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Coping with cycles

AARON N. SIEGEL

ABSTRACT. Loopy games are combinatorial games in which repetition is per-
mitted. The possibility of nonterminating play inevitably raises difficulties,
and several theories have addressed these by imposing a variety of assumptions
on the games under consideration. In this article we survey some significant
results on partizan loopy games, focusing on the theory developed in the 1970s
by Conway, Bach and Norton.

1. Introduction

A substantial portion of combinatorial games research focuses on games with-
out repetition — those that are guaranteed to terminate after some finite number
of moves. Such games are highly tractable, both theoretically and computa-
tionally, and the full force of the classical partizan theory can be brought to bear
upon them. The great success of this theory has produced a vast body of splendid
results, but it has also resulted in an unjust neglect of games with repetition.

In the late 1970s, John Conway and his students, Clive Bach and Simon
Norton, introduced a disjunctive theory of partizan games with repetition —
called loopy games because their game graphs may contain cycles. They showed
that in many interesting cases, such games admit canonical forms. The past few
years have witnessed some significant applications of this theory, to games as
diverse as Fox and Geese, Hare and Hounds, Entrepreneurial Chess, and one-
dimensional Phutball. In light of these advances, it is time for a reappraisal of
the theory with an eye to the future.

A short history. The first disjunctive theory of loopy games is due to Cedric
A. B. Smith and Aviezri Fraenkel. They showed (independently) that the usual
Sprague—Grundy theory generalizes well to loopy games. In particular, many
impartial loopy games are equivalent to nimbers, and the remainder are char-
acterized by their nimber-valued options. Over a period of several decades,
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Fraenkel and his students explored this theory in depth. They constructed nu-
merous examples and studied both their solutions and their computational com-
plexity.

The partizan theory was introduced by Robert Li, who studied Zugzwang
games, those in which it is a disadvantage to move. Li showed that Zugzwang
games are completely characterized by a certain pair of ordinary numbers. Soon
thereafter, Conway, Bach and Norton extended Li’s theory to a much broader
class of games. They showed that many loopy games y — including most po-
sitions encountered in actual play — decompose into a pair of much simpler
games, called the sides of y. Their theory was published in the first edition of
Winning Ways, together with a handful of examples, most notably the children’s
game Fox and Geese.

Intermittent progress was made over the next twenty years, but it was not until
2003 that loopy games saw a full-fledged revival. John Tromp and Jonathan
Welton had recently detected an error in the Winning Ways analysis of Fox and
Geese, and Berlekamp set out to repair it. His corrected analysis appears in the
second edition of Winning Ways. Berlekamp’s effort led to the development of
new algorithms, which in turn paved the way for a re-examination of several
other loopy games mentioned in Winning Ways.

In this survey, the Winning Ways theory is introduced first, so that earlier
developments — notably those of Smith, Fraenkel and Li—can be presented
in the modern context. Section 2 is an expository overview of some interest-
ing properties of loopy games, with a focus on Fox and Geese. Much of that
material is formalized in Section 3, and in Section 4 we tackle the theory of
sides as it appears in Winning Ways. Each of these sections also addresses some
related topics. Section 5 discusses several specific partizan games that have been
successfully analyzed with this theory. In Section 6, we discuss the generalized
Sprague—Grundy theory and its relationship to partizan games. Section 7 gives
an overview of the Smith—Flanigan results on conjunctive and selective sums.
Finally, in Section 8 we survey the development of algorithms for loopy games.

Two topics are notably absent from this survey. The first is the immense body
of work on loopy impartial games, assembled over several decades by Aviezri
Fraenkel and his students. Their work includes an extensive theoretical and
algorithmic analysis of the generalized Sprague—Grundy theory; many beauti-
ful examples; and connections to other fields, including combinatorial number
theory and error-correcting codes. The present article is focused mainly on the
partizan theory, and so does not do justice to their achievement; a forthcoming
book by Fraenkel surveys this material in far more detail and accuracy than we
could hope to achieve here.
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The combinatorial theory of Go is another major omission. This might seem
surprising, since Go is without question the most significant loopy game that has
been subjected to a combinatorial analysis. However, there is good reason for its
omission. Although Go is fundamentally disjunctive in nature, its unique koban
rule implies an interrelationship between all components on the board. This
gives rise to a rich and fascinating temperature theory that has been explored by
many researchers, including Berlekamp, Fraser, Kao, Kim, Miiller, Nakamura,
Snatzke, Spight, and Takizawa, to list just a few. However, this temperature
theory appears to be incompatible with the canonical theory that is the focus
of our discussion. Because Go is so prominent, its body of results is vast; yet
because it is so singular, these appear disconnected from other theories of loopy
games. Thus while Go desperately deserves its own survey, this article is not
the appropriate place for it.

This apparent dichotomy also raises the first— and arguably the most impor-
tant — open problem of this survey.

OPEN PROBLEM. Formulate a temperature theory that applies to all loopy
games.

Notation and preliminaries. Following Winning Ways, we denote loopy games
by loopy letters y, 8, «, B, .. .. If y is loopy, we define the associated game graph
G as follows. G has one vertex, Vg, for each subposition « of y (including y
itself), and there is an edge directed from Vy to Vg just if there is a legal move
from « to f. When y is partizan, we color the edge bLue, Red, or grEen,
depending on whether Left, Right, or Either player may move from « to 5.

An abbreviated notation is often useful. In many loopy games, repetition is
limited to simple pass moves. In such cases we can borrow the usual brace-and-
slash notation used to describe loopfree games, enhanced with the additional
symbol pass. For example, if we write y = {0 | pass}, we mean that Left has
a move from y to 0, and that Right has a move from y back to y. Likewise, if
8 = {0 | pass || —1}, this means that Right has a move from § to —1, and that
Left has a move from § to {0 | pass} = y. For comparison, the game graph of §
is shown in Figure 1.

The main complication introduced by loopy games is the possibility of non-
terminating play. The simplest way to resolve this issue is to declare all infinite
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Figure 1. The game graph of § = {0 | pass || —1}.
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plays drawn, and this will be our assumption throughout Sections 2 and 3. We
will often say that a player survives the play of a game if he achieves at least a
draw.

2. Loops large and small

Fox and Geese is an old children’s game played on an ordinary checkerboard.
Four geese are arranged against a single fox as in Figure 2. The geese (controlled
by Left) move as ordinary checkers, one space diagonally in the forward direc-
tion, while the fox (controlled by Right) moves as a checker king— one space
in any diagonal direction. Neither animal may move onto an occupied square,
and there are no jumps or captures. The geese try to trap the fox, while the fox
tries to escape.

O

Figure 2. The usual starting position in Fox and Geese.

