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Advances in losing

THANE E. PLAMBECK

ABSTRACT. We survey recent developments in the theory of impartial com-

binatorial games in misere play, focusing on how Sprague–Grundy theory of

normal-play impartial games generalizes to misere play via the indistinguisha-

bility quotient construction [P2]. This paper is based on a lecture given on 21

June 2005 at the Combinatorial Game Theory Workshop at the Banff Interna-

tional Research Station. It has been extended to include a survey of results on

misere games, a list of open problems involving them, and a summary of Mis-

ereSolver [AS2005], the excellent Java-language program for misere indistin-

guishability quotient construction recently developed by Aaron Siegel. Many

wild misere games that have long appeared intractable may now lie within the

grasp of assiduous losers and their faithful computer assistants, particularly

those researchers and computers equipped with MisereSolver.

1. Introduction

We’ve spent a lot of time teaching you how to win games
by being the last to move. But suppose you are baby-sitting
little Jimmy and want, at least occasionally, to make sure you
lose? This means that instead of playing the normal play rule
in which whoever can’t move is the loser, you’ve switched to
misere play rule when he’s the winner. Will this make much
difference? Not always. . .

That’s the first paragraph from the thirteenth chapter (“Survival in the Lost

World”) of Berlekamp, Conway, and Guy’s encyclopedic work on combinatorial

game theory, Winning Ways for your Mathematical Plays [WW].

And why “not always?” The misere analysis of an impartial combinatorial

game often proves to be far more difficult than it is in normal play. To take a

typical example, the normal play analysis of Dawson’s Chess [D] was published
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as early as 1956 by Guy and Smith [GS], but even today, a complete misere

analysis hasn’t been found (see Section 10.1). Guy tells the story [Guy91]:

[Dawson’s chess] is played on a 3�n board with white pawns
on the first rank and black pawns on the third. It was posed
as a losing game (last-player-losing, now called misere) so
that capturing was obligatory. Fortunately, (because we still

don’t know how to play misere Dawson’s Chess) I assumed,
as a number of writers of that time and since have done,
that the misere analysis required only a trivial adjustment of
the normal (last-player-winning) analysis. This arises because
Bouton, in his original analysis of Nim [B1902], had observed
that only such a trivial adjustment was necessary to cover
both normal and misere play. . .

But even for impartial games, in which the same options
are available to both players, regardless of whose turn it is
to move, Grundy & Smith [GrS1956] showed that the gen-
eral situation in misere play soon gets very complicated, and
Conway [ONAG], (p. 140) confirmed that the situation can
only be simplified to the microscopically small extent noticed
by Grundy & Smith.

At first sight Dawson’s Chess doesn’t look like an impartial
game, but if you know how pawns move at Chess, it’s easy
to verify that it’s equivalent to the game played with rows of
skittles in which, when it’s your turn, you knock down any
skittle, together with its immediate neighbors, if any.

So misere play can be difficult. But is it a hopeless situation? It has often

seemed so. Returning to chapter 13 in [WW], one encounters the genus theory

of impartial misere disjunctive sums, extended significantly from its original

presentation in chapter 7 (“How to Lose When You Must”) of Conway’s On

Numbers and Games [ONAG]. But excluding the tame games that play like Nim

in misere play, there’s a remarkable paucity of example games that the genus

theory completely resolves. For example, the section “Misere Kayles” from the

1982 first edition of [WW] promises

Although several tame games arise in Kayles (see Chapter 4),
wild game’s abounding and we’ll need all our [genus-theoretic]
resources to tackle it. . .

However, it turns out Kayles isn’t “tackled” at all — after an extensive table of

genus values to heap size 20, one finds the slightly embarrassing question

Is there a larger single-row P-position?
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It was left to the amateur William L. Sibert [SC] to settle misere Kayles using

completely different methods. One finds a description of his solution at end of

the updated Chapter 13 in the second edition of [WW], and also in [SC]. In

2003, [WW] summarized the situation as follows (p. 451):

Sibert’s remarkable tour de force raises once again the ques-
tion: are misere analyses really so difficult? A referee of a
draft of the Sibert–Conway paper wrote “the actual solution
will have no bearing on other problems,” while another wrote
“the ideas are likely to be applicable to some other games. . . ”

1.1. Misere play — the natural impartial game convention? When nonmath-

ematicians play impartial games, they tend to choose the misere play conven-

tion1. This was already recognized by Bouton in his classic paper “Nim, A

Game with a Complete Mathematical Theory,” [B1902]:

The game may be modified by agreeing that the player who
takes the last counter from the table loses. This modifica-
tion of the three pile [Nim] game seems to be more widely
known than that first described, but its theory is not quite so
simple. . .

But why do people prefer the misere play convention? The answer may lie in

Fraenkel’s observation that impartial games lack boardfeel, and simple Schaden-

freude2:

For many MathGames, such as Nim, a player without prior
knowledge of the strategy has no inkling whether any given
position is “strong” or “weak” for a player. Even two posi-
tions before ultimate defeat, the player sustaining it may be
in the dark about the outcome, which will stump him. The
player has no boardfeel. . . [Fraenkel, p. 3].

If both players are “in the dark,” perhaps it’s only natural that the last player

compelled to make a move in such a pointless game should be deemed the

loser. Only when a mathematician gets involved are things ever-so-subtly shifted

toward the normal play convention, instead — but this is only because there is

a simple and beautiful theory of normal-play impartial games, called Sprague–

Grundy theory. Secretly computing nim-values, mathematicians win normal-

play impartial games time and time again. Papers on normal play impartial

games outnumber misere play ones by a factor of perhaps fifty, or even more3.

1“Indeed, if anything, misere Nim is more commonly played than normal Nim. . . ” [ONAG], p. 136.

2The joy we take in another’s misfortune.

3Based on an informal count of papers in the [Fraenkel] CGT bibliography.
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In the last twelve months it has become clear how to generalize such Sprague–

Grundy nim-value computations to misere play via indistinguishability quotient

construction [P2]. As a result, many misere game problems that have long ap-

peared intractable, or have been passed over in silence as too difficult, have now

been solved. Still others, such as a Dawson’s Chess, appear to remain out of

reach and await new ideas. The remainder of this paper surveys this largely

unexplored territory.

2. Two wild games

We begin with two impartial games: Pascal’s Beans — introduced here for

the first time — and Guiles (the octal game 0.15). Each has a relatively simple

normal-play solution, but is wild4 in misere play. Wild games are characterized

by having misere play that differs in an essential way5 from the play of misere

Nim. They often prove notoriously difficult to analyze completely. Neverthe-

less, we’ll give complete misere analyses for both Pascal’s Beans and Guiles by

using the key idea of the misere indistinguishability quotient, which was first

introduced in [P2], and which we take up in earnest in Section 5.

3. Pascal’s Beans

Pascal’s Beans is a two-player impartial combinatorial game. It’s played

with heaps of beans placed on Pascal’s triangle, which is depicted in Figure 1.

