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The complexity of the Dyson Telescopes puzzle
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ABSTRACT. We give a PSPACE-completeness reduction from QBF (quanti-

fied Boolean formulas) to the Dyson Telescopes puzzle where opposing tele-

scopes can overlap in at least two spaces. The reduction does not use tail ends

of telescopes or initially partially extended telescopes. If two opposing tele-

scopes can overlap in at most one space, we can solve the puzzle in polynomial

time by a reduction to graph reachability.

1. Introduction

The complexity of many motion-planning problems has been studied exten-

sively in the literature. This work has recently focused on very simple com-

binatorial puzzles (one-player games) that nonetheless exhibit the theoretical

difficulty of general motion planning; see, e.g., [1]. Two main examples of this

pursuit are a suite of pushing-block puzzles, culminating in [2; 3], and a suite

of problems involving sliding-block puzzles [4]. In pushing-block puzzles, an

agent must navigate an environment and push blocks in order to reach a goal

configuration, while avoiding collisions. The variations of pushing blocks be-

gan with several versions that appeared in video games (the most classic being

Sokoban), and continued to consider simpler and simpler puzzles with the goal

of finding a polynomially solvable puzzle. Nonetheless, all reasonable pushing-

block puzzles turned out to be NP-hard, and many turned out to be PSPACE-

complete, with no problems known to be in NP, except in one trivial case where

solution paths are forced to be short. Similarly, sliding-block puzzles are usually

PSPACE-complete, even in very simple models.

Fleischer’s work was partially supported by a grant from the National Natural Science Fund China (grant

no. 60573025).
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In this paper we consider a motion-planning puzzle, the Dyson Telescopes

puzzle. It takes the form of an enjoyable computer game [5], invented and

developed by the Dyson company to advertise a vacuum cleaner called “Tele-

scope” that is retractable like an astronomical telescope. The puzzle is perhaps

most closely related to sliding blocks, in the sense that the agent is outside

the environment. At any time, the agent can extend or retract one of several

“telescopes”, each of which has a specified, fixed length in extended form.

Erickson [6] posed the complexity of the problem in 2003. The complexity

remained open despite fairly extensive pursuit—it seemed nearly impossible to

build gadgets that required multiple entrances. Thus we hoped that it would be

the first “interesting” yet polynomially solvable motion-planning puzzle.

We prove that the Dyson Telescopes puzzle is indeed polynomially solvable

in a fairly natural situation in which the extended forms of opposing telescopes

(two telescopes on the same row or column, pointing towards each other) overlap

in at most one space. However, some of Dyson’s puzzles do not satisfy this

restriction. We prove that this small flexibility in the general form of the problem

in fact makes the problem PSPACE-complete.

The polynomial-time algorithm for the restricted form of the telescopes game

is particularly interesting because such puzzles are nonetheless enjoyable for

humans to play. All but a few of the hundreds of levels of the puzzle on the

Dyson homepage [5] (mainly the Grandmaster levels) do not have opposing

telescopes that overlap in more than one square. Therefore we expect that our

algorithm can be used to design enjoyable instances of the telescope game, enu-

merating over puzzles within this restricted family (either by hand or by some

automatic process), and automatically computing which puzzles are solvable.

Our algorithm can also find the shortest solution, for most reasonable weighting

functions, enabling the puzzle designer to find the hardest puzzle according to a

particular difficulty measure, such as the solution requiring the longest sequence

of moves or requiring a “difficult to see” sequence of moves.

1.1. Description of the problem. In the Dyson Telescopes puzzle, the goal is

to maneuver a ball on a two-dimensional square grid from a starting position

to a goal position, by extending and retracting telescopes on the grid; refer to

Figure 1. An instance of the problem consists of an n � m grid, a number of

telescopes on this grid, and the ball’s starting position and goal position. Each

telescope is specified by its position, its direction (up, right, down, left), and its

length, i.e., the number of spaces it can be extended. Each telescope can be in

either an extended or a retracted state. Initially, all telescopes are retracted. A

move is made by changing the state of a telescope.