Fox and Geese has a curious feature: the game must end if played in isolation,
because the geese will eventually run out of moves, whether or not they trap the
fox. However, from a combinatorial perspective the game is certainly loopy.
The fox may return to a previous location, and this results in local repetition if
Left’s intervening moves occur in a different component.

Before turning to a more formal treatment of loopy games and canonical
forms, let us briefly investigate the behavior of Fox and Geese. Consider first
the happy affair of an escaped fox (Figure 3). The geese have exhausted their
supply of moves, and though Left has a tall Hackenbush stalk at his disposal,
his situation is hopeless. Inevitably, he will run out of moves, and the fox will
still be dancing about the checkerboard, none the worse for wear.

It is clear that an escaped fox « is more favorable to Right than any (finite)
Hackenbush stalk we might assemble. In an informal sense, we have established
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—0—0—0—0—0—0—0—0—0—0
h

Figure 3. Hackenbush is hopeless facing an escaped fox.

that

o <-—n,

for every integer n.

It is equally clear that the fox’s precise location on the checkerboard is ir-
relevant; all that matters is that she has an indefinite supply of moves at her
disposal. The many distinct positions that arise as she moves about the board are
all equivalent, and « can be written as a single pass move for Right: o = { | pass},
with game graph shown in Figure 4.

aQR ,BQL LCSQR

Figure 4. The games o = off, § = on, and § = dud.

The game « is normally known as off, and its inverse — from which Left can
pass — is naturally enough called on.! One might expect that on + off = 0, but
this is not the case: in their sum either player may pass, so that on + off is a
draw, while 0 is a second-player win.

In fact it is easy to see that on + off + y is drawn, no matter what game y
we include in the sum: both players have an inexhaustible supply of moves; so
neither has anything to fear. Therefore on + off is a deathless universal draw,
which we abbreviate by dud, and we have the identity

dud + y = dud

for all y.

IThe name is set-theoretic in origin: ON is standard notation for the class of all ordinal numbers, and the
game on behaves much like an ill-founded relation, an entity that exceeds all the ordinals.
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Figure 5. A trapped fox has value over.

Soon we shall put all of this on formal footing, but first consider one more
example to illustrate the remarkable properties of loopy games. In Figure 5 the
Fox is trapped. She is forced to shuttle indefinitely between the two lower-right-
hand spaces, and at any moment the geese may choose to end the game. It is
clear this game is positive, for Left may win at any time. Its abbreviated graph,
known as over, is also pictured in Figure 5.

Just how large is over? The reader might wish to confirm that, for any #,

1
n-1 <over < —,
2n

by showing that Left can win the appropriate differences. over is larger than
every loopfree infinitesimal, but smaller than every positive number.

3. Stoppers

When y is loopy, there are typically three possible outcomes: Left wins (if
he gets the last move); Right wins (if she gets the last move); or a Draw (if play
never terminates). This divides loopy games into nine outcome classes, since
the outcome might depend on who moves first:

Left moves first

Left Draw Right

wins wins
Right | Left wins < P P
moves | Draw N 9 P

first | Right wins | 4 A X

We denote by o(y) the outcome class of y. The outcome classes are naturally
partially-ordered as shown in Figure 6.

As always in combinatorial game theory, we define equality by indistin-
guishability in sums:

y =4 if o(y+a)=0(8+ «) for all loopy games «.
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Figure 6. The partial order of loopy outcome classes.

As remarked in Section 2, it is not always true that y —y = 0. Second player
can always assure a draw by playing the mirror image strategy, but in general
this does not guarantee a win. For this reason, loopy games do not form a group,
and we are forced to consider instead the monoid of loopy games, equipped with
the natural partial order:

y>46 if o(y+a)>o0(§+ ) for all loopy games «.

The theory of loopy games is motivated by two fundamental questions.

* Does every loopy game admit a unique simplest form, analogous to the canon-
ical form of a loopfree game?
 Can one specify an effective equivalent definition of y > §?

It turns out that both of these questions are easiest to answer for an important
special class of loopy games called stoppers. They can also be resolved quite
nicely for a larger class, the stopper-sided games, that encompasses most posi-
tions arising in studies of actual (playable) games.

A loopy game y is a stopper if there is no infinite alternating sequence of
play proceeding from any subposition of y. The games on, off, and over, which
we met in Section 2, are all stoppers, but dud is not. Further, every position that
arises in Fox and Geese is a stopper, since the geese are constrained to make
finitely many moves throughout the game.

If v is a stopper, then y is guaranteed to terminate when played in isolation.
This property is central to the following characterization.

THEOREM 1 (CONWAY). Let y, § be stoppers. Then

y > § iff Left, playing second, can survive y —§.
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PROOF. For the forward direction, suppose y > §, and let « = —§. Certainly
Left can survive § + «, by playing the mirror image strategy; then it follows
directly from the definition of > that he can survive y + «.

For the reverse direction, fix any loopy game «. We must show that:

(i) If Left can survive § + « playing first (second), then he can survive y + «
playing first (second).

(ii) If Left can win 6 4+ « playing first (second), then he can win y + « playing
first (second).

First suppose that Left is second player in case (i). We describe a strategy for
playing y + « that guarantees at least a draw.

Before play begins, Left constructs two dummy games: one copy of § + «,
and one copy of y —§. Whenever Right makes a move in y + «, Left copies
the move to the appropriate dummy game: if Right moves in the ¥ component,
Left copies the move to y — §; while if Right moves in the & component, Left
copies the move to § + «.

Now Left responds with his survival move in the dummy game. If this move
is in the § or —6 component, Left immediately makes the mirror image move
in the other dummy game, and responds accordingly. Successive responses in
the § and —4 components produce an alternating sequence of moves proceeding
from a subposition of §. Since § is a stopper, this cannot go on forever, and
eventually Left’s response must occur in the y or @ component. At that point
Left copies it back to ¥ + o and awaits Right’s next move.

If Left keeps to this strategy, he will never run out of moves in y 4+ «. This
proves case (i). In case (ii), Left uses the same technique, but follows his winning
strategy in § + «. This guarantees that eventually, § 4+ o will reach a terminal
position. At that point the & component of y 4 « is terminal; therefore, since y
is a stopper, it must eventually terminate as well. So the game will necessarily
end, and since Left has survived, Right cannot have made the last move.

If Left is first player, the argument is exactly the same. He makes his initial
move in the § + o dummy component, according to his first-player survival (or
winning) strategy for § + «, and continues accordingly. (]

Stoppers also admit a clean canonical theory: if y is a stopper, then we can
eliminate dominated options and bypass reversible ones, just as for loopfree
games. The proofs are straightforward applications of Theorem 1.

A stopper is in simplest form if it has no dominated or reversible options.

