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Homogenization of random
Hamilton–Jacobi–Bellman Equations

S. R. SRINIVASA VARADHAN

ABSTRACT. We consider nonlinear parabolic equations of Hamilton–Jacobi–

Bellman type. The Lagrangian is assumed to be convex, but with a spatial

dependence which is stationary and random. Rescaling in space and time

produces a similar equation with a rapidly varying spatial dependence and a

small viscosity term. Motivated by corresponding results for the linear elliptic

equation with small viscosity, we seek to find the limiting behavior of the solu-

tion of the Cauchy (final value) problem in terms of a homogenized problem,

described by a convex function of the gradient of the solution. The main idea

is to use the principle of dynamic programming to write a variational formula

for the solution in terms of solutions of linear problems. We then show that

asymptotically it is enough to restrict the optimization to a subclass, one for

which the asymptotic behavior can be fully analyzed. The paper outlines these

steps and refers to the recently published work of Kosygina, Rezakhanlou and

the author for full details.

Homogenization is a theory about approximating solutions of a differential

equation with rapidly varying coefficients by a solution of a constant coefficient

differential equation of a similar nature. The simplest example of its kind is the

solution u" of the equation

u"
t D 1

2
a
�

x

"

�

u"
xxI u".0; x/ D f .x/

on Œ0; 1��R. The function a. � / is assumed to be uniformly positive, continuous

and periodic of period 1. The limit u of u" exists and solves the equation

ut D
Na

2
uxxI u.0; x/ D f .x/

where Na is the harmonic mean

Na D

�Z 1

0

dx

a.x/

��1

:
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Although this is a result about solutions of PDE’s it can be viewed as a limit

theorem in probability. If we consider the Markov process x.t/ with generator

1
2
a.x/D2

x

starting from 0 at time 0, as t ! 1 the limiting distribution of y.t/ D x.t/p
t

is

Gaussian with mean 0 and variance Na. The actual variance of y.t/ is

E

�

1

t

Z t

0

a.x.s// ds

�

:

The result on the convergence of u" to u is seen to follow from an ergodic

theorem of the type

lim
t!1

1

t

Z t

0

a.x.s// ds D Na:

From the theory of Markov processes one can see an ergodic theorem of this

type with

Na D

Z

a.x/�.x/ dx;

where �.x/ is the normalized invariant measure on Œ0; 1� with end points iden-

tified. This is seen to be

�.x/ D

�Z 1

0

dx

a.x/

��1
1

a.x/
;

so that

Na D

Z 1

0

a.x/�.x/ dx D

�Z 1

0

dx

a.x/

��1

:

We can consider the situation where a.x/ D a.x; !/ is a random process, sta-

tionary with respect to translations in x. We can formally consider a probability

space .˝; ˙; P /, and an ergodic action �x of R on ˝. We also have a function

a.!/ satisfying 0 < c � a.!/ � C < 1. The stationary process a.x; !/ is given

by a.x; !/ D a.�x!/. Now the solution u" of

u"
t .t; x; !/ D 1

2
a.x; !/u"

xx.t; x; !/I u".0; x; !/ D f .x/

can be shown to converge again, in probability, to the nonrandom solution u of

ut .t; x/ D
Na

2
uxx.t; x/I u".0; x/ D f .x/

with

Na D

�Z

1

a.!/
dP

��1

:
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This is also an ergodic theorem for

1

t

Z t

0

a.!.s// ds;

but the actual Markov process !.t/ for which the ergodic theorem is proved is

one that takes values in ˝ with generator

L D 1
2
a.!/D2;

where D is the generator of the translation group �x on ˝. The invariant mea-

sure is seen to be

dQ D
Na

a.!/
dP;

where

Na D

�Z

1

a.x/
dP

��1

:

We will try to adapt this type of approach to some nonlinear problems of

Hamilton-Jacobi–Bellman type. One part of the work that we outline here was

done jointly with Elena Kosygina and Fraydoun Rezakhanlou and has appeared

in print [Kosygina et al. 2006], while another part, carried out with Kosygina,

has been submitted for publication.

The problems we wish to consider are of the form

u"
t C

"

2
�u" C H

�

x

"
; ru"; !

�

D 0I u.T; x/ D f .x/

for Œ0; T � � R
d . Here f is a continuous function with at most linear growth.

.˝; ˙; P / is a probability space on which R
d acts ergodically as measure pre-

serving transformations �x . H.0; p; !/ is a function on R
d � ˝ which is a

convex function of p for every ! and H.x; p; !/ D H.0; p; �x!/. It satis-

fies some bounds and some additional regularity. The problem is to prove that

u" ! u as " ! 0, where u is a solution of

ut C H .ru/ D 0I u.T; x/ D f .x/

for some convex function H .p/ of p and determine it.

