boundary points.

(c) s
 is concave on R, and for each u in part (b) the corresponding ˇ in the

statement of full equivalence is any element of @s
 .u/.

(d) If s
 is differentiable at some u 2 dom s, then the corresponding ˇ in part

(b) is unique and is given by the thermodynamic formula ˇ D s0

 .u/.

The most important repercussion of Theorem 3.4 is the ease with which one can

prove that the microcanonical and Gaussian ensembles are universally equiv-

alent in those cases in which the microcanonical and canonical ensembles are

not fully or partially equivalent. This rests mainly on part (b) of Theorem 3.4,

which states that universal equivalence of ensembles holds if there exists a 
 � 0

such that s
 is strictly concave on int(dom s/. The existence of such a 
 follows

from a natural set of hypotheses on s stated in Theorem 4.2 in the next section.

4. Universal equivalence via the Gaussian ensemble

This section addresses a basic foundational issue in statistical mechanics.

Under the assumption that the microcanonical entropy is C 2 and s00 is bounded

above, we show in Theorem 4.2 that when the canonical ensemble is nonequiv-

alent to the microcanonical ensemble on a subset of energy values u, it can

often be replaced by a Gaussian ensemble that is universally equivalent to the

microcanonical ensemble; i.e., fully equivalent at all u 2 dom s except possibly

boundary points. Theorem 4.3 is a weaker version that can often be applied

when s00 is not bounded above. In the last section of the paper, these results will

be illustrated in the context of the Curie–Weiss–Potts lattice-spin model.

In Theorem 4.2 the strategy is to find a quadratic function 
u2 such that

s
 .u/D s.u/�
u2 is strictly concave on int(dom s/ and continuous on dom s.

Parts (a) and (b) of Theorem 3.4 then yields the universal equivalence. As
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the next proposition shows, an advantage of working with quadratic functions

is that support properties of s
 involving a supporting line are equivalent to

support properties of s involving a supporting parabola defined in terms of 
 .

This observation gives a geometrically intuitive way to find a quadratic function

guaranteeing universal ensemble equivalence.

In order to state the proposition, we need a definition. Let f be a function

mapping R into R [ f�1g, u and ˇ points in R, and 
 � 0. We say that f has

a supporting parabola at u with parameters .ˇ; 
 / if

f .v/� f .u/Cˇ.v� u/C 
 .v� u/2 for all v: (4.1)

The parabola is said to be strictly supporting if the inequality is strict for all

v 6D u.

PROPOSITION 4.1. f has a (strictly) supporting parabola at u with parameters

.ˇ; 
 / if and only if f �
 . � /2 has a (strictly) supporting line at u with slope Q̌.

The quantities ˇ and Q̌ are related by Q̌ D ˇ� 2
u.

PROOF. We use the identity .v� u/2 D v2 � 2u.v� u/� u2. If f has a strictly

supporting parabola at u with parameters .ˇ; 
 /, then for all v 6D u

f .v/� 
v2 < f .u/� 
u2 C Q̌.v� u/;

where Q̌ D ˇ � 2
u. Thus f � 
 . � /2 has a strictly supporting line at u with

slope Q̌. The converse is proved similarly, as is the case in which the supporting

line or parabola is supporting but not strictly supporting. ˜

The first application of Theorem 3.4 is Theorem 4.2, which gives a criterion

guaranteeing the existence of a quadratic function 
u2 such that s
 .u/D s.u/�


u2 is strictly concave on dom s. The criterion — that s00 is bounded above

on the interior of dom s — is essentially optimal for the existence of a fixed

quadratic function 
u2 guaranteeing the strict concavity of s
 . The situation in

which s00 is not bounded above on the interior of dom s can often be handled by

Theorem 4.3, which is a local version of Theorem 4.2.

THEOREM 4.2. Assume that dom s is an interval having nonempty interior.

