
Games of No Chance 3
MSRI Publications
Volume 56, 2009

New results in loopy games

AARON N. SIEGEL

ABSTRACT. We strengthen the usual notion of simplest form for stoppers

and show that under the stronger definition, equivalence coincides with graph-

isomorphism. We then show that the game graph of a canonical stopper con-

tains no 2- or 3-cycles, but may contain n-cycles for all n � 4.

We also introduce several new methods for simplifying games
 whose

graphs contain alternating cycles. These include a generalization of dominated

and reversible moves.

1. Introduction

A loopy game is a combinatorial game in which repetition is permitted. The

history and basic theory of loopy games are discussed in [Siegel 2009]. In this

article we focus on two fundamental problems left unresolved by Winning Ways.

Long irreducible cycles. The first problem concerns the cycles that appear

in the game graph of a stopper. Conway showed that every stopper s admits

a simplest form [Conway 1978], so one would expect that certain cycles are

intrinsic to the play of s. All canonical stoppers discussed in Winning Ways

are plumtrees: their graphs contain only 1-cycles. It is therefore natural to ask

whether longer canonical cycles are possible, and to attempt to characterize the

structure of such cycles.

Conway defined the simplest form of s to be a representation with no domi-

nated or reversible moves. This is not quite strong enough for our purposes, as

illustrated by the example t shown in Figure 1. Certainly t has no dominated or

reversible options, but it is easy to check that t D on. Thus while t technically

has a 2-cycle, it is reducible in the sense that t has an alternate representation

with just a 1-cycle.

215

216 AARON N. SIEGEL

t �

L

&&

L

ff D ’&%$!"#� Lhh

Figure 1. A 2-cycle that reduces to on.

In Section 3 of this paper, we introduce a stronger notion of simplicity, the

graph-canonical form of a stopper. We show that if s and t are stoppers in graph-

canonical form and s D t , then s and t have isomorphic game graphs. Then in

Section 4, we investigate the types of cycles that can appear in a graph-canonical

stopper s. We show that every such cycle of length n > 1 must contain at least

two edges of each color. This rules out 2-cycles and 3-cycles; however, we give

examples of graph-canonical stoppers with n-cycles for all n � 4.

Simplification of alternating cycles. The second problem concerns the sim-

plification of games with alternating cycles. If
 is an arbitrary loopy game,

it is desirable to know whether
 is stopper-sided, and if so to compute its

sides. Previously, this problem was addressed by the technique known as sidling

[Berlekamp et al. 2001; Conway 1978; Moews 1996], which produces a se-

quence of approximations to the sides of
 . If the sidling sequences converge,

then they necessarily converge to the sides of
 , but there are many important

cases in which they fail to converge.

In Section 5, we introduce generalizations of dominated and reversible op-

tions that apply to arbitrary loopy games. These can be used to obtain useful

simplifications of
 C and
 �. Often, the simplified forms are already stoppers,

even in cases where sidling fails. In addition, the new methods are computa-

tionally more efficient than sidling procedures.

Finally, the Appendix (page 228) describes algorithms for comparing arbi-

trary games. A simplification engine can be built on these algorithms by using

the techniques of Section 5. All of these algorithms and techniques have been

implemented in CGSuite (see http://www.cgsuite.org/), with important applica-

tions to the analysis of actual games (see [Siegel 2009] for further discussion).

2. Preliminaries

We assume the reader is familiar with the theory of loopy games, as presented

in Winning Ways. Sufficient background can be obtained from [Siegel 2009] in

this volume. We briefly summarize some of the most relevant facts.

We denote loopy games by Greek letters
 , ı, ˛, ˇ, If every infinite play

of
 is drawn, then
 is said to be free, and this will be the assumption when

nothing is said to the contrary. When
 is free, we denote by
 C and
 � the

matching games with draws redefined as wins for Left and Right, respectively.

NEW RESULTS IN LOOPY GAMES 217

Infinite play in a sum ˛ C ˇ C � � � C
 is assumed to be drawn unless the

same player wins on every component in which play is infinite. In particular, if

 and ı are free, then the following are equivalent:

(i)
 C � ıC;

(ii) Left can survive ıC �
 C playing second;

(iii) Left, playing second in ı �
 , can guarantee that either he gets the last

move, or infinitely many moves occur in the ı component.

(i) () (ii) by the definition of �, and (ii) () (iii) by the definition of sum

(and the fact that �
 C D .�
 /�). (iii) is a key characterization, and it will be

used repeatedly in the proofs and algorithms that follow.

If s and t are stoppers, then the following conditions are all equivalent:

s � t I sC � tCI s� � t�I s� � tCI Left can survive t � s playing second:

Finally, throughout this paper we will assume that all games have a finite

number of positions. Some results generalize to games with infinitely many

positions; but it is usually clear when this is the case, and since the generalization

will not be needed it is simpler to keep things finite.

