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Stochastic evolution of inviscid Burgers fluid

ANA BELA CRUZEIRO AND PAUL MALLIAVIN

Dedicated to Henry McKean with admiration

ABSTRACT. We study a stochastic Burgers equation using the geometric point

of view initiated by Arnold for the incompressible Euler flow evolution. The

geometry is developed as a Cartan-type geometry, using a frame bundle ap-

proach (stochastic, in this case) with respect to the infinite-dimensional Lie

group where the evolution takes place. The existence of the stochastic Burgers

flow is a consequence of the control in the mean of the energy transfer from low

modes to high modes during the evolution, together with the use of a Girsanov

transformation.

Introduction

Many distinguished authors have made notable contributions to the stochastic

Burgers equation, of which a small sample appears in our very short bibliogra-

phy. It is not our purpose to review those contributions; it is perhaps appropriate

that we underline here that which seems to us the novelty of our approach.

We start from the viewpoint of geometrization of inertial evolution initiated

in [Arnold 1966] and systematically developed in [Ebin and Marsden 1970;

Brenier 2003; Constantin and Kolev 2002], based on infinite-dimensional Rie-

mannian geometry; the classical approach of [Ebin and Marsden 1970] is to use

Banach-modeled manifold theory; inherent difficulties appear in the construc-

tion of exponential charts and in the introduction of appropriate function spaces.

We circumvent these difficulties by using the viewpoint [Malliavin 2007] of Itô

charts, Itô atlas; in short Itô calculus makes it possible to compute any derivative

of a smooth function f on the path p of a diffusion from the unique knowledge
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of its restriction fjp . Then no more function spaces are a priori introduced: the

path of the diffusion constructs dynamically its canonical tangent space, built

from the evolution of the system.

How do we make explicit computations without local coordinates? We take

the viewpoint of [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malli-

avin 2006; Cruzeiro et al. 2007], using the parallelism defined by the infinite-

dimensional Lie group structure.

In fluid dynamics the escape of the energy from low modes to higher modes

induces a lack of compactness which ruins the advantage of energy conservation

for inertial evolution. The key point of our approach is the control of this ultra-

violet divergence. We control the ultraviolet divergence in the case of the sto-

chastic Burgers equation with vanishing initial value. Then symmetries appear

which, as in [Airault and Malliavin 2006; Cruzeiro et al. 2007], make it possible

to compute exactly the expectation of the energy transfer by the exponentiation

of a numerical symmetric matrix.

Then we have solved our stochastic Burgers equation for vanishing initial

data: we reduce, as in [Cruzeiro et al. 2007], the nonvanishing initial data case

to this trivial case by a symmetry breaking expressed at the level of probability

space by a Girsanov functional.

We emphasize that the noise that we use is neither an external force nor a

damping. This important point is made explicit in the next section.

1. Random regularization of nonlinear evolution

In order to clarify our objectives, we shall proceed in this section at a con-

ceptual level, which has the disadvantage that we cannot produce at this level of

generality a single mathematical statement: the considered objects will not be

exactly defined; the reader will have to wait until Section 2 before getting into

mathematics.

Numerical integration of an evolution equation through a time discretization

scheme introduces at each step a numerical error; if the scheme is “well chosen”,

it will be unbiased: therefore the cumulative effect of numerical errors will

converge locally to a Brownian motion.

Let us axiomatize the previous empirical situation. Denote by S the infinites-

imal generator of an evolution equation, which is not assumed to be linear; the

operator S is operating on Cauchy data; then consider the Stratonovitch SDE

dt u
"
t D S

�

u"
t dt C "dx.t/

�

; u"
0 deterministic and independent of ", .1:1/a

where x is a suitable Brownian motion modeling the instantaneous discretiza-

tion error and where " > 0. We call the solution of .1:1/a the random regular-
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ization of the evolution equation

dtut D S.ut dt/; u0 given. .1:1/b

The disadvantage of .1:1/a versus .1:1/b is to replace an ODE by an SDE; this

disadvantage is balanced by the advantage that the introduction of a small noise

can smooth out resonances leading to the system explosion.

The terminology used, random regularization, is parallel to the classical ter-

minology elliptic regularization. This choice of terminology can be justified by

the fact that dealing with the Brownian motion x is equivalent to dealing with

some infinite-dimensional elliptic operator defined on the path space of x.�/.