Assume also that s is continuous on dom s, s is twice continuously differentiable

on int(dom s/, and s00 is bounded above on int(dom s/. Then for all sufficiently

large 
 � 0, conclusions (a)–(c) hold. Specifically, if s is strictly concave on

dom s, then we choose any 
 � 0, and otherwise we choose


 > 
0 D 1
2

� sup
u2int(dom s/

s00.u/: (4.2)

(a) s
 .u/D s.u/� 
u2 is strictly concave and continuous on dom s.
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(b) s
 has a strictly supporting line, and s has a strictly supporting parabola,

at all u 2 dom s except possibly boundary points. At a boundary point s
 has a

strictly supporting line, and s has a strictly supporting parabola, if and only if

the one-sided derivative of s
 is finite at that boundary point.

(c) The microcanonical ensemble and the Gaussian ensemble defined in terms

of this 
 are universally equivalent; i.e., fully equivalent at all u 2 dom s except

possibly boundary points. For all u 2 int(dom s/ the value of ˇ defining the

universally equivalent Gaussian ensemble is unique and equals ˇD s0.u/�2
u.

PROOF. (a) If s is strictly concave on dom s, then s
 is also strictly concave

on this set for any 
 � 0. We now consider the case in which s is not strictly

concave on dom s. For any 
 � 0, s
 is continuous on dom s. If, in addition,

we choose 
 > 
0 in accordance with (4.2), then for all u 2 int(dom s/

s00

 .u/D s00.u/� 2
 < 0:

A straightforward extension of the proof of Theorem 4.4 in [Rockafellar 1970],

in which the inequalities in the first two displays are replaced by strict inequal-

ities, shows that �s
 is strictly convex on int(dom s/ and thus that s
 is strictly

concave on int(dom s/. If s
 is not strictly concave on dom s, then s
 must be

affine on an interval. Since this violates the strict concavity on int(dom s/, part

(a) is proved.

(b) The first assertion follows from part (a) of the present theorem, part (a)

of Theorem 3.4, and Proposition 4.1. Concerning the second assertion about

boundary points, the reader is referred to the discussion before Theorem 3.2.

(c) The universal equivalence of the two ensembles is a consequence of part

(a) of the present theorem and part (b) of Theorem 3.4. The full equivalence

of the ensembles at all u 2 int(dom s/ is equivalent to the existence of a strictly

supporting line at each u 2 int(dom s/ [Theorem 3.3(a)]. Since s
 .u/ is differ-

entiable at all u 2 int(dom s/, for each u the slope of the strictly supporting line

at u is unique and equals s0

 .u/ [Costeniuc et al. 2005b, Theorem A.1(b)]. ˜

Suppose that s is C 2 on the interior of dom s but the second-order partial deriva-

tives of s are not bounded above. This arises, for example, in the Curie–Weiss–

Potts model, in which dom s is a closed, bounded interval of R and s00.u/!1 as

u approaches the right hand endpoint of dom s [see ~ 5]. In such cases one cannot

expect that the conclusions of Theorems 4.2 will be satisfied; in particular, that

there exists 
 � 0 such that s
 .u/D s.u/�
u2 has a strictly supporting line at

each point of the interior of dom s and thus that the ensembles are universally

equivalent.

In order to overcome this difficulty, we introduce Theorem 4.3, a local version

of Theorem 4.2. Theorem 4.3 handles the case in which s is C 2 on an open set

K but either K is not all of int(dom s/ or K D int(dom s/ and s00 is not bounded
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above on K. In neither of these situations are the hypotheses of Theorem 4.2

satisfied.

In Theorem 4.3 other hypotheses are given guaranteeing that for each u 2 K

there exists 
 such that s
 has a strictly supporting line at u; in general, 
 de-

pends on u. However, with the same 
 , s
 might also have a strictly supporting

line at other values of u. In general, as one increases 
 , the set of u at which s


has a strictly supporting line cannot decrease. Because of part (a) of Theorem

3.3, this can be restated in terms of ensemble equivalence involving the set Eˇ;


of Gaussian equilibrium macrostates. Defining

F
 D fu 2 K W there exists ˇ such that Eˇ;
 D E
ug;

we have F
1
� F
2

whenever 
2>
1 and because of Theorem 4.3,
S


 >0 F
 D

K. This phenomenon is investigated in Section 5 for the Curie–Weiss–Potts

model.