Strategies. Often we will know that Left can survive some game
 and wish

to show that he can survive a closely related game
 0. (For example,
 0 might

be obtained by eliminating a dominated option of
 .) In the loopfree case,

this is typically handled by examining relationships between the followers of

 . However, when
 is loopy, altering the options of
 might also affect the

structure of its followers. Because of this interdependence, we will usually need

to take a global view of the structure of
 , and here it is useful to reason in terms

of strategies.

DEFINITION 1. Let
 be a loopy game and let A denote the set of followers

of
 . A Left strategy for
 is a partial mapping S W A ! A such that, whenever

ı 2 A has a Left option, then S.ı/ is defined, and S.ı/ D some ıL.

We refer to S.ı/ as the move recommended by S .

DEFINITION 2. Let S be a Left strategy for
 . S is a first-player survival

(winning) strategy if Left, playing first from
 , survives (wins) every line of

play in which he plays according to S .

Right strategies and second-player strategies are defined analogously. We say

that Left (Right) survives (wins)
 playing first (second) if there exists an ap-

propriate strategy.

DEFINITION 3. Let S be a Left strategy for
 . S is a complete survival strategy

if, for each ı 2A that Left can survive as first player, he can survive ı by playing

according to S .

218 AARON N. SIEGEL

Note that a complete survival strategy recommends good moves from every fol-

lower of
 , even those that would never be encountered if
 itself were played

according to S . Complete survival strategies always exist; this can be estab-

lished by “pasting together” survival strategies.

LEMMA 4. Let
 be any loopy game. Then there exists a complete Left survival

strategy for
 .

PROOF. First we inductively construct a sequence of strategies Sn, as follows.

Let S0 be a first-player Left survival strategy for any subposition
0 from which

Left has a survival move. Given Sn and
n, let An be the set of positions that

can be reached, with Left to move, by some line of play proceeding from
n,

throughout which Left plays according to Sn. If
S

i�n Ai contains every fol-

lower of
 from which Left has a survival move, then stop. Otherwise, choose

any
nC1 62
S

i�n Ai from which Left has a survival move, and let SnC1 be the

corresponding first-player Left survival strategy. Now define a strategy S by

S.ı/ D Sn.ı/ where n is least such that ı 2 An:

(S.ı/ may be chosen arbitrarily if ı 62 An for any n.) We claim that S is a

complete Left survival strategy for
 .

To see this, let ı be some follower of
 from which Left has a survival move,

and suppose Left plays ı according to S . Let ı D ı0, ı1, ı2, : : : be the consec-

utive positions reached with Left to move (so ıiC1 D .S.ıi//
R for each i). We

first show that Left has a survival move from each ıi . This is obviously true for

ı0. For the inductive step, let n be least such that ıi 2 An. Then S.ıi/ D Sn.ıi/;

since Sn is a survival strategy for ıi , and ıiC1 D .Sn.ıi//
R , Left has a survival

move from ıiC1.

If play is finite, we are done: Left must have made the last move. Otherwise,

consider any ıi , and let n be least such that ıi 2 An. Since ıiC1 is reached from

ıi by play according to Sn, we also have ıiC1 2 An. It follows that, for some

n0 and i0, we have

S.ıi/ D Sn0
.ıi/ for all i � i0:

Since Sn0
is a survival strategy for ıi0

, and the outcome does not depend on any

finite initial segment of moves, Left has survived. ˜

Graphs. Throughout this paper, a graph will be a directed graph with separate

Left and Right edge sets. We will use calligraphic letters G, H, : : : to denote

graphs.

Just as every game has an associated graph, we can define games by specify-

ing a graph and a start vertex. Given a graph G and a vertex v of G, let Gjv be the

graph obtained by removing from G all vertices not reachable from v. Denote

by Gv the free game whose graph is Gjv and whose start vertex is v. Note that a

NEW RESULTS IN LOOPY GAMES 219

game is not the same as its graph; this distinction will often be essential. Thus

when we write Gu DGv , we mean that Gu and Gv are game-theoretically equal in

the sense of the usual order-relation, whereas u D v means that u and v represent

the exact same vertex. Clearly u D v implies Gu DGv , but the converse certainly

need not be true.

DEFINITION 5. A path directed from u to v is an alternating path if its edges

alternate colors. The path is Left-alternating or Right-alternating if the first edge

out of u is blue or red, respectively. An alternating cycle is an alternating path

of even length that starts and ends at the same vertex. We say that an edge is

cyclic if it belongs to an alternating cycle, and a graph is alternating cycle-free

if it contains no alternating cycles (equivalently, no cyclic edges).

Note that s is a stopper if and only if its graph is alternating cycle-free.

If u and v are vertices of a graph G, we write u
L

�v to indicate that G has

a Left edge directed from u to v; likewise u
R

�v indicates a Right edge. We

sometimes write e W u
L

�v to mean that e is the (unique) Left edge directed

from u to v.

