
Games of No Chance 3
MSRI Publications
Volume 56, 2009

A puzzling Hex primer

RYAN B. HAYWARD

ABSTRACT. We explain some analytic methods that can be useful in solving

Hex puzzles.

1. Introduction

Solving Hex puzzles can be both fun and challenging. In this paper — a

puzzling companion to Hex and Combinatorics [5] and Dead Cell Analysis in

Hex and the Shannon Game [2], both written in tribute to Claude Berge — we

illustrate some theoretical concepts that can be useful in this regard.

We begin with a quick review of the rules, history, and classic results of Hex.

For an in depth treatment of these topics, see [5].

The parallelogram-shaped board consists of an m�n array of hexagonal cells.

The two players, say Black and White, are each assigned a set of coloured

stones, say black and white respectively, and two opposing sides of the board,

as indicated in our figures by the four stones placed off the board. In alternating

turns, each player places a stone on an unoccupied cell. The first player to

connect his or her two sides wins.

In the fall of 1942 Piet Hein introduced the game, then called Polygon, to the

Copenhagen University student science club Parenthesis. Soon after, he penned

an article on the game for the newspaper Politiken [6; 8; 9]. In 1948 John

Nash independently reinvented the game in Princeton [4; 10], and in 1952 he

wrote a classified document on it for the Rand Corporation [11]. In 1957 Martin

Gardner introduced Hex to a wide audience via his Mathematical Games column

[3], later reprinted with an addendum as a book chapter [4].

For Hex played on an m�n board, the game cannot end in a draw (Hein

[6], Nash [11]); for m D n, there exists a winning strategy for the first player
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(Hein, Nash [11]; see also [3]); for m < n, there exists a winning strategy for

the player whose sides are closer together, even if the other player moves first

(Gardner/Shannon [4]); for arbitrary Hex positions, determining the winner is

PSPACE-complete (Reisch [12]).

To start our discussion, consider Puzzle 1:
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Puzzle 1. An easy warm-up. White to play and win.

2. Virtual connections

One useful Hex concept is that of a virtual connection, namely a subgame in

which one player can establish a connection even if the opponent moves first. In

Puzzle 1, as shown in the left diagram of in Figure 1 below, the cell set fd7; e7g

forms a ‘bridge’ virtual connection between the white stone at e6 and the white

border on the upper right side. If Black ever plays at one of these two bridge

cells, White can then make the connection by playing at the other. Similarly,

the white border on the lower left side is virtually connected to the two white

stones at fd3; e2g via the cell set fc1; c2; c3; d1; d2; e1g: if Black plays at any of

c1; c2; c3; d1; d2 White can then play at e1, whereas if Black plays at e1 White

can then play at c2 and subsequently make use of the resulting bridge cell sets

fc1; d1g and fc3; d2g.

As suggested by Figure 1, left, the gap between the two white groups is an

obvious place to look for a winning move; the right diagram shows such a move

at e4. After this move, the new stone is virtually connected by the upper eight
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Figure 1. Two white virtual connections (left) and, after a winning move,
a side-to-side white virtual connection (right).
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marked cells to the upper white side, and by a bridge to fd3; e2g, and so then by

the lower six marked cells to the lower white side, yielding a virtual connection

joining the two white sides. Thus e4 is a winning move for Puzzle 1.

3. Mustplay regions

Are there any other winning moves for Puzzle 1?

Hex is a game in which it is easy to blunder. Even from obviously won

positions, there are usually many moves that lead to quick losses. Since there

are no draws in Hex, one way to answer the above question is to first check

whether any losing moves can be identified. A weak connection is a subgame

in which one player can force a connection if allowed to play first. Does the

opponent have any side-to-side, and so win-threatening, weak connections?

A virtual connection for a player is winning if it connects the player’s two

sides; a win-set is the set of cells of a winning virtual connection. Analogously,

a weak connection for a player is win-threatening if it connects the player’s two

sides; a weak win-set is the cell set of a win-threatening weak connection. The

first three parts of Figure 2 show three black weak win-sets for Puzzle 1.

Figure 2. For Puzzle 1, three black weak win-sets and the resulting white
mustplay region. This region has only one cell, so White has only one
possible winning move.

Notice in the figure that, in order to prevent Black from winning, White’s next

move must intersect each of Black’s weak win-sets, since any weak connection

that is not intersected by White’s move can be turned into a virtual connection

on Black’s subsequent move. More generally, at any point in a Hex game, a

move is winning if it intersects all of an opponent’s weak win-sets.1

1The converse of this statement holds as long as the opponent has at least one weak win-set; then a move

is winning if and only if it intersects all of an opponent’s weak win-sets. However, if the player about to
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A gamestate specifies a boardstate, or board configuration, and whose turn it

is to move. With respect to a player, a gamestate, and a collection of opponent

weak win-sets, we call the combined intersection of these weak win-sets the

mustplay region, since a player ‘must play’ there or lose the game.

