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Integration of pair flows of
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of his seventy-fifth birthday

ABSTRACT. We present the integration of the “pair” flows associated to the

Camassa–Holm (CH) hierarchy i.e., an explicit exact formula for the update

of the initial velocity profile in terms of initial data when run by the flow

associated to a Hamiltonian which (up to a constant factor) is given by the

sum of the reciprocals of the squares of any two eigenvalues of the underlying

spectral problem. The method stems from the integration of “individual” flows

of the CH hierarchy described in [Loubet 2006; McKean 2003], and is seen

to be more general in scope in that it may be applied when considering more

complex flows (e.g., when the Hamiltonian involves an arbitrary number of

eigenvalues of the associated spectral problem) up to when envisaging the full

CH flow itself which is nothing but a superposition of commuting individual

actions. Indeed, by incorporating piece by piece into the Hamiltonian the

distinct eigenvalues describing the spectrum associated to the initial profile,

we may recover McKean’s Fredholm determinant formulas [McKean 2003]

expressing the evolution of initial data when acted upon by the full CH flow.

We also give account of the large-time (and limiting remote past and future)

asymptotics and obtain (partial) confirmation of the thesis about soliton genesis

and soliton interaction raised in [Loubet 2006].

Keywords: integrable systems, soliton traveling waves, spectral theory, Darboux transformations, asymptotic

analysis.
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1. Introduction

The equation of Camassa and Holm (CH) [1993; 1994] is an approximate

one-dimensional description of unidirectional propagation of long waves in shal-

low water. In dimensionless space-time variables it reads

@m

@t
C .mD C Dm/.v/ D 0 (1)

in which D D @=@x D . � /0, m D .1 � D2/v and at any given time t in R, the

real valued function v D v.t; � / represents the fluid velocity (or equivalently the

height of the water’s free surface above flat bottom). It is an infinite dimensional

integrable bi-Hamiltonian system i.e., (1) is equivalent to

@m

@t
D J.m/

�

@HCH

@m

�

D fm; HCHgJ D fm; H C
CHgK D K

�

@H C
CH

@m

�

with Hamiltonians

�HCH WD 1
2

Z C1

�1

Œv2 C .v0/2� and � H C
CH WD 1

2

Z

vŒv2 C .v0/2�

linked, via their corresponding functional gradients, by the Lenard raising/lower-

ing rule [McKean 1993] as in J.m/.@HCH=@m/ D K.@H C
CH=@m/. The pair

J.m/ WD mD C Dm and K WD D.1 � D2/

of skew operators (with respect to the H0-inner product) being employed to de-

fine (via the H0-inner product) a pair of compatible Poisson brackets so that, for

a suitable class of functionals defined on phase space, a Lie algebra is specified

(see [Loubet 2006] for more details.) Moreover, just like most integrable nonlin-

ear evolution equations, CH equation (1) is also equivalent to the compatibility

condition of an overdetermined linear system comprising the so called Lax pair;

an evolution problem

@f

@t
D 1

2

@v

@x
f �

�

v C 1

2�

�

@f

@x
(2)

and a spectral problem, the acoustic equation with “potential” or “mass” m,

.1=4 � D2/f D �mf; (3)

where � and f denote, respectively, the eigenvalue and its associated eigenfunc-

tion. Here, compatibility means enforcing the matching of mixed derivatives

i.e., .f
�
/00 D .f 00/

�
where @=@t D . � /�

. It follows that (1) preserves the spectral

characteristics of (3) i.e., CH flow is isospectral.
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For real summable m the spectrum of (3) is purely discrete and simple i.e.,

spec.m/ D f�j .m/ 2 R, j D : : : ; �1; 0; 1; : : :g where �j is a real value for which

there exists a unique normalized solution fj of (3) in H1:

jfj j21 WD
Z

�j mf 2
j D

Z

Œf 02
j C 1

4
f 2

j � D 1:

Most significant is that, within the class of summable m, CH flow is nothing but a

superposition of commuting individual actions. Indeed, this opens the possibility

to analyze CH flow via the accumulated effects that each of its constituents

entail, the latter being presumed to be simpler to describe. And, indeed, the

flows based upon a Hamiltonian of the form H D 1=� where � is any eigenvalue

of (3) turned out to be manageable [Loubet 2006]. More specifically, our goal

was to elucidate as many qualitative properties of the full CH flow as possible

from a direct and detailed analysis of the changes that each of its constitutive

components produce when acting on generic initial data. We paid particular

attention to how much could be said about the emergence of solitons for the CH

flow by tracking down the effects of its individual actions. This investigation

was possible from a careful analysis of explicit exact formulas for the updates of

a generic initial profile run by any such elementary flow when expressed in terms

of its private “Lagrangian” scale. Denoting by XH the Hamiltonian vector field

associated to the Hamiltonian H , �t
XH

the corresponding flow map describing

the updates m WD .�t
XH

m0/ at time t of the elements m0 in phase space — here

the class of real valued summable functions — and �t
XH � the flow that it induces

on functionals of m0, a “Lagrangian” scale is specified by

@Lt
H

@t
D �

�

�t
XH �

@H

@m0

�

ı Lt
H ; L0

H D id

in which @H=@m0 denotes the functional gradient. We have proved:

THEOREM 1. The Hamiltonian flow of the CH hierarchy arising from H D 1=�

(where � is an arbitrary eigenvalue of the acoustic equation f 00
0

D .1=4 �
�m0/f0 which is associated to the summable initial data m0 D v0 �v00

0
) is inte-

grated explicitly in terms of the latter with the help of its private “Lagrangian”

scale specified by

@Lt
H =@t D �.�t

XH �@H=@m0/ ı Lt
H ; L0

H D id

and three “theta” functions (each of which depends on t and a spatial variable

denoted by � if unspecified, e.g., # D #.t; � I �m0/ and so on), namely
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#�

#

#C

D 1 C .et � 1/

Z �

�1

8

ˆ

ˆ

<

ˆ

ˆ

:

.f 0
0 � 1

2
f0/2

�m0f 2
0

.f 0
0 C 1

2
f0/2 :

(4)

To wit,

.�t
XH

v0/ ı Lt
H D #C

#�

�v0 � v0
0

2

�

C #�

#C

�v0 C v0
0

2

�

C

q

# 0
�# 0

C

�#�#C
.#C � #�/ C #

2�#�#C
.#C � #�/0 ;

@.�t
XH

v0/ ı Lt
H

@Lt
H

D �#C

#�

�v0 � v0
0

2

�

C #�

#C

�v0 C v0
0

2

�

C

q

# 0
�# 0

C

�#�#C
.#C � #�/0 C #

2�#�#C
.#C C #�/0

C
# 0

�# 0
C

�#�#C#
.#C � #�/

or, equivalently,

.�t
XH

m0/ ı Lt
H D

�

#�#C

#2

�2

m0 :

It is remarkable that all updated expressions arising in the study of individ-

ual flows are given in terms of the theta functions (4). In fact, McKean had

previously integrated the CH equation on the line by means of a triple of “theta-

like” Fredholm determinants [McKean 2003]. The nomenclature is prompted

from the fact that these determinants as well as their individual theta functions

counterparts (4) satisfy a number of properties which are reminiscent of those

met by Riemann’s theta function together with its translates. Notably, there is

only one theta-like (determinant) function, the others being produced from it by

infinitesimal addition [McKean 2001]. Moreover, these (determinants) functions

satisfy curious algebraic identities among themselves [McKean 2003]; the most

significant one being

#2 D #�#C C # 0
�#C � #�# 0

C:

In this paper, we will show that these underlying algebraic structures pre-

vail when considering composite flows of a particular but sufficiently general

class (see Theorem 2 below). Our aim is to offer a detailed account of the

integration of the aforementioned pair flows associated with the CH hierarchy

and discuss their large-time asymptotics. It will become clear to the reader that
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exactly the same method can be applied to integrate composite flows arising

from Hamiltonians involving an arbitrary number of eigenvalues up to the full

CH Hamiltonian which, when m is summable, satisfies

�HCH D 1
2

Z

mG � m D 1

4

X 1

�2
n

where G D e�j�j=2 is the Green’s function .1 � D2/G D ı, i.e., G � m D v;

the sum accounting for all spectrum. Henceforth, we will focus in leading the

reader along the hints and observations embodying the concatenation of lucky

occurrences that culminate in the final expressions that substantiate the follow-

ing main result.

THEOREM 2. The Hamiltonian flow of the CH hierarchy arising from H D
.1=�2

C C 1=�2
�/=4 (in which �˙ denote an arbitrary pair of eigenvalues of the

acoustic equation .f 0
˙/00 D .1=4��˙m0/f 0

˙ which is associated to the summa-

ble initial data m0 D v0 � v00
0

) is integrated explicitly in terms of the latter with

the help of its private “Lagrangian” scale, specified by

@Lt
H =@t D �.�t

XH �@H=@m0/ ı Lt
H ; L0

H D id

and three “theta” determinants (each of which depends on t and a spatial vari-

able denoted by � if unspecified, e.g., � D �.t; � I �m0/ and so on), namely

��

�

�C

WD det

2

6

6

6

6

6

4

Id C E.t; �/

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Z �

�1

��;0 ˝ ��;0

�˚0
Z �

�1

�C;0 ˝ �C;0

3

7

7

7

7

7

5

: (5)

where Id= the 2 � 2 identity matrix,

�W D
�

�� 0

0 �C

�

; E.t; �/W D .et=.2�/ � Id/;

��;0W D
�

.f 0
�/0 � 1

2
f 0

�

.f 0
C/0 � 1

2
f 0

C

�

; �C;0W D
�

.f 0
� /0 C 1

2
f 0

�

.f 0
C/0 C 1

2
f 0

C

�

;

and

˚0 WD
Z �

�1

m0f0 ˝ f0 D
�

'0
�=�� '0

'0 '0
C=�C

�

where f0 WD .f 0
� ; f 0

C/| and

'0 WD
Z �

�1

m0f 0
�f 0

C I '0
˙ WD

Z �

�1

�˙m0.f 0
˙/2 :
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To wit,

.�t
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H D ��

�C

�

v0 C v0
0

2
C 1

2
�

|
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�
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2
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�
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�
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0

2
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2
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|
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�

� �C

��

�

v0 � v0
0

2
� 1

2
�

|
�;0

.M�/�1E��;0

�

where M.t; � / WD Id C E.t; �/�˚0 (so that � D det M) or, equivalently,

.�t
XH

m0/ ı Lt
H D

�

���C

�2

�2

m0 :

The algebraic similitude of the formulas in Theorem 1 and Theorem 2 might, in

part, be at the core of why most interesting features pertaining to the full flow

are already reflected at the level of its components. Furthermore, we interpret

this fact as stronger evidence substantiating the nature, interplay, and relevance

of individual flows to the understanding of the underlying mechanisms that are

involved in soliton formation and soliton interactions.

Indeed, the explicit formulas of Theorem 1 were shown to be valuable while

conducting the large-time asymptotic analysis in that they afforded a mathe-

matical treatment to establish the eventual emergence (provided we waited long

enough) of a soliton escaping to infinity at a speed commensurable to the eigen-

value characterizing the individual flow at play. See [Loubet 2006].

THEOREM 3. Assume � > 0, and let the real summable initial data m0 D v0�v00
0

be such that m0 D o.1/ for x � 0 and disposed as in signf�m0.x/g D signfxg.

Then, provided that we wait long enough, we see that, to leading order, the

velocity profile (run by the individual flow arising from the Hamiltonian H D
1=�) shapes itself like the escaping soliton. In symbols:

Lt
H .x/ 2 ŒLt

H .R�.t; �//; Lt
H .RC.t; �//� for all x;

ˇ

ˇ

ˇ

ˇ

Œ.�t
XH

v0/ ı Lt
H �.x/ � 1

2�
e�jLt

H
.x/�Lt

H
.R0.t//j

ˇ

ˇ

ˇ

ˇ

D o.1/ as t " C1;

where
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Lt
H .R�.t; �// C t D � log

�

1 C �

�

�

C o.1/

Lt
H .R0.t// C t D o.1/ as t " C1;

Lt
H .RC.t; �// C t D C log

�

1 C �

�

�

C o.1/

and R0, R˙ are, for sufficiently large times, defined respectively by

#.t; R0.t// WD 0; and #˙.t; R�.t; �// WD 1 C �˙1

� being a nonnegative parameter.

Note that the signature disposition signf�m0.x/g D signfxg on initial data m0

guarantees breakdown (i.e., v0 # �1 for some 0 < t < C1; see [McKean

1998; McKean 2004]) or, what is the same thing, the vanishing of #.t; � / for a

sufficiently large time

t > T WD log
�

1 C
�R 0

�1 ��m0f 2
0

��1�

at a unique site R0.t/ < 0. Actually, the fact that the soliton of Theorem 3 (es-

caping to �1) has its peak (for t > T ) precisely at the root R0.t/ of #.t; � / D 0

is merely accidental. Indeed, even in the case where no breakdown occurs (i.e.,

where # no longer vanishes), one can adapt the analysis as in [Loubet 2006]

to conclude about the genesis a soliton moving at the right of the origin (see

concluding remarks in that reference). As the direction and speed of soliton

propagation are given, respectively, by the signature and magnitude of the un-

derlying eigenvalue, we see that similar large-time asymptotic behavior (as that

following the results of Theorem 3 describing events way ahead into the future)

would take place when going far back into the past.

What is more, the algebraic robustness of our formulas as t ! ˙1 offered

further quantitative confirmation of the qualitative description of soliton genesis

[Loubet � 2007a; � 2007b]. Indeed, as t ! ˙1, the soliton that emerged

escapes to infinity leaving behind a stationary profile limt!˙1Œ.�t
XH

v0/ıLt
H

�.