2. The Burgers equation as a geodesic flow

Consider the group G of C 1 diffeomorphisms of the circle S1, denote by

G its Lie algebra of right invariant first order differential operators on G; we

identify G to vector fields on S1; define on G the pre-Hilbertian metric

kuk2 D 1

�

Z 2�

0

juj2.�/ d� I .2:1/

then G becomes an “infinite-dimensional Riemannian manifold”.

THEOREM [Arnold 1966; Constantin and Kolev 2003]. Let vt .�/ a be smooth

vector field defined on S1, depending smoothly on time t , which is assumed to

satisfy the Burgers equation

@v

@t
D v � @v

@�
: .2:2/

Let gt be the time dependent diffeomorphism of S1 defined by the family of

ODEs

d

dt
gt .�/D vt .gt .�//I g0.�/D �: .2:3/

Then

t ‘ gt is a geodesic of the Riemannian manifold G: .2:4/

3. Structure constants of G

The vector fields

Ak D cos k�; Bk D sin k�; k > 0; A0 D 1p
2

.3:1/
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constitute an orthonormal basis of G. In this basis, the Lie brackets are as fol-

lows:

ŒA0;Ak �D �.k=
p

2/Bk ;

ŒA0;Bk �D .k=
p

2/Ak ; k > 0;

ŒAs;Ak �D 1
2
..s � k/BkCs C .s C k/Bs�k/;

ŒBs;Bk �D 1
2
..k � s/BkCs C .s C k/Bs�k/;

ŒAs;Bk �D 1
2
..k � s/AkCs C .s C k/Ak�s/; s ¤ k;

ŒBk ;As �D 1
2
..s � k/AkCs � .s C k/As�k/; s ¤ k;

ŒAk ;Bk �D
p

2kA0:

PROOF.

ŒAs;Ak �D �kAs �Bk CsAk �Bs D 1
2
.�k.BkCs CBk�s/Cs.BkCs CBs�k//

D 1
2
..s�k/BkCs C.sCk/Bs�k/;

ŒBs;Bk �D kBs �Ak �sBk �As D 1
2
.k.BkCs CBs�k/�s.BkCs CBk�s//

D 1
2
..k�s/BkCs C.sCk/Bs�k/;

ŒAs;Bk �D kAs �Ak CsBk �Bs D 1
2
.k.AkCs CAk�s/Cs.�AkCs CAs�k//

D 1
2
..k�s/AkCs C.sCk/Ak�s/;

Analogously,

ŒBk ;As �D 1
2
..s�k/AkCs �.sCk/As�k/: ˜

4. The Christoffel tensor

We have on G two connections:

(i) the algebraic connection defined by the right invariant parallelism on G;

(ii) the Riemannian connection defined by the Levi-Civita parallel transport.

The difference of two connections defines a tensor field � �
�;�.

We have the key general lemma:

LEMMA [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malliavin

2006]. Let G be a group with a right-invariant Hilbertian metric, and let fekg
be an orthonormal basis of its Lie algebra G. Then

� l
s;k D 1

2
.cl

s;k � cs
k;l C ck

l;s/; where Œes; ek �D
X

l

cl
s;kel : .4:1/
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We deduce immediately from the structural constants the identities

2�
Al

AsAk
D .ŒAs;Ak �jAl/� .ŒAk ;Al �jAs/C .ŒAl ;As �jAk/D 0;

2�
Bl

AsBk
D .ŒAs;Bk �jBl/� .ŒBk ;Bl �jAs/C .ŒBl ;As �jBk/D 0;

2�
Al

BsBk
D .ŒBs;Bk �jAl/� .ŒBk ;Al �jBs/C .ŒAl ;Bs �jBk/D 0;

2�
Bl

BsAk
D �2�

Ak

BsBl
D 0:

It remains to compute

�
Bl

AsAk
; �

Al

BsAk
; �

Bl

BsBk
; �

Al

AsBk
:

THEOREM.