As shown in Figure 2, the white mustplay region associated with the three

weak connections is fe4g. We have already seen that e4 is a winning move for

Puzzle 1; our mustplay analysis tells us that every other move loses. So, to

answer the question from the start of this section, there are no other winning

moves for Puzzle 1.

4. A Hex solver based on mustplay analysis

There is a straightforward way to solve any Hex puzzle: completely explore

the search tree resulting from all possible continuations of the puzzle. This

approach is usually impractical, as the number of different gamestates in the

search tree is exponential in the number of unoccupied cells. Since solving

Hex puzzles is PSPACE-complete, there is unlikely to be any ‘fast’, namely

polynomial time, Hex-solving algorithm. Nonetheless, the search tree can often

be pruned using various techniques. In particular, in this section we illustrate an

algorithm that uses mustplay regions to prune the search tree.

To demonstrate, consider Puzzle 2. To start, we first look for a white win-set.

Finding none, we next look for a black weak win-set. You may have already

found one, for example using d4; Figure 3 shows three such black weak win-sets.

The associated white mustplay region, shown in the last diagram of Figure 3, is

the intersection of the black weak win-sets, namely fc4; c5; d4; e3; e4; f2; f4g.

If White has a winning move, it is at one of these cells.
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Puzzle 2. A more challenging problem. White to play and win.

Figure 4 shows what happens as, in no particular order, we next consider the

moves of this mustplay region. In the first diagram we make the white move

at c5; by continuing to recursively apply our algorithm, we eventually discover

that Black wins the resulting gamestate with the black win-set as shown. At this

move is so far ahead in the game that the opponent has no weak win-set, then the intersection of all of the

opponent’s weak win-sets is the empty set; thus the converse does not hold in such cases.
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Figure 3. For Puzzle 2, three black weak win-sets and the resulting white
mustplay region.

point we undo the white move, so the black win-set becomes a black weak win-

set. We next use this black weak win-set to update the white mustplay region;

it becomes reduced to fc4; d4; e3; e4; f2; f4g. In similar fashion, we eventually

discover that the next three white moves considered, namely d4; e3; e4, also lose

for White; the resulting black weak win-sets are shown in Figure 4. Notice that

the last of these weak win-sets does not contain f4, so by this point the white

mustplay region has been reduced to fc4; f2g.

Figure 4. Black weak win-sets after moves c5, d4, e3, e4 respectively.

Figure 5 shows what happens as we consider these last two possible moves.

The white move at f2 loses, but the white move at c4 wins. Thus c4 is the unique

winning move for Puzzle 2.

We have omitted all the details from the recursive calls of this algorithm. We

leave as exercises for the reader to verify that the five weak win-sets and the one
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Figure 5. A black weak win-set after f2, and a white win-set after c4.
Thus c4 wins for White.

win-set shown in Figures 3–5 are correct.2 As a guide, the reader might find it

useful to follow Figure 6 on page 160; it gives a version of this algorithm due

to Jack van Rijswijck [14].

Another exercise is to solve Puzzle 3, created by Claude Berge. There is

more than one solution; running down the upper-left region is straightforward,

while breaking through to the upper-right side is more difficult. Try to find a

win-set with no unnecessary cells. One such win-set appears in the last section

(page 159).

Puzzle 3. White to play and win. By Claude Berge [1].

5. Dead cell analysis

Mustplay analysis yields a set of cells that is critical to a gamestate’s outcome.

A different form of analysis is based on recognizing individual cells that are

irrelevant. We illustrate this ‘dead cell analysis’ by working through Puzzle 4,

created by Piet Hein.

2The most challenging of these exercises is the last one, namely to show that c4 wins for White. The

strongest next moves for Black include c3, c5, c6, d3, and e2; respective winning replies for White include

d3, e4, e5, e4, and d3. For other exercises on small boards, see the opening theory link on Jack van Rijswijck’s

Queenbee webpage [13].
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Puzzle 4. White to play and win. By Piet Hein [7].

A completion of a boardstate is any boardstate obtained by filling all vacant

cells of the given boardstate with any combination of black and/or white stones.

A cell of a boardstate is dead if, for every possible completion, changing the

colour of the stone on the given cell does not alter the winner of the completion.

A cell is live if it is not dead.

For example, the boardstate of Puzzle 4 has 25 vacant cells and so has 2
25

completions. We leave it to the reader to consider a sample of these completions

and verify that in each case, changing the colour of the stone at cell d1 does not

change the winner of the completion. Thus, in this boardstate d1 is dead.

A gamestate is undecided if neither player has yet won. A useful feature of

dead cells is that placing or removing a stone of either colour at a dead cell does

not alter the gamestate’s winner. Therefore every undecided gamestate with a

winning move has a winning move to a live cell.

Thus, dead cells can be safely pruned from the search tree of a gamestate.

Happily for Hex puzzlers, dead cells can be recognized without having to

consider all of a boardstate’s completions. The left diagram in Figure 6 is the

white adjacency graph for the Puzzle 4 boardstate. The nodes of the graph

correspond to the vacant board cells; additionally, two terminal nodes represent

the white borders. In the graph, a pair of nodes is joined by an edge if the

corresponding cells touch or are joined by connecting white stones.