We have corroborated these facts from the energetic and spectral standpoints

with the help of the exact limiting formulas describing the latter, and we have

shown that the energy of the residual profile is less than the energy of the initial

profile by an amount that corresponds exactly to the energy that is embodied (at

any time j t j<C1) by the escaping soliton. On the other hand, the isospectrality

of individual flows, spec Œ.�t
XH

m0/ı Lt
H

� D spec m0, though true for any given

j t j < C1, ceases to hold in the limits t ! ˙1. Indeed, the maps

m0 ‘ lim
t!˙1

Œ.�t
XH

m0/ ı Lt
H �
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from initial to residual profiles have a Darboux-type character in that precisely

the eigenvalue � of (3) associated to m0 from which the underlying individual

flow was based upon is excised, i.e., it is no longer part of

spec
�

lim
t!˙1

Œ.�t
XH

m0/ ı Lt
H �
�

;

the discrete spectrum associated to the stationary profiles. In short, the discrete

train of solitons generated by a suitable superposition of finitely many individual

actions should be regarded as a caricature of the infinite soliton train describing

the large-time asymptotics of the full CH model. Indeed, under current evidence

[Loubet 2006], it is hard to disbelieve that the aforementioned pair flows (with

�� <0<�C) will eventually give rise to symmetrically disposed pairs of solitons

escaping from the origin, each with a fixed speed (which must be) regulated by

their corresponding eigenvalue. We also elaborate on some of these themes

in the present paper. Nonetheless, a rigorous mathematical verification of this

intuitive picture may not be, a priori, as simple to establish as in the case of indi-

vidual flows. On the one hand, the formulas pertaining to the pair flows involve

theta-like determinants which in principle are harder to manipulate. More sig-

nificantly, the waiting times before solitons occur need now to be distinguished

quantitatively and not merely qualitatively (“long enough”) as before. Indeed,

the asymptotic analysis that is related to a Hamiltonian depending on a couple of

distinct spectral values would require a precise estimate of the patience one must

bear — which should depend somehow on the ratio of the intervening eigenval-

ues — before it is possible to detect a slower developing soliton trailing behind a

faster sibling. In any case, even if such an attempt is proved to be successful —

which in our opinion would constitute an instructive exercise — once we move

up to the next stage in complexity, say, when considering “quadruple” flows

and beyond, there is little hope that we would be able to discern the large-time

asymptotics directly from the corresponding theta-like determinants of matrices

of higher rank with components depending (rationally) on the eigenvalues. In

short, we believe that a new approach is required to reach a concise mathematical

understanding of soliton train formation associated to the CH equation. Be that

as it may, our formulas might spur useful potential numerical experiments that

might shed light into aspects of the genesis of solitons and their interactions

(prior to their escape at infinity) that may encourage new promising strategies.

Indeed, the algebraic similarity of the recipes that arise in each of the cases that

we have considered so far, with the Fredholm analogues which McKean [2003]

employed to give account of CH on the line, cannot simply be accidental.
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2. Preparations

2.1. Identification of the pair flow. Let H D .1=�2
C C 1=�2

�/=4 be the

Hamiltonian corresponding (up to the constant factor 1=4) to the reciprocal of

the squares of any pair of eigenvalues �˙ of the spectral problem (3 with real

summable m0), its associated H1 eigenfunctions f 0
˙ normalized as in

jf 0
˙j21 D

Z

�˙m0.f 0
˙/2 D

Z

Œ..f 0
˙/0/2 C 1

4
.f 0

˙/2� D 1: (6)

(Here we have used the notation established on page 272.) A routine computa-

tion establishes that the H0-functional gradient of the reciprocal of any eigen-

value (spectral invariant) is given by the square of the associated (normalized)

eigenfunction, so that

@H

@m0

D 1

2��
.f 0

�/2 C 1

2�C
.f 0

C/2 :

Hence, the Hamiltonian pair flow is regulated by

m
� D .mD C Dm/

�

1

2��
f 2

� C 1

2�C
f 2

C

�

; m.0; � / D m0 (7)

where f˙ WD .�t
XH �f 0

˙/ denote the normalized time t updates of f 0
˙.

2.2. Induced flow on eigenfunctions. For summable m0, the spectrum of (3)

is discrete and simple [Loubet 2006]. Hence, as eigenfunctions are well-defined

functionals of m0, their variation is to be inferred from that of the potential,

e.g., the evolution of the updates f˙ of the normalized eigenfunctions f 0
˙ is

dictated from that of m0 and the normalization constraint. More precisely, it

is prescribed by the solution of the inhomogeneous acoustic problem — which

arises after taking the Lie derivative of the original acoustic problem along the

vector field XH i.e., after differentiating with respect to t the (time t ) updated

acoustic problem associated to f˙ — which conforms to the preservation of nor-

malization. Let

A˙ WD Œ1=4 � D2 � �˙m� :

Then, by (7), the motion XH Œm�.f˙/ of the updates f˙ satisfies

A˙.XH Œm�.f˙// D �˙f˙.XH Œm�/ D �˙f˙J

�

1

2��
f 2

� C 1

2�C
f 2

C

�

;
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where J�J.m/. Now, from the results in [Loubet 2006] pertaining to individual

flows, we know that

˝˙ WD 1
2
f˙ � f˙

Z �

�1

�˙mf 2
˙ D f˙.1

2
� '˙/;

˘˙ WD �f�

Z �

�1

�˙mf�fC D ��˙f�'

satisfy A˙.˝˙/ D �˙f˙J.f 2
˙/ and A˙.˘˙/ D �˙f˙J.f 2

�/. Then, as A˙

and J are linear, we have

A˙

�

1

2�˙

˝˙ C 1

2��
˘˙

�

D �˙f˙J

�

1

2��
f 2

� C 1

2�C
f 2

C

�

:

In these expressions

'˙ WD .�t
XH �'0

˙/ and ' WD .�t
XH �'0/

denote the time t updates of, respectively,

'0
˙ WD

Z �

�1

�˙m0.f 0
˙/2 and '0 WD

Z �

�1

m0f 0
�f 0

C; (8)

as the action of the (induced) flow commutes with integration,

.�t
XH ��˙m0.f 0

˙/2/ D �˙.�t
XH

m0/.�t
XH �f 0

˙/2 � �˙mf 2
˙

and so on. Hence, we are tempted to declare that

f
�

˙ D XH Œm�.f˙/ WD 1

2�˙

˝˙ C 1

2��
˘˙ D f˙

2�˙

.1
2

� '˙/ � �˙f�

2��
' : (9)

To convince ourselves that this is the correct recipe, we need to check whether

or not, under such evolution, the norm is preserved. The verification is simple:

Let N˙.t/ WD
R

�˙mf 2
˙. Then, according to the “tentative” prescription (9),

N
�

˙ D
Z
�

�˙f 2
˙J

� f 2
�

2��
C

f 2
C

2�C

�

C 2�˙mf˙

� f˙

2�˙

.1
2

� '˙/ � �˙f�

2��
'
�

�

:

As J is skew-symmetric and f˙ vanish at infinity, the integral of f 2
˙J.f 2

˙/

vanishes. On the other hand, f 2
˙J.f 2

�/ D
�

mf 2
�f 2

C C.�˙ ���/'2
�0

, and since

eigenfunctions associated to different eigenvalues are orthogonal (
R

mf�fC D0)

the last display reduces to

N
�

˙ D 1

2�˙

N˙.1 � N˙/

from where it is plain that N˙.t/ � 1 for every j t j < C1 since N˙.0/ D 1. In

other words, the right-hand side of (9) dictates the evolution of f˙ that conforms

to normalization.
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2.3. Constants of motion and private Lagrangian scale. In addition to the

infinite number of independent functionals in involution which are preserved

by any flow of the CH hierarchy as follows from Magri’s observation [1978]

that compatibility of brackets is equivalent to saying that the class of raisable

functions is one and the same as the class of lowerable ones and the Lenard

scheme (starting from the lower/upper pair HCH and H C
CH) alluded to in the

introduction, the CH equation has another infinite collection of fundamental

invariants. They are defined as follows. Every nice functional H defined on

phase space gives rise to a flow �t
XH

i.e., a one-parameter group of diffeo-

morphisms of a domain of phase space into itself characterized by the solution

curves m WD .�t
XH

m0/ starting at m0 of the dynamical system — in an under-

lying “original” spatial scale x — associated to the (locally Lipschitz) Hamil-

tonian vector field: m
� WD XH Œm� D J.@H=@m/. It also gives rise to a new

“Lagrangian” scale Lt
H

.x/ DW x.t; x/ characterized by x
� D �.@H=@m/ ı x,

x.0; x/ D x. That is, at any given time t up to breakdown [McKean 1998;

2004], the map x.t; � / D Lt
H

is a diffeomorphism of the real line issuing from

the identity. The upshot being that, at any time t before (possible) breakdown

and for every x in R, Œ.�t
XH

m0/ ı Lt
H

�.x/ � Œ@Lt
H

.x/=@x�2 is a constant of

motion � m0.x/. The verification is straightforward (see Remark 4 below). In

particular, for the pair flow in question the associated Lagrangian scale obeys

x
� D �

�

1

2��
f 2

� C 1

2�C
f 2

C

�

ı x ; x.0; � / D id : (10)

REMARK 4. The fundamental invariant

Œ.Lt
H /0�2.�t

XH
m0/ ı Lt

H D m0 (11)

— or .x0/2m ı x D m0 for short — in combination with the explicit form of

the Green’s function G D e�j�j=2 through which v D G � m is connected to

m show that the integration of any flow of the CH hierarchy boils down to the

determination of the associated Lagrangian scale. Indeed, the formulas of The-

orem 2 are obtained essentially following the explicit characterization of Lt
H

.

The invariants (11) originate from intrinsic symmetries [Khesin and Misiołek

2003]. Indeed, CH (1) satisfies the least-action principle as it is a reexpression

of geodesic flow on the group of smooth orientation preserving compressible

diffeomorphisms on the line with respect to the right-invariant H1-metric as-

similated as the energy [Misiołek 1998]. On the other hand, Noether’s theorem

guarantees the existence of a first integral from each one-parameter subgroup

that leaves the energy functional unchanged. By right-invariance, the elements

of every orbit emanating from the identity constitute such a subgroup, and since

these are plenty (one such for each initial direction in the tangent space at the

identity alias the Lie algebra associated to the group); the corresponding infinite



272 ENRIQUE LOUBET

collection of associated invariants turns out to be embodied in a (one-parameter)

identity (11). In other words, the CH equation (1) is nothing but a reexpression

of the (time) invariance of the right-hand side of (11). More precisely, the Euler-

Lagrange equation describing the critical points of the right-invariant H1-energy

functional reads

Œ.Lt
HCH

/0�2 � .1/ ı Lt
HCH

D .11/
�

H DHCH
D 0 :

in which Lt
HCH

is the “true” Lagrangian scale, that is,

.Lt
HCH

/
� D v ı Lt

HCH
and L0

HCH
D id:

McKean [2003] (see also [Loubet 2006]) made the crucial observation that the

first integral (11) remains in force for all other flows (i.e., flows originating from

any Hamiltonian H ) of the CH hierarchy provided that in each case a suitable

“Lagrangian” scale is employed.

NOTATION. From now on, m.t; x/ will be short for the more cumbersome

expression .�t
XH

m0/.x/ describing the evaluation at x of the time t update of the

solution curve starting at m0, of the dynamical system (in phase space) defined

by the Hamiltonian vector field XH , as explained in Section 2.3. Similarly, we

will denote by

f˙.t; x/ WD .�t
XH �f 0

˙/.x/

the evaluations at x of the (normalized time t ) updates .�t
XH �f 0

˙/ of the nor-

malized eigenfunctions f 0
˙ associated, respectively, to the spectral parameters

�˙, and so on. Moreover, whenever not confusing, we will occasionally omit

the explicit dependence and write m and f˙ plain for brevity. In other words, all

expressions with an upper/lower index “0” refer to (and hence involve purely)

initial data whereas their counterparts where the label “0” is dropped account

implicitly for their (time t ) updates when acted upon by the (induced pair) flow.

We emphasize that all initial and updated expressions are functions of an un-

derlying independent spatial variable (denoted by � if left out), unspecified

unless explicitly stated otherwise. In addition, in an effort to avoid unnecessary

details which should be clear from the context, we omit writing explicitly the

dummy variables and the differentials intervening in the integrands of integral

expressions (for example,
R �

�1 eym0 is short for
R �

�1 eym0.y/dy and so on.)

Also, sometimes the same expressions will be used to denote both the functions

and their evaluations at x. For example, depending on the context, when we

write
R x

we might mean the function
R x.t;� /

, as in (13) below, or its evaluation

at x, namely,
R x.t;x/

, as in (19a). Finally, identities employing subscript ˙ are

short for two such expressions, one with subscript C and one with � .
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3. The road to integration: lucky facts

3.1. Building up integrable expressions. As pointed out in Remark 4, the

integration of the pair flows succumbs to the computation of their associated

Lagrangian scale. This suggests that the key to integration is to play around with

“sensible” objects involving the latter. The idea is to look for expressions incor-

porating the Lagrangian scale and functions of interest, whose evolution (under

the pair flow) leads to integrable formulas from which to infer subsequently the

integration of the items we actually care about. As in the case pertaining to

individual flows [Loubet 2006] we start by analyzing whether

.�t
XH �'0

˙/ ı Lt
H WD

�

�t
XH �

Z �

�1

�˙m0.f 0
˙/2

�

ı Lt
H

i.e., the composition of the time t update '˙ of '0
˙ with the diffeomorphism

on the line given by the Lagrangian scale at t (i.e., Lt
H

) can be expressed in an

alternative closed form. To this end, we compute the time derivative of '˙ ıx D
R x

�1 �˙mf 2
˙ and explore to what extent the resulting equation is integrable.