� Assume 0< s < k. Then

�AsAk
D �

�

k � 1
2
s
�

Bk�s �
�

k C 1
2
s
�

BkCs;

�AsBk
D

�

k � 1
2
s
�

Ak�s C
�

k C 1
2
s
�

AkCs;

�BsAk
D �

�

k � 1
2
s
�

Ak�s C
�

k C 1
2
s
�

AkCs;

�BsBk
D �

�

k � 1
2
s
�

Bk�s C
�

k C 1
2
s
�

BkCs:

� Assume 0< k < s. Then

�AsAk
D

�

k � 1
2
s
�

Bs�k �
�

k C 1
2
s
�

BkCs;

�AsBk
D

�

k � 1
2
s
�

As�k C
�

k C 1
2
s
�

AkCs;

�BsAk
D �

�

k � 1
2
s
�

As�k C
�

k C 1
2
s
�

AkCs;

�BsBk
D

�

k � 1
2
s
�

Bs�k C
�

k C 1
2
s
�

BkCs;

In each case the two first lines define an antisymmetric operator � .As/ and the

two last lines define an operator � .Bs/.

� For k > 0,

�AkAk
D ��BkBk

D �3
2
kB2k ;

�AkBk
D 3

2
kA2k C

p
2

2
kA0; �BkAk

D 3
2
kA2k �

p
2

2
kA0;

�A0Ak
D �

p
2kBk ; �AkA0

D �
p

2
2

kBk ;

�A0Bk
D

p
2

2
kAk C

p
2

2
kA0; �BkA0

D
p

2
2

kA0;

� Finally, �A0A0
D 0.

PROOF. Consider the case 0< s < k. We have 4�
Bl

AsAk
D I � II � III , with

I D 2.ŒAs;Ak �jBl/; II D 2.ŒAk ;Bl �jAs/; III D �2.ŒBl ;As �jAk/:
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The term I is equal to s � k when l D k C s and to �.s C k/ when l D k � s.

Other contributions to the component BkCs are s C 2k from II in the case

k < l and �.2s C k/ from III corresponding to the case s < l . Concerning

the component Bk�s we have to consider the contribution 2k �s from II when

l < k and the contribution from III in the case s < l , which is equal to 2s � k.

Summing up all the terms gives the result.

In more detail, introduce for s > 0 the new Kronecker symbol

"s
p D ıs

p; p > 0; "s
p D �ıs

�p; p < 0; "s
0 D 0:

Take s; k; l > 0; then 4�
Bl

AsAk
equals

.s�k/ıl
kCsC.sCk/"l

s�kC.k�l/ıs
kCl�.lCk/ıs

jl�kjC.s�l/ık
lCs�.sCl/ık

js�l j:

Consider first the case 0< s < k; then 4�
Bl

AsAk
equals

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

jl�kjC.s�l/ık
lCs�.sCl/ık

jl�sj:

(1) Take the subcase 0< s < k < l . Then 4�
Bl

AsAk
equals

.s�k/ıl
kCs �.sCk/ıl

k�s C.k�l/ıs
kCl �.l Ck/ıs

l�k C.s�l/ık
lCs �.sCl/ık

l�sI

expressing the ı functions relatively to l , this expression becomes

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıl
s�k �.lCk/ıl

kCsC.s�l/ıl
k�s�.sCl/ıl

kCs;

so

4�
Bl

AsAk
D

�

.s � k/� .l C k/� .s C l/
�

ıl
kCs D �2.k C l/ıl

kCs:

(2) In the subcase 0< s < l < k, we obtain for 4�
Bl

AsAk
successively

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

k�l C.s�l/ık
lCs�.sCl/ık

l�s D
.s�k/ıl

kCs�.sCk/ıl
k�sC.k�l/ıl

s�k�.lCk/ıl
k�sC.s�l/ıl

k�s�.sCl/ıl
kCs D

�

� .s C k/� .l C k/C .s � l/
�

ıl
k�s D �2

�

k C l
�

ıl
k�s D �2

�

2k � s
�

ıl
k�s:

(3) In the subcase 0< l < s < k, we obtain for 4�
Bl

AsAk

.s�k/ıl
kCs�.sCk/ıl

k�sC.k�l/ıs
kCl �.lCk/ıs

k�l C.s�l/ık
lCs�.sCl/ık

s�l D
.s�k/ıl

kCs�.sCk/ıl
k�sC.k�l/ıl

s�k�.lCk/ıl
k�sC.s�l/ıl

k�s�.sCl/ıl
s�k D

�

� .s C k/� .l C k/C .s � l/
�

ıl
k�s D �2.k C l/ıl

k�s:

Finally, still for 0< s < k we have

�AsAk
D �

�

k � 1
2
s
�

Bk�s �
�

k C 1
2
s
�

BkCs:
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We now consider a rotation of angle '. Define

