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ABSTRACT. The Vlasov equation for the collisionless evolution of the single-

particle probability distribution function (PDF) is a well-known example of

coadjoint motion. Remarkably, the property of coadjoint motion survives the

process of taking moments. That is, the evolution of the moments of the Vlasov

PDF is also a form of coadjoint motion. We find that geodesic coadjoint motion

of the Vlasov moments with respect to powers of the single-particle momen-

tum admits singular (weak) solutions concentrated on embedded subspaces of

physical space. The motion and interactions of these embedded subspaces are

governed by canonical Hamiltonian equations for their geodesic evolution.

1. Introduction

The Vlasov equation. The evolution of N identical particles in phase space

with coordinates .qi ; pi/ i D 1; 2; : : : ; N , may be described by an evolution

equation for their joint probability distribution function. Integrating over all

but one of the particle phase-space coordinates yields an evolution equation for

the single-particle probability distribution function (PDF). This is the Vlasov

equation.

The solutions of the Vlasov equation reflect its heritage in particle dynamics,

which may be reclaimed by writing its many-particle PDF as a product of delta

functions in phase space. Any number of these delta functions may be integrated

out until all that remains is the dynamics of a single particle in the collective field

of the others. In plasma physics, this collective field generates the total elec-

tromagnetic properties and the self-consistent equations obeyed by the single
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particle PDF are the Vlasov–Maxwell equations. In the electrostatic approxima-

tion, these become the Vlasov–Poisson equations, which govern the statistical

distributions of particle systems ranging from integrated circuits (MOSFETS,

metal-oxide semiconductor field-effect transistors), to charged-particle beams,

to the distribution of galaxies in the Universe.

A class of singular solutions of the VP equations called the “cold plasma” so-

lutions have a particularly beautiful experimental realization in the Malmberg–

Penning trap. In this experiment, the time average of the vertical motion closely

parallels the Euler fluid equations. In fact, the cold plasma singular Vlasov–

Poisson solution turns out to obey the equations of point-vortex dynamics in

an incompressible ideal flow. This coincidence allows the discrete arrays of

“vortex crystals” envisioned by J. J. Thomson for fluid vortices to be realized

experimentally as solutions of the Vlasov–Poisson equations. For a survey of

these experimental cold-plasma results see [Dubin and O’Neil 1990].

Vlasov moments. The Euler fluid equations arise by imposing a closure rela-

tion on the first three momentum moments, or p-moments of the Vlasov PDF

f .p; q; t/. The zeroth p-moment is the spatial density of particles. The first

p-moment is the mean momentum and its ratio with the zeroth p-moment is the

Eulerian fluid velocity. Introducing an expression for the fluid pressure in terms

of the density and velocity closes the system of p-moment equations, which

otherwise would possess a countably infinite number of dependent variables.

The operation of taking p-moments preserves the geometric nature of Vlasov’s

equation. It’s closure after the first p-moment results in Euler’s useful and beau-

tiful theory of ideal fluids. As its primary geometric characteristic, Euler’s fluid

theory represents fluid flow as Hamiltonian geodesic motion on the space of

smooth invertible maps acting on the flow domain and possessing smooth in-

verses. These smooth maps (called diffeomorphisms) act on the fluid reference

configuration so as to move the fluid particles around in their container. And

their smooth inverses recall the initial reference configuration (or label) for the

fluid particle currently occupying any given position in space. Thus, the motion

of all the fluid particles in a container is represented as a time-dependent curve

in the infinite-dimensional group of diffeomorphisms. Moreover, this curve

describing the sequential actions of the diffeomorphisms on the fluid domain

is a special optimal curve that distills the fluid motion into a single statement.

Namely, “A fluid moves to get out of its own way as efficiently as possible.”

Put more mathematically, fluid flow occurs along a curve in the diffeomorphism

group which is a geodesic with respect to the metric on its tangent space supplied

by its kinetic energy.

Given the beauty and utility of the solution behavior for Euler’s equation

for the first p-moment, one is intrigued to know more about the dynamics of
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the other moments of Vlasov’s equation. Of course, the dynamics of the p-

moments of the Vlasov–Poisson equation is one of the mainstream subjects of

plasma physics and space physics.

Summary. This paper formulates the problem of Vlasov p-moments governed

by quadratic Hamiltonians. This dynamics is a certain type of geodesic motion

on the symplectomorphisms, rather than the diffeomorphisms. The symplecto-

morphisms are smooth invertible maps acting on the phase space and possess-

ing smooth inverses. We shall consider the singular solutions of the geodesic

dynamics of the Vlasov p-moments. Remarkably, these equations turn out to

be related to integrable systems governing shallow water wave theory. In fact,

when the Vlasov p-moment equations for geodesic motion on the symplecto-

morphisms are closed at the level of the first p-moment, their singular solutions

are found to recover the peaked soliton of the integrable Camassa–Holm equa-

tion for shallow water waves [Camassa and Holm 1993].

Thus, geodesic symplectic dynamics of the Vlasov p-moments is found to

possess singular solutions whose closure at the fluid level recovers the peakon

solutions of shallow water theory. Being solitons, the peakons superpose and

undergo elastic collisions in fully nonlinear interactions. The singular solutions

for Vlasov p-moments presented here also superpose and interact nonlinearly

as coherent structures.