If a telescope is extended, it will expand in its direction until it is blocked

(i.e., there is a telescope occupying the space where the telescope would extend



THE COMPLEXITY OF THE DYSON TELESCOPES PUZZLE 273

(a) Start (b) 1st step (c) 2nd step (d) 3rd step (e) 4th step

Figure 1. This example depicts a sample situation from the original game
where all telescopes have length 3. We can solve this instance as follows:
We extract the first telescope to push the ball to the right, where we then
can push it downwards into the row of the lower telescope; when we extend
and retract the lower telescope, it will finally pull the ball back to the goal
position.

to next), or until it reaches its full length. If a ball blocks the extension of the

telescope, the ball is pushed in the direction of the telescope, either until it is

blocked by another telescope or until the pushing telescope is fully extended; see

Figure 1(d). On the back side of the telescope (i.e., in the opposite direction as

the telescope extends), there is a one-space tail. When the telescope is extended,

this tail is retracted.

If an extended telescope is retracted, it is retracted all the way until it occupies

only its base space. If the space behind the telescope is not occupied, its tail will

be extended and occupy this space (and possibly push the ball). If the telescope

end touches the ball when being retracted, it pulls the ball with it, so that the ball

will move to the position directly in front of the retracted telescope; see again

Figure 1(d).

We prove that it is PSPACE-complete to determine whether a given problem

instance has a series of telescope movements that moves the ball from the start-

ing position to the goal position (think of the goal square as a hole; the ball

will fall down as soon as it is pushed across the goal square). We do this by

constructing a circuit solving QBF, using gadgets of telescope configurations

to simulate Boolean variables, logical gates, etc. If opposing telescopes are not

allowed to overlap in more than one space, we give a polynomial time algorithm

to find a solution.

Alternative versions of the game allow the telescopes to be partially extended

in the initial state, or to not consider a tail end of the telescopes. We show that

these modifications do not change the complexity of the problem.



274 DEMAINE, DEMAINE, FLEISCHER, HEARN, AND OERTZEN

2. Gadgets used in the reduction

In this section, we introduce various gadgets made from configurations of

telescopes. These gadgets usually have some entrances and exits labeled by

capital letters. We usually describe all the possible paths along which the ball

can travel from an entrance to an exit.

2.1. Basic gadgets. We use the symbols in Figure 2 for simple tracks, simple

crossings, division of the path, and union of paths, which are easy to implement.

We assume that passage through one-way, split and join gadgets is possible only

in the appropriate directions. Figure 3 shows the join and split gadgets.

(a) Track (b) Crossing (c) Split (d) Join

Figure 2. Simple gadgets.

(a) Join (b) Split

Figure 3. Details of the join and split gadgets.

Figure 4 shows a pair of opposing telescopes (the number on a telescope indi-

cates its length). The pair is said to be active if one of the telescopes is extended

with its end between the black and the white dot, and inactive otherwise.

2

2

5 5

2

try

no

yes

Figure 4. Opposing telescopes.
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If the pair is inactive and the ball enters from try, it can only leave the gadget

at no. On its way from try to no, it may activate the pair as follows. First, we

retract all telescopes in the gadget. Then we extend the left telescope to full

length (so that it covers the white dot square) and extend the right telescope

until it is blocked by the left telescope just to the right of the white dot square

(i.e., we extend it by three spaces). Then we retract the left telescope, put the

ball into the gadget along the try path, and push it to the white dot square. Then

we pull the ball to the no exit by retracting the right telescope. Note that this

action leaves the pair in an active state.

If the pair is active and the ball enters from try, then the right telescope must

be extended to just cover the white dot square. Then we can push the ball to the

black dot square, where it can be picked up by the top telescopes so that it can

leave the gadget at yes. We can also leave the pair at the no exit. In both cases,

we may choose to leave the opposing pair either active or inactive.

Note that the ball can exit the gadget via yes and no, but it cannot enter the

gadget at these points. We may lengthen the left and right telescopes (increasing

the size of the gaps) and vertically flip the sides of the try, yes, or no pathways

without changing the properties of the gadget, as long as we maintain the two-

space overlap of the left and the right telescopes.