Direct computation using (7) and (9) yields

Œ'˙ ı x�
� D �˙.mf 2

˙/ ı x � x�

C
Z x

�1

�

�˙f 2
˙J

� 1

��
f 2

� C 1

�C
f 2

C

�

C 2�˙mf˙

� f˙

2�˙

.1
2

� '˙/ � �˙f�

2��
'
�

�

:

As f 2
˙J.f 2

˙/ D
�

mf 4
˙

�0
and f 2

˙J.f 2
�/ D

�

mf 2
�f 2

C C .�˙ � ��/'2
�0

it follows

by (10) after cancellations and appropriate identifications that

Œ'˙ ı x�
� D

�

1

2�˙
'˙.1 � '˙/ � �˙

2
'2

�

ı x : (12a)

In sharp contrast with the analogue equation arising in the study of individual

flows [Loubet 2006], equation (12a) is not an ODE, as the presence of the term

�˙'2=2 shows; see (8). It accounts for the mutual interaction of the underlying

individual flows comprising the pair flow. Hence, as it stands, equation (12a)

can only be useful if we manage somehow to determine, a priori, ' ı x. Now,

analogous manipulations to the ones leading to (12a) show that

Œ' ı x�
� D

��

1

2��
.1

2
� '�/ C 1

2�C
.1

2
� 'C/

�

'

�

ı x : (12b)

Neither of the coupled equations (12a) and (12b) pertaining to the evolution

under the pair flow of the Lagrangian-scaled valued updates of '0
˙, respectively
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'0, are seen to be integrable when looked at individually, but if we combine

these expressions suitably in a (symmetric) matrix as in

˚0 WD
� 1

��
'0

� '0

'0
1

�C
'0

C

�

D
Z �

�1

m0f0 ˝ f0; (12c)

where f0 WD .f 0
� ; f 0

C/|, we learn that (12a) and (12b) translate into

Œ˚ ı x�
� D

�

�1
2
˚2 C 1

4
Œ��1˚ C ˚��1�

�

ı x; (12d)

where ˚ WD .�t
XH �˚0/ and � WD diag.��; �C/. This is the kind of luck that we

were after: all we have to do now is solve an ODE! The last term on the right-

hand side of (12d) suggests an ansatz of the form ˚ ıx WD et=.4�/S.t; � /et=.4�/.

By direct computation, the latter is seen to satisfy

Œ˚ ı x�
� D 1

4
Œ��1˚ C ˚��1� ı x C et=.4�/

�

S .t; � /et=.4�/ :

We would be done if we could find S.t; x/ such that S.0; x/ D ˚0.x/ and

et=.4�/S
�
.t; � /et=.4�/ D �1

2
Œ˚ ıx�2. Now, the derivative of the inverse of a ma-

trix is quadratic, i.e., .O�1/
� D �O�1O

�
O�1, so that if S.t; x/ WD P.x/O�1.t; x/

then et=.4�/S
�
.t; � /et=.4�/ D �Œ˚ ıx�e�t=.4�/O

�
O�1et=.4�/, and thus, it would

suffice to find O such that e�t=.4�/O
�
O�1et=.4�/ D 1

2
˚ ı x or, what is the

same thing, O
� D 1

2
et=.2�/P D .�et=.2�/P/

�
. This implies that O.t; x/ D

�et=.2�/P.x/ C D.x; �/ for some 2� 2 matrix D. Finally, we observe that the

initial constraint, ˚0 D P.�PCD/�1, can be met by setting D. �; �/ WD Id��P

and P WD ˚0. In short, the solution of (12d) is given by

˚ ı x D et=.4�/˚0ŒId C .et=.2�/ � Id/�˚0��1et=.4�/ : (13)

It will be helpful to introduce a shorthand and record the latter (or its evaluation

at x: see Notation on page 272) as

Œ˚ ı x�.x/ D T.t/˚0.x/ŒM.t; x/��1T.t/;

where

M.t; x/ WD Id C E.t; �/�˚0.x/ D Id C C.t; �/˚0.x/ (14a)

in which

C.t; �/ WD E.t; �/�; E.t; �/ WD .T2.t/ � Id/; T.t/ WD et=.4�/ : (14b)

For reasons that will be clear in a moment, we also need to investigate whether

the evolution of other (Lagrangian-scaled valued updates of) integral expressions

involving the eigenfunctions f 0
˙, which are associated to the pair of eigenvalues

�˙ that define the flow and the so called “improper” eigenfunctions e˙ � =2 of the

acoustic equation (� D 0 is not in the spectrum of (3 with summable m0)) admit
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alternative spellings. In other words, we play the same game as before with the

exception that this time we look at the evolution of the truncated integrals

F
#
0;˙

WD
Z �

�1

�˙m0f 0
˙ey=2 D �e � =2..f 0

˙/0 � 1
2
f 0

˙/ D �Œf 0
˙; e � =2� ;

F
"
0;˙

WD
Z C1

�

�˙m0f 0
˙e�y=2 D e� � =2..f 0

˙/0 C 1
2
f 0

˙/ D Œf 0
˙; e� � =2� ;

(15a)

where the bracket Œf; g� is short for the Wronskian f 0g�fg0. These expressions

can also be written in integrated form in terms of Wronskians. It develops after

some work that F
#
˙ WD .�t

XH �F
#
0;˙

/ and F
"
˙ WD .�t

XH �F
"
0;˙

/ satisfy

ŒF
#
˙ ı x�

� D
� 1

2�˙

.1
2

� '˙/F
#
˙ � �˙

2��
'F

#
�

�

ı x;

ŒF
"
˙ ı x�

� D
� 1

2�˙

.1
2

� '˙/F
"
˙ � �˙

2��
'F

"
�

�

ı x:

To compute the solutions of these coupled systems of equations (and hence

produce the desired tentative new spellings), we are led to pack the expressions

(15a) into the vectors

F
#
0

WD
 

F
#
0;�

=��

F
#
0;C

=�C

!

D ���1

�

Œf 0
� ; e � =2�

Œf 0
C; e � =2�

�

D �e � =2��1��;0;

F
"
0

WD
 

F
"
0;�

=��

F
"
0;C

=�C

!

D ��1

�

Œf 0
� ; e� � =2�

Œf 0
C; e� � =2�

�

D e� � =2��1�C;0;

(15b)

where �˙;0 WD ˙.1
2

˙ D/f0, i.e.,

��;0 WD
�

.f 0
�/0 � 1

2
f 0

�

.f 0
C/0 � 1

2
f 0

C

�

and �C;0 WD
�

.f 0
�/0 C 1

2
f 0

�

.f 0
C/0 C 1

2
f 0

C

�

; (15c)

so that �.1
2

˙D/��;0 D �m0f0. Indeed, the evolution of their respective com-

ponents (as displayed lines above) is gathered nicely in the system of uncoupled

ODE’s

ŒF# ı x�
� D f1

2
.1

2
��1 � ˚/F#g ı x;

ŒF" ı x�
� D f1

2
.1

2
��1 � ˚/F"g ı x ;

˚ ı x being already known from (13). Since F# WD .�t
XH �F

#
0
/ and F" WD

.�t
XH �F

"
0
/ differ only in their initial values (F

#
0

and F
"
0

), we only need to deal

further with either of them, say F#. Direct computation shows that the educated
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guesses

F# ı x D et=.4�/Œ.M.t; � //|��1F
#
0
;

F" ı x D et=.4�/Œ.M.t; � //|��1F
"
0
;

(16)

with M as in (14a), provide the answer. Indeed, the time derivative of the right-

hand side of the second line yields

T
�
.M|/�1F

#
0

� T.M|/�1.M|/
�
.M|/�1F

#
0

:

As T
� D 1

4
��1T and .M|/

� D 2˚0�TT
� D 1

2
˚0T2 — see (14a) and (14b) —

the latter reduces to
�

1
4
��1 � 1

2
T.M|/�1˚0T

�

ŒF# ı x� :

The verification is completed by appealing to the identity

.M|/�1˚0 D ˚0M�1 (17)

and the preliminary integration result (13) so that

T.M|/�1˚0T D T˚0M�1T � ˚ ı x :

4. Determination of the Lagrangian scale

The trick to get an explicit formula for the Lagrangian scale x D x.t; x/ of

section 2.3 in terms of time t , the original spatial scale x, and initial data, is to