THEOREM 2 (CONWAY). If y and & are stoppers in simplest form with y =6,
then for every )/L there is a 8~ with )/L = 8L, and vice versa; and likewise for
Right options.

PROOF. See [5, Section 10]. O
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Figure 7. Simple stoppers.

Several simple stoppers. Figure 7 shows some of the simplest stoppers in
canonical form. The reader might wish to verify some of their remarkable prop-
erties, which clarify their behavior in the partial-order of games:

e on > y forall y.

e n-1 <over < 27" for all n.

e 17" <upon < 17" + 1 for all n.

® Fgver < y for every all-small game y > 0, but =gver > *x for every number
x> 0.

e o is the smallest positive game: if y > 0, then ++p < y.

With the exception of gver, all of these values arise frequently in playable
games. Also common is upon + *, which has the canonical form {0, pass | 0}.

In all of these examples, the only loops are simple pass moves (1-cycles).
Stoppers with longer cycles exist, but are much less common in nature. A typical
example is the game t shown in Figure 8, which has a 4-cycle in canonical form.

E L R
T °
° °

L R L

Figure 8. A stopper with a canonical 4-cycle.

Stoppers in canonical form can never have 2-cycles or 3-cycles; see [30] (this
volume) for a proof, together with examples of stoppers with canonical n-cycles
for all n > 4.



100 AARON N. SIEGEL

Idempotent Loopfree Games Absorbed
on = {pass | } All games
over = {0 | pass} All infinitesimals

«n and 12, but not sm

= >
star, = {0 0, *n | 0, pass} (n > 2) for any m # n
In = {010, pass |0, | [p—21*} (n = 2) }

" but not 177!
= 1010, Ly 10, pass} (1 = 2) f f

Aon — £0 [ 0| 0, pass} “Almost tiny” all-smalls (such as
{0[|0]4}}), but not 1" for any n
Fover = {0 || O | under} All tinies, but no all-smalls
*Fxunder = {0 || 0 | —xover} (x > 0) +xyn for all n, but not 4y _o-n
T =1{0| 0| —x, pass} (x > 0) }, for all y > x, but not 4

*Fxover = {0 || 0 | —xunder} (x > 0) +x+2-n for all n, but not 44,
+Fon = {0 0| off} None (except 0)

Figure 9. A variety of idempotents.

Idempotents. It is easy to see that on + on = on: certainly on + on > on,
but we also know that on > y for all y. Slightly less obvious is the fact that
over + over = over, and here Theorem 1 is useful. To show that over + over <
over, we need simply exhibit a second-player survival strategy for Left in

over + under + under,

where under = —over = {pass | 0}.

This is not difficult: so long as any under components remain, Left makes
pass moves. This guarantees that, if Right ever destroys both under compo-
nents (by moving from under to 0), the over component will still be present.
Therefore, if Right destroys both under components, Left can win the game by
moving from over to 0.

This example illustrates a striking feature of the monoid of loopy games: the
presence of explicit idempotents. Figure 9, reproduced from [27], lists many
more. Each idempotent ¢ is listed together with some of the loopfree games that
it absorbs (where ¢ absorbs y if t + y = ). It’s also worth noting that each
idempotent ¢ in Figure 9 has a “negative variant” —¢ and a “neutral variant” ¢ —,
both of which are also idempotents (though of course, ¢ —t is not a stopper).

Berlekamp [2] describes several other idempotents that do not appear to have
explicit representations as loopy games. These include s% and &;, which play
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central roles in the atomic weight and orthodox theories, respectively. It would
be interesting to describe a formal system that encompasses these in addition to
the idempotents of Figure 9.

Pseudonumbers. The psuedonumbers form an interesting subclass of infinite
stoppers.

DEFINITION 3. A stopper x is said to be a pseudonumber if, for every follower
y of x (including x itself), we have yL < y® for all yL, yR.

So a surreal number is just a well-founded pseudonumber. It is not hard to
show that x is a pseudonumber if and only if, for every follower y of x, each
yL <y and y <each yR. Thenasa consequence of Li’s Theorem (Theorem 9
in Section 4, below), the only finite pseudonumbers are on, off, and the dyadic
rationals and their sums with over and under. However, there are many infinite
pseudonumbers. A typical example is the game

Z={0,1,2,...|pass}:w:0ff.

It is not hard to check that Z > n for any integer n. Furthermore, it is the least
pseudonumber with this property: if y > n for all n, then y > Z. Therefore Z is
a least upper bound for the integers. This generalizes:

THEOREM 4. The pseudonumbers are totally ordered by >. Furthermore, every
set X ={x,y,z,...} of pseudonumbers has a least upper bound, given by

fz{x,y,z,...|pass}={x,y,z,...|}:0ff.
PROOF. See [27, Section 1.8]. O

Contrast this with surreal numbers, which certainly do not admit tight bounds.
However, while they acquire some analytic structure, pseudonumbers lose the
rich algebraic structure of the surreal numbers: they are not even closed under
addition, since (say) on + off is not a stopper.

Pseudonumbers might seem fanciful, but astonishingly, Berlekamp and Pear-
son recently discovered positions in Entrepreneurial Chess with offside Vi (see
Section 5 for a description). Like all good numbers, Z also makes an appearance
in Blue-Red Hackenbush (Figure 10).

4. Sides

As we have seen, stoppers generalize the canonical theory of loopfree games
in a straightforward way. Most loopy games, however, are not stoppers.

A typical example is the game Hare and Hounds, which has experienced
occasional bouts of popularity dating back to the late nineteenth century. The
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— 0—0—0—0—0-0-0
h

Figure 10. A Blue-Red Hackenbush position of value 7 =uw: off.

(a) (b)

Figure 11. Hare and Hounds: (a) the starting position; (b) an endgame
position.
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Figure 12. The position of Figure 11(b) is a second-player win.
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game can played on an 7 x 3 board for any odd n > 5; the starting position on
the 5 x 3 board is shown in Figure 11(a).

The play resembles Fox and Geese. Left controls three hounds (black circles)
and Right the lone hare (white circle). Each player, on his turn, may move any
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one of his units to an adjacent unoccupied intersection. The only restriction is
that the hounds may never retreat — they can only advance or move sideways.
There are no jumps or captures. The hounds win if they trap the hare (that is,
if it is Right’s turn and she has no moves available); the hare wins if this never
happens.

Since the hounds are allowed to move sideways, Hare and Hounds is not
always a stopper. It has another notable feature: if play never terminates, then
the game is declared a win for Right. This differs from the other games we have
studied, in which infinite plays are drawn. However, we will see that it actually
makes the game simpler, since it causes many positions to reduce to stoppers
that otherwise would not.