A legal move in the game is to slide a single bean either up a single row and to

the left one position, or alternatively up a single row and to the right one position

in the triangle. For example, in Figure 1, a bean resting on the cell marked 20

could be moved to either cell labelled 10.

The actual numbers in Pascal’s triangle are not relevant in the play of the

game, except for the 1’s that mark the border positions of the board. In play of

Pascal’s Beans, a bean is considered out of play when it first reaches a border

position of the triangle. The game ends when all beans have reached the border.

3.1. Normal play. In normal play of Pascal’s Beans, the last player to make a

legal move is declared the winner of the game. Figure 2 shows the pattern of

nim values that arises in the analysis of the game. Using the figure, it’s possible

to quickly determine the best-play outcome of an arbitrary starting position in

Pascal’s Beans using Sprague–Grundy theory and the nim addition operation

˚. Provided one knows the Z2 � Z2 addition table in Figure 3, all is well — the

4See Chapter 13 (“Survival in the Lost World”) in [WW] and Section 7 in this paper for more information

on wild misere games.

5To be made precise in Section 7.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
:::

:::
:::

Figure 1. The Pascal’s Beans board.

P-positions (second-player winning positions) are precisely those that have nim

value zero (that is, �0), and every other position is an N-position (or next-player

win), of nim value �1, �2, or �3.

�0

�0 �0

�0 �1 �0

�0 �2 �2 �0

�0 �1 �0 �1 �0

�0 �2 �2 �2 �2 �0

�0 �1 �0 �0 �0 �1 �0

�0 �2 �2 �1 �1 �2 �2 �0

�0 �1 �0 �0 �0 �0 �0 �1 �0
:::

:::
:::

Figure 2. The pattern of single-bean nim-values in normal play of Pascal’s
Beans. Each interior value is the minimal excludant (or mex) of the two
nim values immediately above it. The boldface entries form the first three
rows of an infinite subtriangle whose rows alternate between �0 and �1.

˚ �0 �1 �2 �3

�0 �0 �1 �2 �3

�1 �1 �0 �3 �2

�2 �2 �3 �0 �1

�3 �3 �2 �1 �0

Figure 3. Addition for normal play of Pascal’s Beans.
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3.2. Misere play. In misere play of Pascal’s Beans, the last player to make a

move is declared the loser of the game. Is it possible to give an analysis of misere

Pascal’s Beans that resembles the normal play analysis? The answer is yes — but

the positions of the triangle can no longer be identified with nim heaps �k, and

the rule for the misere addition is no longer given by nim addition. Instead, both

the values to be identified with particular positions of the triangle and the desired

misere addition are given by a particular twelve-element commutative monoid

M, the misere indistinguishability quotient6 of Pascal’s Beans. The monoid M

has an identity 1 and is presentable using three generators and relations:

M D h a; b; c j a2 D 1; c2 D 1; b3 D b2c i:

Assiduous readers might enjoy verifying that the identity b4 D b2 follows

from these relations, and that a general word of the form aibj ck (i; j ; k � 0)

will always reduce to one of the twelve canonical words

M D f1; a; b; ab; b2; ab2; c; ac; bc; b2c; abc; ab2cg:

Amongst the twelve canonical words, three represent P-position types

P D fa; b2; acg;

and the remaining nine represent N-position types:

N D f1; b; ab; ab2; c; bc; b2c; abc; ab2cg:

Figure 4 shows the identification of triangle positions with elements of M.

1

1 1

1 a 1

1 b b 1

1 a b2 a 1

1 b c c b 1

1 a b2
b

2 b2 a 1

1 b c ab
2

ab
2 c b 1

1 a b2
b

2
b

2
b

2 b2 a 1
:::

:::
:::

Figure 4. Identifications for single-bean positions in misere play of Pascal’s
Beans. The values are elements of the misere indistinguishability quotient
M of Pascal’s Beans. The boldface entries form the first three rows of an
infinite subtriangle whose rows alternate between the values b2 and ab2.

6See Section 5.
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Although we’ve used multiplicative notation to represent the addition opera-

tion in the monoid M, we use it to analyze general misere-play Pascal’s Beans

positions just as we used the nim values of Figure 2 and nim addition in normal

play. For example, suppose a Pascal’s Beans position involves just two beans —

one placed along the central axis of the triangle at each of the two boxed po-

sitions in Figure 4. Combining the corresponding entries a and b2 as monoid

elements, we obtain the element ab2, which we’ve already asserted is an N-

position. What is the winning misere-play move? From the lower bean, at the

position marked b2, the only available moves are both to a cell marked b. This

move is of the form

ab2 ! ab;

that is, the result is another misere N-position type (here ab). So this option is

not a winning misere move. But the cell marked a has an available move is to

the border. The resulting winning move is of the form

ab2 ! b2;

that is, the result is b2, a P-position type.

4. Guiles

Guiles can be played with heaps of beans. The possible moves are to remove

a heap of 1 or 2 beans completely, or to take two beans from a sufficiently large

heap and partition what is left into two smaller, nonempty heaps. This is the

octal game 0.15.

4.1. Normal play. The nim values of the octal game Guiles fall into a period

10 pattern. See Figure 5.

1 2 3 4 5 6 7 8 9 10

0+ 1 1 0 1 1 2 2 1 2 2

10+ 1 1 0 1 1 2 2 1 2 2

20+ 1 1 0 1 1 2 2 1 2 2

30+ 1 1 0 1 1 � � �

Figure 5. Nim values for normal play 0.15.
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4.2. Misere play. Using his recently-developed Java-language computer pro-

gram MisereSolver, Aaron Siegel [PS] found that the misere indistinguishability

quotient Q of misere Guiles is a (commutative) monoid of order 42. It has the

presentation

Q D h a; b; c; d; e; f; g; h; i j

a2 D 1; b4 D b2; bc D ab3; c2 D b2; b2d D d;

cd D ad; d3 D ad2; b2e D b3; de D bd; be2 D ace;

ce2 D abe; e4 D e2; bf D b3; df D d; ef D ace;

cf 2 D cf; f 3 D f 2; b2g D b3; cg D ab3; dg D bd;

eg D be; fg D b3; g2 D bg; bh D bg; ch D ab3;

dh D bd; eh D bg; f h D b3; gh D bg; h2 D b2;

bi D bg; ci D ab3; di D bd; ei D be; f i D b3;

gi D bg; hi D b2; i2 D b2 i:

In Figure 6 we show the single-heap misere equivalences for Guiles. It is a

remarkable fact that this sequence is also periodic of length ten — it’s just that

the (aperiodic) preperiod is longer (length 66), and a person needs to know the

monoid Q! The P-positions of Guiles are precisely those positions equivalent to

one of the words

P D f a; b2; bd; d2; ae; ae2; ae3; af; af 2; ag; ah; ai g:

1 2 3 4 5 6 7 8 9 10

0C a a 1 a a b b a b b

10C a a 1 c c b b d b e

20C c c f c c b g d h i

30C ab2 abg f abg abe b3 h d h h

40C ab2 abe f 2 abg abg b3 h d h h

50C ab2 abg f 2 abg abg b3 b3 d b3 b3

60C ab2 abg f 2 abg abg b3 b3 d b3 b3

70C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

80C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

90C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

100C

Figure 6. Misere equivalences for Guiles.