In order to state Theorem 4.3, we define for u 2 K and �� 0

D.u; s0.u/; �/D
˚

v 2 dom s W s.v/� s.u/C s0.u/.v� u/C�.v� u/2
	

:

Geometrically, this set contains all points for which the parabola with parameters

.s0.u/; �/ passing through .u; s.u// lies below the graph of s. Clearly, since

��0, we have D.u; s0.u/; �/�D.u; s0.u/; 0/; the set D.u; s0.u/; 0/ contains all

points for which the graph of the line with slope s0.u/ passing through .u; s.u//

lies below the graph of s. Thus, in the next theorem the hypothesis that for each

u 2 K the set D.u; s0.u/; �/ is bounded for some � � 0 is satisfied if dom s

is bounded or, more generally, if D.u; s0.u/; 0/ is bounded. The latter set is

bounded if, for example, �s is superlinear; i.e.,

lim
jvj!1

s.v/=jvj D �1:

The quantity 
0.u/ appearing in the next theorem is defined in equation (5.7) in

[Costeniuc et al. 2005b].

THEOREM 4.3. Let K an open subset of dom s and assume that s is twice

continuously differentiable on K. Assume also that dom s is bounded or, more

generally, that for every u 2 int K there exists � � 0 such that D.u; s0.u/; �/

is bounded. Then for each u 2 K there exists 
0.u/ � 0 with the following

properties.

(a) For each u 2 K and any 
 > 
0.u/, s has a strictly supporting parabola

at u with parameters .s0.u/; 
 /.

(b) For each u2K and any 
 >
0.u/, s
 Ds�
 . � /2 has a strictly supporting

line at u with slope s0.u/� 2
u.
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(c) For each u 2 K and any 
 > 
0.u/, the microcanonical ensemble and the

Gaussian ensemble defined in terms of this 
 are fully equivalent at u. The value

of ˇ defining the Gaussian ensemble is unique and is given by ˇD s0.u/�2
u.

COMMENTS ON THE PROOF. (a) We first choose a parabola that is strictly

supporting in a neighborhood of u and then adjust 
 so that the parabola becomes

strictly supporting on all R. Proposition 4.1 guarantees that s � 
 . � /2 has a

strictly supporting line at u. Details are given in [Costeniuc et al. 2005b, pp.

1319–1321].

(b) This follows from part (a) of the present theorem and Proposition 4.1.

(c) For u 2 K the full equivalence of the ensembles follows from part (b) of

the present theorem and part (a) of Theorem 3.3. The value of ˇ defining the

fully equivalent Gaussian ensemble is determined by a routine argument given

in [Costeniuc et al. 2005b, p. 1321]. ˜

Theorem 4.3 suggests an extended form of the notion of universal equivalence of

ensembles. In Theorem 4.2 we are able to achieve full equivalence of ensembles

for all u 2 dom s, except possibly boundary points, by choosing an appropriate


 that is valid for all u. This leads to the observation that the microcanonical

ensemble and the Gaussian ensemble defined in terms of this 
 are universally

equivalent. In Theorem 4.3 we can also achieve full equivalence of ensembles

for all u2 K. However, in contrast to Theorem 4.2, the choice of 
 for which the

two ensembles are fully equivalent depends on u. We summarize the ensemble

equivalence property articulated in part (c) of Theorem 4.3 by saying that relative

to the set of quadratic functions, the microcanonical and Gaussian ensembles are

universally equivalent on the open set K of energy values.