3. Fusion

Recall the simplest form theorem for stoppers [Berlekamp et al. 2001; Con-

way 1978; Siegel 2009]:

THEOREM 6 (SIMPLEST FORM THEOREM). Let s and t be stoppers. Assume

that s D t , and that neither s nor t has any dominated or reversible options.

Then for every sL there is a tL with sL D tL, and vice versa; and likewise for

Right options.

If s and t satisfy this criterion along with all their followers, then they are equiv-

alent in play. However, their graphs might still differ fundamentally. Consider

the two examples s and t shown in Figure 2. s D t D over, and neither game

has any dominated or reversible options, but their representations are clearly

different.

A further simplification solves this problem. Suppose s is a stopper whose

game graph contains two equivalent vertices, u and v, and assume that no fol-

lowers of s have any dominated or reversible options. Then we can replace u

t �
L //

s
››

�
L //R

$$

t �
L //

�

R

››
�

L //R
%%

Figure 2. Two forms of over.

220 AARON N. SIEGEL

t
L //

R
››

�

�
L //R

%%
�

÷

t 0

L

fflffl?
??

??
??

R

››
�

L //R
%%

�

÷

t 00 L //R
’’

�

Figure 3. Fusion further simplifies stoppers.

and v with a single vertex, redirecting edges as appropriate, without changing

the value of s or any of its followers. Repeated application of this “fusion”

process ultimately produces a game with no two equivalent vertices, and this

representation is unique up to graph isomorphism. In the example above, t can

be reduced to s with two applications of fusion, as illustrated in Figure 3.

LEMMA 7 (FUSION LEMMA). Let G be alternating cycle-free, with no dom-

inated or reversible edges. Suppose u; v are two distinct vertices of G and

Gu D Gv . Let H be the graph obtained by deleting v and replacing every edge

a ! v with an edge a ! u of the same color. Then H is alternating cycle-free

and Gw D Hw for every vertex w ¤ v.

A cautionary note: fusion might fail when s is not a stopper, or when s is a

stopper but is not in simplest form. Figure 4 gives an example:
 D ı D 2 & 0,

but if we fuse ı to
 , then the resulting vertex has value 3 & 0.

PROOF OF LEMMA 7. First we show that H is alternating cycle-free. Assume

instead (for contradiction) that H contains an alternating cycle. We can assume

the cycle involves a redirected edge, since otherwise it would already be present

in G. So the cycle involves u, and we can assume without loss of generality that

it is Left-alternating out of u. We will construct a sequence .vn/1
nD0

of vertices

of G such that for all n, Gvn
DGvnC1

and there is an even-length Left-alternating

path from vn to vnC1.

Let v0 D u, v1 D v. Since H contains a Left-alternating cycle out of u that

involves a redirected edge, G must contain an even-length Left-alternating path

from u to v. This establishes the base case.

L

ffiffi>
>>

>>
>>

>

�

R
@@̀

`̀
`̀

`̀
`

L
// �

L
//

R```̀
`̀

`̀
`̀

0

ı

L

^^>>>>>>>>

÷

 0

Lww

L

——
�

R
88

L
// �

L
//

R

WW

0

Figure 4. An example where fusion fails.

NEW RESULTS IN LOOPY GAMES 221

Now given vn and vnC1, we construct vnC2 as follows. We know that vnC1 is

a Left-alternating follower of vn. But GvnC1
D Gvn

, so by repeated application

of the Simplest Form Theorem, there is a Left-alternating follower vnC2 of vnC1

satisfying GvnC2
D GvnC1

. Since the path from vn to vnC1 has even length, so

does the path from vnC1 to vnC2. This defines .vn/1
nD0

.

But G is finite, so there must be some m < n with vm D vn. It follows that

there is an alternating cycle in G involving vn, contradicting the assumption that

G is alternating cycle-free. This shows that H is alternating cycle-free.

Next fix w, and let s D Gw, t D Hw. We wish to show that s D t . Since

both are stoppers, it suffices to show that Left, playing second, never runs out

of moves in s � t or t � s. We will prove the s � t case; the proof for t � s is

similar.

Let S be a complete Left survival strategy for s � s. Define the strategy S 0

for s � t as follows: S 0 is equivalent to S except when S recommends a move

from Ga �Gb to Ga � Gv . In that case, S 0 recommends a move from Ga �Hb

to Ga �Hu. We claim that S 0 is a second-player Left survival strategy for s � t .

To see this, note that whenever Ga � Gv, then also Ga � Gu. Since S is a

complete survival strategy, this implies that if Left plays second from s � t , then

any position Ga �Hb reached according to S 0 will satisfy Ga � Gb . Therefore

Left, playing according to S 0, will never run out of moves. This completes the

proof. ˜

DEFINITION 8. A stopper s is said to be in graph-canonical form if s is in

simplest form and Gu ¤ Gv for any two vertices u ¤ v of s.

THEOREM 9. Suppose s; t are stoppers in graph-canonical form with s D t .