Knowledge of the monoid presentation Q, its partition into N- and P-position

types, and the single-heap equivalences in Figure 6 suffices to quickly determine
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the outcome of an arbitrary misere Guiles position. For example, suppose a

position contains four heaps of sizes 4, 58, 68, and 78. Looking up monoid

values in Figure 6, we obtain the product

a � d � d � d D ad3

D a � ad2 .relation d3 D ad2/

D d2 .relation a2 D 1/

We conclude that 4 C 58 C 68 C 78 is a misere Guiles P-position.

5. The indistinguishability quotient construction

What do these two solutions have in common? They were both obtained via

a computer program called MisereSolver, by Aaron Siegel. Underpinning Mis-

ereSolver is the notion of the indistinguishability quotient construction. Here,

we’ll sketch the main ideas of the indistinguishability quotient construction only.

They are developed in detail in [P2].

Suppose A is a set of (normal, or alternatively, misere) impartial game po-

sitions that is closed under the operations of game addition and taking options

(that is, making moves). Unless we say otherwise, we’ll always be taking A to

be the set of all positions that arise in the play of a specific game � , which we

fix in advance. For example, one might take

� D Normal-play Nim;

A D All positions that arise in normal-play Nim;

or

� D Misere-play Guiles;

A D All positions that arise in misere-play Guiles:

Two games G; H 2 A are then said to be indistinguishable, and we write

the relation G � H , if for every game X 2 A, the sums G C X and H C X

have the same outcome (that is, are both N-positions, or are both P-positions).

Note in particular that if G and H are indistinguishable, then they have the same

outcome (choose X to be the endgame — that is, the terminal position, with no

options).

The indistinguishability relation � is easily seen to be an equivalence relation

on A, but in fact more is true — it’s a congruence on A [P2]. This follows

because indistinguishability is compatible with addition; that is, for every set of

three games G; H; X 2 A:

G � H ÷ .G C X / � .H C X /: (5-1)
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Now let’s make the definition

�G D f H 2 A j G � H g:

We’ll call �G the congruence class of A modulo � containing G. Because �

is a congruence, there is a well-defined addition operation

�G C �H D �.G C H /

on the set A=� of all congruence classes �G of A modulo �

Q D Q.� / D A=� D f �G j G 2 A: g (5-2)

The monoid Q is called the indistinguishability quotient of � . It captures the

essential information of “how to add” in the play of game � , and is the central

figure of our drama.

The natural mapping

˚ W G ‘ �G

from A to A=� is called a pretending function (see [P2]). Figures 4 and 6

illustrate the (as it happens, provably periodic [P2]) pretending functions of

Pascal’s Beans and Guiles, respectively. We shall gradually come to see that

the recovery of Q and ˚ from � is the essence of impartial combinatorial game

analysis in both normal and misere play.

When � is chosen as a normal-play impartial game, the elements of Q work

out to be in 1-1 correspondence with the nim-heap values (or G-values) that

occur in the play of the game � . For if G and H are normal-play impartial games

with G D �g and H D �h, one easily shows that G and H are indistinguishable

if and only if g D h. Additionally, in normal play, every position G satisfies the

equation

G C G D 0:

As a result, the addition in a normal-play indistinguishability quotient is an

abelian group in which every element is its own additive inverse. The addition

operation in the quotient Q is nim addition. Every normal play indistinguisha-

bility quotient is therefore isomorphic to a (possibly infinite) direct product

Z2 � Z2 � � � � ;

and a position is a P-position precisely if it belongs the congruence class of the

identity (that is, �0) of this group. In this sense “nothing new” is learned about

normal play impartial games via the indistinguishability quotient construction —

instead, we’ve simply recast Sprague–Grundy theory in new language. The fun

begins when the construction is applied in misere play, instead.
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6. Misere indistinguishability quotients

In misere play, the indistinguishability quotient Q turns out to be a commu-

tative monoid whose structure intimately depends upon the particular game �

that is chosen for analysis. We need to cover some background material first.

6.1. Preliminaries. Consider the following three concepts in impartial games:

(i) The notion of the endgame (or terminal position), that is, a game that has no

options at all.

(ii) The notion of a P-position, that is, a game that is a second-player win in

best play of the game.

(iii) The notion of the sum of two identical games, that is, G C G.

In normal play, these three notions are indistinguishable — wherever a person

sees (1) in a sum S , he could freely substitute (2) or (3) (or vice-versa, or any

combination of such substitutions) without changing the outcome of S .

The three notions do not coincide in misere play. Let’s see what happens

instead.

The misere endgame. In misere play, the endgame is an N-position, not a P-

position: even though there is no move available from the endgame, a player

still wants it to be his turn to move when facing the endgame in misere play,

because that means his opponent just lost, on his previous move.

Misere outcome calculation. After the special case of the endgame is taken

care of, the recursive rule for outcome calculation in misere play is exactly as

it is in normal play: a non-endgame position G is a P-position if and only if all

its options are N-positions. Misere games cannot be identified with nim heaps,

in general, however — instead, a typical misere game looks like a complicated,

usually unsimplifiable tree of options [ONAG], [GrS1956].

Misere P-positions. Since the endgame is not a misere P-position, the simplest

misere P-position is the nim-heap of size one, that is, the game played using

one bean on a table, where the game is to take that bean. To avoid confusion

both with what happens in normal play, and with the algebra of the misere

indistinguishability quotient to be introduced in the sequel, let’s introduce some

special symbols for the three simplest misere games:o D The misere endgame, that is, a position with no moves at all.1 D The misere nim heap of size one, that is, a position with one move (to o/:2 D The misere nim heap of size two, that is, the game fo; 1g:

Two games that we’ve intentionally left off this list are f1g and 1C1. Assid-

uous readers should verify they are both indistinguishable from o.
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Misere sums involving P-positions. Suppose that G is an arbitrary misere P-

position. Consider the misere sum

S D 1C G: (6-1)

Who wins S? It’s an N-position — a winning first-player move is to simply

take the nim heap of size one, leaving the opponent to move first in the P-position

G. In terms of outcomes, equation (6-1) looks like

N D P C P: (6-2)

Equation (6-2) does not remind us of normal play very much — instead, we

always have P C P D P in normal play. On the other hand, it’s not true that

sum of two misere P-positions is always a misere N-position — in fact, when two

typical misere P-positions G and H are added together with neither equal to 1,

it usually happens that their sum is a P-position, also. But that’s not always the

case — it’s also possible that two misere impartial P-positions, neither of which

is 1, can nevertheless result in an N-position when added together. Without

knowing the details of the misere P-position involved, little more can be said in

general about the outcome when it’s added to another game.