We complete our discussion of the generalized canonical ensemble and its

equivalence with the microcanonical ensemble by noting that the smoothness

hypothesis on s in Theorem 4.3 is essentially satisfied whenever the micro-

canonical ensemble exhibits no phase transition at any u 2 K. In order to see

this, we recall that a point uc at which s is not differentiable represents a first-

order, microcanonical phase transition [Ellis et al. 2004b, Figure 3]. In addition,

a point uc at which s is differentiable but not twice differentiable represents a

second-order, microcanonical phase transition [Ellis et al. 2004b, Figure 4]. It

follows that s is smooth on any open set K not containing such phase-transition

points. Hence, if the other hypotheses in Theorem 4.3 are valid, then the mi-

crocanonical and Gaussian ensembles are universally equivalent on K relative

to the set of quadratic functions. In particular, if the microcanonical ensemble

exhibits no phase transitions, then s is smooth on all of int(dom s/. This implies

the universal equivalence of the two ensembles provided that the other conditions

are valid in Theorem 4.2.
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In the next section we apply the results in this paper to the Curie–Weiss–Potts

model.

5. Applications to the Curie–Weiss–Potts model

The Curie–Weiss–Potts model is a mean-field approximation to the nearest-

neighbor Potts model, which takes its place next to the Ising model as one of

the most versatile models in equilibrium statistical mechanics [Wu 1982]. Al-

though the Curie–Weiss–Potts model is considerably simpler to analyze, it is

an excellent model to illustrate the general theory presented in this paper, lying

at the boundary of the set of models for which a complete analysis involving

explicit formulas is available. As we will see, there exists an interval N such

that for any u2N the microcanonical ensemble is nonequivalent to the canonical

ensemble. The main result, stated in Theorem 5.2, is that for any u 2 N there

exists 
 � 0 such that the microcanonical ensemble and the Gaussian ensemble

defined in terms of this 
 are fully equivalent for all v � u. While not as strong

as universal equivalence, the ensemble equivalence proved in Theorem 5.2 is

considerably stronger than the local equivalence stated in Theorem 4.3.

Let q � 3 be a fixed integer and define � D f�1; �2; : : : ; �qg, where the

� i are any q distinct vectors in R
q . In the definition of the Curie–Weiss–Potts

model, the precise values of these vectors is immaterial. For each n 2 N the

model is defined by spin random variables !1; !2; : : : ; !n that take values in�.

The ensembles for the model are defined in terms of probability measures on the

configuration spaces�n, which consist of the microstates !D .!1; !2; : : : ; !n/.

We also introduce the n-fold product measure Pn on �n with identical one-

dimensional marginals

N�D
1

q

q
X

iD1

ı� i :

Thus for all ! 2�n, Pn.!/D 1
qn . For n 2 N and ! 2 �n the Hamiltonian for

the q-state Curie–Weiss–Potts model is defined by

Hn.!/D �
1

2n

n
X

j ;kD1

ı.!j ; !k/;

where ı.!j ; !k/ equals 1 if !j D !k and equals 0 otherwise. The energy per

particle is defined by hn.!/D 1
n
Hn.!/.

With this choice of hn and with an D n, the microcanonical, canonical, and

Gaussian ensembles for the model are the probability measures on �n defined

as in (2.3), (2.4), and (2.6). The key to our analysis of the Curie–Weiss–Potts
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model is to express hn in terms of the macroscopic variables

Ln D Ln.!/D .Ln;1.!/;Ln;2.!/; : : : ;Ln;q.!//;

the i th component of which is defined by

Ln;i.!/D
1

n

n
X

jD1

ı.!j ; �
i/:

This quantity equals the relative frequency with which !j ; j 2 f1; : : : ; ng; equals

� i . The empirical vectors Ln take values in the set of probability vectors

P D

�

� 2 R
q W � D .�1; �2; : : : ; �q/; each �i � 0;

q
X

iD1

�i D 1

�

:

Each probability vector in P represents a possible equilibrium macrostate for

the model.

There is a one-to-one correspondence between P and the set P.�/ of probabil-

ity measures on�, � 2 P corresponding to the probability measure
Pq

iD1
�iı� i .

The element �2 P corresponding to the one-dimensional marginal N� of the prior

measures Pn is the uniform vector having equal components 1
q

. For ! 2 �n

the element of P corresponding to the empirical vector Ln.!/ is the empirical

measure of the spin random variables !1; !2; : : : ; !n.