Then the game graphs of s and t are isomorphic.

PROOF. Let s D Gu, t D Hv . For every vertex a of G, we know that there is a

vertex b of H with Ga DHb , and vice versa. (b can be obtained by repeated ap-

plication of the Simplest Form Theorem.) Since G and H contain no equivalent

vertices, it follows that there is a bijection f W V .G/ ! V .H/ with f .u/ D v

such that Ga D Hf .a/ for all vertices a of G.

To see that f is a graph-homomorphism, suppose G contains a Left edge

a
L

�a0. Write b D f .a/, so that Ga DHb . Since Ga �Hb , Right has a survival

response from Ga0 �Hb . It cannot be to any GR
a0 , since this would imply that

GLR
a D GR

a0 � Hb D Ga;

contradicting the assumption that G contains no reversible moves. So Ga0 �Hb0

for some vertex b0 of H with b
L

�b0.

Now since Ga �Hb , Left has a survival response from Ga�Hb0 . It cannot be

to any HR
b0 , since (as above) this would imply that Hb �HLR

b , contradicting the

222 AARON N. SIEGEL

assumption that H has no reversible moves. So GL
a � Hb0 for some GL

a . Thus

GL
a � Hb0 � Ga0 , and since G contains no dominated options, GL

a D Hb0 D Ga0 .

Therefore f .a0/ D b0, so H contains a Left edge f .a/
L

�f .a0/. The proof for

Right edges is identical. ˜

4. Long irreducible cycles

In this section, we show that if s is a stopper in graph-canonical form, then

every cycle in s of length greater than one must contain at least two edges of each

color. In particular, s contains no 2- or 3-cycles. Longer cycles are possible,

however: the game � shown in Figure 5 is in graph-canonical form and has a 4-

cycle. Soon we will see that there exist graph-canonical stoppers t with n-cycles

for all n � 4. Such cycles are irreducible in the sense that any representation

of t must contain at least an n-cycle.

DEFINITION 10. Let G be a graph. A cycle in G is long if it contains at least

two edges. A cycle in G is monochromatic if all edges in the cycle are the same

color; bichromatic otherwise.

LEMMA 11. Let s be a stopper in graph-canonical form. Then s contains no

long monochromatic cycles.

PROOF. By symmetry, it suffices to prove the lemma for cycles consisting en-

tirely of blue edges. So let s0, s1, : : :, sn be a sequence of subpositions of s,

with siC1 D sL
i for 0 � i < n and s0 D sn. We will show that

s0 � s1 � s2 � � � � � sn D s0;

so in fact all subpositions in the sequence must be equivalent.

Left’s survival strategy for siC1�si is simple. As long as Right moves around

the cycle in the �si component, Left does the same in siC1, staying one move

ahead of her. This continues until Right chooses to break the cycle. At that point

the position must be either sR
jC1

� sj or sjC1 � sL0

j (sL0

j ¤ sjC1), for some j .

In the first case, we have

sR
jC1 D sLR

j ;

and since sj has no reversible options, this implies that sR
jC1

6� sj . So Left must

have a winning move from sR
jC1

� sj . Likewise, in the second case, we have

0 �
Roo L // � R //

L

››

0

� �
L

oo

R

OO

�
L

//
R

oo �

Figure 5. A stopper that is not equivalent to any plumtree.

NEW RESULTS IN LOOPY GAMES 223

sjC1 D sL
j , and since sj has no dominated options, this implies that sjC1 6� sL0

j .

So again Left has a winning move; and we have shown that he can survive any

line of play.

This shows that each si � siC1, and hence

s0 D s1 D s2 D � � � D sn: ˜

LEMMA 12. Let s be a stopper in graph-canonical form. Then s contains no

long cycles with just a single red edge.

PROOF. Toward a contradiction, let s0, s1, : : :, sn (n � 2) be a sequence of

subpositions of s, with siC1 D sL
i for 0 � i < n and s0 D sR

n . We first show that

s0 � s1 � s2 � � � � � sn�1: .|/

To show that si � siC1, we proceed just as in the previous lemma; the only

difference occurs when Right has moved to the position sn � sn. Then Left

responds by playing to sn � s0. If Right continues to s0 � s0, then Left plays to

s1 � s0 and resumes moving around the cycle as before; while if Right makes

any other move, then the absence of any dominated or reversible options hands

the win to Left, as in Lemma 11.

This proves (|), so in particular s0 � sn�1. But s0 D sR
n D sLR

n�1
, contradicting

the assumption that sn�1 has no reversible moves. This completes the proof. ˜

By symmetry, if s is a stopper in graph-canonical form, then s contains no long

cycles with just a single blue edge. Therefore every long cycle in s must include

at least two edges of each color.

Unicycles

DEFINITION 13. A stopper s is said to be a unicycle provided that:

(i) The graph of s has just one cycle; and

(ii) Each position on the cycle has just two options: a move to the next position

on the cycle, and a move for the other player to a loopfree game.