Misere sums of the form G CG. In normal play, a sum G CG of two identical

games is always indistinguishable from the endgame. In misere play, it’s true

that both oCo and 1C1 are indistinguishable from o, but beyond those two sums,

positions of the form G C G are rarely indistinguishable from o. It frequently

happens that a position G in the play of a game � has no H 2 A such that GCH

is indistinguishable from o. This lack of natural inverse elements makes the

structure of a typical misere indistinguishability quotient a commutative monoid

rather than an abelian group.

The game 2C 2. The sum 2C 2
is an important one in the theory of impartial misere games. It’s a P-position in

misere play: for if you move first by taking 1 bean from one summand, I’ll take

two from the other, forcing you to take the last bean. Similarly, if you choose

to take 2 beans, I’ll take 1 from the other. So whereas in normal play one has

the equation

.�2 C �2/ � � 0;

it’s certainly not the case in misere play that

.2C 2/ � o;
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since the two sides of that proposed indistinguishability relation don’t even have

the same outcome. But perhaps

2C 2 ?
� 1 (6-3)

is valid? The indistinguishability relation (6-3) looks plausible at first glance —

at least the positions on both sides are P-positions. To decide whether it’s possi-

ble to distinguish between 2C2 and 1, we might try adding various fixed games

X to both, and see if we ever get differing outcomes:

Misere Misere Misere

game outcome of outcome of

X 2C 2C X 1C Xo P P1 N N2 N N1C 2 N N2C 2 P N

The two positions look like they might be indistinguishable, until we reach the

final row of the table. It reveals that .2C2/ distinguishes between .2C2/ and1. So equation (6-3) fails. Since a set of misere game positions A that includes2 and is closed under addition and taking options must contain all of the games1, 2, and 2C 2, we’ve shown that a game that isn’t She-Loves-Me-She-Loves-

Me-Not always has at least two distinguishable P-position types. In normal play,

there’s just one P-position type up to indistinguishability — the game �0.

6.2. Indistinguishability versus canonical forms. In normal play, Sprague–

Grundy theory describes how to determine the outcome of a sum G C H of

two games G and H by computing canonical (or simplest) forms for each

summand — these turn out to be nim-heap equivalents �k. In both normal and

misere play, canonical forms are obtained by pruning reversible moves from

game trees (see [GrS1956], [ONAG] and [WW]).

In [ONAG], Conway succinctly gives the rules for misere game tree simpli-

fication to canonical form:

When H occurs in some sum we should naturally like to
replace it by [a] simpler game G. Of course, we will normally
be given only H , and have to find the simpler game G for
ourselves. How do we do this? Here are two observations
which make this fairly easy:

(i) G must be obtained by deleting certain options of H .
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(ii) G itself must be an option of any of the deleted options
of H , and so G must be itself be a second option of H , if
we can delete any option at all.

On the other hand, if we obey (1) and (2), the deletion is
permissible, except that we can only delete all the options of
H (making G = 0 [the endgame]) if one of the them is a
second-player win.

Unlike in normal play, the canonical form of a misere game is not a nim heap

in general. In fact, many misere game trees hardly simplify at all under the

misere simplification rules. Figure 7, which duplicates information in [ONAG]

(its Figure 32), shows the 22 misere game trees born by day 4.

o D fg 2CC D f2Cg 2C3o D f2C; 3; og1 D fog 2Co D f2C; og 2C31 D f2C; 3; 1g2 D fo; 1g 2C1 D f2C; 1g 2C32 D f2C; 3; 2g

3 D fo; 1; 2g 2C2 D f2C; 2g 2C32o D f2C; 3; 2; og
4 D fo; 1; 2; 3g 2C2o D f2C; 2; og 2C321 D f2C; 3; 2; 1g2C D f2g 2C21 D f2C; 2; 1g 2C321o D f2C; 3; 2; 1; og

3C D f3g 2C21o D f2C; 2; 1; og2C 2 D f3; 2g 2C3 D f2C; 3g

Figure 7. Canonical forms for misere games born by day 4.

Whereas only one normal-play nim-heap is born at each birthday n, over 4

million nonisomorphic misere canonical forms are born by day five. The number

continues to grow very rapidly, roughly like a tower of exponentials of height n

([ONAG]). This very large number of mutually distinguishable trees has often

made misere analysis look like a hopeless activity.

Indistinguishability identifies games with different misere canonical forms.

The key to the success of the indistinguishability quotient construction is that

it is a construction localized to the play of a particular game � . It therefore

has the possibility of identifying misere games with different canonical forms.

While it’s true that for misere games G, H with different canonical forms that

there must be a game X such that G C X and H C X have different outcomes,

such an X might possibly never occur in play of the fixed game � that we’ve

chosen to analyze. Indistinguishability quotients are often finite, even for games

� that involve an infinity of different canonical forms amongst their position

sums.
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7. What is a wild misere game?

Roughly speaking, a misere impartial game � is said to be tame when a

complete analysis of it can be given by identifying each of its positions with

some position that arises in the misere play of Nim. Tameness is therefore an

attribute of a set of positions, rather than a particular position. Games � that

are not tame are said to be wild. Unlike tame games, wild games cannot be

completely analyzed by viewing them as disguised versions of misere Nim.

7.1. Tame games. Conway’s genus theory was first described in chapter 12

of [ONAG]. It describes a method for calculating whether all the positions of

particular misere game � are tame, and how to give a complete analysis of � ,

if so. For completeness, we’ve summarized the genus theory in the Appendix

(page 81).

For misere games � that genus theory identifies as tame, a complete analysis

can be given without reference to the indistinguishability quotient construction.

Various efforts to extend genus theory to wider classes of games have been made.

Example settings where progress has been made are the main subject of papers

by of Ferguson [F2], [F3] and Allemang [A1], [A2], [A3].

Indistinguishability quotients for tame games. In this section, we reformulate

the genus theory of tame games in terms of the indistinguishability quotient

language.

Suppose S is some finite set of misere combinatorial games. We’ll use the

notation cl.S/ (the closure of S) to stand for the smallest set of games that

includes every element of S and is closed under addition and taking options.

Putting A D cl.S/ and defining the indistinguishability quotient

Q D A=�;

the natural question arises, what is the monoid Q? Figure 8 shows answers for

S D f1g and S D f2g.

Presentation for

S monoid Q Order Symbol Name

f1g h a j a2 D 1 i 2 T1 First tame quotient

f2g h a; b j a2 D 1; b3 D b i 6 T2 Second tame quotient

Figure 8. The first and second tame quotients.