2.2. Variable gadget. When we move the ball from try to yes in an active

opposing pair we may leave the pair active. To force it become inactive, we

construct a reset gadget, shown schematically in Figure 5. Each grey rectangle

represents an opposing pair. A single telescope extends along the lower pathway

r , crossing the path of the lower telescope of ˇ and ending in the path of the

lower telescope of 
 . The ball cannot enter ˇ directly; it must first enter 
 .

LEMMA 1. The ball can always move through a reset gadget from in to out, but

this forces the opposing pair ˛ to become inactive.

PROOF. The ball can only pass along path r if the lower telescopes of both ˇ

and 
 are retracted. If an opposing telescope is also retracted, the corresponding

pair will become inactive. If both upper telescopes of ˇ and 
 are extended to

keep the opposing pairs active, ˛ must be inactive. Since the ball can leave the

gadget only if both ˇ and 
 are active, this is only possible if ˛ is inactive. Note

that the initial states of the opposing pairs are not important because we can

activate ˇ and 
 (deactivating ˛). ˜

We attach three independent reset gadgets to a single opposing pair ˛ to con-

struct a variable gadget, shown in Figure 6. Here, each pair .ˇi ; 
i/ corresponds

to one reset gadget; the internal reset pathways are not shown. This is our

workhorse gadget, forming the basis of all the following constructions. We say

that the variable gadget is open (closed) if ˛ is active (inactive).
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Figure 5. Reset gadget.
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Figure 6. Variable gadget.

LEMMA 2. In a variable gadget, traversal from either A or C to B is always

possible, and may open the gadget. Traversal from C to D is possible precisely

if the gadget is open, and forces it to close. Traversal from E to F is always

possible, and forces the gadget to close. No other traversals are possible.

PROOF. By properties of opposing telescopes, Lemma 1, and the pathways

shown in Figure 6. ˜

2.3. 3SAT gadget. Given a 3CNF formula W (a propositional formula in

conjunctive normal form with three disjuncts per clause) with m clauses and n

variables, we construct a 3SAT gadget, shown in Figure 7, to test the formula.

We use an m�3 array of variable gadgets. The three gadgets in row i correspond

to the variables in clause i .

For each variable v and truth value b 2 f0; 1g, we connect the A-B lines of

all variable gadgets corresponding to v D b into a chain. We also connect the

E-F lines of all variable gadgets corresponding to v D 1�b into another chain.

We concatenate these two chains by joining the last B line of the first chain to

the first E line of the second chain. Finally we connect the first A line of the

chain to an input channel .v D b/in, and the last F line in the chain to an output

channel .v D b/out of our 3SAT gadget.

We connect together the D lines of the three variable gadgets on row i and

the C lines of the three variable gadgets on row i C1, so that it is possible to go

from any of the three D lines to any of the three C lines. We connect an input

channel test to the C lines of row 1. We connect the D lines of row m to an

output channel pass.

Thus, the 3SAT gadget has 4nC2 ports (in.v D b/ for each v and b, one test

input, and as many outputs).

LEMMA 3. Consider a 3SAT gadget for a formula W . If the ball enters at

.v D b/in, it can only exit the gadget at .v D b/out. This may open all gadgets
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… ……
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n out
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n out

Figure 7. A 3SAT gadget. Shown are the test path and the path .v1 D1/in
to .v1 D 1/out , where v1 appears only in the first three clauses (twice
positive, once negated).

corresponding to v D b and must close all gadgets corresponding to v D 1 � b.

The ball can also move from test to any .v D b/out, and this must close all

gadgets corresponding to v D 1 � b.

There exists an assignment v1 D b1; : : : ; vn D bn satisfying W if and only if

the ball can traverse the gadget from test to pass (after first traversing it from

.vi D bi/in to .vi D bi/out, for i D 1; : : : ; n).