“peal off,” in an orderly fashion, the integrated expressions of section 3. More

precisely, we start by differentiating with respect to the underlying variable x

both sides of the identity (see (13), (12c), (8), and the notation clarifications on

page 272)
Z x

�1

mf ˝ f D Œ˚ ı x�.x/ D et=.4�/˚0.x/ŒM.t; x/��1et=.4�/

where f WD .f�; fC/| D .�t
XH �f0/ is the update of f0 WD .f 0

� ; f 0
C/|. Writing

M � Id C C˚0 for simplicity as in (14a), we get

.mf ˝ f / ı x � x0 D et=.4�/
�

˚0M�1
�0

et=.4�/ :

From (17) and the equality M| D Id C ˚0C (C and ˚0 being symmetric) we

see that .˚0M�1/0 is equal to

.Id � ˚0M�1C/˚ 0
0M�1 D .Id � .M|/�1˚0C/˚ 0

0M�1 D .M|/�1˚ 0
0M�1 :

As ˚ 0
0

D m0f0 ˝ f0, the latter in combination with the fundamental invariant

(11), reduce (by associativity and linearity) the previous to last display to m0=x0

times

.f ˝ f / ı x D x0.et=.4�/.M|/�1f0/ ˝ .et=.4�/.M|/�1f0/:
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As m0 is not identically zero and since x0 > 0 (at least for small times; see (10)),

we use linearity once more to recognize that

f ı x D
p

x0et=.4�/Œ.M.t; � //|��1f0 : (18)

It is not surprising that the determination of the Lagrangian-scaled update of

f0 given by the left-hand side of (18) would follow once we have an explicit

formula for x. In fact (18) should be interpreted the other way around, namely,

as a step towards the determination of x: by equation (10), the trace identity

Tr
�

1
2
��1.f ˝ f / ı x

�

D
� 1

2��
f 2

� C 1

2�C
f 2

C

�

ı x � �x
�
;

in combination with the partial result (18) leads to

x
� C � .t; x/x0 D 0;

in which � .t; x/ is short for the trace of

1
2
��1.et=.4�/Œ.M.t; x//|��1f0.x// ˝ .et=.4�/Œ.M.t; x//|��1f0.x//:

This is a first order linear evolution equation from which, in principle, the La-

grangian scale can be computed, x.0; x/ D x being known. But to find an

explicit expression for the solution of this seemingly trivial equation (say, by

the method of characteristics) is not an easy matter. We actually take a different

route that bumps into yet another piece of grace. The “problem” with (18) is

that we do not have sufficient information about the shape of f ıx to infer that

of x. To fix this, we apply the previous method to identities that incorporate

the improper eigenfunctions e˙ � =2 (� D 0 is not in spec.m0/ of (3) for sum-

mable m0) whose shape is explicit and, more importantly, fixed for all times,

improper eigenfunctions being insensitive to the potential. As a matter of fact,

the computation of the scale x is not particularly sensitive to the actual shape of

improper eigenfunctions but rather, and this is the key, to the fact that they are

inverses of one another as we now show. Focus on the (evaluations at x) of the

Lagrangian-scaled updates of (15a) for which we have found explicit alternative

expressions (16), namely,

Z x

�1

ey=2mf DŒF# ı x�.x/ D et=.4�/Œ.M.t; x//|��1F
#
0
.x/; (19a)

Z C1

x

e�y=2mf DŒF" ı x�.x/ D et=.4�/Œ.M.t; x//|��1F
"
0
.x/: (19b)

Now, keeping in mind identity (11) i.e., .x/02m ı x D m0 for short, definitions

(14a) and (12c), the fact that f0 ˝f0 D f0f0
| (for column vectors f0) and the
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partial result (18), the x-derivative of both ends of (19a) yields (omitting here

and there the explicit x-dependence)

m0

x0
Œf ı x�ex=2 D m0

x0
Œf ı x�

p
x0ex=2

�

1 � e�x=2.Cf0/|..M|/�1F
#
0
/
�

:

A similar expression follows from differentiating (19a) instead (the next display

embodies both of them). Hence, dropping the common factor m0Œf ı x�=x0,

which is assumed to be different from zero (as is the case at least for small times),

by linearity and appealing to the characterizations (15b) and (15c) involving the

initial data, we have

e˙x=2 D
p

x0e˙x=2
�

1 C .Cf0/|..�M|/�1��;0/
�

:

It is clear that the desired expressions for x0 and in fact x can be obtained

simply by multiplying, respectively, dividing the above identities. But before we

actually do that, we wish to find more palatable expressions for the intervening

factors. The coefficients on the right-hand side of the last display are of the form

1 C a
|
b (for column vectors a and b), so we can invoke the identity

1 C a
|
b � 1 C a � b D det ŒId C a ˝ b�

to express them in terms of determinants. To wit,

1 C .Cf0/|..�M|/�1��;0/ D det ŒId C E.˚0� C f0 ˝ ��;0/�= det M; (20)

where in the last step we used the formula for the determinant of a product of

matrices and the fact that Id C a ˝ .�M|/�1
b equals

Id C aŒ.�M|/�1
b�| D Id C a ˝ b.M�/�1 D ŒM� C a ˝ b���1M�1;

so that by (14a)

Id C .Cf0/ ˝ ..�M|/�1��;0/ D �.Id C E.˚0� C f0 ˝ ��;0//��1M�1 :

Moreover, recalling (12c) we have by linearity, the acoustic equation (3), and

definitions (15c) that ˚0� is equal to

Z �

�1

f0 ˝.m0�f0/ D
Z �

�1

f0 ˝.1=4�D2/f0 D �
Z �

�1

f0 ˝.1
2

˙D/��;0 :

Hence, upon integrating by parts, we see that

˚0� C f0 ˝ ��;0 D
Z �

�1

��;0 ˝ ��;0 :
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Now, substituting this expression into (20) and recalling the definitions of the

(evaluations at x of the) theta determinants (5) (bear in mind that all expressions

following (19a) are assumed to be implicitly evaluated at x), we learn that

e˙x=2 D
p

x0e˙x=2 ��

�
:

Finally, as advertised, looking at the ratio and the product of the latter identities

we get

ex D ex ��

�C
; respectively x0 D �2

���C
: (21)

REMARK 5. Actually, these identities are equivalent. Indeed, x.t; ˙1/ D ˙1
since �˙.t; �1/D1 and �˙.t; C1/Det.��1

� C��1

C /=2 by inspection of (5) and

the normalizations of f 0
˙; see (6). Also, note that �˙ vanish nowhere, being

the determinants of matrices

M˙.t; x/ WD Id C E.t; �/

Z x

�1

�˙;0 ˝ �˙;0 (22)

(see (14b) and (15c)) with positive definite associated quadratic forms.

REMARK 6. Differentiating with respect to x the first expression in (21) and

using the substitution afforded by the second we get the curious quadratic iden-

tity

�2 D ���C C �0
��C � ���0

C

relating the theta determinants; compare with [McKean 2003; Loubet 2006].

REMARK 7. The integration of the pair flow is now more or less completed.