The plan of the paper follows:

Section 2 defines the Vlasov p-moment equations and formulates them as

Hamiltonian system using the Kupershmidt–Manin Lie–Poisson bracket. This

formulation identifies the p-moment equations as coadjoint motion under the

action of a Lie algebra g on its dual Lie algebra g
�, in any number of spatial

dimensions.

Section 3 derives variational formulations of the p-moment dynamics in both

their Lagrangian and Hamiltonian forms.

Section 4 formulates the problem of geodesic motion on the symplectomor-

phisms in terms of the Vlasov p-moments and identifies the singular solutions of

this problem, whose support is concentrated on delta functions in position space.

In a special case, the truncation of geodesic symplectic motion to geodesic dif-

feomorphic motion for the first p-moment recovers the singular solutions of the

Camassa–Holm equation.

Section 5 discusses how the singular p-moment solutions for geodesic sym-

plectic motion are related to the cold plasma solutions. By symmetry under

exchange of canonical momentum p and position q, the Vlasov q-moments are

also found to admit singular (weak) solutions.
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2. Vlasov moment dynamics

The Vlasov equation may be expressed as

@f

@t
D

h

f;
ıh

ıf

i

D
@f

@p

@

@q

ıh

ıf
�

@f

@q

@

@p

ıh

ıf
DW � ad�

ıh=ıf f: (2-1)

Here the canonical Poisson bracket Œ � ; � � is defined for smooth functions on

phase space with coordinates .q; p/ and f .q; p; t/ is the evolving Vlasov single-

particle distribution function. The variational derivative ıh=ıf is the single

particle Hamiltonian.

A functional gŒf � of the Vlasov distribution f evolves according to

dg

dt
D

“

ıg

ıf

@f
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dq dp D

“

ıg

ıf

h
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ıh

ıf

i

dq dp
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f
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ıf
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ıh
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dq dp DW �
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hıg

ıf
;

ıh

ıf

iEE

DW f g; h g

In this calculation boundary terms are neglected upon integrating by parts and

the notation hh � ; � ii is introduced for the L2 pairing in phase space. The quantity

f g; h g defined in terms of this pairing is the Lie–Poisson Vlasov (LPV) bracket

[Morrison 1980]. This Hamiltonian evolution equation may also be expressed

as
dg

dt
D f g; h g D

DD

f; ad ıh=ıf

ıg

ıf

EE

D �
DD

ad�
ıh=ıf f;

ıg

ıf

EE

which defines the Lie-algebraic operations ad and ad� in this case in terms of

the L2 pairing on phase space hh � ; � ii: s
� �s ‘ R. Thus, the notation ad�

ıh=ıf f

in (2-1) expresses coadjoint action of ıh=ıf 2 s on f 2 s
�, where s is the Lie

algebra of single particle Hamiltonian vector fields and s
� is its dual under L2

pairing in phase space. This is the sense in which the Vlasov equation represents

coadjoint motion on the symplectomorphisms.

2.1. Dynamics of Vlasov q; p-moments. The phase space q; p-moments of

the Vlasov distribution function are defined by

g Omm D

“

f .q; p/ q Ompm dq dp:

The q; p-moments g Omm are often used in treating the collisionless dynamics of

plasmas and particle beams [Dragt et al. 1990]. This is usually done by con-

sidering low order truncations of the potentially infinite sum over phase space

moments,

g D

1
X

Om;mD0

a Ommg Om;m; h D

1
X

On;nD0

b Onng On;n;
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with constants a Omm and b Onn, with Om; m; On; nD0; 1; : : : . If h is the Hamiltonian,

the sum over q; p-moments g evolves under the Vlasov dynamics according to

the Poisson bracket relation

dg

dt
D f g; h g D

1
X

Om;m; On;nD0

a Ommb Onn. Omm � Onn/g OmCOn�1;mCn�1:

This Poisson bracket may be identified with the smooth Hamiltonian vector

fields on p and q, by invoking the standard Lie-algebra antihomomorphism

XH D f � ; H g;

for any function H.p; q/, then noticing that the q; p-moments are linear func-

tionals of the canonical variables. The symplectic invariants associated with

Hamiltonian flows of the q; p-moments were discovered and classified in [Holm

et al. 1990].

2.2. Dynamics of Vlasov p-moments. The momentum moments, or “p-

moments,” of the Vlasov function are defined as

Am.q; t/ D

Z

pm f .q; p; t/ dp; m D 0; 1; : : : :

That is, the p-moments are q-dependent integrals over p of the product of pow-

ers pm, m D 0; 1; : : : , times the Vlasov solution f .q; p; t/. We shall consider

functionals of these p-moments defined by

g D

1
X

mD0

“

˛m.q/ pm f dq dp D

1
X

mD0

Z

˛m.q/ Am.q/ dq DW

1
X

mD0

˝

Am; ˛m

˛

;

h D

1
X

nD0

“

ˇn.q/ pn f dq dp D

1
X

nD0

Z

ˇn.q/ An.q/ dq DW

1
X

nD0

˝

An; ˇn

˛

;

where h � ; � i is the L2 pairing on position space.