For example, consider the endgame position ¢ of Figure 11(b). If Right
makes either of her available moves, then the hounds can certainly trap her; see
Figure 12(i) and (ii). Conversely, if Left moves first, then the hare can evade
capture indefinitely by following the pattern shown in Figure 12(iii). (The reader
might wish to verify that if the hounds ever deviate from this pattern, then the
hare can escape outright.) Therefore y is a second-player win, and we conclude
that y = 0.

In the late 1970s, Conway, Bach and Norton made a breakthrough in the
study of loopy games [5]. They observed, first of all, that games such as Hare
and Hounds — where infinite plays are wins for one of the players — can often
be brought into the theory of stoppers in a coherent way. Furthermore, their
presence actually simplifies the analysis of games where infinite plays are drawn.

To understand this relationship, let y be an arbitrary loopy game with infinite
plays drawn, and suppose we wish to know whether Left can win y. Then we
might as well assume that infinite plays are wins for Right. Likewise, if we wish
to know whether Left can survive y, then we might as well assume that infinite
plays are wins for Left. Therefore, we can determine the outcome class of y
by considering each of these two variants in turn. As it turns out, the variants
often reduce to stoppers, even when y itself does not; and in such cases, this
reduction yields a substantial simplification.

Therefore, we now drop the assumption that all infinite plays are drawn. We
assume that each game y comes equipped with one of three winning conditions:
Left wins infinite plays; Right wins infinite plays; or infinite plays drawn. We
say that y is free if infinite plays are draws and fixed otherwise.

When y is free, we denote by ¥ and y~ the matching fixed games with
infinite plays redefined as wins for Left and Right, respectively. When y is
fixed, we simply put y T =y~ = y.

If infinite play occurs in a sum

at Bty
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we assume that Left (Right) wins the sum if he wins on every component in
which play is infinite. If there are any draws, or if several components with
infinite play are split between the players, the outcome of the sum is a draw.

When we consider the definition of >, we suppose now that o ranges over
all fixed games in addition to free ones:

y>6 if o(y +a)>o0(8+ a) for all fixed or free loopy games «.

The main result is the following, called the Swivel Chair Theorem in Winning
Ways. It is a direct generalization of Theorem 1.

THEOREM 5 (SWIVEL CHAIR THEOREM). The following are equivalent, for
any loopy games y, §:

@ y =4
(ii) Left, playing second, can survive both y+* —8§% and y= —§~.

PROOF. See [3, Chapter 11] or [5, Section 2]; it’s very similar to the proof of
Theorem 1. O

Note the key implication of Theorem 5: how y compares with other games
depends only on ¥t and . Thus when y T and y ™ are equivalent to stoppers
st and 1™, the behavior of y is completely characterized by s and ¢. In such
cases we call s and ¢ the sides of y (the onside and offside respectively), and we
say that y is stopper-sided. It is customary to write

y=s5s&t,

and with s and 7 in simplest form, this should be regarded as a genuine canonical
representation for y.

For example, consider the game dud = {pass | pass}. We know that on™ >
dud™ (since on™ is the largest game of all). But also, Left can survive the game

dud™ —on™

by passing indefinitely in the dud component, where he wins infinite plays. We
conclude that dudt = on™, and by a symmetric argument dud~ = off . This
gives the identity

dud = on & off.

If y = s & t, then the outcome class of y is determined by those of s and ¢.
Since s and ¢ are stoppers, their outcomes fall into the usual classes: positive,
negative, fuzzy or zero. This yields a total of sixteen possibilities for . How-
ever, since y+ > y~, we know that st >t and since s and ¢ are stoppers,
this implies that s > ¢. This restriction rules out seven possibilities, leaving
the remaining nine in one-to-one correspondence with the nine outcome classes
discussed in Section 3. This correspondence is summarized in Figure 13.
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S
>0 20 =0 <0

<0| 2 ¥ 2 2%
; 20 | A4V AN — —
=0 8 — 8 —
>0 | £ - - -
Figure 13. The outcome class of y =5 & t is determined by those of s

and ¢.

The sides of y therefore carry a great amount of information. Given their
applicability, it is natural to ask how they might be computed in general. Winning
Ways introduced a method called sidling that yields a sequence of increasingly
good approximations to the sides of y. Sometimes this sequence converges
to the true onside and offside; but more often than not, it fails to converge.
Nonetheless, sidling has been applied to obtain some interesting results, notably
by David Moews in his 1993 thesis [21] and a subsequent article on Go [22].2

More recent discoveries include effective methods for computing sides (when
they exist); see [30] in this volume for discussion.

Carousels. Stopper-sided decompositions are both useful and extremely com-
mon. However, there do exist loopy games that are not stopper-sided. In the
1970s, Clive Bach produced the first example of such a game, known as Bach’s
Carousel, by specifying its game graph explicitly. Much more recently, similar
“carousels” have been discovered on 11 x 3 boards in Hare and Hounds. See
Figure 14 for an example and [27] for further discussion.

~L—>3* 0 OL V4
L L
AN
0 R @ 4 R T
= R R
0<Foce-Fup
L/ . Ly
L
t 0

Figure 14. A carousel in Hare and Hounds. Here £ = {0, | 2%|0, | 2%}.

21n order to bring Go into the canonical theory, Moews considered Go positions together with explicitly
kobanned moves. Means and temperatures as defined by Berlekamp cannot be recovered from the resulting
canonical forms. Nonetheless, Moews’ analysis yields interesting information about Go positions that is not
captured by thermography.
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What about sums of stoppers? Winning Ways gives an example, due to Bach,
of certain infinite stoppers whose sum is not stopper-sided. But the following
question remains open:

QUESTION. Is the sum of finite stoppers necessarily stopper-sided?
Finally, the following question was posed in Winning Ways and remains open.

QUESTION (BERLEKAMP-CONWAY-GUY). Is there an alternative notion of
simplest form that works for all finite loopy games?

Degrees, classes, and varieties. When y is loopy, it is often the case that
y —y # 0. Provided y — y is stopper-sided, we define the degree of loopiness
(or degree) y° by

y° = Onside(y —y).

If y is equivalent to a loopfree game, then y° = 0; otherwise y° > 0. For
example, it is not hard to check that on® = on, over® = over, and upon® =
10" = {0 | —uponx}.

For a fixed idempotent ¢, the games of degree ¢ tend to group naturally into
classes and varieties that interact in predictable ways. These were investigated
in Winning Ways for the idempotent

o = {0% | {fon | 0%}}.

However, since the publication of the first edition of Winning Ways, there has
been little effort to move the theory forward. For this reason, we omit a full dis-
cussion and instead refer the reader to Winning Ways. It is perhaps time to study
classes and varieties in more detail, in light of recent discoveries concerning
other aspects of loopy games.

OPEN PROBLEM. Investigate the class structure of each idempotent in Figure 9.