We denote by h � ; � i the inner product on R
q . Since

q
X

iD1

n
X

jD1

ı.!j ; �
i/ �

n
X

kD1

ı.!k ; �
i/D

n
X

j ;kD1

ı.!j ; !k/;

it follows that the energy per particle can be rewritten as

hn.!/D �
1

2n2

n
X

j ;kD1

ı.!j ; !k/D �1
2
hLn.!/;Ln.!/i;

i.e.,

hn.!/D QH .Ln.!//; where QH .�/D �1
2
h�; �i for � 2 P:

QH is the energy representation function for the model.

In order to define the sets of equilibrium macrostates with respect to the three

ensembles, we appeal to Sanov’s Theorem. This states that with respect to the

product measures Pn, the empirical vectors Ln satisfy the LDP on P with rate

function given by the relative entropy R. � j �/ [Ellis 1985, Theorem VIII.2.1].

For � 2 P this is defined by

R.�j�/D

q
X

iD1

�i log.q�i/:
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With the choices I D R. � j �/, QH D �1
2
h � ; � i, and an D n, Ln satisfies the

LDP on P with respect to each of the three ensembles with the rate functions

given by (2.7), (2.10), and (2.13). In turn, the corresponding sets of equilibrium

macrostates are given by

E
u D

˚

� 2 P W R.�j�/ is minimized subject to QH .�/D u
	

;

Eˇ D
˚

� 2 P W R.�j�/Cˇ QH .�/ is minimized
	

;

Eˇ;
 D
˚

� 2 P W R.�j�/Cˇ QH .�/C 
 Œ QH .�/�2 is minimized
	

:

Each element � in Eu, Eˇ, and Eˇ;
 describes an equilibrium configuration of

the model with respect to the corresponding ensemble in the thermodynamic

limit. The i th component �i gives the asymptotic relative frequency of spins

taking the value � i .

As in (2.2), the microcanonical entropy is defined by

s.u/D � inffR.�j�/ W � 2 P; QH .�/D ug:

Since R.�j�/ < 1 for all � 2 P, dom s equals the range of QH .�/ D �1
2
h�; �i

on P, which is the closed interval Œ�1
2
;� 1

2q
�. The set Eu of microcanonical

equilibrium macrostates is nonempty precisely for u 2 dom s. For q D 3, the

microcanonical entropy can be determined explicitly. For all q � 4 the micro-

canonical entropy can also be determined explicitly provided Conjecture 4.1 in

[Costeniuc et al. 2005a] is valid; this conjecture has been verified numerically

for all q 2 f4; 5; : : : ; 104g. The formulas for the microcanonical entropy are

given in Theorem 4.3 in [Costeniuc et al. 2005a].

We first consider the relationships between Eu and Eˇ , which according to

Theorem 3.1 are determined by support properties of s. These properties can

be seen in Figure 1. The quantity u0 appearing in this figure equals Œ�q2 C

3q �3�=Œ2q.q �1/� [Costeniuc et al. 2005a, Lem. 6.1]. Figure 1 is not the actual

graph of s but a schematic graph that accentuates the shape of the graph of s

together with the intervals of strict concavity and nonconcavity of this function.

These and other details of the graph of s are also crucial in analyzing the

relationships between Eu and Eˇ;
 . Denote dom s by Œu`;ur �, where u` D �1
2

and ur D � 1
2q

. These details include the observation that there exists w0 2

.u0;ur / such that s is a concave-convex function with break point w0; i.e., the

restriction of s to .u`; w0/ is strictly concave and the restriction of s to .w0;ur /

is strictly convex. A difficulty in validating this observation is that for certain

values of q, including q D 3, the intervals of strict concavity and strict convexity

are shallow and therefore difficult to discern. Furthermore, what seem to be

strictly concave and strictly convex portions of this function on the scale of the

entire graph might reveal themselves to be much less regular on a finer scale.

Conjecture 5.1 gives a set of properties of s implying there exists w0 2 .u0;ur /
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such that s is a concave-convex function with break point w0. In particular, this

property of s guarantees that s has the support properties stated in the three items

appearing in the next paragraph. Conjecture 5.1 has been verified numerically

for all q 2 f4; 5; : : : ; 104g.