A
'

k
D Ak cos k' � Bk sin k'; B'

q D Bq cos q'C Aq sin q':

The metric on G is invariant under translation by '. Therefore the Christoffel

symbols commute with this translation:

�
�

k� 1
2
s
�

B
'

k�s
�

�

kC 1
2
s
�

B
'

kCs
D �A

'
s A

'

k

D �AsAk
cos s' cos k'C�BsBk

sin s' sin k'

��AsBk
cos s' sin k'��BsAk

sin s' cos k':

On the other hand,

�
�

k � 1
2
s
�

B
'

k�s
�

�

k C 1
2
s
�

B
'

kCs

D �
�

k � 1
2
s
��

Bk�s cos.k � s/'C Ak�s sin.k � s/'
�

�
�

k C 1
2
s
��

BkCs cos.k C s/'C AkCs sin.k C s/'
�

D �
�

k � 1
2
s
��

Bk�s.cos k' cos s'C sin k' sin s'/

C Ak�s.sin k' cos s' � cos k' sin s'/
�

�
�

k C 1
2
s
��

BkCs.cos k' cos s' � sin k' sin s'/

CAkCs.sin k' cos s'C cos k' sin s'/
�

:

Identifying the coefficients of cos k' cos s', sin k' sin s', sin k' cos s', and

cos k' sin s', we get the formulae for the Christoffel symbols in the case 0 <

k < s.

For 0< k D s, we have, for example,

�
Bl

AkAk
D �.ŒAk ;Bl �jAk/D �1

2
.k C l/ıl

2k D �3
2
kıl

2k
:

The other expressions are proved in a similar way. ˜

5. Stochastic parallel transport; symmetries of the noise

Consider for each k �0 a R
2-valued Brownian motion �k.t/D .xk.t/;yk.t//;

all these Brownian motions are taken to be independent. Choose a weight �.k/�
0 and consider the G valued process

pt D
X

k>0

�.k/
�

xk.t/� Ak C yk.t/� Bk

�

: .5:1/

Consider the Stratonovitch SDE

d t D �� .dpt / ı  t ;  0 D Identity: .5:2/

As the � are antisymmetric operators this equation takes formally its values in

the unitary group of G.
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The geometric meaning of .5:2/ is to describe in terms of the algebraic par-

allelism inherited from the group structure of G the Levi-Civita parallelism in-

herited from the Riemannian structure of G; for this reason we call .5:2/ the

equation of stochastic parallel transport.

Symmetries of the noise. The translation �' W � ‘ � C' is a diffeomorphism

Œ.�'/�.z/�.�/D z.� �'/

The collection .�'/�, ' 2 S1, constitutes a unitary representation of S1 on

G which decomposes into irreducible components along the direct sum of two-

dimensional subspaces

M

k>0

Ek ; Ek WD .Ak ;Bk/; E0 WD A0;

the action of .�'/� on Ek being the rotation

Dk.'/ WD
�

cos k' � sin k'

sin k' cos k'

�

; D0.'/ WD Identity:

Furthermore �' preserves the Lie algebra structure. The Christoffel symbols

are derived from the Hilbertian structure and from the bracket structure of G.

Therefore they commute with �' in the sense that

.�'/�Œ� .�/.�/�D � ..�'/��/Œ.�'/��/�; �; � 2 GI

or, denoting � .z/ the antihermitian endomorphism of G defined by the Christof-

fel symbols, we have

� ..�'/�.z//D .�'/� ı � .z/ ı .��'/�:

Denote by su.G/ the vector space of antisymmetric operators on the Hilbert

space G.

PROPOSITION. Let pt the G-valued process defined in .5:1/ and set .�'/�p DW
p

'
� ; then p

'
� and p have the same law.

PROOF. The rotation Dk.�/ preserves in law the Brownian motion on Ek . ˜

COROLLARY. The processes .�'/ ı t ı .��'/ and  t have the same law.