Zugzwang games. Although the theory of sides is due to Conway and his
students, its acknowledged inspiration is an earlier study by Robert Li, a student
of Berlekamp’s in the 1970s [20]. Li investigated so-called Zugzwang games —
those in which it is a disadvantage to move —and found that they generalize
ordinary numbers in a straightforward way.

DEFINITION 6. y is a Zugzwang game if, for every follower § of y, each 6% < §
and § < each §%.

Li’s Theorem completely classifies all loopy Zugzwang games:
THEOREM 7 (L1). Let y be a loopy game. Then the following are equivalent:

(a) y is equal to some Zugzwang game;
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(b) There exist dyadic rationals x and y, x > y, such that
y=x&y.
PROOF. See [20, Section 4]. |

Li also studied a mild generalization of Zugzwang games, which he called weak
Zugzwang games.

DEFINITION 8. y is a weak Zugzwang game if, for every follower § of y, each
§L <8 and § < each §R.

Note that for loopfree games G, the weak and strong Zugzwang notions co-
incide, since necessarily G # GL, GR. For loopy games, however, there are
several further weak Zugzwang games.

THEOREM 9 (L1). Let y be a loopy game. Then the following are equivalent:

(a) y is equal to some weak Zugzwang game;
(b) y =x & y, where x > y and each of x, y is one of the following:

1) om;

(ii) off;

(iii) A dyadic rational,

(iv) z + over for some dyadic rational z; or

(v) z + under for some dyadic rational z.
PROOF. See [20, Section 6]. O

Li’s results are intrinsically interesting, and also quite remarkable, given that he
had none of the modern machinery of loopy games at his disposal.

5. Some specific partizan games

Several partizan games have been successfully analyzed using the disjunctive
theory. We briefly survey the most important examples.

Fox and Geese. This game has been largely solved by Berlekamp, who showed
that the critical position of Figure 15 has the exact value 1 + 2-(=8) where
n > 8. CGSuite has confirmed that the 8 x 8 starting position (Figure 2) has value
2 4 over. Many other interesting values arise; these are summarized in Winning
Ways and in slightly more detail in [27].

Berlekamp’s analysis leaves little to be discovered about Fox and Geese
proper. Nonetheless, we can ask interesting questions about certain variants
of the game. Murray [23] describes a variant from Ceylon, Koti keliya, which
is played with six geese (‘“dogs” or “cattle””) on the 12 x 12 board, with the fox
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O

Figure 15. This critical position on an n x 8 board has value 1 + 278

(n=38).

(“leopard”) permitted two moves per turn. It is unclear whether these moves
must be in the same direction. Although a full solution to the 12 x 12 board
appears to be out of reach computationally, it is interesting to observe how the
fox’s increased mobility affects play on smaller boards. As one might expect,
it is far easier for the fox to escape, and positions whose values are large neg-
ative numbers become quite common. In fact, the following conjecture seems

justified:
PPN PN PN PPN
~ ~ ~
over ~ over 0
over over over|0 over|0
over over over over
over over over over
Figure 16. Conjectured values of n x 4 Fox and Geese (n > 5).
P AN PPN P AN PN
~ ~ ~ ~ ~
0 0 ~ * * *
* * * 0 0 0
0 0 0 * * *
* * * 0 0 0

Figure 17. Conjectured values of n x 6 Fox and Geese (n > 8).
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CONJECTURE. The critical position of Figure 15, played with Ceylonese rules,
has value —2n + 11 for all n > 6.

Finally, there is overwhelming experimental evidence for the following two con-
jectures.

CONIJECTURE. The diagrams of Figure 16 are valid on the n x 4 Fox and Geese
board, for all n > 5. Furthermore, the range of values that appear on the n x 4
board can be classified completely.

(In the diagrams of this and the next figure, the geese are fixed, and conjectured
values are shown for each possible placement of the fox.)

CONIJECTURE. The diagrams of Figure 17 are valid on the n x 6 Fox and Geese
board, for all n > 8.

Backsliding Toads and Frogs. Backsliding Toads and Frogs was introduced in
Winning Ways. The game is played on a 1 x n strip populated by several toads
(controlled by Left, facing right) and frogs (controlled by Right, facing left). See
Figure 18 for a typical starting position. There are two types of moves. Either
player may slide one of his animals one space in either direction. Alternatively,
he may choose to jump in the facing direction (toads to the right, frogs to the
left). Players must jump over exactly one enemy (never a friendly animal) and
must land on an unoccupied space. Jumps do not result in capture.

& & o
{

Figure 18. A typical starting position in Backsliding Toads and Frogs.

Readers familiar with ordinary Toads and Frogs will recognize the only differ-
ence between the two games: in the ordinary version, the animals are constrained
to slide in the facing direction; in the loopy variant, they may slide backwards as
well. This single difference has a monumental impact on the values that arise.
The most obvious effect is that almost all positions in the Backsliding variant
are loopy; for example, the position of Figure 18 has the remarkable value

1 1
fon || 0| =35} & {50 off}.

Positions in the Backsliding variant tend to have substantially simpler canon-
ical forms than those in the loopfree version. For example, Erickson [8] noted
that in ordinary Toads and Frogs, the “natural starting positions” of the form
T"XF" are often quite complicated. In the Backsliding version, the only val-
ues (among all possibilities for k, m, n) are 0, *, on, off, dud, on & {on | off},
{on | off} & off, and the single anomalous value given above.
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Nonetheless, Backsliding Toads and Frogs exhibits positions of value n and
27" as well as positions of temperature n and 27", for all n > 0. See [27,
Chapter 3] or [29] for a complete discussion.

Hare and Hounds. Hare and Hounds exhibits asymptotic behavior much like
Fox and Geese: the position shown in Figure 19, ona (4n+5)x3 or (4n+7) %3
board, has the exact value —n.

The mathematical analysis of Hare and Hounds began in the 1960s, when
Berlekamp demonstrated a winning strategy for the hare on large boards. He
was close to proving that Figure 19 has value —n, but the canonical theory had
not yet been invented.

Hare and Hounds exhibits many interesting values, including *2 (rare among
partizan games); 12, 13, and 1* (but not, it seems, 1°); and a bewildering
variety of stoppers. See [27, Chapter 4] or [28] (this volume) for examples of
these, as well as a proof that Figure 19 has value —n.

Figure 19. This critical position on the (4n+5) x3 or (4n+7) x 3 board
(shown here on the 9 x 3 board) has value —n.

Chess. Noam Elkies has observed several loopy values in Chess (in addition
to many loopfree ones). See [6] for his constructions of over and tis = 1 & 0.
More recently, Elkies has produced positions of values upon and =+, [7]; see
Figure 20. (The kings have been omitted from these diagrams in order to focus
on the essential features of each position, but they can easily be restored without
affecting the positions’ values, using techniques outlined by Elkies [6].)