We define the sets

F D .u`;u0/[ fur g; P D fu0g; and N D .u0;ur /:

Figure 1 and Theorem 3.1 then show that these sets are respectively the sets of

full equivalence, partial equivalence, and nonequivalence of the microcanonical

and canonical ensembles. The details are given in the next three items. In The-

orem 6.2 in [Costeniuc et al. 2005a] all these conclusions concerning ensemble

equivalence and nonequivalence are proved analytically without reference to the

form of s given in Figure 1.

1. s is strictly concave on the interval .u`;u0/ and has a strictly supporting

line at each u 2 .u`;u0/ and at ur . Hence for u 2 F D .u`;u0/ [ fur g

the ensembles are fully equivalent in the sense that there exists ˇ such that

Eu D Eˇ [Theorem 3.1(a)].

2. s is concave but not strictly concave at u0 and has a nonstrictly supporting

line at u0 that also touches the graph of s over the right hand endpoint ur .

Hence for u 2 P D fu0g the ensembles are partially equivalent in the sense

that there exists ˇ such that Eu � Eˇ but Eu 6D Eˇ [Theorem 3.1(b)].

s(u)

u
F P N F

u0u`
urw0

Figure 1. Schematic graph of s.u/, showing the set F D .u`;u0/[fur g of

full ensemble equivalence, the singleton set P Dfu0g of partial equivalence,

and the set N D .u0;ur / of nonequivalence, where u` D �1
2

and ur D � 1
2q

.

For u 2 F [P D .u`;u0�[fur g, s.u/D s��.u/; for u 2 N , s.u/< s��.u/ and

the graph of s�� consists of the dotted line segment with slope ˇc . The

slope of s at u` is 1. The quantity w0 is discussed after Conjecture 5.1.
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3. s is not concave on N D .u0;ur / and has no supporting line at any u 2 N .

Hence for u 2 N the ensembles are nonequivalent in the sense that for all ˇ,

Eu \ Eˇ D ? [Theorem 3.1(c)].

The explicit calculation of the elements of Eˇ and Eu given in [Costeniuc et al.

2005a] shows different continuity properties of these two sets. Eˇ undergoes a

discontinuous phase transition as ˇ increases through the critical inverse tem-

perature ˇc D 2.q�1/
q�2

log.q � 1/, the unique macrostate � for ˇ < ˇc bifurcat-

ing discontinuously into the q distinct macrostates for ˇ > ˇc . By contrast,

Eu undergoes a continuous phase transition as u decreases from the maximum

value ur D � 1
2q

, the unique macrostate � for u D ur bifurcating continuously

into the q distinct macrostates for u < ur . The different continuity properties

of these phase transitions shows already that the canonical and microcanonical

ensembles are nonequivalent.

For u in the interval N of ensemble nonequivalence, the graph of s�� is

affine; this is depicted by the dotted line segment in Figure 1. One can show

that the slope of the affine portion of the graph of s�� equals the critical inverse

temperature ˇc .

This completes the discussion of the equivalence and nonequivalence of the

microcanonical and canonical ensembles. The equivalence and nonequivalence

of the microcanonical and Gaussian ensembles depends on the relationships

between the sets Eu and Eˇ;
 of corresponding equilibrium macrostates, which

in turn are determined by support properties of the generalized microcanonical

entropy s
 .u/ D s.u/ � 
u2. As we just saw, for each u 2 N D .u0;ur /,

the microcanonical and canonical ensembles are nonequivalent. For u 2 N we

would like to recover equivalence by replacing the canonical ensemble by an

appropriate Gaussian ensemble.

Theorem 4.2 is not applicable. Although the first three of the hypotheses

are valid, unfortunately s00 is not bounded above on the interior of dom s. In-

deed, using the explicit formula for s given in Theorem 4.3 in [Costeniuc et al.

2005a], one verifies that limu!.ur /� s00.u/ D 1. However, we can appeal to

Theorem 4.3 in the present paper, which is applicable since s is twice continu-

ously differentiable on N . We conclude that for each u 2 N and all sufficiently

large 
 there exists a corresponding Gaussian ensemble that is equivalent to the

microcanonical ensemble for that u.