We say that s is an n-unicycle if its cycle is an n-cycle.

For example, � (Figure 5) is a 4-unicycle. In fact, there exist n-unicycles for all

n � 4. Figure 6 gives an elegant example for all n � 6, in which 0 is the only

loopfree subposition. Figure 7 is an interesting 13-unicycle: 0 and � are the

only loopfree subpositions; furthermore, the cycle is alternating except for the

single pair of consecutive Left edges. The 13-unicycle generalizes to a .4nC1/-

unicycle for all n � 1 (in particular, this gives an example of a 5-unicycle).

We can classify unicycles more precisely by considering the specific sequence

of blue and red edges associated to each cycle. For example, � has the pattern

LLRR. Then a P -unicycle is a unicycle whose cycle matches the pattern P .

224 AARON N. SIEGEL

0 0 0 0 0

�

R

OO

L
// �

R

OO

L
// �

R

OO

L
�

R

OO

L
// �

R

OO

L
››

�

L
››

R

OO

�

L
››

Roo �

L
››

R
�

L
››

Roo �

L
››

Roo

0 0 0 0 0

Figure 6. A particularly elegant n-unicycle (n � 6). It is assumed that
there are at least three blue edges and at least three red edges in the cycle,
though there need not be equally many of each color.

� �
L

//

�

R

KK�����

�L ’’NNNNN
0

L
AÂ

ˆ̂
ˆ̂

�
R 5

55
55

5

0R 55kkkkk

�

L
””#
##
##
#

0
L --[[[[[

�

R

¯¯««
««
««

�

R

$$IIIII

�

L

}}{{
{{{

0

L

‰‰0
00

00�
R

ssggggg

0

R
››

� LkkWWWWW

0

Lˇˇ‹‹
‹‹
‹

�
R

aaCCCCC
� Rzzuuuuu

�

L

UU++++++

0 L
qqccccc

�

R

MMffffffffffff

0
R

iiSSSSS

�

L

DD̄
¯̄

¯̄

0

L

]];;;;;
R

88ppppp

�

R

SS’’’’’

Figure 7. An “almost alternating” 13-unicycle. This generalizes to a
.4n C 1/-unicycle by continuing the pattern: three exits to 0 followed by
one exit to �.

NEW RESULTS IN LOOPY GAMES 225

� �
L

//

�

R

II«««««

�
L ""DDDDD

0L 88qqqqq

�

R
„„%
%%
%%
%

�2
R --ZZZZZ

�

L

˚˚‚‚
‚‚
‚‚

�2

R

flfl:
::

::
�

L
uukkkkk

0

L
››

� RiiSSSSS

�3
Rˆˆ̈ ¨̈
¨̈

�

L

XX111111
�3 R

rrddddd

�

L

LLıııııı

0

L

ffLLLLL R

==|||||

�

R

VV,,,,,

Figure 8. A 9-unicycle whose pattern cannot be realized if the exits are
restricted to 0, �, and �2.

By Lemmas 11 and 12, we know that if there exists a P -unicycle, then P

must have at least two edges of each color. Furthermore, P cannot be strictly

alternating, since every unicycle is a stopper. As it turns out, these are the

only restrictions up to length 9: if P has at most nine edges and meets both

restrictions, then there exists a P -unicycle whose loopfree subpositions are all

nimbers. P D LLRLLRLLR is an interesting example: Figure 8 gives a P -

unicycle with exits to 0, �, �2 and �3, but there are no P -unicycles with exits

restricted to 0, � and �2 (or any other combination of just three nimbers). All

of these facts can be verified using CGSuite.

The same is true for patterns of length 10, with one possible exception: Q D

LLLRLRRRLR. It appears that there are no Q-unicycles whose exits are re-

stricted to nimbers. However, if exits to arbitrary loopfree games are allowed,

then the question remains open.

OPEN PROBLEM. Determine the patterns P for which there exists a P -unicycle.

In particular, is there an LLLRLRRRLR-unicycle?

Note that the number of patterns of length n is equal to the number of directed

binary necklaces of length n. This is sequence A000031 in Sloane’s encyclope-

dia (http://www.research.att.com/~njas/sequences/) and is given by

1

n

X

d jn

2n=d'.d/;

where ' is the Euler phi-function.

226 AARON N. SIEGEL

5. Simplification of alternating cycles

This section introduces a suitable generalization of dominated and reversible

moves to games with alternating cycles. All of the results are stated in terms of

 C, but of course they dualize to
 �.

DEFINITION 14. Let
 be a free loopy game. Then:

(a) A Left option
 L is said to be onside-dominated if .
 L0

/C � .
 L/C for

some other
 L0

.

(b) A Right option
 R is said to be onside-dominated if .
 R0

/C � .
 R/C for

some other
 R0

such that no alternating cycle contains the edge

R

�
 R0

.

(c) A Right option
 R is said to be onside-reversible if .
 RL/C �
 C for some

 RL.