Entrepreneurial Chess. Entrepreneurial Chess is played on a quarter-infinite
chessboard, with just the two kings and a White rook (Figure 21). In addition
to his ordinary king moves, Left (Black) has the additional option of “cashing
out.” When he cashes out, the entire position is replaced by the integer n, where
n is the sum of the rank and column values indicated in the diagram. Thus Left
stands to gain by advancing his king as far to the upper-right as possible; and
Right, with his rook, will eventually be able to stop him.

Entrepreneurial Chess was invented by Berlekamp, and has been studied ex-
tensively by Berlekamp and Pearson [4]. They have discovered many interesting
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upon = {pass|*} +Fon = {01/ 0|off}

Figure 20. Loopy values in chess.

Figure 21. Entrepreneurial Chess.

values. For example, the position shown in Figure 21, left, has value 7 4 over:
Left can cash out for 7 points at any time, and in the meantime Right is con-
strained to shuttle his king between the squares adjacent to his rook. Berlekamp
and Pearson’s results also include a detailed temperature analysis of a wide class
of positions.

A particularly interesting position y arises in the pathological case when Left
has captured Right’s rook, as in Figure 21, right. The onside of y is on, since
Left need never cash out. Now consider the offside. Left must cash out eventu-
ally, since infinite plays are wins for Right, but he can defer this action for as
long as necessary. Thus we have the remarkable identity

yzon&z,

where Z = {0,1,2,...| pass} is the pseudonumber defined in Section 3. This
identity can be verified formally using the theory presented in Section 4.
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Figure 22. Some cycles that arise naturally in One-Dimensional Phutball.

One-Dimensional Phutball. Some extraordinary loopy positions in 1D Phutball
were discovered jointly by Richard Nowakowski, Paul Ottaway, and myself. A
few of these are shown in Figure 22. The game of Phutball, and the notation used
here to describe the positions, are explained in [19]. Itis interesting that although
Phutball obviously allows for alternating cycles, all positions yet studied are
equivalent to stoppers.

QUESTION. Is every position in One-Dimensional Phutball equivalent to a stop-
per?
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These Phutball positions contain the most complicated loops yet detected. More-
over, the corresponding position on the 1 x 12 board (¢ e--------- ©) is a stopper
whose canonical game graph has 168 vertices and a 23-cycle. However, all
of these examples are “tame” in the sense that every cycle alternates just once
between Left and Right edges. It is possible to construct “wild” stoppers with
more complicated cycles (see [30] in this volume), but nonetheless we have the
following open problem.

OPEN PROBLEM. Find a position in an actual combinatorial game (Phutball
or otherwise) whose canonical form is a stopper containing a wild cycle.

6. Impartial loopy games

Not surprisingly, impartial loopy games were studied long before partizan
ones. In 1966, ten years before the publication of On Numbers and Games,
Cedric A. B. Smith generalized the Sprague—Grundy theory to games with cy-
cles.

For y to be impartial, of course, infinite plays must be considered draws. We
therefore have three outcome classes: the usual .4~ and Z-positions, and also
Z-positions (called &-positions in Winning Ways).

Now consider an arbitrary impartial game y. If all the options of y are known
to be nimbers *a, *b, *c, .. ., then certainly y = *n, where n =mex(a, b, c, .. .):
the usual Sprague—Grundy argument applies. But some games y are equivalent
to nimbers even though some of their options are not.

For instance, consider the example of Figure 23. It is not hard to see that
y = x2: in y + %2, second player wins by mirroring moves to 0 or *; while if
first player moves to 6 + *2, second player reverses to *2 + x2 = 0. However,
the subposition § is not equivalent to any nimber, since first player can always
draw § + *n by moving to the infinite loop.

S <

N7

*2
Figure 23. § is not a nimber, but y = *2.
Roughly speaking, y = *2 because 2 is the mex of its nimber-valued options,

and all other options reverse out, in the usual sense, to positions of value *2.
Care is needed, however, to avoid circular definitions: the analysis of Figure 23



114 AARON N. SIEGEL

//\\
\\//

Figure 24. It's tempting to declare y = § = %2 (cf. Figure 23); but y + %2
and & + *2 are both draws.

works because the reversing move is “already known” to be *2. Indeed, Fig-
ure 24 shows that we cannot indiscriminately draw conclusions about the value
of y without a definite starting point.

These concerns led Smith to formulate the key notion of a rank function. The
idea, motivated by Figures 23 and 24, is that we can safely assign Grundy values
to subpositions of y provided they are ranked in order of precedence. Formally,

DEFINITION 10. Let y be a game, let <7 be the set of all followers of y, and
fix a partial function G : &/ — N. Then G is a Grundy function if there exists a
map R : ./ — N (a rank function for G) such that:

(1) If G(«) = n and k < n, then there is some option B of @ with R(8) < R(x)
and G(B) =

(ii) If G(a) = n and B is any option of & with R(8) < R(«), then G(B) # n.

(iii) Suppose G(«) = n and B is any option of «. If G(B) is undefined, or
if R(B8) = R(w), then there exists an option ¢ of 8 with R(6) < R(«) and
G(8) =n.

Conditions (i) and (ii) imply that G(«) obeys the mex rule, taken over all options
of a with strictly lower rank. Condition (iii) implies that any remaining options
reverse out to positions of lower rank than «. The main result is that there is
a unique maximal Grundy function associated to y (where G is maximal if its
domain cannot be expanded).

THEOREM 11 (SMITH). Let G, H : &/ — N be two Grundy functions for y.
If G and H are maximal, then G = H.

PROOF. See [31, Section 9]. O

So we can safely refer to the Grundy function G of y. It is a remarkable fact
that G completely characterizes the behavior of y.

LEMMA 12 (SMITH). Let y be a game with Grundy function G. If G(y) = n,
then y = xn; if G(y) is undefined, then y is not equal to any nimber.

PROOF. See [31, Section 9]. Ol
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When G(y) is undefined, we write

Y = Xgbc--

to mean that the nimber-valued followers of y are exactly *a, xb, *c, .... We
can now describe the outcome class of any sum of impartial games.
THEOREM 13 (SMITH).

(a) oOgpe... + *n is an N -position if n is one of a,b,c,...; otherwise it’s a
D-position.

(b) 00gpe... + Xdef... + -+ is always a D-position.