PROOF. If the ball enters at .v D b/in, it first reaches a chain of A-B channels

through variable gadgets. It must follow the chain because in a variable gadget

the only way from A leads to B. This may open all these gadgets. After the

chain of A-B channels, the ball must traverse a chain of E-F channels which is

also possible in only one way. This forces the corresponding variable channels

to close.
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If the ball enters at test, it follows a chain of C -D channels through vari-

able gadgets. It may exit a variable gadget corresponding to v D b at B and

then follow the chain of A-B channels as above. It may open some gadgets

corresponding to v D b, but then must close all gadgets in the E-F chain corre-

sponding to v D 1 � b. This ensures that no variable is assigned more than one

truth value (i.e., if any variable gadget corresponding to v D b is open, then all

variable gadgets corresponding to v D 1 � b are closed, and vice versa).

So, if a path from test to pass of open variable gadgets exists, the correspond-

ing variable assignment satisfying W can be read off. On the other hand, for

each solution v1 D b1; : : : ; vn D bn of W , the n traversals from .vi D bi/in to

.vi D bi/out are possible, opening a path from test to pass. ˜

3. PSPACE-completeness

We now show that the Dyson Telescopes puzzle is PSPACE-complete. It is

easy to see that the problem is in PSPACE, since the state of all telescopes and

the ball position can be stored in linear memory. To show hardness, we reduce

the problem from Quanitified Boolean Formulas (QBF).

3.1. Countdown unit. We need a countdown unit that can be traversed at most

2n times. The gadget is shown in Figure 8. We chain together n C 1 variable

gadgets, linking each gadget’s B exit to the next gadget’s C entry. We combine

the D exits into an overall exit line, and link the last variable gadget’s B exit to

another exit of the countdown unit.

restart

step

in

…

C

Variable n

B

D

C

Variable 0

B

D

C

Variable 1

B

D

Figure 8. Countdown unit.

LEMMA 4. When the ball enters the countdown unit for the first time, it can

leave it at restart. After the gadget has been traversed from in to restart, it can

be at most 2n times traversed from in to step, before it must again be traversed

from in to restart.

PROOF. If all variable gadgets are closed, the ball can only leave them at B.

After moving from in to restart, all or some of the gadgets may be open. But then

the in-step channel can be used at most 2n times, as can be seen by induction. ˜



THE COMPLEXITY OF THE DYSON TELESCOPES PUZZLE 279

3.2. Reduction from QBF. Let

W D 8v1;19v1;28v2;19v2;2 : : : 8vn;19vn;2f .v1;1; : : : ; vn;2/

be a quantified boolean formula with a 3CNF formula f . We build a gadget to

test W using a 3SAT gadget for f , one countdown unit of size n, and a chain

of n additional variable gadgets. The construction is shown in Figure 9.
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pass
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BF

C

D E

Variable n

Countdown

Figure 9. Reduction from QBF.

Each D exit of the variable gadgets is linked to the C entry of the previous

gadget. Each F exit is linked to the E entry of the next variable gadget, however

not directly but via (1) the .vi;1 D 0/ channel of the 3SAT gadget, and then (2)

either the .vi;2 D 0/ or the .vi;2 D 1/ channel of the 3SAT gadget. The B exit of

each variable gadget is also linked to the E entry of the next gadget, via (1) the

.vi;1 D 1/ channel of the 3SAT gadget, and then (2) either the .vi;2 D 0/ or the

.vi;2 D 1/ channel of the 3SAT gadget. The .vn;2 D 0/ and .vn;2 D 1/ channels

of the 3SAT gadget are linked to the in entry of the countdown unit, whose step

exit is linked via the test channel of the 3SAT gadget to the last variable gadget’s

C entry. The first gadget’s D exit is linked to the goal. The starting point is also

linked to the in entry of the countdown unit. The restart exit of the countdown

unit is linked to the first variable gadget’s E entry point.

THEOREM 5. W is true if and only if the ball can move from start to goal.
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PROOF. We first describe how we can systematically test the formula for all

possible truth assignments according to the quantifiers in W .

Initially, we must traverse the countdown unit from in to restart. Whenever

the ball leaves the countdown unit at restart, it institutes a restart of the variable

gadgets: all of them must be passed from E to F , so all of them are closed,

and all variables with universal quantifiers are set to 0; all other variables can

be chosen freely.