(d) A Left option
 L is said to be onside-reversible if .
 LR/C �
 C for some

 LR such that no alternating cycle contains the edges

L

�
 L R
�
 LR .

The additional constraints in Definitions 14(b) and (d) are necessary, as demon-

strated by examples such as Bach’s Carousel [Berlekamp et al. 2001]. Of course,

the point of these definitions is the following Lemma.

LEMMA 15. Let
 be a free loopy game and let ı be any follower of
 . Suppose

 0 is obtained from
 by either:

(a) Eliminating some onside-dominated option of ı; or

(b) Bypassing some onside-reversible option of ı.

Then
 C D .
 0/C.

PROOF. We prove the lemma for onside-dominated Right options and onside-

reversible Left options; the remaining cases are easier.

(a) Suppose that .ıR0

/C � .ıR/C and
 0 is obtained by eliminating ı
R

�ıR.

Clearly
 C � .
 0/C, so we must show that
 C � .
 0/C. Let S be a complete

Left survival strategy for
 C �
 C, and define S 0 as follows: S 0 is identical

to S , except that any recommendation from �ıC to �.ıR/C is replaced by a

recommendation to �.ıR0

/C.

If Left plays according to S 0, then since S is a complete survival strategy and

.ıR0

/C � .ıR/C, the position ˛C � ˇC reached after Left’s move will always

satisfy ˛C � ˇC. Therefore Left never runs out of moves. To complete the

proof, we need to show that the play, if infinite, was not ultimately confined to

the negative component. So assume that play was infinite. First suppose that

Left was forced to deviate only finitely many times from S . Then after a finite

initial sequence of moves, Left followed the survival strategy S . Therefore there

must have been infinitely many plays in the positive component.

NEW RESULTS IN LOOPY GAMES 227

But by the assumptions of Definition 14, ı is not a Left-alternating follower of

the dominating option ıR0

. Thus between any two deviations from S , there must

occur at least one play in the positive component. So if Left deviated infinitely

many times from S , then again, infinitely many plays must have occurred in

the positive component. This shows that S 0 is also a Left survival strategy for

 C �
 C. Since S 0 never makes use of the edge ı ! ıR, it also suffices for

 C � .
 0/C. This completes the proof.

(b) Suppose that .ıLR/C � ıC and
 0 is obtained by bypassing ıL through

ıLR . Let S be a complete Left survival strategy for
 C �
 C, and consider the

game
 C � .
 0/C. Note that whenever Left can survive some ˛C � ıC, then

˛C � ıC � .ıLR/C, so he can also survive ˛C�.ıLR/C. Thus he has a survival

response to each ˛C � .ıLRL/C. It follows that Left never runs out of moves

if he simply plays
 C � .
 0/C according to S . But each time Right plays from

�ıC to some �.ıLRL/C, the assumptions of Definition 14 guarantee a move in

the positive component before the next time �ıC is reached. By an argument

similar to (a), S suffices as a Left survival strategy for
 C � .
 0/C.

To complete the proof, we must define a second-player Left survival strategy

S 0 for .
 0/C �
 C. Let S 0 be identical to S , except at positions of the form

.ı0/C �ˇC, where ı0 is the subposition of
 0 corresponding to ı. Then there are

two cases.

Case 1: If Left has a survival move from .ıLR/C � ˇC, then let

S 0
�

.ı0/C � ˇC
�

D S
�

.ıLR/C � ˇC
�

:

That is, S 0 makes the same recommendation from .ı0/C � ˇC that S makes

from .ıLR/C �ˇC. This is always valid, by definition of bypassing a reversible

move.

Case 2: Otherwise, we have .ıL/C 6� ˇC, so Left’s move from ıC � ˇC to

.ıL/C � ˇC is losing, and therefore S does not recommend it (except possibly

when every Left move from ıC � ˇC is losing). In this case, S 0 simply follows

the recommendation given by S .

If Left plays .
 0/C �
 C according to S 0, then he never runs out of moves.

As before, to complete the proof we must show that the play, if infinite, was not

ultimately confined to the negative component. The proof is much the same as

in (a): we show that each deviation from S must have been followed by a play

in the positive component.

But Left only deviates from S at Case 1 positions of the form .ı0/C � ˇC.

Until some move is made in the positive component, Left’s plays in �ˇC are

identical to those recommended by S from .ıLR/C � ˇC. Since Case 1 states

that Left can survive from .ıLR/C � ˇC, and since S is a complete survival

228 AARON N. SIEGEL

strategy, this implies that some move must eventually occur in the positive com-

ponent. ˜

We can also generalize the Fusion Lemma.

LEMMA 16 (GENERALIZED FUSION LEMMA). Let G be an arbitrary graph.

Suppose u; v are two distinct vertices of G with GC
u DGC

v , and assume that there

is no alternating path from u to v of even length. Let H be the graph obtained

by deleting v and replacing every edge a ! v with an edge a ! u of the same

color. Then GC
w D HC

w for every vertex w ¤ v.