PROOF. See [31, Section 9]. O

The parallel between Smith’s theory and the classical Sprague—Grundy theory
breaks down in one important respect. If y = *n, then we can be quite certain
that y + X and *n + X have the same outcomes, even when X is partizan.
However, there exist games « and 8, both “equal to” 0oy, whose outcomes are
distinguished by a certain partizan game (see Figure 25). There is no contradic-
tion: « and B indeed behave identically, provided they occur in sums comprised
entirely of impartial games. One could say that the Sprague—Grundy theory
embeds nicely in the partizan theory, while the Smith generalization does not.

o« Eo s i .L.
0 ™0
a = {0,dud | 0, dud} B={0,0|0,0}

Figure 25. Right can draw o + 1 moving first, while 8 + 1 is a win for
Left, no matter who moves first. Therefore a # B; yet no impartial game
distinguishes them.

This is an interesting fact, one that does not seem to appear elsewhere in the
literature; and it raises an equally intriguing question:

OPEN PROBLEM. Classify all impartial loopy games, relative to all partizan
ones.

Additional subtraction games. Additional subtraction games are just like or-
dinary subtraction games, except that their subtraction sets may contain negative
numbers (so that players are permitted to add to a nonempty heap in certain fixed
quantities). Such games are more interesting than one might expect. Several
examples are mentioned in Winning Ways, and several related classes of games
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were studied by Fraenkel and Perl [12] and Fraenkel and Tassa [14] in the 1970s.
The additional subtraction games cry out for further investigation.

OPEN PROBLEM. Extend the analysis of additional subtraction games.

The annihilation game. The annihilation game is an impartial game played
on an arbitrary directed graph. At the start of the game, tokens are placed on
the vertices of the graph, at most one per vertex. A move consists of sliding a
token to an adjacent vertex, and whenever two tokens occupy the same vertex,
they are both immediately removed from the game (the annihilation rule).

If the game is played on a loopfree graph, then the annihilation rule has no
effect, since identical loopfree games ordinarily sum to zero. On loopy graphs,
however, the effect is significant.

The annihilation game was proposed by Conway in the 1970s. Shortly there-
after, it was solved by Aviezri Fraenkel and his student Yaacov Yesha [16]. They
specified a polynomial-time algorithm for determining the generalized Sprague—
Grundy values of arbitrary positions. Interested readers should consult Fraenkel
and Yesha’s 1982 paper on the subject [17].

Infinite impartial games. The Smith—Fraenkel results completely resolve the
disjunctive theory of finite impartial games. It is therefore natural to seek gen-
eralizations of the theory to infinite games. In the infinite case, one must allow
ordinal-valued Grundy functions, even among loopfree games: for example, the
game

xw = {0, %, %2, %3,...}
has Grundy value w.

In the same paper that introduced the loopy Sprague—Grundy theory [31],
Smith noted that his results generalize in a completely straightforward manner
to infinite games with ordinal-valued Grundy functions. The definitions and
theorems are essentially the same, with the functions G and R permitted to take
on arbitrary ordinal values.

A more substantive result is due to Fraenkel and Rahat [13]. They identified
a class of infinite loopy games whose Grundy values are nonetheless guaranteed
to be finite. Their result can be summarized as follows:

DEFINITION 14. Let G be a graph. A path of G (of length n) is a sequence of
distinct vertices

VOa Vl7 V27--'9Vn
such that there is an edge directed from each V; to V;4 1. We say that the path
starts at V.

DEFINITION 15. Let G be a graph. A vertex V is said to be path-bounded if
there is an integer NV such that every path starting at V" has length < N. G is
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said to be locally path-bounded if every vertex of G is path-bounded. (There
need not exist a single bound that extends uniformly over all vertices.)

Note that all loopfree graphs are locally path-bounded.

THEOREM 16 (FRAENKEL-RAHAT). Let y be a (possibly infinite) impartial
game. If the graph of y is locally path-bounded, then the Grundy function for y
is finite wherever it is defined.

PROOF. See [13, Section 3]. O

7. Conjunctive and selective sums

Although disjunctive sums have received the most attention, several authors
have investigated the behavior of loopy games under other types of compound.
The two most prominent are conjunctive and selective sums:

e In the conjunctive sum ¢ A B A --- A y, a player must move in every
component. If any component is terminal, then there are no legal moves.

e In the selective suma v B Vv --- vV y, aplayer may move in any number of
components (but at least one).

This line of research, like so many others, was pioneered by Cedric Smith [31],
who focused on the impartial case. Smith’s results are best described in terms
of the Steinhaus remoteness of a position. If y is a loopy game, we define the
remoteness R(8), for each follower 6 of y, as follows:

DEFINITION 17. Let y be an impartial game, let <7 be the set of all followers
of y, and fix a function R : &/ — N U {oo}. Then R is a remoteness function
provided that, for each § € o/

e If § is terminal, then R(§) = 0.
e If R(w) is even for at least one option « of §, then

R(0) =1+ min{R(x) : « is an option of § with R(«) even}.
e If R(w) is odd for every option « of §, then
R(8) =1 + max{R(x) : « is an option of §}.

It is not hard to check that every game admits a unique remoteness function R.

The remoteness function tells us quite a bit about y: it’s a &Z-position if R(y)

is even, an ./ -position if R(y) is odd, and a Z-position if R(y) = oo.
Furthermore, if the winning player strives to achive victory as quickly as

possible, and the losing player tries to postpone defeat for as long as possible,

then the magnitude of R(y) determines exactly how long the game will last.
Smith’s main results are summarized by the following theorem.
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THEOREM 18 (SMITH). Let «, f3, ..., y be impartial loopy games. Then:
(a) R A B A -+ Ay)y=min{R(x), R(B)....,R()}.
(b) If R(a), R(B), ..., R(y) are all even, then
Rl@Vv BV -V y)=R@+RPB)+--+R(y).
If R(a), R(B), ..., R(y) are all finite, and k of them are odd (k > 1), then
Rav v - Vvy)=Ra@+RPB)+---+R(y)—k+1.
Finally, if any of R(a), R(B), ..., R(y) is infinite, then
R Vv BV -V y)=o0.

PROOF. See [31, Sections 6 and 7]. [l

Theorem 18 enables us to find the outcome of any conjunctive or selective sum,
provided we know the remoteness of each component. The remoteness function
can therefore be regarded as an analogue of the Grundy function.

Partizan games. Smith’s results were substantially extended by Alan Flanigan,
who studied partizan loopy games under conjunctive and selective sums, as well
as two additional types of compound, the continued conjunctive and shortened
selective sums. We summarize Flanigan’s results for conjunctive sums here. The
remaining cases are beyond the scope of this paper; interested readers should
consult Flanigan’s 1979 thesis [9] and two subsequent papers [10; 11].

First note that we can define partizan remoteness functions R™ and RX for y.
They are defined just as in the impartial case; but we only consider moves for the
player in question, minimaxing over the opponent’s remoteness function applied
to each option.