A path is induced if it has no ‘shortcuts’, namely if the only edges among

vertices of the path are between pairs of vertices that are consecutive in the

path. The following characterization is an easy consequence of the definition of

dead.

T

T

T

T

Figure 6. White and black adjacency graphs for Puzzle 4.



158 RYAN B. HAYWARD

A cell with a stone is live if and only if that cell is live after removing that

stone. A vacant cell of a boardstate is live if and only if the cell is in some

induced terminal-to-terminal path in each of the boardstate’s adjacency graphs.

Notice that the white adjacency graph for Puzzle 4 has no induced terminal-

to-terminal path that contains d1. Thus d1 is dead in Puzzle 4, as are a1 and c1.

The number of dead cells in a gamestate is often small. However, considering

cells that can be ‘killed’ allows further possible moves to be ignored. In Puzzle

4 it would be pointless for White to play at the white-vulnerable cell e2, since a

Black response at d3 would kill a white stone at f2.

This line of reasoning can be continued. Black has a ‘second-player kill’

strategy for ff2; f3g: if White ever plays at one of these cells, Black can reply

at the other, leaving one cell black and the other dead. We say this set is black-

captured, since assuming that these cells are already occupied by black stones

does not change the theoretical outcome of the game. As an exercise, the reader

should verify that ff1; e2; f2; f3g is black-captured. It suffices to find, for the

subgame played on these cells, a second-player strategy for Black that leaves

every stone black or dead.

The notion of dominated is analogous to the notion of captured. In Puzzle 4

fa6; b5; b6g is white-dominated, since White has a first-player strategy for the

subgame on these cells that leaves every stone white or dead. The first move

in this strategy is to b5, so for this strategy b5 is white-dominating and the

remaining cells are white-dominated. When White is searching for a winning

move, it is sufficient to consider among the cells of a white-dominated set only

the dominating cell since after moving there the remaining cells become white-

captured.

To summarize these ideas, let us complete our analysis of Puzzle 4. It is

White’s turn to move. The cells in fa1; c1; d1g, ff1; e2; f2; f3g, and fa2; b2g are

respectively dead, black-captured, and white-captured. After white- and black-

captured stones have been added to the board, the cells in fd3; f4; f5g are white-

vulnerable, as they would be killed by respective responses, and subsequent

black-capturing, at d4; e4; e5. The sets fb4; a4; b3g, fb5; a6; b6g, fe5; d6; e6g,

ff5; e6; f6g are white-dominated by b4; b5; e5; f5 respectively.

This analysis is illustrated in the first diagram of Figure 7, where dead cells

are indicated with grey circles, captured stones are marked with dots, white-

vulnerable cells are marked by ‘v’, and white-dominated cells are marked by

‘x’. Any cell that is marked can be ignored in the search for a winning move,

so there are only six cells left to consider.

As can be seen from Figure 7, right, which shows a win-set found after the

captured stones have been added, a4 is a winning move for Puzzle 4. We leave

it to the reader to check whether there are any other winning moves.
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Figure 7. Dead, captured, white-dominated, and white-vulnerable cells of
Puzzle 4 (left), and, after dead and captured stones are added, a black
weak win-set (right).

6. A win-set for Puzzle 3

Berge designed Puzzle 3 (page 156) to be a study rather than a puzzle, so

there is more than one winning move. A solution that involves play in the upper

right region of the board appears in [5].

Another solution is to start at c11, and use the threat of connecting the top

white group of three stones with the white line ending at e5 to force play towards

the lower white border. A win-set for this solution, verified by a computer

program written by Van Riswijck, is shown in Figure 8. This win-set is minimal,

in that it contains no unnecessary cells; if any cell of the win-set is removed and

black stones are then placed at all vacant cells and the one removed cell of the

win-set, then White can no longer win. As a final exercise, we leave it to the

reader to find a winning strategy that uses only the cells of this win-set. An

answer appears in Van Rijswijck’s doctoral thesis [15].
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Figure 8. A white win-set for Puzzle 3.



160 RYAN B. HAYWARD

Appendix: A mustplay-based Hex solver due to Jack van Rijswijck

Algorithm WINVALUE

Input: .B; �/, where B is a board configuration and � is the player to move

Output: .v; X /, where v is 1/-1 if � wins/loses and X is a win-set

if (B has a winning chain for �) then return .C1; ?/

if (B has a winning chain for opponent of �) then return .�1; ?/

W  ? [W is the cell set of a winning virtual connection]

M  unoccupied cells of B [M is the must-play]

while (M ¤?)

m any cell in M

B
0 board configuration after adding to B at cell m a stone of �’s

� 0 opponent of �

.v; S/ WINVALUE.B0; � 0/

if (v D�1) then return .C1; S [fmg/

W  W [S ; M  M \S

endwhile

return .�1; W /
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