The functions ˛m and ˇn with m; n D 0; 1; : : : are assumed to be suitably

smooth and integrable against the Vlasov p-moments. To assure these prop-

erties, one may relate the p-moments to the previous sums of Vlasov q; p-

moments by choosing

˛m.q/ D

1
X

OmD0

a Ommq Om; ˇn.q/ D

1
X

OnD0

b Onnq On:

For these choices of ˛m.q/ and ˇn.q/, the sums of p-moments will recover

the full set of Vlasov .q; p/-moments. Thus, as long as the q; p-moments of

the distribution f .q; p/ continue to exist under the Vlasov evolution, one may

assume that the dual variables ˛m.q/ and ˇn.q/ are smooth functions whose
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Taylor series expands the p-moments in the q; p-moments. These functions are

dual to the p-moments Am.q/ with m D 0; 1; : : : under the L2 pairing h� ; �i in

the spatial variable q. In what follows we will assume homogeneous boundary

conditions. This means, for example, that we will ignore boundary terms arising

from integrations by parts.

2.3. Poisson bracket for Vlasov p-moments. The Poisson bracket among the

p-moments is obtained from the LPV bracket through explicit calculation:

f g; h g D �

1
X

m;nD0

“

f
�

˛m.q/ pm; ˇn.q/ pn
�

dq dp

D �

1
X

m;nD0

“

�

m˛mˇ0
n � nˇn˛0

m

�

f pmCn�1 dq dp

D �

1
X

m;nD0

Z

AmCn�1.q/
�

m˛mˇ0
n � nˇn˛0

m

�

dq

DW

1
X

m;nD0

˝

AmCn�1; adˇn
˛m

˛

D �

1
X

m;nD0

Z

�

nˇnA0
mCn�1 C .m C n/AmCn�1ˇ0

n

�

˛m dq

DW �

1
X

m;nD0

˝

ad�
ˇn

AmCn�1; ˛m

˛

;

where we have integrated by parts and the symbols ad and ad� stand for the

adjoint and coadjoint actions. This is done by again invoking the Lie-algebra

antihomomorphism with the smooth Hamiltonian vector fields, since the smooth

functions ˛m.q/ and ˇn.q/ are assumed to possess convergent Taylor series.

Upon recalling the dual relations

˛m D
ıg

ıAm
and ˇn D

ıh

ıAn

the LPV bracket in terms of the p-moments may be expressed as

f g; h g.fAg/

D �

1
X

m;nD0

Z

ıg

ıAm

h

n
ıh

ıAn

@

@q
AmCn�1 C .m C n/AmCn�1

@

@q

ıh

ıAn

i

dq

DW �

1
X

m;nD0

D

AmCn�1;
hh ıg

ıAm
;

ıh

ıAn

iiE

:
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This is the Kupershmidt–Manin Lie–Poisson (KMLP) bracket [Kupershmidt and

Manin 1978], which is defined for functions on the dual of the Lie algebra with

bracket

ŒŒ ˛m; ˇn �� D m˛m@qˇn � nˇn@q˛m:

This Lie algebra bracket inherits the Jacobi identity from its definition in terms

of the canonical Hamiltonian vector fields. Thus, we have shown:

THEOREM 2.1 [Gibbons 1981]. The operation of taking p-moments of Vlasov

solutions is a Poisson map. It takes the LPV bracket describing the evolution

of f .q; p/ into the KMLP bracket, describing the evolution of the p-moments

An.x/.

REMARK 2.2. A result related to theorem 2.1 for the Benney hierarchy [Benney

1966] was also noted by Lebedev and Manin [Lebedev and Manin 1979].

The evolution of a particular p-moment Am.q; t/ is obtained from the KMLP

bracket by

@Am

@t
D f Am; h g D �

1
X

nD0

�

n
ıh

ıAn

@

@q
AmCn�1 C .m C n/AmCn�1

@

@q

ıh

ıAn

�

:

The KMLP bracket among the p-moments is given by

f Am; An g D �n
@

@q
AmCn�1 � mAmCn�1

@

@q
;

expressed as a differential operator acting to the right. This operation is skew-

symmetric under the L2 pairing and the general KMLP bracket can then be

written as (see [Gibbons 1981])

f g; h g . fAg/ D

1
X

m;nD0

Z

ıg

ıAm
f Am; An g

ıh

ıAn
dq;

so that

@Am

@t
D

1
X

nD0

f Am; An g
ıh

ıAn
:

2.4. Multidimensional treatment. We now show that the KMLP bracket and

the equations of motion may be written in three dimensions in multi-index no-

tation. By writing p2nC1 D p2n p, and checking that

p2n D
X

iCjCkDn

n!

i !j !k!
p2i

1 p
2j
2

p2k
3 ;
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it is easy to see that the multidimensional treatment can be performed in terms

of the quantities

p� DW p
�1

1
p

�2

2
p

�3

3
;

where � 2 N
3. Let A� be defined as

A� .q; t/ DW

Z

p�f .q; p; t/ dp

and consider functionals of the form

g D
X

�

“

˛� .q/ p�f .q; p; t/ dq dp DW
X

�2N3

hA� ; ˛� i ;

h D
X

�

“

ˇ� .q/ p �f .q; p; t/ dq dp DW
X

�2N3

˝

A�; ˇ�

˛

:

With the notation

1j WD .0; :::; 1:::; 0/ (1 in j -th position);

so that
�

1j

�

i
D ıji . the ordinary LPV bracket leads to

fg; hg D �
X

�;�

“

f
�

˛� .q/ p� ; ˇ� .q/ p �
�

dq dp

D �
X

�;�

X

j

“

f

�

˛�p � @p�

@pj

@ˇ�

@qj
� ˇ�p� @p �

@pj

@˛�

@qj

�

dq dp

D �
X

�;�

X

j

“

f

�

�j ˛�p �p
��1j

@ˇ�

@qj
� �j ˇ�p�p

��1j
@˛�

@qj

�

dq dp

D �
X

�;�

X

j

Z

A�C��1j

�

�j ˛�
@ˇ�

@qj
� �j ˇ�

@˛�
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�

dq

DW
X

�;�

X

j

D

A�C��1j
;
�
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�

j
˛�

E

D �
X

�;�

X

j
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�j ˇ�
@
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C
�

�j C �j

�
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�

˛� dq
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X
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X

j

D

�
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�

j
A�C��1j

; ˛�

E

;

where the sum extends to all �; � 2 N
3.
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The LPV bracket in terms of the p-moments may then be written as

@A�

@t
D �

X

�2N3

X

j

�

ad�
ıh=ıA�

�

j
A�C�C1j

where the Lie bracket is now expressed as

��

ıg

ıA�
;

ıh

ıA�

��

j

D �j ˛�
@

@qj

ıh

ıA�
� �j ˇ�

@

@qj

ıg

ıA�
:

Moreover the evolution of a particular p-moment A� is obtained by

@A�

@t
D fA� ; hg

D �
X

�

X

j

�

�j
ıh

ıA�
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@qj
A�C��1j

C
�

�j C �j

�

A�C��1j

@
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ıh

ıA�

�

and the KMLP bracket among the multidimensional p-moments is given in by

˚

A� ; A�

	

D �
X

j

�

�j
@

@qj
A�C��1j

C �j A�C��1j

@

@qj

�

:

Inserting the previous operator in this multidimensional KMLP bracket yields

fg; hg .fAg/ D
X

�;�

Z

ıg

ıA�

˚

A� ; A�

	 ıh

ıA�
dq;

and the corresponding evolution equation becomes

@A�

@t
D

X

�

˚

A� ; A�

	 ıh

ıA�
:

Thus, in multi-index notation, the form of the Hamiltonian evolution under the

KMLP bracket is essentially unchanged in going to higher dimensions.

2.5. Applications of the KMLP bracket. The KMLP bracket was derived in

the context of Benney long waves, whose Hamiltonian is

H2 D 1
2
.A2 C A2

0/:

This leads to the moment equations

@An

@t
C

@AnC1

@q
C nAn�1

@A0

@q
D 0

derived by Benney [1966] as a description of long waves on a shallow perfect

fluid, with a free surface at y Dh.q; t/. In his interpretation, the An were vertical
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moments of the horizontal component of the velocity p.q; y; t/:

An D

Z h

yD0

p.q; y; t/n dy:

The corresponding system of evolution equations for p.q; y; t/ and h.q; t/ is

related by the hodograph transformation, y D
R p

�1
f .q; p0; t/ dp0, to the Vlasov

equation
@f

@t
C p

@f

@q
�

@A0

@q

@f

@p
D 0:

The most important fact about the Benney hierarchy is that it is completely

integrable. This fact emerges from the following observation. Upon defining a

function �.q; p; t/ by the principal value integral,

�.q; p; t/ D p C P

Z 1

�1

f .q; p0; t/

p � p0
dp0;

it is straightforward to verify [Lebedev and Manin 1979] that

@�

@t
C p

@�

@q
�

@A0

@q

@�

@p
D 0I

so that f and � are advected along the same characteristics.

In higher dimensions, particularly n D 3, we may take the direct sum of the

KMLP bracket, together with the Poisson bracket for an electromagnetic field

(in the Coulomb gauge) where the electric field E and magnetic vector potential

A are canonically conjugate; then the Hamiltonian

HM V D

“

�

1

2m
jp � eAj2

�

f .p; q/ dnp dnq

C

Z
�

1

2
jE j2 C

1

4

n
X

iD1

n
X

jD1

.Ai;j � Aj ;i/
2

�

dnq

yields the Maxwell–Vlasov (MV) equations for systems of interacting charged

particles. For a discussion of the MV equations from a geometric viewpoint in

the same spirit as the present approach, see [Cendra et al. 1998]. For discussions

of the Lie-algebraic approach to the control and steering of charged particle

beams, see [Dragt et al. 1990].

3. Variational principles and Hamilton–Poincaré formulation

In this section we show how the p-moment dynamics can be derived from

Hamilton’s principle both in the Hamilton–Poincaré and Euler–Poincaré forms.