PROOF. Denote by  
p
t the solution of .3:3/ associated to the noise pt . Then

.�'/ ı  t ı .��'/D  
p'

t ˜
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The Stratonovich SDE .5:2/ corresponds to the Itô SDE

d 
p
t D

�

� .dp/C B dt
�

 t ;

B D
X

k�0

Œ�.k/�2

2
.� .Ak/� � .Ak/C � .Bk/� � .Bk//:

We get B D .�'/� ı B ı .��'/�, which implies that B diagonalizes in the basis
L

Ek . More precisely:

THEOREM. The operator

Œ� .As/�
2 C Œ� .Bs/�

2

is diagonal and on the mode k it has eigenvalue

�s.k/D �.4k2 C s2/; k > 2s:

PROOF. We have

Œ� .As/�
2.Ak/D �

�

k � 1
2
s
�

� .As/.Bk�s/�
�

k C 1
2
s
�

� .As/.BkCs/

D �
�

k � 1
2
s
��

.k � 3
2
s/Ak�2s C .k � 1

2
s/Ak

�

�
�

k C 1
2
s
��

.k C 1
2
s/Ak C .k C 3

2
s/AkC2s

�

;

Œ� .Bs/�
2.Ak/D �

�

k � 1
2
s
�

� .Bs/.Ak�s/C
�

k C 1
2
s
�

� .Bs/.AkCs/

D �
�

k � 1
2
s
��

� .k � 3
2
s/Ak�2s C .k � 1

2
sAk/

�

�
�

k C 1
2
s
��

.k C 1
2
s/Ak � .k C 3

2
s/AkC2s

�

:

Hence

Œ� .As/�
2.Ak/C Œ� .Bs/�

2.Ak/D �2.k � 1
2
s/2 � 2.k C 1

2
s/2: ˜

We want to take, as in [Cruzeiro et al. 2007], a finite-mode driven Brownian

motion, which means that �.k/D 0 except for a finite number of values of k.

6. Control of ultraviolet divergence by the transfer energy matrix

THEOREM. Let e be a trigonometric polynomial, and define

�k.t/D E
�

Œ. t .e/ j Ak/�
2 C Œ. t .e/ j Bk/�

2
�

:

Then �.t/ satisfies the ordinary differential equation

d�.t/

dt
D A.�.t//; .6:1/

where the matrix A has diagonal entries

Al
l D �4

X

k

�.k/2
�

2l2 C 1
2
k2

�

� 9
8
l2�2.1

2
l/



176 ANA BELA CRUZEIRO AND PAUL MALLIAVIN

and nondiagonal entries

Al
s D 2

X

k

�.k/2
�

.l � 1
2
k/2ıjk�l j

s C 2.l C 1
2
k/2ıkCl

s

�

C 9
8
l2�2.1

2
l/;

with s; l > 0. The sum of the coefficients in each column vanishes.

PROOF. We have, explicitly,

d 
Al

t D �
X

m

.�
Al

AkBm
 

Bm

t odxk.t/C�
Al

BkAm
 

Am

t odyk.t//:

By Itô calculus,

d. 
Al

t /2 D 2 
Al

t d 
Al

t C d 
Al

t : d 
Al

t ;

d. 
Bl

t /2 D 2 
Bl

t d 
Al

t C d 
Bl

t : d 
Bl

t :

Since we are interested in taking expectations we compute only the bounded

variation part of this semimartingale. Considering the terms 0<m � k,

d 
Al

t D �� Al

AkBl�k
 

Bl�k

t odxk.t/�� Al

BkAl�k
 

Al�k

t odyk.t/

�� Al

AkBlCk
 

BlCk

t odxk.t/�� Al

BkAlCk
 

AlCk

t odyk.t/

D �.l � 1
2
k/ 

Bl�k

t odxk.t/� .l � 1
2
k/ 

Al�k

t odyk.t/

�.l C 1
2
k/ 

BlCk

t odxk.t/C .l C 1
2
k/ 

AlCk

t odyk.t/

�3
2

P

k

�.k/k 
Bk

t odxk.t/� 3
2

P

k

�.k/k 
Ak

t odyk.t/:

Computing the Itô contractions, we obtain, for example, in the case of the

first term,

�.l � 1
2
k/ 

Bl�k

t odxk.t/D �.l � 1
2
k/ 

Bl�k

t dxk.t/

�1
2

�

.l � 3
2
k/ 

Al�2k

t � .l � 1
2
k/ 

Al

t C .3
2
k � l/ 

A2k�l

t

�

dt:

We can check by explicit computation that all the nondiagonal contributions

coming from these Itô contractions cancel in their contribution to the expectation

of  
Al

t d 
Al

t C 
Bl

t d 
Bl

t . The diagonal ones, for the case 0< k <m, sum up

to give

�2
X

k

.2l2 C 1
2
k2/ 

Al

t dt:

The terms in 0< k <m give the same expression. The contribution from k D m

gives

�3
2
�

�

1
2
l
�

1
2
l 

A1=2l
t dt:
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Concerning the Bl component of  t , namely

d 
Bl

t D �
X

m

�

�
Bl

AkAm
 

Am

t odxk.t/C�
Bl

BkBm
 

Bm

t odyk.t/
�

;

analogous computations give rise to the expressions

�2
X

k

.2l2 C 1
2
k2/ 

Bl

t dt

for l <m and m< l , and

�3
2
�

�

1
2
l
�

1
2
l 

B1=2l
t dt

when k D m.

The nondiagonal terms of the transfer energy matrix come from computing

the contractions d 
Al

t : d 
Al

t and d 
Bl

t : d 
Bl

t . We have, when 0< k � l ,

d 
Al

t : d 
Al

t D
P

k

�.k/2
�

�
Al

AkBl�k
 

Bl�k

t

�2
dt C

P

k

�.k/2
�

�
Al

BkAl�k
 

Al�k

t

�2
dt

C
P

k

�.k/2
�

�
Al

AkBlCk
 

BlCk

t

�2
dtC

P

k

�.k/2
�

�
Al

BkAlCk
 

AlCk

t

�2
dt

C �
�

1
2
l
�2
�

Al

A1=2lB1=2l

�

 
Bl =2
t

�2 C �
�

1
2
l
�2
�

Al

B1=2lA1=2l

�

 
Al =2
t

�2

D
P

k

�.k/2
�

l � 1
2
k

�2�

 
Bl�k

t

�2 C
P

k

�.k/2
�

l � 1
2
k

�2�

 
Al�k

t

�2

C
P

k

�.k/2
�

l C 1
2
k

�2�

 
BlCk

t

�2 C
P

k

�.k/2
�

l C 1
2
k

�2�

 
AlCk

t

�2

C 9
4
�

�

1
2
l
�2�

1
2
l
�2�

 
Bl =2
t

�2 C 9
4
�

�

1
2
l
�2�

1
2
l
�2�

 
Al =2
t

�2
:

Computing the corresponding terms for the indices 0 < l < k as well as the

contractions d 
Bl

t : d 
Bl

t gives the desired result. ˜

7. Ultraviolet divergence and dissipativity of the associated jump

process

The ordinary differential equation .6:1/ can be integrated quite explicitly by

the exponential exp.tA/; nevertheless the effective computation of this expo-

nential is not easy.

It was observed in [Airault and Malliavin 2006, Theorem (3.10)] that A can

be also considered as the infinitesimal generator of a Dirichlet form; therefore

its exponentiation is equivalent to construct the jump process associated to this

Dirichlet form. Recall how this jump process was constructed in that theorem.

In order to shorten our discussion we shall sketch our proof in the special

case where

�.1/D 1; �.k/D 0; k ¤ 1:
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Then the random walk X.n/ is a nearest neighbor random walk defined on

N, the set of positive integers, as follows:

If X.n/D k; k > 2 we have

ProbfX.n C 1/D k C 1g D pk WD 1

2

�

1 C k

4k2 C 1

�

;

ProbfX.n C 1/D k � 1g D 1 � pk :

The random walk is nonsymmetric, it has a drift ' 1
k

pushing it to escape at

infinity. This drift has a negligible effect in our discussion and we shall proceed

as if the random walk was symmetric.

The jump process is defined as

�.t/ WD X.'.t//

where the change of clock '.t/ is the integer-valued function defined by

X

n�'.t/

1

4ŒX.n/�2 C 1
��n � t <

X

n�'.t/C1

1

4ŒX.n/�2 C 1
��n;

where f�kg is a sequence of independent exponential times.

THEOREM. The jump process is conservative. That is, '.t/ <1 almost surely;

more precisely,

E.ŒX.'.t//�q/ <1 for all q > 0: .7:2/

PROOF. What follows is an improved methodology of proof compared to the

one used in [Cruzeiro et al. 2007]. The proof of (7.2) will occupy us till the end

of Section 7.