DEFINITION 19. Let y be a partizan game, let o7 be the set of all followers of
v, and fix functions RL, RR : o7 — N U {oo}. Then RE, RR are partizan re-
moteness functions provided that the following conditions (and their equivalents
with Left and Right interchanged) are satisfied for each § € o7:

o If § has no Left options, then RL(8) = 0.
o If RR(8L) is even for at least one 8L, then

RE(8) =1+ min{RR(§L) : RR(SL) is even).
o If RR(5L) is odd for every 6L, then
RE(8) =1+ max{RR (L)},

Smith’s result for conjunctive sums is virtually unchanged in the partizan con-
text.
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THEOREM 20 (SMITH-FLANIGAN). Let o, B, . .., ¥ be (partizan) loopy games.
Then for X = L, R, we have

R¥(@ A B A -+ Ay)=min{R¥ (@), RX(B).,....RX(y)}.
PROOF. See [9, Chapter 11.2]. O

Since the outcome class of y is determined by the parities of RZ () and RR(y),
this is all we need to know.

Flanigan also noted that the analysis of conjunctive sums (but not selective
sums) extends to infinite games: one can suitably define ordinal-valued remote-
ness functions, taking suprema instead of maxima when R is odd; then Theo-
rem 20 generalizes verbatim.

8. Algorithms and computation

Computation is an essential part of combinatorial game theory. This is par-
ticularly true in the study of loopy games, since they are especially difficult to
analyze by hand.

The basic algorithm for determining the outcome class of an impartial loopy
game was introduced by Fraenkel and Perl [12] in 1975. The strategy is to iterate
over all vertices V of the game graph of y, assigning labels as summarized in
Algorithm 1.

THEOREM 21 (FRAENKEL—PERL). Algorithm 1 correctly labels the subsposi-
tions of y according to their outcome classes, and concludes in time O(n?) in
the number of vertices.

PROOF. See [12, Section 3]. [l

In fact, Fraenkel observes that we can improve slightly upon Algorithm 1: tra-
verse the vertices of y just once; and whenever a label is assigned to V, re-
examine all unlabeled predecessors of V. With this modification, the algorithm
runs in time O(n) in the number of edges. Since game graphs tend to have
relatively low edge density, this will usually be an improvement.

For each vertex V of the game graph of y:

« If all options of V' have been labeled ./, then label V by Z. (This includes
the case where V' is terminal.)

e If any option of V' has been labeled &7, then label V by 4.

The algorithm continues until no more vertices can be labeled, whereupon
all remaining vertices are labeled by Z.

Algorithm 1. Computing the outcome class of an impartial game y.
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Let G be the game graph of y.
(i) Put k = 0.
(ii) For each vertex V of G:

o If all options of V' have been labeled ./, then label V by 2.
e If any option of V' has been labeled &7, then label V by 4.

(iii) For each unlabeled vertex V', all of whose options are now labeled: if
each option of V' has an option labeled &, then label V' by & as well.

(iv) Label all remaining (unlabeled) vertices by 2.

(v) For each vertex V labeled &, define G(V') = k and remove V from G.
(vi) If all remaining vertices of G are labeled 2, then stop: we are done.
(vii) Clear all .4 labels (but retain all & labels).

(viii) Put k£ = k + 1 and return to Step 2.

Algorithm 2. Computing the generalized Sprague—Grundy value of y.

Fraenkel and Perl have also given an algorithm for computing the generalized
Sprague—Grundy values of impartial loopy games (Algorithm 2); see Fraenkel
and Yesha [18] for further discussion.

THEOREM 22 (FRAENKEL—PERL). Algorithm 2 correctly defines the maximal
Grundy function for y, and concludes in time O(n?) in the number of vertices.

PROOF. See [12, Section 4]. |

Algorithm 1 is virtually unchanged in the partizan case. Given a game y with
graph G, one first constructs the corresponding state graph S. The vertices of S
consist of pairs (V, X), where V is a vertex of G and X is either L or R. There
is an edge directed from (U, L) to (V, R) just if there is a Left edge directed
from U to V, and so on. Algorithm 1 can then be applied directly to S. This
was noticed independently by Shaki [26], Fraenkel and Tassa [15], and Michael
Albert [1].

Comparison. Algorithm 1 suffices to compare stoppers. Recall from Section 3
that if y and § are stoppers, then y > § if and only if Left, playing second, can
survive ¥ — §. So to test whether y > §, we simply compute the state graph of
y — § and apply Algorithm 1. If V is the start vertex (corresponding to y —§
itself), then y > § if and only if (V, R) is not marked .4".

One can extend these ideas in order to compare arbitrary games, but the al-
gorithms are somewhat more involved. See [30] in this volume for a discussion.

Simplification and strong equivalence. Fraenkel and Tassa [15] studied var-
ious simplification techniques in detail. They identified certain situations in
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which one can safely simplify an arbitrary (free) loopy game y. These tech-
niques yield a good algorithm for determining whether y is equivalent to a
loopfree game. We summarize their results.

DEFINITION 23. Let y be a free loopy game.

(a) A Left option yL is strongly dominated if Left, playing second, can win the
game yL/ —yL for some other Left option yL/.

(b) A Left option y L is strongly reversible if Left, playing second, can win the
game y — y LR for some Right option y LR,

(c) If § is any free loopy game, then y and § are strongly equivalent if either

player can win y — § playing second. In this case we write y 5.

Strongly dominated and strongly reversible Right options are defined analo-
gously.

Note that y - y if and only if y —y =0, i.e., if and only if y is equivalent to a
loopfree game.

THEOREM 24 (FRAENKEL-TASSA). Let y be a free loopy game and let § be
any follower of y. Let y' be obtained from y by either:

(a) Replacing & with a strongly equivalent game §'; or
(b) Eliminating a strongly dominated option of §; or
(¢) Bypassing a strongly reversible option of 6.

Theny = vy'.

THEOREM 25 (FRAENKEL-TASSA). Let y be a free loopy game and assume
that:

(1) y is equivalent to a loopfree game (i.e., y —y = 0); and
(i1) No follower of y has any strongly dominated or strongly reversible options.

Then vy is itself loopfree.

THEOREM 26 (FRAENKEL-TASSA). Let y be a free loopy game. If, for each
subposition of y, we repeatedly eliminate strongly dominated options and by-
pass strongly reversible ones, then the process is guaranteed to terminate. We
will eventually arrive at a form for y that contains no strongly dominated or
strongly reversible options.

Thus if y is equivalent to a loopfree game, then Theorems 24 through 26 yield
an algorithm for computing its canonical form: eliminate strongly dominated
options and bypass strongly reversible ones until none remain.

Theorem 24 fails if the strong notions of domination and reversibility are
replaced by their naive weakenings. This is a major obstacle to developing a
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general canonical theory of loopy games. These issues are discussed at length,
and partially resolved, in [30] in this volume.
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