T1 is called the first tame quotient. It represents the misere play of She-

Loves-Me, She-Loves-Me-Not. In T1, misere P-positions are represented by the

monoid (in fact, group) element a, and N-positions by 1.
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T2, the second tame quotient, has the presentation

h a; b j a2 D 1; b3 D b i:

It is a six-element monoid with two P-position types fa; b2g. The prototypical

game � with misere indistinguishability quotient T2 is the game of Nim, played

with heaps of 1 and 2 only. See Figures 9 and 10.

1
�

���

@
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@

@@R

a
�

���

b
@

@@I
�

����
��	

ab
�
���

�	

@
@@R

b2
@

@I@
@R

ab2

Figure 9. The misere impartial game theorist’s coat of arms, or the Cayley
graph of T2. Arrows have been drawn to show the action of the generators
a (the doubled rungs of the ladder) and b (the southwest-to-northeast-ori-
ented arrows) on T2. See also Figure 10.

The general tame quotient. For n � 2, the n-th tame quotient is the monoid

Tn with 2n C 2 elements and the presentation

Tn D h a; b; c; d; e; f; g; : : :
„ ƒ‚ …

n�1 generators

j a2 D 1; b3 D b; c3 D c; d3 D d; e3 D e; : : : ;

b2 D c2 D d2 D e2 D � � � i:

Tn is a disjoint union of its two maximal subgroups Tn D U [ V: The set

U D f1; ag

is isomorphic to Z2. The remaining 2n elements of Tn form the set

V D f aai bbi cci ddi eei � � � j ai D 0 or 1

bi D 1 or 2

Each of ci ; di ; ei ; : : : D 0 or 1 g:

and have an addition isomorphic to

Z2 � � � � � Z2
„ ƒ‚ …

n copies

:
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Misere indistinguishability

Position type quotient element Outcome Genus

Even #1’s only 1 N 0120

Odd #1’s only a P 1031

Odd #2’s

and b N 220

Even #1’s

Odd #2’s

and ab N 331

Odd #1’s

Even #2’s (� 2)

and b2 P 002

Even #1’s

Even #2’s (� 2)

and ab2 N 113

Odd #1’s

Figure 10. When misere Nim is played with heaps of size 1 and 2 only,
the resulting misere indistinguishability quotient is the tame six-element
monoid T2. For more on genus symbols and tameness, see Section 7. See
also Figure 9.

The elements a and b2 are the only P-position types in Tn.

8. More wild quotients

8.1. The commutative monoid R8. The smallest wild misere indistinguisha-

bility quotient R8 has eight elements, and is unique up to isomorphism [S1]

amongst misere quotients with eight elements. Its monoid presentation is

R8 D h a; b; c j a2 D 1; b3 D b; bc D ab; c2 D b2 i:

The P-positions are fa; b2g.

0.75. An example game with misere quotient R8 is the octal game 0.75. The first

complete analysis of 0.75 was given by Allemang using his generalized genus

theory [A1]. Alternative formulations of the 0.75 solution are also discussed at

length in the appendix of [P] and in [A2]. See Figure 11, left.
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1 2

0C 1 a

2C b a

4C b c

6C b c

8C b ab2

10C b ab2

12C b ab2

14C : : :

1 2 3 4 5 6 7 8

0C a 1 a b 1 a 1 ab

8C a c a b 1 ac 1 ab

16C a c a b 1 ac 1 ab

Figure 11. The pretending function for misere play of 0.75 (left) and 0.34.

8.2. Flanigan’s games. Jim Flanigan found solutions to the wild octal games

0.34 and 0.71; a description of them can be found in the “Extras” of chapter 13

in [WW]. It’s interesting to write down the corresponding misere quotients.

0.34. The misere indistinguishability quotient of 0.34 has order 12. There are

three P-position types. The pretending function has period 8 (see Figure 11,

right).

Q0.34 D h a; b; c j a2 D 1; b4 D b2; b2c D b3; c2 D 1 i; P D fa; b2; acg

0.71. The game 0.71 has a misere quotient of order 36 with the presentation

Q0.71 D h a; b; c; d j a2 D 1; b4 D b2; b2c D c; c4 D ac3; c3d D c3; d2 D 1 i:

The P-positions are fa; b2; bc; c2; ac3; ad; b3d; cd; bc2dg. The pretending

function appears in Figure 12.

1 2 3 4 5 6

0C a b a 1 c 1

6C a d a 1 c 1

12C a d a 1 c 1

18C : : :

Figure 12. The pretending function for misere play of 0.71.

8.3. Other quotients. Hundreds more such solutions have been found amongst

the octal games. The forthcoming paper [PS] includes a census of such results.
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9. Computing presentations and MisereSolver

How are such solutions computed? Aaron Siegel’s recently developed Java

program MisereSolver [AS2005] will do it for you! Some details on the algo-

rithms used in MisereSolver are included in [PS]. Here, we simply give a flavor

of the some ideas underpinning it and how the software is used.

9.1. Misere periodicity. At the center of Sprague–Grundy theory is the equa-

tion G CG D 0, which always holds for an arbitrary normal play combinatorial

game G. One consequence of G C G D 0 is the equation

G C G C G D G;

in which all we’ve done is add G to both sides. In general, in normal play,

.k C 2/ � G D k � G:

holds for every k � 0.

In misere play, the relation

.G C G/ � o
happens to be true for G D o and G D 1, but beyond that, it is only seldom true

for occasional rule sets � and positions G. On the other hand,

.G C G C G/ � G

is very often true in misere play, and it is always true, for all G, if � is a tame

game. And in wild games � for which the latter equation fails, often a weaker

equation such as

.G C G C G C G/ � .G C G/;

is still valid, regardless of G.

These considerations suggest that a useful place to look for misere quotients

is inside commutative monoids having some (unknown) number of generators

x each satisfying a relation of the form

xkC2 D xk

for each generator x and some value of k � 0.

9.2. Partial quotients for heap games. A heap game is an impartial game

� whose rules can be expressed in terms of play on separated, noninteracting

heaps of beans. In constructing misere quotients for heap games, it’s useful to

introduce the n-th partial quotient, which is just the indistinguishability quotient

of � when all heaps are required to have n or fewer beans.
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9.3. MisereSolver output of partial quotients. Here is an (abbreviated) log of

MisereSolver output of partial quotients for 0.123, an octal game that is studied

in great detail in [P2]. In this output, monomial exponents have been juxtaposed

with the generator names (so that b2c, for example, appears as b2c). The pro-

gram stops when it discovers the entire quotient — the partial quotients stabilize

in a monoid of order 20, whose single-heap pretending function ˚ is periodic

of length 5.