Let ˝1 be the probability space of the random walk; then ˝1 is a space gen-

erated by an infinite sequence of independent Bernoulli variables; let ˝2 be the

probability space generated by an infinite sequence of independent exponential

variables. Then the probability space of the jump process is˝1�˝2. We denote

by E!i the expectation relatively to ˝i , the other coordinate being fixed, and

we write Probi.A/ WD E!i .1A/.

We introduce a strictly increasing sequence of stopping times T1 < T2 <

� � � < Tk < � � � on the random walk by the following recursion: T1 is the first

time where the value starting from 1 it reaches 2; TkC1 is the first time after Tk

where X.TkC1/ leaves the interval
�

1
2
X.Tk/; 2X.Tk/

�

; we have

X.Tk/D 2�k ; �k 2 N:

Then �k is an unsymmetric random walk on the set of positive integers. We

construct on ˝1 a new random walk X �.n/ by taking

X �.TkC1/D 2X �.Tk/; then X.n/� X �.n/I inf
m>n

X �.m/� 1
2
X �.n/:
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Denote by '�.t/ the time change in the jump process associated to the random

walk X �.�/; we obtain a new jump process ��.t/, defined on the same proba-

bility space as �, and we have

�.t/� 2��.t/I
therefore it is sufficient to prove .7:2/ for ��. Introduce the functionals

˚.p/ WD
X

n�p

1

4jX �.n/j2 C 1
; 	.p/ WD

X

n�p

�n

4ŒX �.n/�2 C 1
�nI

then E!2.	.p//D ˚.p/.

We have

˚.TkC1/�˚.Tk/� TkC1 � Tk

22.�kC2/ C 1
.7:3/

THEOREM. Probf˚.Tk/�˚.Ts/< tg�exp

��3.k � s/3=2

12
p

12t

�

; k�s>20.tC1/:

PROOF. Denote by S the exit time of the random walk from the interval Ik WD
.2�k�1; 2�kC1/ and for 0< � < 1 being fixed, define on Ik the function

v.p/D Ep.�
S/I

then v takes the value 1 at the boundary of Ik ; by the Bellman programming

equation it satisfies

v.p/D 1
2
�

�

v.p � 1/C v.p C 1/
�

:

Define �f .n/ WD 1
2

�

f .n C 1/C f .n � 1/
�

�f .n/; then

�v D .��1 � 1/v:

Define fa.n/ WD an; then 1
2

�

fa.n C 1/C fa.n � 1/
�

� fa.n/ D cfa.n/, c D
1
2
.a C a�1/� 1. We satisfy these two equations by imposing the condition

a2 � 2��1a C 1 D 0 .7:4/;

which has for roots �; ��1, � < 1. We deduce that

v.n/D ˛�n Cˇ��n;

where ˛; ˇ are chosen such that the boundary conditions for v are satisfied; we

deduce that

E.�TkC1�Tk /D v.2�k / <
1

cosh.2�k�1 log �/

Writing this equality with �D 1 � r�12�2�k we get

ProbfTkC1 � Tk � r22�k g � .1 � r�12�2�k /r22�k � 1

cosh.2�k�1 log �/
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where � is obtained from .7:4/ and where � D 1 � r�12�2�k , a relation which

leads to the asymptotic formula

�' 1 �
p

2 � r�1=22��k :

Further,

ProbfTkC1 � Tk � r22�k g � 2e exp
�

� 1p
2r

�

:

Finally we have, using .7:3/,

Prob.˚.TkC1/�˚.Tk//� r/� 2e exp

�

� 1

3
p

r

�

:

Denote by � the law of .˚.TkC1/�˚.Tk//. Then

E exp.�c.˚.TkC1/�˚.Tk//D
Z 1

0

exp.��y/�.dy/I

integration by parts yields for this expression the bound
Z 1

0

� exp.��c/ �.Œ0; c�/ dc � 2e�

Z 1

0

exp

�

��c � 1

3
p

c

�

dc

� 2e exp
�

�1
3
Œ��1=3

�

:

Since the ˚.TkC1/�˚.Tk/ are independent, we have

E.exp.��.˚.Tk/�˚.Ts///� exp
�

�1
4
.k � s/Œ��1=3

�

; � > 16;

and

Probf˚.Tk/�˚.Ts/ < tg � inf� exp
�

�t � 14.k � s/Œ��1=3
�

� exp

�

�3.k � s/3=2

12
p

12t

�

; k � s > 20.t C 1/: ˜

LEMMA.