These variational principles are defined , respectively, on the dual Lie algebra

g
� containing the moments, and on the Lie algebra g itself. For further details
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about these dual variational formulations, see [Cendra et al. 2003] and [Holm

et al. 1998]. Summation over repeated indices is intended in this section.

3.1. Hamilton–Poincaré hierarchy. We begin with the Hamilton–Poincaré

principle for the p-moments written as

ı

Z tj

ti

dt
�

hAn; ˇni � H .fAg/
�

D 0

(where ˇn 2 g). We shall prove that this leads to the same dynamics as found

in the context of the KMLP bracket. To this purpose, we must define the n-th

p-moment in terms of the Vlasov distribution function. We check that

0 D ı

Z tj

ti

dt
�

hAn; ˇni � H .fAg/
�

D

Z tj

ti

dt

�

ı
˝̋

f; pnˇn

˛̨

�

��

ıf;
ıH

ıf

���

D

Z tj
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dt

���

ıf;

�

pnˇn �
ıH

ıf

���

C
˝̋

f; ı
�

pnˇn

�˛̨

�

:

Now recall that any g D ıG=ıf belonging to the Lie algebra s of the sym-

plectomorphisms (which also contains the distribution function itself) may be

expressed as

g D
ıG

ıf
D pm ıG

ıAm
D pm�m ;

by the chain rule. Consequently, one finds the pairing relationship

��

ıf;

�

pnˇn �
ıH

ıf

���

D

�

ıAn;

�

ˇn �
ıH

ıAn

��

:

Next, recall from the general theory that variations on a Lie group induce vari-

ations on its Lie algebra of the form

ıw D Pu C Œg; u�

where u; w 2 s and u vanishes at the endpoints. Writing u D pm�m then yields

Z tj

ti

dt
˝̋

f; ı
�

pnˇn

�˛̨

D

Z tj

ti

dt
˝̋

f;
�

Pu C
�

pnˇn; u
��˛̨

D �

Z tj

ti

dt
�

h PAm; �mi �
˝

AnCm�1; ŒŒˇn; �m��
˛

�

D �

Z tj
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dt
D

�

PAm C ad�
ˇn

AmCn�1

�

; �m

E

:



210 JOHN GIBBONS, DARRYL D. HOLM, AND CESARE TRONCI

Consequently, the Hamilton–Poincaré principle may be written entirely in terms

of the moments as

ıS D

Z tj

ti

dt

��

ıAn;

�

ˇn �
ıH

ıAn

��

�
D

�

PAm C ad�
ˇn

AmCn�1

�

; �m

E

�

D 0:

This expression produces the inverse Legendre transform

ˇn D
ıH

ıAn

(holding for hyperregular Hamiltonians). It also yields the equations of motion

@Am

@t
D �ad�

ˇn
AmCn�1;

which are valid for arbitrary variations ıAm and variations ıˇm of the form

ıˇm D P�m C adˇn
�m�nC1;

where the variations �m satisfy vanishing endpoint conditions,

�mjtDti
D �mjtDtj

D 0:

Thus, the Hamilton–Poincaré variational principle recovers the hierarchy of the

evolution equations derived in the previous section using the KMLP bracket.

3.2. Euler–Poincaré hierarchy. The corresponding Lagrangian formulation of

the Hamilton’s principle now yields

ı

Z tj

ti

L .fˇg/ dt D

Z tj

ti

�

ıL

ıˇm
; ıˇm

�

dt

D

Z tj

ti

�

ıL

ıˇm
;
�

P�m C adˇn
�m�nC1

�

�

dt

D �

Z tj

ti

��

@

@t

ıL

ıˇm
; �m

�

C

�

ad�
ˇn

ıL

ıˇm
; �m�nC1

��

dt

D �

Z tj

ti

��

@

@t

ıL

ıˇm
; �m

�

C

�

ad�
ˇn

ıL

ıˇmCn�1

; �m

��

dt

D �

Z tj

ti

��

@

@t

ıL

ıˇm
C ad�

ˇn

ıL

ıˇmCn�1

�

; �m

�

dt;

upon using the expression previously found for the variations ıˇm and relabeling

indices appropriately. The Euler–Poincaré equations may then be written as

@

@t

ıL

ıˇm
C ad�

ˇn

ıL

ıˇmCn�1

D 0
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with the same constraints on the variations as in the previous paragraph. Apply-

ing the Legendre transformation

Am D
ıL

ı˛m

yields the Euler–Poincaré equations (for hyperregular Lagrangians). This again

leads to the same hierarchy of equations derived earlier using the KMLP bracket.

To summarize, the calculations in this section have proved this result:

THEOREM 3.1. With the above notation and hypotheses of hyperregularity the

following statements are equivalent:

(i) (The Euler–Poincaré variational principle.) The curves ˇn.t/ are critical

points of the action

ı

Z tj

ti

L .fˇg/ dt D 0

for variations of the form

ıˇm D P�m C adˇn
�m�nC1;

in which �m vanishes at the endpoints

�mjtDti
D �mjtDtj

D 0

and the variations ıAn are arbitrary.