The analysis consists of several steps. We might as well assume T D 1 and

concentrate on u".0; 0; !/. First we note that, by rescaling, the problem can be

reduced to the behavior of

lim
t!1

1

t
ut .0; 0; !/;

where u is the solution in Œ0; t � � R
d , of

us C 1
2
�u C H.x; ru; !/I u.t; x/ D tf

�

x

t

�

:
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The second step is to use the principle of dynamic programming to write a

variational formula for ut .s; x; !/. Denote by L.�x!; q/ the convex dual

L.x; q; !/ D supp

�

hp; qi � H.x; p; !/
�

Let b.s; x/ be a function b W Œ0; t � � R
d ! R

d . Let B denote the space all such

bounded functions. For each b 2 B, we consider the linear equation

vb
s C 1

2
�vb C hb.s; x/; rvbi � L.�x!; b.s; x// D 0; v.t; x/ D tf

�

x

t

�

I

then the solution u.s; x/ is supb vb.s; x/. If we denote by Qb the Markov pro-

cess with generator

L
b
s D 1

2
� C hb.s; x/; ri

starting from .0; 0/, then

vb.0; 0; !/ D EQb

�

tf .
x.t/

t
/ �

Z t

0

L.x.s/; b.s; x.s//; !/ ds

�

and

u D sup
b2B

vb

The third step is to consider a subclass of B of the form b.t; x/ D c.�x!/

with c W ˝ ! R
d chosen from a reasonable class C. The solution vb with this

choice of b.t; x/ D b.x/ D c.�x!/ will be denoted by vc . We will show that

for our choice of C, the limit

lim
t!1

1

t
vc.0; 0; !/ D g.c/

will exist for every c 2 C. It then follows that

lim inf
t!1

1

t
ut .0; 0/ � sup

c2C

g.c/:

Given c there is a Markov process Qc;! on ˝ starting from ! with generator

Ac D 1
2
� C hc.!/; ri:

Here r is the infinitesimal generator of the R
d action f�xg and � D r �r. This

process can be constructed by solving

dx.t/ D c.�x.t/!/ dt C ˇ.t/I x.0/ D 0

Then one lifts it to ˝ by defining !.t/ D �x.t/!. Such a process with generator

Ac could have an invariant density Pc and it could (although it is unlikely) be

mutually absolutely continuous with respect to P , having density ˚c . ˚c will

be a weak solution of
1
2
�˚c D r � c. � / ˚c :
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We can then expect

g.c/ D f

� Z

c.!/ dPc

�

�

Z

L
�

!; c.!/
�

dPc :

In general the existence of such a ˚ for a given c is nearly impossible to prove.

On the other hand for a given ˚ finding a c is easy. For instance,

c D
r˚

2˚

will do. More generally one can have

c D
r˚

2˚
C c0;

so long as r � c0˚ D 0. So pairs .c; ˚/ such that

1
2
�˚c D r � c. � / ˚c

exist. Our class C will be those for which ˚ exists. It is not hard to show, using

the ergodicity of f�xg action, that ˚ is unique for a given c when it exists and

the Markov process with generator Ac is ergodic with dPc D ˚cdP as invariant

measure. We will denote by C the class of pairs .c; ˚/ satisfying the above

relation. So we have a lower bound

lim inf
t!1

1

t
uc.0; 0/ � sup

m2R
d

Œf .m/ � I.m/�

where

I.m/ D inf
c;˚W.c;˚/2C0

R

c˚ dPDm

Z

L.c.!/; !/˚ dP

Now we turn to proving upper bounds. Fix � 2 R
d . If we had a “nice” test

function W .x; !/ such that for almost all !

jW .x; !/ � h�; xij � o.jxj/

and
1
2
�W C H.x; rW; !/ � �

Then, by convex duality with QW D W .x; !/ � �.s � t/, we have

QWs C 1
2
� QW C hb.s; x/; r QW i � L.b.s; x/; !/ � 0:

If H .�/ is defined as

H .�/ D inff� W W existsg
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then under some control on the growth of L, it is not hard to deduce that with

f .x/ D h�; xi,

lim sup
t!1

1

t
ut .0; 0; !/ � H .�/

If we can prove that

H .�/ D supm Œh�; mi � I.m/�;

we are done. We would match the upper and lower bounds. We reduce this to a

minmax equals maxmin theorem.

supmŒh�; mi � I.m/� D sup
.c;˚/2C

Z

�

hc.!/; �i � L.c.!/; !/
�

˚ dP

D sup
.c;˚/

inf
W

Z

�

hc.!/; �i C AcW � L.c.!/; !/
�

˚ dP

D inf
W

sup
.c;˚/

Z

�

hc.!/; �i C AcW � L.c.!/; !/
�

˚ dP

D inf
W

sup
˚

Z

�

1
2
�W C H.� C rW; !/

�

˚ dP

D inf
W

sup
!

Z

�

1
2
�W C H.� C rW; !/

�

˚ dP

D H .�/:

While W may not exist, rW will exist. We can integrate on R
d , then ergodic

theorem will yield an estimate of the form W .x/ D o.jxj/ and

h�; xi C W .x/

will work as a test function. There are some technical details on the issues of

growth and regularity. The details have appeared in [Kosygina et al. 2006] along

with additional references. Similar results on the homogenization of random

Hamilton–Jacobi–Bellman equations have been obtained by Lions and Sougani-

dis [2005], using different methods.

Now we examine the time dependent case. If we replace R
d action by R

dC1

action with .t; x/ denoting time and space, then the stationary processes H and

L are space time processes. The lower bound works more or less in the same

manner. In addition to r we now have Dt the derivative in the time direction.

The !.t/ process is the space-time process. Its construction for a given c is

slightly different. We start with b.t; x/ D c.�t;x!/ and construct a diffusion on

R
d corresponding to the time dependent generator

A
c
s D 1

2
� C hb.s; x/; ri
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and then lift it by !.s/ D �s;x.s/!. The invariant densities are solutions of

�Dt ˚ C 1
2
�˚ D r � c˚:

The lower bound works the same way. But for obtaining the upper bound, a test

function W has to be constructed that satisfies

Wt C 1
2
�W C H.t; x; rW; !/ � H .�/

In the time independent case there was a lower bound on the growth of the

convex function H that provided estimates on rW . Here one has to work

much harder in order to control in some manner Wt . The details will appear in

[Kosygina and Varadhan 2008].
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