Indeed, substituting the second identity of (21) into identity (11) yields

.�t
XH

m0/ ı Lt
H D

�

���C

�2

�2

m0 :

Hence, all that remains is to compute .�t
XH

v0/ıLt
H

D .G� .�t
XH

m0//ıLt
H

as

is done in Appendix B of [Loubet 2006]. Nonetheless, in the next section we

will present a more direct route to the formulas in Theorem 2.

REMARK 8. The logarithmic (time) derivative of the first identity in (21) shows

that x
� D .log det.M�M�1

C //
�
. Hence, upon invoking the identity .log det Q/

� D
Tr.Q

�
Q�1/ valid for any differentiable square matrix Q, we obtain an alternative

description of the right-hand side of (10). To wit,

Tr.1
2
��1.f ˝ f / ı x/ D

�

1

2��
f 2

� C 1

2�C
f 2

C

�

ı x D Tr.M
�
CM�1

C � M
�
�M�1

� /:

We invite the reader to check this, starting directly from (22) with the help of

(21) and the identity preceding (18). More significantly, upon substituting (21)
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into (18), we obtain an exact formula for the Lagrangian-valued time t update

of f0. To wit,

f ı x D �p
���C

et=.4�/Œ.M.t; � //|��1f0; (23a)

or, componentwise,

f˙ ı x D 1p
���C

et=.4�˙/
�

f 0
˙ C .et=.2��/ � 1/Œf 0

˙'0
� � ��f 0

�'0�
�

: (23b)

Similarly, one can compute the Lagrangian-valued (time t ) updates of eigen-

functions of (3) other than f˙ but that is not our purpose here.

5. Integration of the pair flow

In this section we finally show how to exploit the integrated expressions of

section 3 and section 4 — notably the characterization of the Lagrangian scale

(21) — to obtain the explicit formulas of Theorem 2. The trick is to stick to the

successful algorithm that was used systematically in the bulk of the previous

sections and apply it to

V
#
0

WD
Z �

�1

eym0 D e � .v0 � v0
0/; V

"
0

WD
Z C1

�

e�ym0 D e� � .v0 C v0
0/:

It develops (using (15a) and (16)) that

ŒV# ı x�
� D �1

2
Œ.F#

�=��/2 C .F
#
C=�C/2� ı x � �1

2
jF# ı xj2;

ŒV" ı x�
� D 1

2
Œ.F"

�=��/2 C .F
"
C=�C/2� ı x � 1

2
jF" ı xj2;

where V# WD .�t
XH �V

#
0
/, and V" WD .�t

XH �V
"
0
/. Closer inspection of the squares

of the Euclidean norms in the right-hand side of the equations above via the

preliminary integrations (i.e., alternative spellings) of F# ıx and F" ıx reveals

the last piece of the puzzle. Here is how. By identities (16), keeping in mind the

definitions (14a), and omitting writing explicitly the dependence on independent

variables, we have

jF# ı xj2 D .T.M|/�1F
#
0
/|.T.M|/�1F

#
0
/ D .F

#
0
/|M�1T2.M|/�1F

#
0

jF" ı xj2 D .T.M|/�1F
"
0
/|.T.M|/�1F

"
0
/ D .F

"
0
/|M�1T2.M|/�1F

"
0

:

Now, since 1
2

T2˚0 D M
�

by (14a), and because .M�1/
� D �M�1M

�
M�1,

�1
2

M�1T2.M|/�1 D �M�1M
�
˚�1

0 .M|/�1 D .M�1/
�
M˚�1

0 .M|/�1 :

Moreover, by identity (17)

M˚�1
0 .M|/�1 D M.M|˚0/�1 D M.˚0M/�1 D ˚�1

0 :
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Altogether, from the last two displays and the fact that the functions ˚0, F
#
0

and F
"
0

are independent of t , we learn that �1
2
jF# ı xj2 and 1

2
jF" ı xj2 can be

written as time derivatives i.e.,

ŒV# ı x�
� D Œ.F

#
0
/|.˚0M/�1F

#
0
�
�
;

ŒV" ı x�
� D Œ�.F

"
0
/|.˚0M/�1F

"
0
�
�
:

Integrating the latter with respect to the time variable from 0 to t yields

ex.v � v0/ ı x D V# ı x D e � .v0 � v0
0/ C .F

#
0
/|f.˚0M/�1 � ˚�1

0 gF
#
0

;

e�x.v C v0/ ı x D V" ı x D e� � .v0 C v0
0/ � .F

"
0
/|f.˚0M/�1 � ˚�1

0 gF
"
0

;

where, as before, the underlying spatial variable (denoted by � ) is left unspec-

ified. By associativity, definitions (14a) and linearity, it is immediate to see

that

.˚0M/�1 � ˚�1
0 D M�1.Id � M/˚�1

0 D M�1.�C˚0/˚�1
0 D �M�1C :

Now we use in the last-but-one pair of identities the connection between the

scales (21) (with the understanding that in the latter the scale x is now to be left

unspecified i.e., ex De � ��=�C). Together with linearity and the identifications

e� � =2F
#
0

D ���1��;0 and e � =2F
"
0

D ��1�C;0 of (15b), in combination with

the preceding identity and the equality C��1 D E, from (14b), this yields

.v � v0/ ı x D �C

��

�

v0 � v0
0 � �

|
�;0

.M�/�1E��;0

�

;

.v C v0/ ı x D ��

�C

�

v0 C v0
0 C �

|
C;0

.M�/�1E�C;0

�

:

Finally, taking half of the sum, respectively, of the difference of these identities

reproduce the punch line formulas of Theorem 2, and we are done.

6. Large-time asymptotics and limiting behavior

If �� < 0 < �C, the Lagrangian-scaled updates of eigenfunctions associated

to the eigenvalues �˙ (cf. (23a) and (23b)) vanish as t !˙1. This prompts that

�˙ are excised from the spectrum associated with the residual profiles. Indeed,

et=.2��/ D o.1/ as t ! ˙1, and thus by (22) and (15c),

�˙ WD det M˙.t; � / D
(

et=.2�C/.�C1
˙ C o.1// as t " C1;

et=.2��/.��1
˙ C o.1// as t # �1;

where

�C1
˙

��1
˙

WD ˚˙ �
(

Œa˙.'0
� � 1/ C b˙'0

C�

Œa˙'0
� C b˙.'0

C � 1/�
(24)
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are the corresponding limiting/stationary theta counterparts, '0
˙ being defined

in (8), and

˚˙ WD �Cf 0
C'0

C..f 0
�/0˙ 1

2
f 0

� /C��f 0
�'0

�..f 0
C/0˙ 1

2
f 0

C/C.1C���C/'0
�'0

C ;

a˙ WD '0
CCf 0

C..f 0
C/0˙ 1

2
f 0

C/ D
Z �

�1

..f 0
C/0˙ 1

2
f 0

C/2 ;

b˙ WD '0
�Cf 0

�..f 0
�/0˙ 1

2
f 0

� / D
Z �

�1

..f 0
�/0˙ 1

2
f 0

�/2 :

Hence, by (23b) we have

lim
t!˙1

Œ.�t
XH �f 0

C/ ı Lt
H � D 0; and lim

t!˙1
Œ.�t

XH �f 0
�/ ı Lt

H � D 0 :

On the other hand, using (14a) and (12c) we see that

� WD det M.t; � / D et=.2�˙/.�˙1 C o.1// as t ! ˙1; (25)

where

�˙1 WD '0
˙.1 � '0

�/ C ���C'2
0 : (26)