(ii) (The Lie–Poisson variational principle.) The curves .ˇn; An/ .t/ are criti-

cal points of the action

ı

Z tj

ti

�

hAn; ˇni � H .fAg/
�

dt D 0

for variations of the form

ıˇm D P�m C adˇn
�m�nC1;

where �m satisfies endpoint conditions

�mjtDti
D �mjtDtj

D 0

and the variations ıAn are arbitrary.

(iii) The Euler–Poincaré equations hold:

@

@t

ıL

ıˇm
C ad�

ˇn

ıL

ıˇmCn�1

D 0:

(iv) The Lie–Poisson equations hold:

PAm D �ad�
ıH =ıAn

AmCn�1:
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For further details on the proof of this theorem we direct the reader to [Cendra

et al. 2003]. An analogous result is also valid in the multidimensional case with

slight modifications.

4. Quadratic Hamiltonians

4.1. Geodesic motion. We shall consider the problem of geodesic motion on

the space of p-moments. For this, we define the Hamiltonian as the norm on

the p-moment given by the following metric and inner product,

h D 1
2
kAk2D1

2

1
X

n;sD0

“

An.q/Gns.q; q0/As.q0/ dq dq0 (4-1)

The metric Gns.q; q0/ is chosen to be positive definite, so it defines a norm for

fAg 2 g
�. The corresponding geodesic equation with respect to this norm is

found as in the previous section to be

@Am

@t
D f Am; h g D �

1
X

nD0

�

nˇn
@

@q
AmCn�1 C.mCn/AmCn�1

@

@q
ˇn

�

; (4-2)

with dual variables ˇn 2 g defined by

ˇn D
ıh

ıAn
D

1
X

sD0

Z

Gns.q; q0/As.q0/ dq0 D

1
X

sD0

Gns � As: (4-3)

Thus, evolution under (4-2) may be rewritten formally as (infinitesimal) coad-

joint motion on g
�

@Am

@t
D f Am; h g DW �

1
X

nD0

ad�
ˇn

AmCn�1: (4-4)

The explicit identification of coAdjoint motion by the full group action on the

dual Lie algebra is left for a future study. This system comprises an infinite sys-

tem of nonlinear, nonlocal, coupled evolutionary equations for the p-moments.

In this system, evolution of the m-th moment is governed by the potentially

infinite sum of contributions of the velocities ˇn associated with n-th moment

sweeping the .mCn�1/-th moment by coadjoint action. Moreover, by equation

(4-3), each of the ˇn potentially depends nonlocally on all of the moments.

Equations (4-1) and (4-3) may be written in three dimensions in multi-index

notation, as follows: the Hamiltonian is given by

h D 1
2
kAk2 D 1

2

X

�;�

“

A� .q; t/ G��

�

q; q0
�

A�

�

q0; t
�

dqdq0
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so the dual variable is written as

ˇ� D
ıh

ıA�
D

X

�

“

G��

�

q; q0
�

A�

�

q0; t
�

dqdq0 D
X

�

G�� � A� :

4.2. Singular geodesic solutions. Remarkably, in any number of spatial dimen-

sions, the geodesic equation (4-2) possesses exact solutions which are singular;

that is, they are supported on delta functions in q-space.

THEOREM 4.1 (SINGULAR SOLUTION ANSATZ FOR GEODESIC FLOWS OF

VLASOV p-MOMENTS). Equation (4-2) admits singular solutions of the form

A� .q; t/D

N
X

jD1

Z

P �
j .q; t; aj / ı

�

q � Qj .t; aj /
�

daj ; (4-5)

in which the integrals over coordinates aj are performed over N embedded

subspaces of the q-space and the parameters .Qj ; Pj / satisfy canonical Hamil-

tonian equations in which the Hamiltonian is the norm h in (4-1) evaluated on

the singular solution Ansatz (4-5).

In one dimension, the coordinates aj are absent and the singular solutions in

(4-5) reduce to

As.q; t/ D

N
X

jD1

P s
j .q; t/ ı

�

q � Qj .t/
�

: (4-6)

In order to show this is a solution in one dimension, one checks that these sin-

gular solutions satisfy a system of partial differential equations in Hamiltonian

form, whose Hamiltonian couples all the moments

HN D
1

2

1
X

n;sD0

N
X

j ;kD1

P s
j .Qj .t/; t/P n

k .Qk.t/; t/ Gns.Qj .t/; Qk.t//:

One forms the pairing of the coadjoint equation

PAm D �
X

n;s

ad�
Gns�As

AmCn�1

with a sequence of smooth functions f'm .q/g, so that

h PAm; 'mi D
X

n;s

˝

AmCn�1; adGns�As
'm

˛
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One expands each term and denotes zPj .t/ WD Pj .Qj ; t/:

h PAm; 'mi D
X

j

Z

dq 'm .q/
@

@t

�

P m
j .q; t/ı.q � Qj /

�

D
X

j

Z

dq'm.q/

�

ı.q � Qj /
@P m

j

@t
� P m

j
PQj ı0.q � Qj /

�

D
X

j

�

d zP m
j

dt
'm.Qj / C zP m

j
PQj '0

m.Qj /

�

Similarly, expanding

˝

AmCn�1; adGns�As
'm

˛

D
X

j ;k

Z

dq zP s
k P mCn�1

j ı.q � Qj /

�

n'0
mGns.q; Qk/ � m'm

@Gns.q; Qk/

@q

�

D
X

j ;k

zP s
k

zP mCn�1
j

�

n '0
m.Qj /Gns.Qj ; Qk/ � m 'm.Qj /

@Gns.Qj ; Qk/

@Qj

�

leads to

zP m
j

dQj

dt
D

X

n;s

X

k

n zP s
k

zP mCn�1
j Gns.Qj ; Qk/;

d zP m
j

dt
D �m

X

n;s

X

k

zP s
k

zP mCn�1
j

@Gns.Qj ; Qk/

@Qj
;

so we finally obtain equations for Qj and zPj in canonical form,

dQj

dt
D

@HN

@ zPj

;
d zPj

dt
D �

@HN

@Qj
:

Remark about higher dimensions. The singular solutions (4-5) with the in-

tegrals over coordinates aj exist in higher dimensions. The higher dimensional

singular solutions satisfy a system of canonical Hamiltonian integral-partial dif-

ferential equations, instead of ordinary differential equations.

5. Discussion

5.1. Remarks about EPSymp and connections with EPDiff. Importantly,

geodesic motion for the p-moments is equivalent to geodesic motion for the

Euler–Poincaré equations on the symplectomorphisms (EPSymp) given by the
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Hamiltonian

H Œf � D
1

2

“

f .q; p; t/ G
�

q; p; q0; p0
�

f
�

q0; p0; t
�

dq dp dq0dp0 (5-1)

The equivalence with EPSymp emerges when the function G is written as

G
�

q; q0; p; p0
�

D
X

n;m

pnGnm

�

q; q0
�

p0 m:

Thus, whenever the metric G for EPSymp has a Taylor series, its solutions may

be expressed in terms of the geodesic motion for the p-moments.

Moreover the distribution function corresponding to the singular solutions for

the moments is a particular case of the cold-plasma approximation, given by

f .q; p; t/ D
X

j

�j .q; t/ ı.p � Pj .q; t//;

where in our case a summation is introduced and � is written as a Lagrangian

particle-like density: �j .q; t/ D ı.q � Qj .t//.

To check this is a solution for the geodesic motion of the generating function,

one repeats exactly the same procedure as for the moments, in order to find the

Hamiltonian equations

dQj

dt
D

@

@ zPj

ıH

ıf
.Qj ; zPj /;

d zPj

dt
D

@

@Qj

ıH

ıf
.Qj ; zPj /

where zPj D Pj ı Qj denotes the composition of the two functions Pj and Qj .

This recovers single particle motion for density �j defined on a delta function.

As we shall show, these singular solutions of EPSymp are also solutions of

the Euler–Poincaré equations on the diffeomorphisms (EPDiff), provided one

truncates to consider only first order moments [Holm and Marsden 2005]. With

this truncation, the singular solutions in the case of single-particle dynamics

reduce in one dimension to the pulson solutions for EPDiff [Camassa and Holm

1993].

5.2. Exchanging variables in EPSymp. One can show that exchanging the

variables q $ p in the single particle PDF leads to another nontrivial singular

solution of EPSymp, which is different from those found previously. To see this,

let f be given by

f .q; p; t/ D
X

j

ı.q � Qj .p; t// ı.p � Pj .t//:

At this stage nothing has changed with respect to the previous solution since the

generating function is symmetric with respect to q and p. However, inserting
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this expression in the definition of the m-th moment yields

Am.q; t/ D
X

j

P m
j ı.q � Qj .Pj ; t//;

which is quite different from the solutions found previously. One again obtains

a canonical Hamiltonian structure for Pj and Qj .

This second expression is an alternative parametrisation of the cold-plasma

reduction above and it may be useful in situations where the composition Qj ıPj

is more convenient than Pj ı Qj .

5.3. Remarks about truncations. The problem presented by the coadjoint

motion equation (4-4) for geodesic evolution of p-moments under EPDiff needs

further simplification. One simplification would be to modify the (doubly) in-

finite set of equations in (4-4) by truncating the Poisson bracket to a finite set.

These moment dynamics may be truncated at any stage by modifying the Lie-

algebra in the KMLP bracket to vanish for weights m C n � 1 greater than a

chosen cut-off value.

5.4. Examples of simplifying truncations and specializations. For example,

if we truncate the sums to m; n D 0; 1; 2 only, then equation (4-4) produces the

coupled system of partial differential equations

@A0

@t
D �ad�

ˇ1
A0 � ad�

ˇ2
A1;

@A1

@t
D �ad�

ˇ0
A0 � ad�

ˇ1
A1 � ad�

ˇ2
A2;

@A2

@t
D �ad�

ˇ0
A1 � ad�

ˇ1
A2:

Expanding now the expression of the coadjoint operation

ad�
ˇh

AkCh�1 D .k C h/ AkCh�1@qˇh C hˇh@qAkCh�1

and relabeling

ad�
ˇh

Ak D .k C 1/ Ak@qˇh C hˇh@qAk

one calculates

@A0

@t
D �@q .A0ˇ1/ � 2A1@qˇ2 � 2ˇ2@qA1;