C:\work>java -jar misere.jar 0.123

=== Normal Play Analysis of 0.123 ===

Max : G(3) = 2

Period: 5 (5)

=== Misere Play Analysis of 0.123 ===

-- Presentation for 0.123 changed at heap 1 --

Size 2: TAME

P = {a}

Phi = 1 a 1

-- Presentation for 0.123 changed at heap 3 --

Size 6: TAME

P = {a,b2}

Phi = 1 a 1 b b a b2 1

-- Presentation for 0.123 changed at heap 8 --

Size 12: {a,b,c | a2=1,b4=b2,b2c=b3,c2=1}

P = {a,b2,ac}

Phi = 1 a 1 b b a b2 1 c

-- Presentation for 0.123 changed at heap 9 --

Size 20: {a,b,c,d | a2=1,b4=b2,b2c=b3,c2=1,b2d=d,cd=bd,d3=ad2}

P = {a,b2,ac,bd,d2}

Phi = 1 a 1 b b a d2 1 c d a d2 1 c d a d2 1 c d a d2 1

=== Misere Play Analysis Complete for 0.123 ===

Size 20: {a,b,c,d | a2=1,b4=b2,b2c=b3,c2=1,b2d=d,cd=bd,d3=ad2}

P = {a,b2,ac,bd,d2}

Phi = 1 a 1 b b a d2 1 c d a d2 1 c d a d2 1 c d a d2 1

Standard Form : 0.123

Normal Period : 5

Normal Ppd : 5

Normal Max G : G(3) = 2

Misere Period : 5

Misere Ppd : 5

Quotient Order: 20

Heaps Computed: 22

Last Tame Heap: 7
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9.4. Partial quotients and pretending functions. Let’s look more closely at

the MisereSolver partial quotient output in order to illustrate some of the subtlety

of misere quotient presentation calculation.

In Figure 13, we’ve shown three pretending functions for 0.123. The first

is just the normal play pretending function (that is, the nim-sequence) of the

game, to heap six. The second table shows the corresponding misere pretending

function for the partial quotient to heap size 6, and the final table shows the initial

portion of the pretending function for the entire game (taken over arbitrarily

large heaps).

With these three tables in mind, consider the following question:

When is 4 C 4 indistinguishable from 6 in 0.123?

Normal 0.123

n 1 2 3 4 5 6 7 8 9 10

G.n/ �1 �0 �2 �2 �1 �0 � � � � � � � � � � � �

Misere 0.123 to heap 6: ha; b j a2 D 1; b3 D bi, order 6

n 1 2 3 4 5 6

˚.n/ a 1 b b a b2

Complete misere 0.123 quotient, order 20

ha; b; c; d j a2 D 1; b4 D b2; b2c D b3; c2 D 1; b2d D d; cd D bd; d3 D ad2i

n 1 2 3 4 5 6 7 8 9 10

˚.n/ a 1 b b a d2 1 c d � � �

Figure 13. Iterative calculation of misere partial quotients differs in a
fundamental way from normal play nim-sequence calculation because sums
at larger heap sizes (for example, 8C9) may distinguish between positions
that previously were indistinguishable at earlier partial quotients (e.g., 4C4
and 6, to heap size six).

Let’s answer the question. In normal play (the top table), 4 C 4 is indistin-

guishable from 6 because

G.4 C 4/ D G.4/ C G.4/ D �2 C �2 D �0 D G.6/:

And in the middle table, 4C4 is also indistinguishable from 6, since both sums

evaluate to b2. But in the final table,

˚.4 C 4/ D ˚.4/ C ˚.4/ D b � b D b2 ¤ d2 D ˚.6/;
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o
1

2

1

o

2 0={{2},0}

2 ={2}
+

+

Figure 14. Misere coin-sliding on a directed heptagon with two additional
edges. An arbitrary number of coins are placed at the vertices, and two
players take turns sliding a single coin along a single directed edge. Play
ends when the final coin reaches the topmost (sink) node (labelled o).
Whoever makes the last move loses the game. The associated indistin-
guishability quotient is a commutative monoid of order 14 with presenta-
tion h a; b; c j a2 D 1; b3 D b; b2c D c; c3 D ac2 i and P-positions
f a; b2; bc; c2g. See Section 9.5 and Figure 15.

that is, 4C4 can be distinguished from 6 in play of 0.123 when no restriction is

placed on the heap sizes. In fact, one verifies that the sum 8 C 9, a position of

type cd , distinguishes between 4 C 4 and 6 in 0.123.

The fact that the values of partial misere pretending functions may change in

this way, as larger heap sizes are encountered, makes it highly desirable to carry

out the calculations via computer programs that know how to account for it.

9.5. Quotients from canonical forms. In addition to computing quotients

directly from the Guy–Smith code of octal games [GS], MisereSolver also can

take as input the a canonical form of a misere game G. It then computes the

indistinguishability quotient of its closure cl(G). This permits more general

games than simply heap games to be analyzed.

A coin-sliding game. For example, suppose we take G D f2C; og, a game listed

in Figure 7. In the output script below, MisereSolver calculates that the indis-

tinguishability quotient of cl(G) is a monoid of order 14 with four P-position

types:

-- Presentation for 2+0 changed at heap 1 --

Size 2: TAME

P = {a}

Phi = 1 a

-- Presentation for 2+0 changed at heap 2 --

Size 6: TAME

P = {a,b2}

Phi = 1 a b b2

-- Presentation for 2+0 changed at heap 4 --

Size 14: {a,b,c | a2=1,b3=b,b2c=c,c3=ac2}



ADVANCES IN LOSING 79

P = {a,b2,bc,c2}

Phi = 1 a b c2 c

Figure 9.5 shows a coin-sliding game that can be played perfectly using this

information. Figure 15 shows how the canonical forms at each vertex correspond

to elements of the misere quotient.

Canonical form o 1 2 2C f2C; og
Quotient element 1 a b c2 c

Figure 15. Assignment of single-coin positions in the heptagon game to
misere quotients elements.

10. Outlook

At the time of this writing (December 2005), the indistinguishability quotient

construction is only one year old. Several aspects of the theory are ripe for

further development, and the misere versions of many impartial games with

complete normal play solutions remain to be investigated. We have space only

to describe a few of the many interesting topics for further investigation.

10.1. Infinite quotients. Misere quotients are not always finite. Today, it

frequently happens that MisereSolver will “hang” at a particular heap size as

it discovers more and more distinguishable position types. Is it possible to im-

prove upon this behavior and discover algorithms that can handle infinite misere

quotients?

Dawson’s chess. One important game that seems to have an infinite misere quo-

tient is Dawson’s Chess. In the equivalent form 0.07, (called Dawson’s Kayles),

Aaron Siegel [PS] found that the order of its misere partial quotients Q grows

as indicated in Figure 16:

Heap size 24 26 29 30 31 32 33 34

jQj 24 144 176 360 520 552 638 1.?/

Figure 16. Is 0.07 infinite at heap 34?