Next we can test the 3SAT gadget with the current choice of variables truth

assignment. If we can pass the gadget successfully, the ball ends up at the C

entrance of the gadget of the last variable n. Since this gadget is closed, the ball

can only leave it at B, and we open the gadget while passing through. Since

we leave the gadget at B we can now set vn;1 to 1 and then choose a new

arbitrary value for vn;2. Then we test the 3SAT gadget again with this new truth

assignment. But this time we can leave the gadget for variable n at D, pass

through the gadget for variable n � 1, opening it, and set vn�1;1 to 1. Then we

can choose a new value for vn�1;2, traverse the gadget for variable n along E-F ,

thereby closing it, and reset vn;1 to 0. Finally we can choose a new value for

vn;2.

In this way, the chain of variable gadgets enumerates all possible settings of

variables with universal quantifiers. Whenever we open a variable gadget, its

corresponding 8-variable is set to 1, and whenever we use the E-F channel to

close the gadget, we reset its 8-variable to 0. For the corresponding 9-variables

we can choose arbitrary values. A gadget can only be opened if all gadgets

below (i.e., with higher index) have already been opened, so the gadgets act as

a counter which must be passed at least 2n times to reach the goal.

Every time this counter is increased (i.e., reaches the entry of the countdown

unit), it must pass the countdown unit and the 3SAT test channel. If the ball

were to traverse the 3SAT unit from test to any .v D b/out, then the countdown

unit would have to be passed more often than the counter given by the additional

variable gadgets. But these must be passed 2n times to reach goal. Since the

countdown unit does not allow more than 2n traversals from A to B, it would

have to be left at restart before we reach goal, which would reset the whole

structure. Therefore, the ball cannot move from test to any other exit than pass

if it wants to reach goal.

By the same argument, whenever a variable gadget is traversed from C to B,

it must be opened, otherwise more than 2n passages are required to reach goal,

and the whole structure is reset.

If the 3SAT gadget is tested with every possible variable setting for the vari-

ables with universal quantifiers and a choice of values for the variables with

existential quantifiers, W is true. If on the other hand W is true, there is such a
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selection for each possible setting for variables with universal quantifiers, and a

path from start to goal exists. ˜

4. Opposing telescopes that overlap in at most one space

In this section, we show that the Dyson Telescopes puzzle is in P if opposing

telescopes cannot overlap in more than one space. Let D denote an instance of

such a problem, and let T1; : : : ; Tn denote the telescopes. A constellation of the

telescopes is an assignment of integers to the telescopes describing how far the

telescopes are extended.

A direct traversal from Ti to Tj is a sequence of telescope extensions and

retractions such that the ball is initially attached to Ti , finally attached to Tj ,

and in between it is not pushed or sucked by any other telescope. A traversal

from T1 to Tn is a sequence of direct traversals, where the ball is first attached

to T1 and ends up attached to Tn.

We first assume that D has no opposing pairs. Then we can define an induced

directed graph GD with the telescopes as vertices and an edge from Ti to Tj if

� Ti and Tj are orthogonal. Let f be the space in which they overlap.

� Ti and Tj can be extended at least up to the space before f .

� f is either the first space in front of Ti , the first space not reachable by Ti (i.e.,

the space to which the ball would be pushed if Ti was completely extended),

or there is a third telescope Tk that can be extended to the space after f in

the extension path of Ti .

LEMMA 6. Assume D has no opposing pairs. If the ball is attached to a tele-

scope Ti , then a direct traversal from Ti to another telescope Tj is possible

precisely if there is an edge from Ti to Tj in GD , independent of the current

constellation of D.

PROOF. If there is an edge from Ti to Tj , then obviously a direct traversal is

possible.

Assume a direct traversal is possible in some constellation. Then Ti and Tj

must be able to reach a common space f . Since there are no opposing pairs of

telescopes, Ti and Tj must be orthogonal. Then, f is the only space reachable

by both telescopes. We can transfer the ball from Ti to f if f is either the first

or last reachable space of Ti , or if the space after f in the path of Ti is blocked

by another telescope Tk . In any case, the edge .Ti ; Tj / exists in GD . ˜

Now assume D contains an opposing pair as shown in Figure 10, where A

and B overlap in at most one space, denoted by the black dot (if it exists).