SKETCH OF PROOF. The proof is similar to that of Lemma 15, so we just sketch

it. In playing GC
a �H

C
b

(or HC
a � G

C
b

), Left follows a fixed strategy for GC
a �

G
C
b

, moving to �HC
u (HC

u) whenever a move to �GC
v (GC

v) is recommended.

The assumptions on u and v ensure that fusion introduces no “new” alternating

cycles, so two deviations in the negative component imply an intervening move

in the positive one. ˜

Appendix:

Algorithms for comparing games

The most basic computational task is the comparison of games, since com-

parisons form the basis for all simplifications. When G and H are loopfree, a

straightforward recursion can determine whether G � H . Where loopy games

are concerned, the situation is more complicated. Recall that if s and t are

stoppers, then s � t just if Left, playing second, can survive t � s. There is a

relatively simple algorithm for testing this condition. If s D Gu and t D Hv ,

then the basic idea is to determine those vertices of the direct sum G ˚H from

which Right can force a win. Since this might depend on who has the move, we

consider separately the pairs .A; L/ and .A; R/, where A is a vertex of G ˚H;

we will refer to such pairs as states. It is convenient to define an associated state

graph:

DEFINITION 17. Let G be a game graph. Then the state graph S of G is the

(monochromatic) directed graph defined as follows. The vertices of S are pairs

.A; L/ and .A; R/, where A is a vertex of G. Its edges are constituted as follows:

� S contains an edge .A; L/ ! .B; R/ if and only if G contains a Left edge

A ! B.

� S contains an edge .A; R/ ! .B; L/ if and only if G contains a Right edge

A ! B.

� S contains no edges .A; L/ ! .B; L/ (or .A; R/ ! .B; R/), for any A; B.

When we speak of predecessors, successors or outedges of a state .A; X /, we

mean predecessors, successors or outedges of .A; X / in the state graph.

NEW RESULTS IN LOOPY GAMES 229

Begin by marking as LOSING all states .A; L/ with no successors. Then

iteratively:

� Mark as LOSING all states .A; R/ with a LOSING successor.

� Mark as LOSING all states .A; L/ from which all successors are marked

LOSING.

Stop when no further vertices can be marked.

Algorithm 1. Comparing stoppers.

The algorithm for comparing stoppers is summarized as Algorithm 1. Starting

from those states .A; L/ with no successors, the states of G ˚ H from which

Right can force a win are iteratively identified. Then s � t just if .u ˚ v; R/

is unmarked: if Right can win from u ˚ v, then he can do so in n moves, for

some n; but then .u ˚ v; R/ will be marked on the n-th stage of the iteration.

This idea is not new. Three decades ago, Fraenkel and Perl [1975] gave

a similar procedure for determining the P- and N -positions of an impartial

loopy game. The partisan version of the algorithm was introduced several years

later by Shaki [1979]. It was rediscovered independently and brought to my

attention by Michael Albert (personal communication, 2004).

The algorithm can be refined to guarantee that each state is examined at most

once per outedge. The improved version is summarized as Algorithm 2. A huge

advantage of this refinement is that it allows substantial prunings. Traversing

the states “top-down,” and stopping as soon as a winner is determined, yields

significant time savings when prunings are desirable. Note that wins for both

players are determined, and not just for Right; occasionally this will quickly

identify Left as the winner and permit an early pruning.

Comparing general games. If
; ı are arbitrary loopy games, then the compar-

ison process is substantially more difficult. Recall that
 � ı if and only if Left,

playing second, can survive both ıC �
 C and ı� �
 �; see [Siegel 2009]. For

clarity, and since the two cases are exactly symmetric, we consider just ıC�
 C.

Now Left survives ıC �
 C if and only if either

(a) he gets the last move, or

(b) infinitely many plays occur in ı.

Thus if play is infinite, but is entirely confined to the �
 C component, then Left

has lost. We can eliminate condition (a) from consideration by first applying the

stopper-comparison algorithm (Algorithm 2); the remaining task is to identify

those states from which Right can keep the play indefinitely in �
 C.

The solution is to make several passes through the graph. At the start of

each pass, some states will already be marked as a WIN FOR R, and the goal

230 AARON N. SIEGEL

Visit each state .A; X / at most once (in any order) and perform the following

steps:

(1) Mark .A; X / VISITED.

(2)

� If any successor of .A; X / is already marked as a WIN FOR X , then mark

.A; X / as a WIN FOR X .

� If every successor of .A; X / is already marked as a WIN FOR Y (Y ¤ X),

then mark .A; X / as a WIN FOR Y .

(3) If we just marked .A; X / as a win for either player, then examine each

predecessor .B; Y / of .A; X / such that

� .B; Y / is marked VISITED; and

� the winner of .B; Y / has not been determined.