Since Redei’s Theorem (see [P2] for discussion and additional references) as-

serts that a finitely generated commutative monoid is always finitely presentable,

the object being sought in Figure 16 (the misere quotient presentation to heap

size 34) certainly exists, although it most likely has a complicated structure of

P- and N-positions. New ideas are needed here.
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Infinite, but not at bounded heap sizes. Other games seemingly exhibit infinite

behavior, but appear to have finite order (rather than simply finitely presentable)

partial quotients at all heap sizes. One example is .54, which shows consider-

able structure in the partial misere quotients output by MisereSolver. Progress

on this game would resolve difficulties with an incorrect solution of this game

that appears in the otherwise excellent paper [A3]. Siegel calls this behavior

algebraic periodicity.

10.2. Classification problem. The misere quotient classification problem asks

for an enumeration of the possible nonisomorphic misere quotients at each order

2k, and a better understanding of the category of commutative monoids that

arise as misere quotients7. Preliminary computations by Aaron Siegel suggest

that the number of nonisomorphic misere quotients grows as follows:

Order 2 4 6 8 10 12

# quotients 1 0 1 1 1? 6?

Figure 17. Conjectured number of nonisomorphic misere quotients at
small orders.

Evidently misere quotients are far from general commutative semigroups —

by comparison, the number of nonisomorphic commutative semigroups at orders

4, 6, and 8 are already 58, 2143, and 221805, respectively [Gril, p. 2].

10.3. Relation between normal and misere play quotients. If a misere quo-

tient is finite, does each of its elements x necessarily satisfy a relation of the

form xkC2 Dxk , for some k �0? The question is closely related to the structure

of maximal subgroups inside misere finite quotients. Is every maximal subgroup

of the form .Z2/m, for some m?

At the June 2005 Banff conference on combinatorial games, the author con-

jectured that an octal game, if misere periodic, had a periodic normal play nim

sequence with the two periods (normal and misere) equal. Then Aaron Siegel

pointed out that 0.241, with normal period two, has misere period 10. Must the

normal period length divide the misere one, if both are periodic?

10.4. Quaternary bounties. Again at the Banff conference, the author dis-

tributed the list of wild misere quaternary games in Figure 18.

The author offered a bounty of $25 dollars/game to the first person to exhibit

the misere indistinguishability quotient and pretending function of the games in

the list. Aaron Siegel swept up 17 of the bounties [PS], but .3102, .3122, .3123,

and .3312 are still open.

7It can be shown that a finite misere quotient has even order [PS].
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..0122; 120; 12/ ..0123; 120; 12/ ..1023; 21420; 11/ ..1032; 21420; 12/

..1033; 120; 11/ ..1231; 21420; 8/ ..1232; 21420; 9/ ..1233; 21420; 9/

..1321; 21420; 9/ ..1323; 21420; 10/ ..1331; 120; 8/ ..2012; 120; 5/

..2112; 120; 5/ ..3101; 120; 4/ ..3102; 020; 5/ ..3103; 120; 4/

..3112; 21420; 7/ ..3122; 21420; 4/ ..3123; 131; 6/ ..3131; 21420; 6/

..3312; 21420; 5/

Figure 18. The twenty-one wild four-digit quaternary games (with first
wild genus value and corresponding heap size).

10.5. Misere sprouts endgames. Misere Sprouts (see [WW], 2nd edition, Vol

III) is perhaps the only misere combinatorial game that is played competitively

in an organized forum, the World Game of Sprouts Association. It would be

interesting to assemble a database of misere sprout endgames and compute the

indistinguishability quotient of their misere addition.

10.6. The misere mex mystery. In normal play game computations for heap

games, the mex rule allows the computation of the heap nC1 nim-heap equiva-

lent from the equivalents at heaps of size n and smaller. The misere mex mystery

asks for the analogue of the normal play mex rule, in misere play. It is evidently

closely related to the partial quotient computations performed by MisereSolver.

10.7. Commutative algebra. A beginning at application of theoretical results

on commutative monoids to misere quotients was begun in [P2]. What more

can be said?

Appendix: Genus theory

We summarize Conway’s genus theory, first described in [ONAG, chapter 12]

and used extensively in Winning Ways. It describes a method for calculating

whether all the positions of particular game � are tame, and how to give a

complete analysis of � , if so. The genus theory assigns to each position G a

particular symbol

genus.G/ D G�.G/ D gg0g1g2���: (A-1)

where the g and the gi’s are always nonnegative integers. We’ll define this genus

value precisely and illustrate how to calculate genus values for some example

games G, below.

To look at this in more detail, we need some preliminary definitions before

giving definition of genus values.

A.8. Grundy numbers. Let �k represent the nim heap of size k. The Grundy

number (or nim value) of an impartial game position G is the unique number

k such that G C �k is a second-player win. Because Grundy numbers may be
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defined relative to normal or misere play, we distinguish between the normal

play Grundy number GC.G/ and its counterpart G�.G/, the misere Grundy

number.

In normal play, Grundy numbers can be calculated using the rules GC.0/ D 0,

and otherwise, GC.G/ is the least number (from 0,1,2, . . . ) that is not the Grundy

number of an option of G (the so-called minimal excludant, or mex).

When normal play is in effect, every game with Grundy number GC.G/ D k

can be thought of as the nim heap �k. No information about best play of the

game is lost by assuming that G is in fact precisely the nim heap of size k.

Moreover, in normal play, the Grundy number of a sum is just the nim-sum of

the Grundy numbers of the summands.

The misere Grundy number is also simple to define [p. 140, bottom][ONAG]:

G�.0/ D 1. Otherwise, G�.G/ is the least number (from
0,1,2, . . . ) which is not the G�-value of any option of G.
Notice that this is just like the ordinary “mex” rule for com-
puting GC, except that we have G�.0/ D 1; and GC.0/ D 0.

Misere P-positions are precisely those whose first genus exponent is 0.

A.9. Indistinguishability vs misere Grundy numbers. When misere play

is in effect, Grundy numbers can still be defined — as we’ve already said —

but many distinguishable games are assigned the same Grundy number, and

the outcome of a sum is not determined by Grundy numbers of the summands.

These unfortunate facts lead directly to the apparent great complexity of many

misere analyses.

Here is the definition of the genus, directly from [ONAG], now at the bottom

of page 141:

In the analysis of many games, we need even more information
than is provided by either of these values [GC and G�], and
so we shall define a more complicated symbol that we call
the G�-value, [or genus ], G�.G/. This is the symbol

gg0g1g2���

where

g D GC.G/

g0 D G�.G/

g1 D G�.G C 2/

g2 D G�.G C 2C 2/

: : : D : : :
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where in general gn is the G�-value of the sum of G with n

other games all equal to [the nim-heap of size] 2.

At first sight, the genus symbol looks to be an potentially infinitely long

symbol in its “exponent.” In practice, it can be shown that the gi’s always fall

into an eventual period two pattern. By convention, a genus symbol is written

down with a finite exponent with the understanding that its final two values

repeat indefinitely.