Prob2

�

	.TkC1/�	.Tk/

˚.TkC1/�˚.Tk/
� 1

2

�

�exp

�

�TkC1 � Tk

64

�

�exp

�

� 2k

128

�

: .7:5/

PROOF. Let � > 0 and let S WD 	.TkC1/�	.Tk/. Then

Probf S � a g � exp.�a�/� E.exp.��S//

or

Probf S � a g � inf
�>0

exp.a�/� E.exp.��S//:

We have

S D
X

Tk<n�TkC1

1

4ŒX �.n/�2 C 1
��n
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By the independence of the �n we have

E!2.exp.��S//D exp

�

�
X

Tk<n�TkC1

log
�

1 C �

4ŒX �.n/�2 C 1

�

�

:

Now we use the inequality

log.1 C u/� 3
4
u; u 2

�

0; 1
4

�

;

obtaining

E!2.exp.��S//� exp.�� 3
4
.˚.TkC1/�˚.Tk/// � 2 Œ0; �0�; �0 WD 22.k�1/:

Taking

a D 1
2
.˚.TkC1/�˚.Tk//; � D �0;

we get

Probf S � a g � exp
�

�14�0.˚.TkC1/�˚.Tk//
�

;

that is to say,

1
4
�0

�

˚.TkC1/�˚.Tk/
�

> 22.k�2/2�2.kC1/.TkC1 � Tk/;

which concludes the proof of the lemma. ˜

Now, starting from (7.5), Borel–Cantelli proves (7.2). ˜

8. Towards stochastic fluid motion on the configuration space

The configuration space in Arnold’s point of view is G, the diffeomorphism

group of the circle. The last section has given rise to a solution of a stochas-

tic Burgers equation on the moment space G; in this section we shall start to

integrate this solution from the moment space to the configuration space.

Covariance functionals. Baxendale and Harris [1986] have characterized clas-

sical stochastic flows in terms of their covariance. The construction we pro-

pose will depend upon the integration of a delayed SDE, in contrast to Baxen-

dale and Harris, who develop their study in the framework of classical infinite-

dimensional SDE. Nevertheless covariance estimates will be needed.

THEOREM. Assume that the noise energy � has a finite support. Let  x.t/ be

the stochastic parallel transport defined in .5:2/.

(a) The covariance is

Cx;t .�; �
0/D

P

k

�

Œ �
x .t/.Ak/�.�/ Œ 

�
x .t/.Ak/�.�

0/C Œ �
x .t/.Bk/�.�/ Œ 

�
x .t/.Bk/�.�

0/
�

�.k/:
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(b) Almost surely the map t ‘ Cx;t .�;�/ is a H q.S1 � S1/ continuous map.

(c) E.Cx;t .�; �
0//D NCt .� � � 0/.

(d) E

�

sup
�;� 0; t<T

Cx;t .�; �/C Cx;t .�
0; � 0/� 2Cx;t .�; �

0/

.� � � 0/2

�

<1:

PROOF. Part (c) results from the corollary on page 174, and part (b) follows

from (7.2) and the continuity property of Brownian martingales. Let

p.�; � 0/ WD Cx;t .�; �/C Cx;t .�
0; � 0/� 2Cx;t .�; �

0/;

then p.�; �/D 0. Since
�

.@p=@�/.�; � 0/
�

�D� 0 D 0, Taylor’s formula gives

p.�; � 0/D .� � � 0/2
Z 1

0

@2p

@�2
.� 0 C t.� � � 0/; � 0/.1 � t/ dt: ˜

The system of Itô flow equations is not closed. Denote by Gs the space of

vector fields with values in the Sobolev space of vector fields in H s . Then

t ‘ yt is an Gs-valued semimartingale. We have to solve a Stratonovitch SDE

dtgx;t .�/D .od yt /.gx;t .�//

(see [Cruzeiro et al. 2007]); there appears then the Itô contraction

Yt .gx;t .�/� Cx;t .�; �/ dt;

where

Yt D @gx;t

@�
:

In order to write the Itô SDE driving the flow we must know the derivative

of the flow itself, an so on: we have an unclosed system of Itô SDE.

A usual procedure of existence for SDE relies on the Itô formalism. We could

try the following alternative approach: solutions of Stratonovitch SDE are limits

of solutions of corresponding ordinary differential equations. Then it may be

possible to implement this limiting procedure in the geometric context of the

stochastic development.
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