If we marked .A; X / as a WIN FOR Y , then immediately mark .B; Y / as a

WIN FOR Y . If we marked .A; X / as a WIN FOR X , then rescan the succes-

sors of .B; Y /, and if they are all marked as a WIN FOR X , then mark .B; Y /

as a WIN FOR X .

If this determines the winner of .B; Y /, repeat step 3 with .B; Y / in place of

.A; X /.

Algorithm 2. Comparing stoppers, refined.

is to identify new ones. Now suppose that, from some state .A; X /, Right can

guarantee that either a state marked WIN FOR R will be reached, or no further

plays will ever occur in ı. Clearly .A; X / must be a WIN FOR R as well. Call

a state BAD if it meets this test; GOOD otherwise. During each pass through the

graph, we first identify all GOOD states, and then mark each BAD state as a WIN

FOR R. The algorithm terminates when a pass completes with no new states

identified as a WIN FOR R.

The procedure for identifying GOOD states is straightforward. For example,

suppose that for some state .A; L/, there exists an outedge in ı to a state that is

not known to be a WIN FOR R. Then .A; L/ can be marked GOOD immediately.

The GOOD markers can then be back-propagated just as WIN markers were in

the stoppers case.

In the worst case, each pass would identify just one GOOD state, so the al-

gorithm is ostensibly O.jV j � jEj/, where jV j is the number of vertices and jEj

the number of edges in the state graph. In practice, however, more than a few

passes are rarely necessary, and the algorithm is effectively O.jEj/.

The algorithm is summarized in detail as Algorithm 3.

NEW RESULTS IN LOOPY GAMES 231

First execute Algorithm 2 to identify states from which one of the players

can force a win in finite time. Then:

(1) Visit each vertex A at most once and perform the following steps.

(a) If the winner of .A; L/ is not yet determined, and either:

� .A; L/ has an outedge in ı to a state whose winner is not yet determined;

or

� .A; L/ has an outedge to a state marked GOOD,

then mark .A; L/ GOOD.

(b) If the winner of .A; R/ is not yet determined, and every successor of

.A; R/ in
 is marked either WIN FOR L or GOOD, then mark .A; R/ GOOD.

(c) If either of the previous steps caused a state .A; X / to be marked GOOD,

then examine all
 -predecessors .B; Y / of .A; X / such that:

� .B; Y / is marked VISITED; and

� The winner of .B; Y / is not yet determined; and

� .B; Y / is not marked GOOD.

If Y D L, then immediately mark .B; Y / GOOD. If Y D R, then rescan

the
 -successors of .B; Y /, and if they are all marked either WIN FOR L or

GOOD, then mark .B; Y / GOOD.

If this causes .B; Y / to be marked GOOD, then repeat step 1(c) with .B; Y /

in place of .A; X /.

(2) Visit each state .A; X / a second time and perform the following steps:

(a) If the winner of .A; X / is not yet determined, and .A; X / is not marked

GOOD, then mark .A; X / as a WIN FOR R.

(b) If the previous step caused a state .A; X / to be marked as a WIN FOR R,

then examine all VISITED predecessors .B; Y / of .A; X / whose winner is

not yet determined.

If Y D R, then immediately mark .B; Y / as a WIN FOR R. If Y D L, then

rescan the successors of .B; Y /, and if they are all marked as a WIN FOR R,

then mark .B; Y / as a WIN FOR R.

If this determines the winner of .B; Y /, then repeat step 2(b) with .B; Y / in

place of .A; X /.

(3) Clear all VISITED and GOOD markers. If the previous step caused any

new states to be marked as a WIN FOR R, then repeat starting with step 1.

Otherwise, stop.

Algorithm 3. Testing whether Left can survive ıC �
 C.

232 AARON N. SIEGEL

Acknowledgement

I thank Michael Albert for his considerable assistance in developing the al-

gorithms presented in this appendix.

References

[Berlekamp et al. 2001] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways

for Your Mathematical Plays, Second ed., A. K. Peters, Ltd., Natick, MA, 2001.

[Conway 1978] J. H. Conway, “Loopy games.”, pp. 55–74 in Advances in Graph

Theory, edited by B. Bollobás, Ann. Discrete Math. 3, 1978.

[Fraenkel and Perl 1975] A. S. Fraenkel and Y. Perl, “Constructions in combinatorial

games with cycles.”, pp. 667–699 in Infinite and Finite Sets, Vol. 2, edited by A.

Hajnal et al., Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975.

[Moews 1996] D. J. Moews, “Loopy games and Go.”, pp. 259–272 in Games of No

Chance, edited by R. J. Nowakowski, MSRI Publications 29, Cambridge University

Press, New York, 1996.

[Shaki 1979] A. Shaki, “Algebraic solutions of partizan games with cycles.”, Math.

Proc. Cambridge Philos. Soc. 85:2 (1979), 227–246.

[Siegel 2009] A. N. Siegel, “Coping with cycles”, 2009. In this volume.

AARON N. SIEGEL

aaron.n.siegel@gmail.com