By using other conjectured properties of the microcanonical entropy, we are

able to deduce the stronger result on the equivalence of the microcanonical and

Gaussian ensembles stated in Theorem 5.2. As before, we denote dom s by

Œu`;ur �, where u` D �1
2

and ur D � 1
2q

, and write

s0.u`/D lim
u!.u`/C

s0.u/ and s0.ur /D lim
u!.ur /�

s0.u/
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with a similar notation for s00.u`/ and s00.ur /. Using the explicit but com-

plicated formula for s given in Theorem 4.2 in [Costeniuc et al. 2005a], the

following conjecture was verified numerically for all q 2 f4; 5; : : : ; 104g and all

u 2 .u`;ur / of the form u D u` C 0:02k, where k is a positive integer.

CONJECTURE 5.1. For all q � 3 the microcanonical entropy s has the following

two properties.

(a) s000.u/ > 0 for all u 2 .u`;ur /.

(b) s0.u`/D 1; 0< s0.ur / <1; s00.u`/D �1; and s00.ur /D 1.

The conjecture implies that s00 is an increasing bijection of .u`;ur / onto R.

Therefore, there exists a unique point w0 2 .u`;ur / such that s00.u/ < 0 for

all u 2 .u`; w0/, s00.w0/ D 0, and s00.u/ > 0 for all u 2 .w0;ur /. It follows

that the restriction of s to Œu`; w0� is strictly concave and the restriction of s to

Œw0;ur � is strictly convex. These properties, which can be seen in Figure 1, are

summarized by saying that s is a concave-convex function with break point w0.

The interval N D .u0;ur / exhibited in Figure 1 contains all energy values u

for which there exists no canonical ensemble that is equivalent with the micro-

canonical ensemble. Assuming the truth of Conjecture 5.1, we now show that

for each u 2 N there exists 
 � 0 and an associated Gaussian ensemble that is

equivalent with the microcanonical ensemble for all v � u. In order to do this,

for 
 � 0 we bring in the generalized microcanonical entropy

s
 .u/D s.u/� 
u2

and note that the properties of s stated in Conjecture 5.1 are invariant under the

addition of the quadratic �
u2. Hence, if Conjecture 5.1 is valid, then s
 satis-

fies the same properties as s. In particular, s
 must be a concave-convex func-

tion with some break point w
 , which is the unique point in .u`;ur / such that

s00

 .u/<0 for all u 2 .u`; w
 /, s00


 .w
 /D 0, and s00

 .u/>0 for all u 2 .w
 ;ur /. A

straightforward argument, which we omit, and an appeal to Theorem 3.3 show

that there exists a unique point u
 2 .u`; w
 / having the properties listed in

the next three items. These properties show that u
 plays the same role for

ensemble equivalence involving the Gaussian ensemble that the point u0 plays

for ensemble equivalence involving the canonical ensemble.

1. For 
 � 0, s
 is strictly concave on the interval .u`;u
 / and has a strictly

supporting line at each u 2 .u`;u
 / and at ur . Hence for u 2 F
 D .u`;u
 /[

fur g the ensembles are fully equivalent in the sense that there exists ˇ such

that Eu D Eˇ;
 [Theorem 3.3(a)].

2. For 
 � 0, s
 is concave but not strictly concave at u
 and has a nonstrictly

supporting line at u
 that also touches the graph of s over the right hand

endpoint ur . Hence for u 2 P
 D fu
 g the ensembles are partially equivalent
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in the sense that there exists ˇ such that Eu � Eˇ;
 but Eu 6D Eˇ;
 [Theorem

3.3(b)].

3. For 
 � 0, s
 is not concave on the interval N D .u
 ;ur / and has no sup-

porting line at any u 2 N . Hence for u 2 N
 the ensembles are nonequivalent

in the sense that for all ˇ, Eu \ Eˇ;
 D ? [Theorem 3.3(c)].

We now state our main result.