The only genus values that arise in misere Nim are the tame genera

0120; 1031

„ ƒ‚ …

Genera of normal play �0 (resp, �1) Nim
positions involving nim heaps of size 1 only

and

002; 113; 220; 331; 446; : : : ; nn.n˚2/; : : :
„ ƒ‚ …

Genera of �n normal-play Nim positions
involving at least one nim heap of size � 2:

Figure 19. Correspondence between normal play nim positions and tame
genera.

The value of genus theory lies in the following result [ONAG, Theorem 73]:

Theorem: If all the positions of some game � have tame
genera, the genus of a sum G C H can be computed by
replacing the summands by Nim-positions of the same genus
values, and taking the genus value of the resulting sum.

In order to apply the theorem to analyze a tame game � , a person needs to

know several things:

(i) How to compute genus symbols for positions G of a game � ;

(ii) That every position of the game � does have a tame genus;

(iii) The correspondence between the tame genera and Nim positions.

We’ve already given the correspondence between normal-play Nim positions

and their misere genus values, in Figure (19). We’ll defer the most complicated

part — how to compute genera, and verify that they’re all tame — to the next

section.
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The addition rule for tame genera is not complicated. The first two symbols

have the Z2 addition

0120 C 0120 D 0120

0120 C 1031 D 1031

1031 C 1031 D 0120

Two positions with genus symbols of the form nn.n˚2/ add just like Nim

heaps of �n. For example,

220 C 331 D 113:

The symbol 0120 adds like an identity, for example:

446 C 0120 D 446:

When 1031 is added to a nn.n˚2/, it acts like 113:

446 C 1031 D 557:

It has to emphasized that these rules work only if all positions in play of � are

known to have tame genus values. If, on the other hand, even a single position

in a game � does not have a tame genus, the game is wild and nothing can be

said in general about the addition of tame genera.

A.10. Genus calculation in octal game 0.123. Let’s press on with genus theory,

illustrating it in an example game, and keeping in mind the end of Chapter 13

in [WW]:

The misere theory of impartial games is the last and most

complicated theory in this book. Congratulations if you’ve

followed us so far. . .

Genus computations, and the nature of the conclusions that can be drawn

from them, are what makes Chapter 13 in Winning Ways complicated. In this

section we illustrate genus computations by using them to initiate the analysis

of a particular wild octal game (0.123). Because the game 0.123 is wild, genus

theory will not lead to a complete analysis of it. A complete analysis can never-

theless be obtained via the indistinguishability quotient construction; for details,

see [P2].

The octal game 0.123 can be played with counters arranged in heaps. Two

players take turns removing one, two or three counters from a heap, subject to

the following additional conditions:

(i) Three counters may be removed from any heap;

(ii) Two counters may be removed from a heap, but only if it has more than two

counters; and
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+ 1 2 3 4 5

0+ 1 0 2 2 1

5+ 0 0 2 1 1

10+ 0 0 2 1 1

15+ � � �

Figure 20. Normal play nim values of 0.123.

(iii) One counter may be removed only if it is the only counter in that heap.

Normal play of 0.123. The nim sequence of 0.1238 is periodic of length 5,

beginning at heap 5. See Figure 20.

Misere play genus computations for 0.123. We exhibit single-heap genus

values of 0.123 in Figure 21. It’s possible to prove that this sequence is also

periodic of length 5. However, a periodic genus sequence is not the same thing

as a complete misere analysis. Let’s see what happens instead.

+ 1 2 3 4 5

0+ 1031 0120 220 220 1031

5+ 002 0120 21420 120 1031

10+ 002 0120 21420 120 1031

15+ � � �

Figure 21. G*-values of 0.123.

There are some tame genus symbols in Figure 21. They are

0 D 01202020��� D 0120

1 D 10313131��� D 1031

2 D 22020202��� D 220

Despite the presence of these tame genera, the game is still wild — the first

wild genus value, 21420, occurs at heap 8. Conway’s Theorem 73 on tame games

therefore does not apply, since it requires all positions to have tame genera in

order for the game to be treated as misere Nim. We can say nothing about

how genera add — even the tame genera — without examining the game more

closely.

Here’s what we can (and cannot) do with Figure 21.

8See Winning Ways, Chapter 4, p. 97, “Other Take-Away Games;” also Table 7(b), p. 104.
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+ h1 h2 h3 h4 h5 h6 h7 h8 h9

h1 0120 1031 331 331 0120 113 1031 30531 031

h2 0120 220 220 1031 002 0120 21420 120

h3 002 002 331 220 220 0420 302

h4 002 331 220 220 0420 302

h5 0120 113 1031 30531 031

h6 002 002 220 113

h7 0120 21420 120

h8 0120 302

h9 002

Figure 22. Some genus values of games hi C hj in 0.123.

Single heaps. We can determine the outcome class of single-heap 0.123 posi-

tions. The first superscript in a heap’s genus symbol is 0 if and only if that heap

size is a P -position. The single heap P -positions of 0.123 therefore occur at

heap sizes

1; 5; 6; 10; 11; 15; 16; 20; 21; : : :

For example, the genus of the heap of size 7 has its first superscript = 1. It is

therefore an N -position. The winning move is 7 ! 5.

Multiple heaps. Using Figure 21, we cannot immediately determine the out-

come class of 0.123 positions involving multiple heaps. However, the figure

does provide a basis for investigating multiheap positions. For example, Figure

22 is a table that shows the genera of two-heap positions up to heap size nine.

A.11. Genus calculation algorithm. Here’s how the genus of a particular sum

G D h8 C h5 was computed from the earlier single-heap values in Figure 21.

First, we rewrote genus(G) in terms of its options:

genus.G/ D genus.h8 C h5/ D genus.fh6 C h5; h5 C h5; h8 C h3; h8 C h2g/

The genus of a nonempty game G D fA; B; : : :g can be calculated from the

genus of its options A; B; : : : using the mex-with-carrying algorithm (˘ symbols

represent positions with no carry):

carry.
 / D ˘˘05313

carry.
 ˚ 1/ D ˘˘14202

genus.h6 C h5/ D 1131313:::

genus.h5 C h5/ D 0120202:::

genus.h8 C h3/ D 0420202:::

genus.h8 C h2/ D 2142020:::
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genus.G/ D 3053131:::

The result genus.G/ D 3053131::: D 30531 was computed columnwise, work-

ing from left to right. First, the “base” and “first superscript” results

GC.G/ D mex.f1; 0; 0; 2g/ D 3

and

G�.G/ D mex.f1; 1; 4; 1g/ D 0

were computed from the corresponding four positions in each option of G, with

no carries present. The “carry out” is then 
 D 0. The second superscript result

G�.G C �2/ D mex.f3; 2; 2; 4; 0; 1g/ D 5

involved a similar computation, but with two carry values

f
; 
 ˚ 1g D f0; 1g:

thrown into the mex calculation (they’re shown in bold). See the more complete

description of this algorithm in the section titled “But What if They’re Wild?”

asks the Bad Child ([WW], page 410). It’s also illustrated in [ONAG, p. 143].
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