In other words, either limits (in the remote past or future) give rise to stationary

Lagrangian scales (cf. (21))

.L˙1
H /0 WD lim

t!˙1

�2

���C
D .�˙1/2

�˙1
� �˙1

C

;

or, what is the same,

eL˙1
H D e � �˙1

�

�˙1
C

and residual potentials

lim
t!˙1

Œ.�t
XH

m0/ ı Lt
H � D .�˙1

XH
m0/ ı L˙1

H D
�

�˙1
� �˙1

C

.�˙1/2

�2

m0 :

NOTE. It is amusing to check directly from the definitions (24), (26), and (8)

that (dropping the upper indexes ˙1)

�2 D ���C C � 0
��C � ��� 0

C :

i.e., that the algebraic structure of the identity in Remark 6 relating the theta-

determinants remains valid (in the limits t ! ˙1) for either of their stationary

analogues.
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Either of the residual profiles can be computed from the corresponding residual

potentials via the Green’s function as in (cf. Remark 7),

lim
t!˙1

Œ.�t
XH

v0/ ı Lt
H � D .�˙1

XH
v0/ ı L˙1

H D .G � �˙1
XH

m0/ ı L˙1
H ;

but it is more efficient to infer them directly by taking (respectively) the limits

as t ! ˙1 of the formulas of Theorem 2. Indeed, for �� < 0 < �C, we have1

lim
t!˙1

�˙

��
D

�˙1
˙

�˙1
�

where �˙1
˙ are given by (24) (see also (8)). On the other hand, we can check

that, in the notation of (14a), (12c) and (8),

	˙.�;�/ WD lim
t!˙1

Œ.M.t;�/�/�1E.t;�/�D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1

�C1

��'0
C=�� '0

'0 .1�'0
�/=�C

�

1

��1

�

.1�'0
C/=�� '0

'0 �'0
�=�C

�

where �˙1 are given by (26) (see also (8)). Altogether, it follows directly from

the formulas of Theorem 2 that

lim
t!˙1

Œ.�t
XH

v0/ ı Lt
H � D �˙1

�

�˙1
C

�

v0 C v0
0

2
C 1

2
�

|
C;0

	˙�C;0

�

C
�˙1

C

�˙1
�

�

v0 � v0
0

2
� 1

2
�

|
�;0

	˙��;0

�

;

lim
t!˙1

�

@.�t
XH

v0/ ı Lt
H

@Lt
H

�

D �˙1
�

�˙1
C

�

v0 C v0
0

2
C 1

2
�

|
C;0

	˙�C;0

�

�
�˙1

C

�˙1
�

�

v0 � v0
0

2
� 1

2
�

|
�;0

	˙��;0

�

:

(27)

The reader is invited to check from these equations that the H1-energy associated

to either of the stationary profiles (27) falls short of the one associated to the

initial profile v0 by exactly an amount that is equal to the sum of the energies

that, at any given time j t j < C1, each of the solitons escaping (respectively) at

speeds 1=.2�˙/ embody. But there is more, one can verify, adapting the general

method of sections 3 and 4, that the limits (as t !˙1) of the Lagrangian-scaled

updates of the remaining eigenfunctions that we refer to at the end of Remark 8

do not vanish. In fact, one can check that the latter constitute a basis in H1. In

1In �˙1
˙

, the signature of the upper index ˙1 indicates which of the limits t ! ˙1 is meant, while

the lower indexes merely distinguish which of the theta functions, �� or �C, is being referred to; cf. Notation

on page 272.
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short, as in the large-time asymptotics pertaining to the individual flows where it

is shown that the eigenvalue defining the flow at play is excised [Loubet �2007a;

� 2007b], in the case of pair flows, we have evidence that the maps from initial

to residual profiles, as described in the introduction, are also of Darboux-type

with the difference that two eigenvalues (the ones involved in the Hamiltonian

defining the flow) are excised instead of just one.

7. Conclusion

Closer inspection to the bulk of sections 3 and 4 shows that the method therein

employed, can be adapted to produce analogous explicit exact formulas for the

updates of profiles when run by flows of the CH hierarchy associated to Hamil-

tonians of the form
P

jj j�N 1=.4�2
j / with arbitrary N in Z

C, all the way up —

with due technical precautions in order to guarantee convergence, etc. — to (the

limiting case where N " C1 corresponding to) the full CH flow [McKean

2003]. Moreover, the present analysis suggests that all these expressions will be

sufficiently robust to afford (at least) a quantitative description of soliton train

development. Nonetheless, it remains to explore in more detail how manage-

able all these expressions really are in helping reveal any more qualitative and

quantitative phenomena pertaining to soliton emergence and soliton interaction.

References

[Camassa and Holm 1993] R. Camassa and D. D. Holm, “An integrable shallow water

equation with peaked solitons”, Phys. Rev. Lett. 71:11 (1993), 1661–1664.

[Camassa et al. 1994] R. Camassa, D. D. Holm, and M. Hyman, “A new integrable

shallow water equation”, Adv. Appl. Math. 31 (1994), 1–33.

[Khesin and Misiołek 2003] B. Khesin and G. Misiołek, “Euler equations on homoge-

neous spaces and Virasoro orbits”, Adv. Math. 176:1 (2003), 116–144.

[Loubet 2006] E. Loubet, “Genesis of solitons arising from individual flows of the

Camassa-Holm hierarchy”, Comm. Pure Appl. Math. 59:3 (2006), 408–465.

[Loubet � 2007a] E. Loubet, Asymptotic limits of individual flows of the KdV hierar-

chy, back to Darboux via addition. In preparation.

[Loubet � 2007b] E. Loubet, Extinction of solitons arising from individual flows of the

Camassa-Holm hierarchy: the rise of a novel Darboux like transform. In preparation.

[Magri 1978] F. Magri, “A simple model of the integrable Hamiltonian equation”, J.

Math. Phys. 19:5 (1978), 1156–1162.

[McKean 1993] H. P. McKean, “Compatible brackets in Hamiltonian dynamics”, in

Important developments in soliton theory, edited by A. S. Fokas and V. E. Zakharov,

Springer, Berlin, 1993.



INTEGRATION OF PAIR FLOWS OF THE CAMASSA–HOLM HIERARCHY 285

[McKean 1998] H. P. McKean, “Breakdown of a shallow water equation”, Asian J.

Math. 2:4 (1998), 867–874. Mikio Sato: a great Japanese mathematician of the

twentieth century.

[McKean 2001] H. P. McKean, “Addition for the acoustic equation”, Comm. Pure Appl.

Math. 54:10 (2001), 1271–1288.

[McKean 2003] H. P. McKean, “Fredholm determinants and the Camassa-Holm hier-

archy”, Comm. Pure Appl. Math. 56:5 (2003), 638–680.

[McKean 2004] H. P. McKean, “Breakdown of the Camassa-Holm equation”, Comm.

Pure Appl. Math. 57:3 (2004), 416–418.

[Misiołek 1998] G. Misiołek, “A shallow water equation as a geodesic flow on the

Bott-Virasoro group”, J. Geom. Phys. 24:3 (1998), 203–208.

ENRIQUE LOUBET
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