THEOREM 5.2. We assume that Conjecture 5.1 is valid. Then as a function

of 
 � 0, F
 D .u`;u
 / [ fur g is strictly increasing, and as 
 ! 1, F
 "

.u`;ur �. It follows that for any u 2 N D .u0;ur /, there exists 
 � 0 such that

the microcanonical ensemble and the Gaussian ensemble defined in terms of

this 
 are fully equivalent for all v 2 .u`;ur / satisfying v � u. The value of ˇ

defining the Gaussian ensemble is unique and is given by ˇ D s0.v/� 2
v.

The proof of the theorem relies on the next lemma, part (a) of which uses Propo-

sition 4.1. When applied to s
 , this proposition states that s
 has a strictly

supporting line at a point if and only if s has a strictly supporting parabola at

that point. Proposition 4.1 illustrates why one can achieve full equivalence with

the Gaussian ensemble when full equivalence with the canonical ensemble fails.

Namely, even when s does not have a supporting line at a point, it might have

a supporting parabola at that point; in this case the supporting parabola can be

made strictly supporting by increasing 
 . The proofs of parts (b)–(d) of the next

lemma rely on Theorem 4.3 and on the properties of the sets F
 , P
 , and N


stated in the three items appearing just before Theorem 5.2.

LEMMA 5.3. We assume that Conjecture 5.1 is valid. Then:

(a) If for some 
 � 0, s
 has a supporting line at a point u, then for any Q
 >
 ,

s Q
 has a strictly supporting line at u.

(b) For any 0 � 
 < Q
 , F
 [ P
 � F Q
 .

(c) u
 is a strictly increasing function of 
 � 0 and lim
 !1 u
 D ur .

(d) As a function of 
 � 0, F
 is strictly increasing.

PROOF. (a) Suppose that s
 has a supporting line at u with slope Ň. Then by

Proposition 4.1 s has a supporting parabola at u with parameters .ˇ; 
 /, where

ˇ D Ň C 2
u. As the definition (4.1) makes clear, replacing 
 by any Q
 > 


makes the supporting parabola at u strictly supporting. Again by Proposition

4.1 s Q
 has a strictly supporting line at u.

(b) If u 2 F
 [ P
 , then s
 has a supporting line at u. Since 0 � 
 < Q
 ,

part (a) implies that s Q
 has a strictly supporting line at u. Hence u must be an

element of F Q
 .

(c) If 0 � 
 < Q
 , then by part (a) of the present lemma u
 2 P
 � F Q
 . Since

F Q
 D .u`;u Q
 /[ fur g and since u
 < ur , it follows that u
 < u Q
 . Thus u
 is
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a strictly increasing function of 
 � 0. We now prove that lim
 !1 u
 D ur .

For any u 2 .u`;ur /, part (b) of Theorem 4.3 states that there exists 
u > 0

such that s
u
.u/ has a strictly supporting line at u. It follows that u 2 F
u

D

.u`;u
u
/[ fur g and thus that u < u
u

< ur . Since u
 is a strictly increasing

function of 
 , it follows that for all 
 > 
u, we have u
 > u
u
> u. We have

shown that for any u 2 .u`;ur /, there exists 
u > 0 such that for all 
 > 
u, we

have u
 > u. This completes the proof that lim
 !1 u
 D ur .

(d) Since F
 D .u`;u
 /[fur g, this follows immediately from the first prop-

erty of u
 in part (c). The proof of the lemma is complete. ˜

We are now ready to prove Theorem 5.2. The properties of F
 stated there

follow immediately from Lemma 5.3. Indeed, since u
 is a strictly increasing

function of 
 �0, F
 is also strictly increasing. In addition, since lim
 !1 u
 D

ur it follows that as 
 ! 1, F
 " .u`;ur �. Since F
 is the set of full ensemble

equivalence, we conclude that for any u 2 N D .u0;ur /, there exists 
 > 0

such that the microcanonical ensemble and the Gaussian ensemble defined in

terms of this 
 are fully equivalent for all v 2 .u`;ur / satisfying v� u. The last

statement concerning ˇ is a consequence of part (c) of Theorem 4.3. The proof

of Theorem 5.2 is complete.
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