There may also be a third telescope C pointing to this space (or even extending

beyond). There might even be a forth telescope (not shown, it can be handled



282 DEMAINE, DEMAINE, FLEISCHER, HEARN, AND OERTZEN

Aout Bout

Bin

A

C

B

Ain

Figure 10. Opposing telescopes with at most one overlapping space.

analogously) opposing C and extending up to or beyond the black dot space.

We define the graph GD as before, but for the opposing pair we must add some

additional edges as described below. For a telescope T , let Tin denote the set of

all telescopes with an edge pointing to T , and Tout the set of telescopes to which

T points in GD . Note that C may or may not be in Ain and Bin, depending on

the overall configuration of the at most four telescopes covering the black dot

square and the initial position of the ball. Actually, for the construction below

it is sufficient to assume that C is not in Ain and Bin.

LEMMA 7. Traversal from any telescope in Ain [ Bin to C (if it exists) and any

telescope in Aout [ Bout is possible in every constellation of D.

PROOF. If C exists, we can move the ball from any telescope T 2 Ain to C as

follows. First, we retract A, B, T , and C . Then we extend A completely. If we

now extend B, it will be stopped just right of the black dot. Now we can retract

A and move the ball from T to the line of A, which is possible since there is an

edge from T to A in GD . If we then extend A, the ball will come to rest on the

black dot, where we can pick it up with C .

All other traversals are trivially possible. ˜

Although the traversal from T to C in the proof above is done via A, it is

impossible to traverse directly from A to C without prior preparation of the

opposing pair if C extends exactly to the square above the black dot square. If

the ball is initially placed in the opposing pair and the pair is not initially set up

such that traversal to C is possible, C cannot be reached directly. This means

we should add the following edges to GD for each opposing pair .A; B/ with

one space overlap (and maybe an orthogonal telescope C pointing to the overlap

space):

� edges A ! B and B ! A;

� edges T ! C for all T 2 Ain [ Bin, if C exists;
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� edge A! C , if C exists and can be extended to block A or B, or B is initially

extended immediately to the right of the overlap space;

� edge B ! C , if C exists and can be extended to block A or B, or A is initially

extended immediately to the left of the overlap space.

Note that in the second case the edges T ! C are a shortcut for T ! A ! C

because we do not always want to add edge A ! C to the graph (depending on

the initial placement of the ball).

LEMMA 8. Let D be an instance of the Dyson Telescopes puzzle with no op-

posing pair having more than one space overlap. Let GD be the induced graph

with edges as described above. Then, D has a solution exactly if there exists a

path in GD from a telescope that reaches the starting position of the ball to a

telescope that reaches the goal position.

PROOF. If there is a sequence of telescope movements that move the ball from

start to goal, this induces a sequence of telescopes. If the start position of the

ball is within an opposing pair .A; B/ and both telescopes are initially retracted,

the ball cannot leave the segment between A and B via C . But paths from A

and B to all nodes of Aout and Bout exist in GD , so the first telescope moves

until the ball leaves the segment between A and B are reflected by edges in GD .

If the ball starts within the pair and one of the telescopes is not extended such

that leaving at C would be possible, this is also reflected in GD . Afterwards, all

direct traversals of the winning strategy correspond to edges in GD .

If on the other hand a path in GD exists, it can easily be translated to a

sequence of ball traversals (either direct or through opposing pairs) that gives a

strategy to move the ball from start to goal. ˜

COROLLARY 9. The Dyson Telescopes puzzle is in P if opposing telescopes can

overlap in at most one space.

5. Summary and outlook

We showed that, in general, the problem of deciding whether the ball can

move from start to goal in a setting of the Dyson Telescopes puzzle is PSPACE-

complete. We also gave a polynomial-time algorithm if opposing pairs are re-

stricted to at most one space of overlap.

Both the PSPACE-completeness proof and the algorithm for the restricted

case also work if the back ends of the telescopes are taken into account and

if the telescopes can initially be arbitrarily (partially) extended. Note that the

PSPACE-hardness proof requires rather along telescopes. It would be inter-

esting to investigate the complexity status of the problem with bounded-length

telescopes.
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