@A1

@t
D �A0@qˇ0 � 2A1@qˇ1 � ˇ1@qA1 � 3A2@qˇ2 � 2ˇ2@qA2;

@A2

@t
D �2A1@qˇ0 � 3A2@qˇ1 � ˇ1@qA2:
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We specialize to the case that each velocity depends only on its corresponding

moment, so that ˇs D G �As , s D 0; 1; 2. If we further specialize by setting A0

and A2 initially to zero, then these three equations reduce to the single equation

@A1

@t
D � ˇ1 @qA1 � 2A1 @qˇ1:

Finally, if we assume that G in the convolution ˇ1 D G � A1 is the Green’s

function for the operator relation

A1 D .1 � ˛2@2
q/ˇ1

for a constant lengthscale ˛, then the evolution equation for A1 reduces to the

integrable Camassa–Holm (CH) equation [1993] in the absence of linear disper-

sion. This is the one-dimensional EPDiff equation, which has singular (peakon)

solutions. Thus, after these various specializations of the EPDiff p-moment

equations, one finds the integrable CH peakon equation as a specialization of

the coadjoint moment dynamics of equation (4-4).

That such a strong restriction of the p-moment system leads to such an in-

teresting special case bodes well for future investigations of the EPSymp p-

moment equations. Further specializations and truncations of these equations

will be explored elsewhere. Before closing, we mention one or two other open

questions about the solution behavior of the p-moments of EPSymp.

6. Open questions for future work

Several open questions remain for future work. The first is whether the singu-

lar solutions found here will emerge spontaneously in EPSymp dynamics from

a smooth initial Vlasov PDF. This spontaneous emergence of the singular solu-

tions does occur for EPDiff. Namely, one sees the singular solutions of EPDiff

emerging from any confined initial distribution of the dual variable. (The dual

variable is fluid velocity in the case of EPDiff). In fact, integrability of EPDiff in

one dimension by the inverse scattering transform shows that only the singular

solutions (peakons) are allowed to emerge from any confined initial distribu-

tion in that case [Camassa and Holm 1993]. In higher dimensions, numerical

simulations of EPDiff show that again only the singular solutions emerge from

confined initial distributions. In contrast, the point vortex solutions of Euler’s

fluid equations (which are isomorphic to the cold plasma singular solutions of

the Vlasov Poisson equation) while comprising an invariant manifold of sin-

gular solutions, do not spontaneously emerge from smooth initial conditions in

Euler fluid dynamics. Nonetheless, something quite analogous to the singular

solutions is seen experimentally for cold plasma in a Malmberg–Penning trap

[Dubin and O’Neil 1990]. Therefore, one may ask which outcome will prevail
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for the singular solutions of EPSymp. Will they emerge from a confined smooth

initial distribution, or will they only exist as an invariant manifold for special

initial conditions? Of course, the interactions of these singular solutions for

various metrics and the properties of their collective dynamics is a question for

future work.

Geometric questions also remain to be addressed. In geometric fluid dy-

namics, Arnold and Khesin [1998] formulate the problem of symplectohydro-

dynamics, the symplectic counterpart of ordinary ideal hydrodynamics on the

special diffeomorphisms SDiff. In this regard, the work of Eliashberg and Ratiu

[1991] showed that dynamics on the symplectic group radically differs from

ordinary hydrodynamics, mainly because the diameter of Symp(M ) is infinite,

whenever M is a compact exact symplectic manifold with a boundary. Of

course, the presence of boundaries is important in fluid dynamics. However,

generalizing a result by Shnirelman [1985], Arnold and Khesin point out that the

diameter of SDiff(M ) is finite for any compact simply connected Riemannian

manifold M of dimension greater than two.

In the case under discussion here, the situation again differs from that en-

visioned by Eliashberg and Ratiu. The EPSymp Hamiltonian (5-1) determines

geodesic motion on Symp(T �
R

3), which may be regarded as the restriction

of the Diff(T �
R

3) group, so that the Liouville volume is preserved. The main

difference in our case is that M D T �
R

3 is not compact, so one of the conditions

for the Eliashberg–Ratiu result does not hold. Thus, one may ask, what are the

geometric properties of Symp acting on a symplectic manifold which is not com-

pact? What remarkable differences if any remain to be found between Symp and

SDiff in such a situation? Another intriguing possibility is that some relation of

the work here may be found with the work of Bloch et al. on integrable geodesic

flows on the symplectic group [Bloch et al. 2005]. A final question of interest is

whether the present work might be linked with the Lie algebra structure of the

BBGKY hierarchy [Marsden et al. 1984].

Yet another interesting case occurs when the particles undergoing Vlasov dy-

namics are confined in a certain region of position space. In this situation, again

the phase space is not compact, since the momentum may be unlimited. The

dynamics on a bounded spatial domain descends from that on the unbounded

cotangent bundle upon taking the p-moments of the Hamiltonian vector field.

Thus, in this topological sense p-moments and q-moments are not equivalent.

In the present work, this distinction has been ignored by assuming either homo-

geneous or periodic boundary conditions.
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